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As the poems go into the thousands, you
realize that you’ve created very

little.
It comes down to the rain, the sunlight,
the traffic, the nights and the days of the

years, the faces.
Leaving this will be easier than living

it, typing one more line now as
a man plays a piano through the radio,

the best writers have said very
little

and the worst,
far too much.

— Charles Bukwoski, As The Poems Go.
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Synopsis

“It’s still magic even if you know how it’s done.”

— Terry Pratchett, A Hat Full of Sky.

One of the main goals of theoretical computer science is to understand the complexity of
various problems. This thesis proposes on looking at the ‘simplest’ algebraic models of
computations, and their implications in fundamental complexity-theoretic questions. Fur-
ther, we derandomize and ‘de-border’ (de-approximate) some problems that were previously
known to have efficient randomized solutions, or approximations. The thesis is divided into
two parts – 1) Results in Algebraic Complexity, and, 2) Results in Geometric Complexity
Theory (GCT).

The most significant challenge in the field of algebraic complexity is to find an explicit
polynomial that requires superpolynomially many operations to compute it, equivalently,
superpolynomial size circuits. The permanent is widely conjectured to be such a polynomial,
though its illustrious sibling – the determinant – can indeed be computed by polynomial-
sized circuits. Separating the complexity of the determinant from that of the permanent is
the question of utmost importance in this field. In fact, this question, commonly known as
the VP vs. VNP problem, was formalized by Valiant [Val79], as an algebraic analogue of the
“P vs. NP” question. Surprisingly, a very closely related problem of prime importance is the
Polynomial Identity Testing (PIT). PIT asks to check whether the polynomial computed by a
given circuit is identically zero or not. Though a very straightforward randomized algorithm
exists for PIT, a deterministic polynomial time solution has long been desired, but not yet
achieved. Remarkably, [KI04; Agr05] showed that efficient deterministic algorithms for PIT
would yield intriguing algebraic (and Boolean) circuit lower bounds, and vice versa.

We initiate our study by showing some curious connections between – (1) showing non-
trivial lower bounds for representing a univariate polynomial as a sum-of-squares, (2)
bounding the number of real roots of explicit univariate polynomials, and (3) the big-
ticket consequences in algebraic complexity (separating VP from VNP, finding an efficient
algorithm for PIT etc.). In particular, we show that it suffices to find an explicit univariate
polynomial 𝑓, that can be written as a sum-of-squares (SOS) 𝑓 = ∑ 𝑐𝑖𝑓 2

𝑖 , where 𝑐𝑖 ∈ 𝔽,
for a field 𝔽, such that the total sparsity of the polynomials 𝑓𝑖, called the “support-sum
size” of 𝑓, is slightly ‘largish’. Most probably, simple-looking ‘real-rooted’ polynomials,
like (𝑥 + 1)𝑑, or ∏𝑑

𝑖=1 (𝑥 + 𝑖), already satisfy such a condition. The idea that polynomials
with small size circuits should have small size SOS representations, plays a central role



in proving such consequences. We further investigate the sum-of-cube (SOC) and higher
power representations similarly, and show stronger results.

Next, we study PIT for polynomials computed by some ‘structured’ algebraic circuits of
depth-4. For some context, extremely simple models like constant-depth circuits (even
depth-4) are known to be surprisingly powerful in algebraic complexity [AV08; Koi12];
proving strong lower bounds, or derandomization results will have direct consequences for
general circuits! In this work, we quasi-derandomize two circuit classes – (i) Σ[𝑘]ΠΣΠ[𝛿], and,
(ii) Σ[𝑘]ΠΣ∧, where 𝑘 and 𝛿 can be arbitrary constants. To put it in context, even for 𝑘 = 3, and
𝛿 = 3, nothing better than an exponential-time algorithm was known before our work. And,
after our work, ‘only’ a subexponential-time blackbox PIT algorithm for any constant-depth
circuits was obtained in the breakthrough result by Limaye, Srinivasan, Tavenas [LST21]. A
key technical ingredient in our algorithms is how the logarithmic derivative operator, and
its power-series, modify the top Π-gate to ∧.

Next, we move onto the GCT results. GCT is a novel approach towards proving strong
lower bounds in complexity theory (both algebraic & Boolean), via methods from algebraic
geometry and representation theory. It was introduced by Mulmuley and Sohoni [MS01;
Mul12; Mul17], and has gained significant momentum over the last few years. A polynomial
𝑃 is said to be in the border of a circuit class 𝒞 (denoted 𝒞), over a field 𝔽, if there is a circuit
𝐷 ∈ 𝒞, which uses constants from the function field 𝔽(𝜖), where 𝜖 is a formal variable, and
lim𝜖→0 𝐷 = 𝑃. Over fields such as complex numbers, this notion is known to be equivalent
to the fact that the polynomial can be approximated to arbitrary accuracy (say in ℓ2 distance
for the coefficient vectors), by a circuit in the class 𝒞.

Unfortunately, very little is known about the properties of the border of very simple circuit
classes. It is easy to see that depth-2 circuits are equal to their closure. But, what happens
for border of depth-3 circuits? In a surprising result, Kumar [Kum20] showed that border
fanin-2 depth-3 circuits (Σ[2]ΠΣ) are ‘universal’, with an exponential blowup in the size.
This motivates us to understand the power of polynomial size Σ[2]ΠΣ circuits. In this work,
we show that Σ[2]ΠΣ are ‘easy’ – they can be computed by ‘small’ determinants. The same
result holds, even when one replaces the fanin by an arbitrary constant 𝑘. Further, we
can also quasi-derandomize the same class. We develop a new technique, called DiDIL –
divide, derive, induct, with limit. It ‘almost’ reduces Σ[𝑘]ΠΣ circuits to read-once oblivious
algebraic branching programs (ROABPs) in any-order, for which the closure and PIT are
well-understood.

Finally, we extend our SOS results in the border paradigm. In particular, real-rooted
polynomials should be hard to even approximate as a sum-of-squares, which suffices to prove
the approximative (stronger) version of the VP vs. VNP, and derandomize the approximative
version of PIT for general circuits.
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“If you’re a scientist by trade, rethinking is fundamental to
your profession...But being a scientist is not just a profession.
It’s a frame of mind – a mode of thinking that differs from

preaching, prosecuting, and politicking”.

— Adam Grant, Think Again.

Let us begin by asking some thought-provoking questions.

Q1. Is it possible to efficiently solve Sudoku for ‘really
large’ squares?

Q2. How do the zeroes (roots) of a polynomial behave?

Q3. Do (algebraic) approximations help in computation?

Q4. Can we remove randomness with ‘cosmetic’ changes
in resources (e.g., time, memory)?

Q5 . Is there any connection between algorithms and lower
bounds?

At a first glance, Q1-Q5 look like a hodgepodge of unrelated
questions. Surprisingly, these questions are closely related
and studied within the framework of Computational Complex-
ity Theory. In today’s technology-driven world, resources
play a crucial role in determining the efficiency and useful-
ness of a particular algorithm. Complexity Theory tries to
quantify the requirement of a certain resource to complete
various computational tasks. The objective of my thesis is to
fathom algebraic computations as a pervasive computational
phenomenon, interrelate questions Q1-Q5, in the strongest
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Throughout the thesis, we will
keep referring Q1-Q5 and its rel-
evance in the particular contexts.

possible way, and use the findings to answer fundamental
questions in Algebraic Complexity and Geometric Complexity
Theory. We will try to define these terms later.

Models of computation which deal with real (in fact, com-
plex numbers) were introduced with mainly two aims. On
one hand, it aims to build the Complexity Theory for the
computations done within the numerical tradition. On the
other hand, it uses the power of the methods and results of
continuous mathematics (rather than discrete one). The basic
point is, numbers should be considered as basic (indivisible)
entities, along with fixed (unit) cost operations.

At the inception, it was really a novel idea that the number
of operations, rather than the bit complexity, is important
enough to measure the complexity of a numerical process. It
is just as classical as the notion of computation! Interestingly,
in 1948, Alan Turing [Tur48] already noted the following.

“It is convenient to have a measure of the amount of
work involved in a computing process, even though
it be a very crude one. [⋯] In the case of computing
with matrices, most of the work consists of mul-
tiplications and writing down numbers, and we
shall therefore only attempt to count the number
of multiplications and recordings. For this purpose.
a reciprocation will count as a multiplication. This
is purely formal. A division will then count as two
multiplications; this seems a little too much. and
there may be other anomalies, but on the whole
substantial justice should be done.”

1.1 Algebraic Complexity

Perhaps, the most important machine model which has the
above-discussed features is the algebraic circuits. They are
studied in algebraic complexity, formerly ‘arithmetic circuit
complexity’, to understand formal multivariate polynomials
over a field 𝔽. The field may not necessarily be 𝔽2, like in the
Boolean world. A paramount reason to focus on algebraic
complexity is the so-called “yellow books argument”, as men-
tioned by Aaronson [Aar16]: algebraic complexity brings us
closer to continuous mathematics, where we have acquired
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deep knowledge, for e.g., algebraic geometry, representation
theory, which is harder to apply in the Boolean case.

1.1.1 Algebraic models of computation

Definition 1.1.1 (Algebraic circuit) An algebraic circuit is
a finite directed acyclic graph where each vertex (gate) is one
of the following:

(i) An input gate labeled by some variable 𝑥𝑖 with in-degree
zero.

(ii) A constant gate with in-degree zero, labeled by some
constant 𝑐 ∈ 𝔽. Here 𝔽 is the underlying field; for
e.g., the field of rationals ℚ, the field of complex num-
bers ℂ.

(iii) All the other internal gates are labelled by ‘+’ and ‘×’.
They have the obvious operational semantics.

(iv) An output gate with out-degree zero; we assume there
is exactly one output gate. It outputs the polynomial
computed by the circuit.

Figure 1.1: A depth-3 circuit of size 34

The size of the circuit denotes the number of edges and nodes
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1: At the inception of algebraic
complexity, the size usually cap-
tured only the number of nodes
in the circuit. Although it varies
from case-to-case, nowadays, we
usually use the number of nodes
and edges. Since, in a graph, the
number of edges can be at most
quadratic in the number of nodes,
it hardly matters, specailly while
proving superpolynomial lower
bounds.

in the graph 1. For any fixed polynomial 𝑓, size(𝑓 ) denotes
the size of the smallest circuit computing it; the notion of
‘size’ captures the number of additions and multiplications
required to compute its value on any input. Some other very
relevant and important complexity parameter of an algebraic
circuit are –

1. the depth – it denotes the length of the longest path in
the circuit,

2. formal degree – the maximum degree polynomial that
can be computed by any node,

3. fan-in – maximum number of inputs to a node, and

4. fan-out – maximum number of outputs from a node.

Another very relevant model of computation is the algebraic
formulas.

Definition 1.1.2 (Algebraic formula) An algebraic circuit
is called a formula if the underlying acyclic graph in Defini-
tion 1.1.1 is a tree.

In a formula, the fan-out of the nodes is at most one, i.e. ‘reuse’
of intermediate computation is not allowed. An intermediate
model between algebraic formulas and algebraic circuits, is
the algebraic branching programs (ABPs).

Definition 1.1.3 (Algebraic Branching Program (ABP)) An
Algebraic Branching Program (ABP) in variables 𝑥1, 𝑥2, … , 𝑥𝑛,
over the field 𝔽, is a directed acyclic graph with the following
properties.

(i) There is a distinguished vertex 𝑠 of in-degree zero (the
source).

(ii) There is a distinguished vertex 𝑡 of out-degree zero (the
sink).

(iii) Each edge 𝑒 is labeled with a linear polynomial ℓ𝑒 in
the input variables 𝑥1, 𝑥2, … , 𝑥𝑛.

They can be thought of as a linear projection of symbolic
determinant polynomials, defined in subsection 1.1.3.
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2: The P versus NP problem lies
in the heart of theoretical com-
puter science. Informally, it asks
whether every problem whose
solution can be ‘quickly’ verified
can also be solved quickly. It is
wildely believed to be not the
case. Sudoku is one such candi-
date; see Q1.

1.1.2 Algebraic complexity classes

Analogous to the idea of classical complexity classes such
as P, NP 2, one can define the algebraic complexity classes.
On a related note, we have defined the notion of algebraic
complexity in a non-uniform manner. This means that we do
not require that the description of an algebraic circuit com-
puting the polynomial should be the output of some Turing
Machine! And therefore, we have to define algebraic com-
plexity classes using polynomial families. We refer the reader
to [Bür13; Mah14] for a more comprehensive introduction to
algebraic complexity classes.

Definition 1.1.4 (𝑝-family) A family (or a sequence) (𝑓𝑛)𝑛∈ℕ
of (multivariate) polynomials over the field 𝔽 is said to be a
𝑝-family iff the number of variables as well as the degree3 3: There are several intuitive rea-

sons for the “low degree” restric-
tion, as discussed by Joshua Gro-
chow on cstheory.SE [Gro13]
and also in [Sap21]. Essentially,
every Boolean function can be
expressed as a multilinear poly-
nomial, which is obviously a
low-degree polynomial. More-
over, most interesting polynomi-
als, such as det𝑛, or perm𝑛 are
in fact of low degree. Finally, af-
ter the log-depth reduction result
by [Val+83], it makes even more
sense to restrict ourselves to the
poly-degree regime.

of
𝑓𝑛 are 𝑝-bounded (polynomially bounded) functions of 𝑛.

Now we define the notion of efficient polynomial families.

Definition 1.1.5 (Class VP) a The (algebraic complexity)
class VP is the set of all 𝑝-families (𝑓𝑛)𝑛∈ℕ such that size(𝑓𝑛)
is a 𝑝-bounded function of 𝑛.
a Symbolically, one often refers to VP𝔽. However, when the underlying
field is implicitly/explicitly clear, we drop the subscript 𝔽.

Similarly, one can define VF and VBP for formulas and ABPs
respectively. Finally, the class VNP, can be seen as a non-
deterministic analog of the class VP; it is essentially an expo-
nential sum of projection of VP polynomials.

Definition 1.1.6 A 𝑝-family (𝑓𝑛)𝑛∈ℕ is said to be in the
(algebraic complexity) class VNP if there exists a polynomial
family (𝑔𝑛)𝑛∈ℕ ∈ VP, with 𝑔𝑛 ∈ 𝔽[𝑥1, … , 𝑥𝑞(𝑛)] such that:

𝑓𝑛(𝑥1, … , 𝑥𝑝(𝑛)) = ∑
𝑒∈{0,1}𝑟(𝑛)

𝑔𝑛 (𝑥1, … , 𝑥𝑝(𝑛), 𝑒1, … , 𝑒𝑟(𝑛)) ,

where 𝑟(𝑛) ∶= 𝑞(𝑛) − 𝑝(𝑛).

We have the following easy containment:

VF ⊆ VBP ⊆ VP ⊆ VNP .
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4: It is known that a random
polynomial, whose coefficients
are picked uniformly at random,
is hard, with high probability.

It is believed that each containment is strict. In fact, the
following postulate is known as the algebraic analogue of
the P ≠ NP conjecture.

Conjecture 1.1.1 (Valiant’s Hypothesis [Val79]) Over any
field 𝔽, VP𝔽 ≠ VNP𝔽.

Remark 1.1.1 1. P ≠ NP ‘negatively’ answers Q1 that
Sudoku cannot be solved efficiently.

2. It is in fact believed that VNP is ‘exponentially far’
from VP.

For a more concretized formulation of the above conjecture,
see the next subsection.

1.1.3 Two fundamental problems

In general, algebraic complexity theorists are interested in
the following two fundamental problems:

1. Superpolynomial Lower Bound – We want to find
an explicit 𝑛-variate poly(𝑛)-degree hard polynomial,
i.e., it requires 𝑛𝜔(1) size circuits. By explicit, we mean
that the coefficients are easily computable4. One such
candidate is the permanent polynomial. The permanent
polynomial family (perm𝑛)𝑛 is defined as follows:
For an 𝑛 × 𝑛 matrix 𝑋𝑛, whose (𝑖, 𝑗)-th entry is a variable
𝑥𝑖,𝑗, we define:

perm𝑛(𝑋𝑛) = ∑
𝜎∈𝑆𝑛

∏
𝑗∈[𝑛]

𝑥𝑗,𝜎(𝑗) .

In the above, 𝑆𝑛 is the symmetric group of degree 𝑛;
i.e., it contains all the bijective functions from [𝑛] =
{1, … , 𝑛} to itself. Once we have defined perm𝑛, one
can ‘reformulate’ VP ≠ VNP conjecture as follows.

Conjecture 1.1.2 (Valiant’s Hypothesis [Val79]) For
any field 𝔽 of characteristic 0, or ≥ 3, perm𝑛 requires
𝑛𝜔(1) size circuits.
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5: One interesting way to com-
pute sgn, is via: sgn(𝜎) =
∏𝑖<𝑗

𝜎(𝑗)−𝜎(𝑖)
𝑗−𝑖

.

Remark 1.1.2 Over 𝔽2, perm𝑛 = det𝑛. Howbeit, one
can define another explicit polynomial family, using
the hamiltonian cycles in a graph, and conjecture its
hardness over 𝔽2.

Colloquially, (perm𝑛)𝑛 is the ‘illustrious sister’ of the
determinant det𝑛 family, which is defined as:

det𝑛(𝑋𝑛) = ∑
𝜎∈𝑆𝑛

∏
𝑗∈[𝑛]

(−1)sgn(𝜎)𝑥𝑗,𝜎(𝑗) .

Sgn, the signum of a permutation, is a function which
takes values ±1, according to the parity of the permu-
tation 5. Once we have defined det𝑛, we can formulate
the VBP ≠ VNP question, as the famous ‘Permanent
versus Determinant’ problem.

Conjecture 1.1.3 (Permanent vs. Determinant) Let
𝑛(𝑚) be a function of 𝑚 such that there exist affine
linear maps 𝐴𝑚 ∶ ℂ𝑚2

⟶ ℂ𝑛(𝑚)2 , satisfying

perm𝑚 = det𝑛(𝑚) ∘ 𝐴𝑚 .

Then, 𝑛(𝑚) = 𝑚𝜔(1).

2. Polynomial Identity Testing (PIT) –Wewant to find
an efficient deterministic algorithm to decide whether
the given circuit computes just the zero polynomial
or not. We already have a polynomial-time random-
ized algorithm for PIT due to the Polynomial Identity
Lemma [Ore22; DL78; Zip79; Sch80]; see Lemma 1.3.2
for details. The challenge is to remove the randomness.

Why care about VP ≠ VNP? Although, we have abstracted
out some interesting-looking lower bound questions, it is
not apparent why they are so relevant in complexity theory,
and how they relate to the ‘flagship problem’ of P ≠ NP, in
Boolean complexity, or the question of derandomization. We
will try to answer this in the next few points.

1. Bürgisser [Bür00] showed that P/poly ≠ NP/poly, the
non-uniform version of P ≠ NP, implies that VP ≠ VNP
over finite fields, and in fact it could be extended to
characteristic 0, assuming GRH (Generalized Riemann
Hypothesis).
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2. Kabanets and Impagliazzo [KI04] showed that proving
VP ≠ VNP actually gives a subsexponential-time PIT
algorithm for general circuits whilst the current upper
bound is EXP (Exponential-time)!

3. It is also known that VP ≠ VNP implies that Pℂ ≠
NPℂ, i.e. P ≠ NP, over the complex numbers, in the
Blum-Shub-Smale (BSS) model, assuming the Factor
Conjecture (see [Bür13]). A BSS machine is a Random
Access Machine (RAM) with registers that can store
arbitrary real numbers, and compute rational functions
over reals, in a single time step. Thus, the BSS machines
are more powerful than Turing machines.

Pictorially, the following holds:

P/poly ≠ NP/poly
GRH
−−−−→ VP ≠ VNP

Factor Conj.
−−−−−−−−−−→ Pℂ ≠ NPℂ .

↓

PIT ∈ SUBEXP

Due to the above implications, proving algebraic lower bounds
may be ‘easier’ than proving boolean lower bounds. But the
bigger question is perhaps the following:

Does proving VP ≠ VNP take us ‘closer’ to proving
P ≠ NP?

We will try to answer it in subsection 1.2.1.

Why care about PIT? PIT appears in several seemingly
unrelated problems. For example, Shamir’s famous result
of IP = PSPACE [Sha92] used the idea of comparing two mul-
tivariate polynomials for equality. A much older application
of PIT is due to the following theorem proved by Tutte : A
graph has no perfect matching iff the determinant of the Tutte
matrix is zero. In fact, the problem of deterministic primality
testing, to check whether the given input is a prime number
or not, was solved in an elementary way with a PIT formula-
tion [AKS04]. Formally, 𝑛 is prime iff (𝑥 + 1)𝑛 − (𝑥𝑛 + 1) = 0,
over the ring ℤ/𝑛ℤ.
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1.2 Geometric Complexity Theory

Geometric Complexity Theory (GCT) is quite an ambitious
program, which is built on Valiant’s algebraic complexity
theory framework, and strengthens the VP ≠ VNP conjecture
in terms of the Border Complexity. In a bigger aim, it also
tries to prove P ≠ NP, and some related conjectures using
algebraic geometry and representation theory. GCT has been
pursued since the late 1990s. It was started by Ketan Mulmu-
ley and Milind Sohoni, with important contributions from
others. The notion of border complexity was also indepen-
dently defined by Bürgisser [Bür04]. We will define these
notions later. Before moving on, here is an interesting quote
by Scott Aaronson who likes to describe GCT as “the string
theory of computer science” [Aar16, p. 84]:

I like to describe GCT as “the string theory of com-
puter science”. Like string theory, GCT has the aura
of an intricate theoretical superstructure from the
far future, impatiently being worked on today. Both
have attracted interest partly because of “miracu-
lous coincidences” (for string theory, these include
anomaly cancellations and the prediction of gravi-
tons; for GCT, exceptional properties of the perma-
nent and determinant, and surprising algorithms
to compute the multiplicities of irreps) … And like
with string theory, there are few parts of modern
mathematics not known or believed to be relevant
to GCT.

1.2.1 A gentle introduction to GCT for
non-geometers

We start by asking the following simple meta-question.

Algebraic approximations help?

Can ‘approximations’ help in algebraic computationalmod-
els?

To understand this, we will define an important measure,
called the Waring rank, WR(⋅).
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6: This upper bound can
be significantly improved;
see Lemma 2.2.3.

Definition 1.2.1 (Waring rank) The Waring rank of a ho-
mogeneous degree-𝑑 polynomial ℎ is the smallest 𝑟 such that
can be written as a sum of 𝑑-th power of linear forms ℓ𝑖,
i.e., ℎ = ∑𝑟

𝑖=1 ℓ𝑑𝑖 .

It is a folklore that, for any homogeneous polynomial ℎ,WR(ℎ)
is finite. The finiteness follows from the following argument
–

1. WR(⋅) is sub-additive: WR(𝑓 +𝑔) ≤ WR(𝑓 )+WR(ℎ), for
any 𝑓 , 𝑔 ∈ 𝔽[𝑥].

2. WR(𝑥𝑒) is finite, by interpolating the following poly-
nomial, (𝑥1 + 𝑡2𝑥2 + ⋯ + 𝑡𝑛𝑥𝑛)∑

𝑛
𝑖=1 𝑒𝑖 , where 𝑡𝑖 are new

variables.6

q Characterizing bivariate polynomials of Waring rank
1

If one tries to characterize the bivariate degree-2 polynomials
ℎ(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2, such that WR(ℎ) = 1, then it is not
hard to show that the following set

𝑋1 ∶= {ℎ ∣ WR(ℎ) = 1} = {(𝑎, 𝑏, 𝑐) ∣ 𝑏2 − 4𝑎𝑐 = 0} ,

exactly characterizes WR(ℎ) = 1. Interestingly, it helps to
prove lower bounds. For, e.g., WR(𝑥𝑦) > 1; this is because
trivially (0, 1, 0) ∉ 𝑋1. Such a polynomial 𝑓 = 𝑏2−4𝑎𝑐, is called
a ‘polynomial obstruction’ or a ‘separating polynomial’. Most
importantly 𝑋1 is a closed set: If there are three sequences
(𝑎𝑛, 𝑏𝑛, 𝑐𝑛) such that 𝑎𝑛 → 𝑎, 𝑏𝑛 → 𝑏, 𝑐𝑛 → 𝑐, i.e., limits exist,
such that (𝑎𝑛, 𝑏𝑛, 𝑐𝑛) ∈ 𝑋1, then (𝑎, 𝑏, 𝑐) ∈ 𝑋1.

Now, we move on to the most important example, which will
help us to understand why the notion of border complexity
is natural. Consider the polynomial ℎ ∶= 𝑥2𝑦. Note that,
WR(ℎ) ≤ 3, because

𝑥2𝑦 = 1
6
⋅ (𝑥 + 𝑦)3 − 1

6
⋅ (𝑥 − 𝑦)3 − 1

3
⋅ 𝑦3 .

In fact, it is not hard to prove that WR(𝑥2𝑦) = 3. Now, let

ℎ𝜖 ∶= 1
3𝜖

((𝑥 + 𝜖𝑦)3 − 𝑥3) ,
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for some nonzero parameter 𝜖. It is not hard to show that

lim
𝜖→0

ℎ𝜖 = lim
𝜖→0

(𝑥2𝑦 + 𝑥𝜖𝑦2 + 𝜖2

3
𝑦3) = 𝑥2𝑦 .

However, by definition, WR(ℎ𝜖) ≤ 2, for any fixed nonzero 𝜖!
This introduces a subtlety:

If a continuous function 𝑓 vanishes on all ℎ with
WR(ℎ) ≤ 2, then 𝑓 should also vanish on the limit
point 𝑥2𝑦, which cannot be true from the above
example. Thus, to prove WR(𝑥2𝑦) > 2, we need
to find a discontinuous function 𝑓 which vanishes
on WR(ℎ) ≤ 2 but does not vanish on 𝑥2𝑦.

Ideally, we would like to avoid such scenario so that we could
use continuous mathematics.

Figure 1.2: 𝑥2𝑦 lies exactly in the boundary of the set {ℎ ∣ WR(ℎ) ≤ 2}

This is one of the intuitions why the notion of Border War-
ing rank is natural to define. The border Waring rank of
ℎ, denoted, WR(ℎ) is defined as the smallest 𝑟 such that ℎ
can be approximated arbitrarily closely by polynomials of
Waring rank ≤ 𝑟. In particular, from the above discussion,
WR(𝑥2𝑦) = 2, but WR(𝑥2𝑦) = 3. Most importantly, now the
subtlety is gone: 𝑋𝑟 ∶= {ℎ ∣ WR(ℎ) ≤ 𝑟}, is now a closed set (in
fact, it is a projective variety). Thus, to show a lower bound
that WR(𝑝) > 𝑟, for some 𝑝, it suffices to show that 𝑝 ∉ 𝑋𝑟,
i.e. find a continuous function 𝑓 that vanishes on 𝑋𝑟 but not
on 𝑝.

Now, one can analogously define the border complexity Γ
with respect to any sensible measure Γ. For example, Γ can be
size, determinantal complexity and so on. Using the notion
of size, one can define VP, the approximative closure of VP.
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In [MS01], Mulmuley and Sohoni strengthened Valiant’s con-
jecture to: VNP ⊈ VP, or, equivalently, size(perm𝑛) = 𝑛𝜔(1);
similarly VNP ⊈ VBP can be phrased and conjectured; we will
define these more geometrically later in this section. For the
time being, let us define the working (algebraic) definition of
approximation, in the context of GCT.

q Algebraic notion of approximation

The simplest notion of the approximative closure comes from
the following definition [Bür04]:

A polynomial 𝑓 (𝑥) ∈ 𝔽[𝑥1, … , 𝑥𝑛] is approximated
by 𝑔(𝑥, 𝜖) ∈ 𝔽(𝜖)[𝑥] if there exists a𝑄(𝑥, 𝜖) ∈ 𝔽[𝜖][𝑥]
such that 𝑔 = 𝑓 + 𝜖 𝑄.

We can also think analytically (in 𝔽 = ℝ Euclidean topology)
that lim𝜖→0 𝑔 = 𝑓. If 𝑔 belongs to a circuit class 𝒞 (over 𝔽(𝜖),
i.e. any arbitrary 𝜖-power is allowed as ’cost-free’ constants),
then we say that 𝑓 ∈ 𝒞, the approximative closure of 𝒞.

The size of the circuit computing the polynomial 𝑔, over the
field 𝔽(𝜖), defines the approximative (or border) complexity
of 𝑓, denoted size(𝑓 ). Interestingly, the topological defini-
tion of size via limit exactly coincides with this algebraic
definition [Mum95], over an algebraically closed field, like ℂ.
Clearly, size(𝑓 ) ≤ size(𝑓 ). Because of possible 1/𝜖 terms, one
can not directly set 𝜖 = 0. Since 𝑔(𝑥, 𝜖) = 𝑓 (𝑥) + 𝜖 ⋅ 𝑄(𝑥, 𝜖),
we can extract the coefficient of 𝜖0 from 𝑔, using standard
interpolation trick, by setting random 𝜖-values from 𝔽, if we
know the degree upper bound 𝑀 of 𝜖 (& 1/𝜖). However, the
best known bound on 𝑀 is 2size(𝑓 )2 , which is exponentially
large [Bür04; Bür20, Theorem 5.7]. Therefore, the following
relation is the best one known:

size(𝑓 ) ≤ size(𝑓 ) ≤ 2poly(size(𝑓 )) .

Understanding these relations is the main goal of Q4. We also
mention the strengthened Valiant’s Conjecture (of VP ≠ VNP)
in the border context.

Conjecture 1.2.1 (Valiant’s Conjecture [MS01]) VNP ⊈ VP,
i.e., size(perm𝑛) = 𝑛𝜔(1).

q Valiant’s Conjecture via orbit closure
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7: Informally, Zariski closure
means taking the closure of the
set of polynomials (considered
as points) of the class 𝒞: Let
ℐ be the smallest (annihilat-
ing) ideal whose zeros cover
{coefficient-vector of 𝑔 ∣ 𝑔 ∈ 𝒞 };
then put in 𝒞 each polynomial
𝑓 with coefficient-vector being a
zero of ℐ.

To understand this in geometric language, let us denote by
Sym𝑛𝑉 ∗, the space of homogeneous polynomial functions of
degree 𝑛 on a finite dimensional complex vector space 𝑉. The
group 𝐺 ∶= GL(𝑉 ) acts on Sym𝑛𝑉 ∗, in the canonical way:

(𝑔 ⋅ 𝑓 )(𝑣) ∶= 𝑓 (𝑔−1𝑣) for 𝑔 ∈ 𝐺, 𝑓 ∈ Sym𝑛𝑉 ∗, and 𝑣 ∈ 𝑉 .

We denote by 𝐺 ⋅ 𝑓 ∶= {𝑔𝑓 ∣ 𝑔 ∈ 𝐺}, the orbit of 𝑓. Let
𝑉 ∶= ℂ𝑛×𝑛, and think of the 𝑛 × 𝑛 symbolic determinant, det𝑛,
as an element of Sym𝑛(ℂ𝑛×𝑛)∗.

Now, consider its orbit closure:

Ω𝑛 ∶= GL𝑛2 ⋅ det𝑛 ⊆ Sym𝑛(ℂ𝑛×𝑛)∗ ,

with respect to the Euclidean topology (equivalent to the
closure with respect to the Zariski topology, see [Mum95,
Appendix 2.C])7.

For 𝑛 > 𝑚, we consider the padded permanent defined as
ℓ𝑛−𝑚 ⋅ perm𝑚 ∈ Sym𝑛(ℂ𝑚×𝑚)∗, where ℓ denotes the linear form
providing the (1, 1)-entry of a matrix in ℂ𝑚×𝑚. Strengthened
Valiant’s conjecture for VBP ≠ VNP, in the context of GCT
program, is stated as follows:

Conjecture 1.2.2 (Mulmuley and Sohoni [MS01]) For all
𝑐 ∈ ℕ≥1, we have ℓ𝑚

𝑐−𝑚 ⋅ perm𝑚 ∉ Ω𝑚𝑐 , for infinitely many
𝑚.

1.2.2 Why care about GCT?

So far, it seems like all we have done is restated Valiant’s
Conjecture in a more abstract language, and perhaps slightly
generalized it. But why should this formalization give us cer-
tain advantages, may not be instantly clear. Before going into
particulars, we remark that essentially all of our lower bound
techniques for algebraic circuits also work in the ‘bound-
ary’! Lower bound questions can be roughly translated into
asymptotic geometry terms as follows:

Given a sequence of some ‘nice’ vector spaces 𝑉𝑛, and sequences
of points and groups, does the inclusion (by inclusion, we mean
the points under the group action in 𝑉𝑛) fail for every 𝑛 ≥ 𝑛0,
for some 𝑛0?
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So far, so good. However, the linchpin of the GCT program
is that both the permanent and determinant are ‘highly’ sym-
metric functions (see below), and it is plausible that we can
leverage that fact to learn more about their orbit closures
than we could if they were arbitrary functions.

For starters, note that, perm(𝑋) is symmetric under permut-
ing 𝑋’s rows or columns, transposing 𝑋, and multiplying the
rows or columns by scalars that multiply to 1. Formally,

perm(𝑋) = perm(𝑋 𝑇) = perm(𝐴𝑋𝐵) = perm(𝑃𝑋𝑄) ,

for all permutation matrices 𝑃 and 𝑄, and all diagonal matrices
𝐴 and 𝐵 such that perm(𝐴) = 1/perm(𝐵). The determinant
has an even larger symmetry group; we have

det(𝑋) = det(𝑋 𝑇) = det(𝐴𝑋𝐵) ,

where 𝐴 and 𝐵 are matrices (not necessarily diagonal) such
that det(𝐴) = 1/det(𝐵).

But there is a further point (and this is really what makes
GCT powerful). It turns out that both are uniquely character-
ized (up to a constant factor) by their symmetries, among all
homogeneous polynomials of the same degree. Formally,

Theorem 1.2.1 Let 𝑓 be any degree-𝑑 homogeneous polyno-
mial in the entries of 𝑋 ∈ ℂ𝑑×𝑑.

1. If 𝑓 satisfies the following: 𝑓 (𝑋) = 𝑓 (𝑃𝑋𝑄) = 𝑓 (𝐴𝑋𝐵),
for all permutation matrices 𝑃, 𝑄, and diagonal 𝐴, 𝐵,
with perm(𝐴) = 1/perm(𝐵). Then,

𝑓 (𝑋) = 𝛼 ⋅ perm(𝑋) ,

for some 𝛼 ∈ ℂ.

2. If 𝑓 satisfies the following: 𝑓 (𝑋) == 𝑓 (𝐴𝑋𝐵), with
matrices 𝐴, 𝐵, with det(𝐴) = 1/det(𝐵). Then,

𝑓 (𝑋) = 𝛼 ⋅ det(𝑋) ,

for some 𝛼 ∈ ℂ.

For a proof, we refer to [Gro12, Section 3.4].

Moreover, lower bounds are equivalent to orbit closure con-
tainment [Gro12, Section 3.3.2]. Therefore, the ‘simplest’
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8: A homogeneous polynomial
𝑓 of degree 𝑑 on 𝑛 variables
is symmetry-characterized, if it
is the only such homogeneous
polynomial that is fixed by the
symmetries of 𝑓, up to scalar mul-
tiplication. In other words, if 𝑔 is
another 𝑛-variate, degree-𝑑 poly-
nomial such that 𝐴 ⋅ 𝑔 = 𝑔, for all
𝐴 ∈ StabGL(ℂ𝑛)(𝑓 ), then 𝑔 = 𝛼𝑓 for
some scalar 𝛼. Here Stab denotes
the stablizer group.

way of proving lower bounds would be to find occurrence
obstructions, i.e., finding an irreducible representation with
multiplicity for permanent larger than that of determinant.
This is the place where one hopes to use rich mathematics
like algebraic geometry and representation theory.

q Escaping the Razborov–Rudich barrier

We point out that the symmetry-characterization of the per-
manent and determinant avoids the Razborov–Rudich barrier.
Since very few functions are symmetry-characterized 8, the
symmetry-characterization violates the ‘largeness’ criterion!
For a proof, see [Gro12, Proposition 3.4.9].

Truth be told, VNP ⊈ VBP takes us ‘closer’ to #P ≠ NC. This
is really because perm is similar to what #P captures in the
Boolean complexity, while det is what NC captures. How-
ever, a similar-ish formulation (which also can be ‘somewhat’
symmetry-characterized) does imply P ≠ NP!

To show the above, one can define an NP-function called
𝐸, via a product of some 0 − 1 determinants, as well as a
P-complete function, called 𝐻, via the universal circuit rep-
resentations. Finally, one can show them to be character-
ized by symmetries in only a slightly weaker sense than the
permanent and determinant are. However, if one can find
explicit representation-theoretic obstructions, which in this
case would be representations associated with the orbit of
𝐸, but not with the orbit of 𝐻, then such obstructions will
suffice to show that P ≠ NP. For details, we refer to [Gro12;
Aar16].

q Other GCT implications

Outside lower bound implications, GCT has deep connections
with –

(i) computational invariant theory [FS13b; Mul12; Gar+16;
Bür+18; IQS18],

(ii) algebraic natural proofs [Gro+17; Blä+21; Cha+20;
Kum+22],

(iii) lower bounds [BI13; Gro15; LO15],

(iv) derandomization [Mul17; Muk16; DDS21b],

(v) optimization [All+18; Bür+19], and many more.
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1.3 Contribution of the Thesis

This thesis studies various algebraic and geometric aspects of
complexity theory and their interconnections. In particular,
in this thesis, we study uni-/multi-variate polynomials com-
puted (or, approximated) by restricted depth-3 and depth-4
algebraic circuits. We now informally state the motivation
and the results of this thesis, before discussing them in more
detail in subsequent sections.

1.3.1 Sum-of-squares

Sum-of-squares (SOS) optimization is an active area of re-
search, which lies at the interface of algorithmic algebra and
convex optimization. Over the last decade, it has made signif-
icant impact on both discrete and continuous optimization,
as well as several other disciplines, notably control theory.
A particularly exciting aspect of this research area is that
it leverages classical results from real algebraic geometry,
some dating back to prominent mathematicians like Hilbert.
Yet, it offers a modern, algorithmic viewpoint on these con-
cepts, which is amenable to computation and deeply rooted
in semidefinite programming. The SOS can be motivated
through the following polynomial optimization problem:

minimize 𝑝(𝑥),
subject to 𝑥 ∈ 𝐾 ∶= {𝑥 ∈ ℝ𝑛 ∣ 𝑔𝑖(𝑥) ≥ 0, ℎ𝑖(𝑥) = 0} , (1.1)

where 𝑝, 𝑔𝑖, and ℎ𝑖 are multivariate polynomials. The set
defined by a finite number of polynomial inequalities (such
as the set 𝐾 above) is called semialgebraic. The special case
of problem (Equation 1.1), where the polynomials 𝑝, 𝑔𝑖, ℎ𝑖 all
have degree 1, is of course the linear programming, which we
can solve in polynomial-time [Kha79; Kar84].

A more interesting perspective is that if we could optimize
over the set of polynomials that take nonnegative values over
given semialgebraic sets, then we could solve problem (Equa-
tion 1.1) globally. To see this, note that the optimal value of
problem (Equation 1.1) is equal to the optimal value of the
following problem:
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9: One can show a stronger re-
sult that given a polynomial 𝑝
of degree 4, it is NP-hard to de-
cide if it is positive definite, i.e.,
if 𝑝(𝑥) > 0, for all 𝑥 ∈ ℝ𝑛.

10: The nonnegativity is gone
now! But the question can still
be framed. In this thesis, we will
be working with the weighted
version only, and still call it SOS.

maximize 𝛾
subject to 𝑝(𝑥) − 𝛾 ≥ 0, ∀ 𝑥 ∈ 𝐾 . (1.2)

It is a folklore result that testing membership to the set of
polynomials that take nonnegative values over a semialge-
braic set 𝐾 is NP-hard, even when 𝐾 = ℝ𝑛. 9

If a polynomial is nonnegative, can we write it in a way that its
nonnegativity becomes obvious? One way to achieve this goal
is to try to write the polynomial as a sum of squares of polyno-
mials. In analysis, a polynomial 𝑝 is a sum-of-squares (SOS),
if it can be written as 𝑝(𝑥) = ∑𝑖 𝑞

2
𝑖 (𝑥), for some polynomials

𝑞𝑖. Existence of the polynomials 𝑞𝑖, of an SOS decomposition
are algebraic certificates for nonnegativity. At this point, the
obvious question is whether every nonnegative polynomial
can be expressed as an SOS! As it turns out, at least for uni-
variate polynomials they are equivalent! So, in the below, we
will only consider univariate polynomials, unless specified
otherwise.

Following up on the previous thread, as computer scientists,
we could (& definitely should) ask how large the certificates
are. One possible notion of largeness could be the large spar-
sity (the number of monomials) of the polynomials, denoted
as sp(⋅). So, here is an interesting polynomial optimization
question.

minimize ∑
𝑖

sp(𝑞𝑖)

subject to 𝑝 = ∑
𝑖

𝑞2𝑖 . (1.3)

However, note that SOS is not a complete model, i.e., there
are polynomials which cannot be written as sum-of-squares,
e.g., 𝑝(𝑥) = −(𝑥 + 1)4. To avoid this, one could work with
weighted SOS, i.e., 𝑝 = ∑𝑖 𝑐𝑖𝑞

2
𝑖 , where 𝑐𝑖 ∈ ℝ 10. In this case,

it is not hard to show that for any polynomial 𝑝 ∈ ℝ[𝑥],
with deg(𝑝) = 𝑑, the above minimization problem has value
roughly in the interval [√𝑑, 𝑑]. Here are 3meta questions that
could be immediately asked.
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Meta Questions on SOS

Q1. Are there explicit11
11: Polynomials whose coeffi-
cients can be easily computed.

polynomials that has a large min-
imum value (in the above sense)?

Q2. Is there any link between this optimization problem
and strong complexity-theoretic lower bounds?

Q3. Can some properties of the polynomial 𝑝 (e.g., roots,
coefficients) be related to the minimum value at-
tained?

Surprisingly, it turns out that these questions are very much
interrelated, and further they have serious implications in
complexity theory. In fact, understanding the optimization
problem for easy-looking polynomials like 𝑝 = (𝑥 + 1)𝑑, are
strikingly hard with far-fetching consequences. Below, we
informally state our meta-theorems on SOS.

We circumspect that some statements are deliberately left
vague, and somemay even be formally incorrect. Nonetheless,
the statements are “morally” correct. Also, it is our opinion
that the reader has little to gain and appreciate from simply
reading the formal statement without getting the essence.

Theorem 1.3.1 (Informal results on SOS [DST21; Dut21])
If the minimum value for the polynomial (𝑥 + 1)𝑑, in (Equa-
tion 1.3), attains 𝜔(𝑑1/2), then VP ≠ VNP. Further, one can
also derive a non-trivial derandomization of PIT.

Moreover, any polynomial with real roots (e.g., (𝑥+1)𝑑) should
have large SOS representations (of size𝜔(𝑑1/2)), and assuming
this, the consequences should be similar to those discussed
above.

Essentially, we study Q2, Q4-Q5, and their interrelations in
the SOS-model. For detailed results and discussions, we refer
to Chapter 3.

1.3.2 Polynomial Identity Testing (PIT)

In the previous section, we focused on the real roots and its
connection to the hardness questions. One can flip the coin
and focus on the opposite direction, e.g. finding the non-roots
and ‘easiness’, i.e., upper bounds/algorithms. This is exactly
where Polynomial Identity Testing (PIT) comes in.
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We already have an efficient (polynomial-time) randomized
algorithm for PIT due to Polynomial Identity Lemma [Ore22;
DL78; Zip79; Sch80], as stated below. The challenge is to
remove the randomness, which leads to a bigger open ques-
tion in the area of Complexity Theory, namely, the BPP vs. P
question, which we will discuss after stating the lemma.

Lemma 1.3.2 (Polynomial Identity Lemma) Let 𝑓 ∈ 𝔽[𝑥]
be a 𝑛-variate nonzero polynomial of degree 𝑑, and 𝑆 ⊆ 𝔽.
Suppose 𝑎 ∶= (𝑎1, 𝑎2, … , 𝑎𝑛) such that each 𝑎𝑖 are selected
independently and uniformly at random from 𝑆. Then we
have

Pr [𝑓 (𝑎) ≠ 0] ≥ 1 − 𝑑
|𝑆|

.

q BPP vs. P: A personal take

We view computers as instruments that are able to achieve
formidable results due to their high speed and extreme pre-
cision. Computers are indeed very precise; if programmed
correctly, they almost never err. This is why precision ap-
pears to be at odds with randomness. We often associate
randomness with disorganized behavior, which is apparently
not good for solving hard problems! So, how can one make
any good use of it? And, more importantly, if we could make
good use of randomness, is it necessary to employ random-
ness for efficiency? To answer this formally, we define two
classes, P and BPP.

The class P is the set of problems which can be solved in
deterministic polynomial-time, and the class BPP is the set
of problems which can be solved in randomized polynomial-
time. Interestingly, by only a few repetitions, we can make
the error probability so small that an error will never occur in
practice. This infinitesimally small gap enables us to realize
that BPP is ‘tantalizingly close’ to P. And in fact, the following
is widely believed to be true.

Conjecture 1.3.1 BPP = P.

Conjecture 1.3.1 does not imply that randomness is completely
useless. The conjecture merely says that we can eliminate
randomness by incurring (polynomially) more time. It is
likely that some problems need, say, quadratic-time if com-
puted deterministically, but only linear-time when computed
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12: Unlike NP, we do not know
any complete problem for BPP.
Hence, we try to find “good”
problems which have efficient
randomized solutions and try to
derandomize them. This gives
us the hope that the newly de-
veloped tools for derandomiz-
ing that good problem may help
to derandomize BPP class com-
pletely. By Lemma 1.3.2, PIT is al-
ready inBPP. This alreadymakes
derandomizing PIT an interest-
ing ‘theoretical struggle’!

probabilistically. In large scale computations done in practice
this can make a big difference!

q Blackbox PIT

Coming back to the PIT12 problem, we study it in the blackbox
setting ∗, where only evaluations at points are allowed. De-
signing a deterministic blackbox PIT algorithm for a circuit
class is equivalent to finding a set of points such that for every
nonzero circuit in that class, the set contains a point where it
evaluates a nonzero value (or equivalently, a non-root). Such
sets are called hitting sets (see Definition 2.7.1).

For 𝑛-variate, degree-𝑑 polynomials, a slightly clever deran-
domization of the Lemma 1.3.2, gives the optimal (𝑛+𝑑𝑑 ) size
trivial hitting set [BP20]. Unfortunately, (𝑛+𝑑𝑑 ) can be expo-
nential in the circuit size 𝑠. It is also known that an 𝑂(𝑠) size
hitting set exists for an 𝑠 size circuit; see [HS80a] and [Mit13,
Theorem 2.7.3]. Therefore, the goal in PIT is to design an
explicit poly(𝑠𝑛𝑑) size hitting set.

In a surprising result, Agrawal and Vinay [AV08] showed that
a complete derandomization of blackbox identity testing for
just depth-4 algebraic circuits (ΣΠΣΠ) already implies a near-
complete derandomization for the general PIT problem. ΣΠΣΠ
circuits compute polynomials of the form Σ𝑖Π𝑗 𝑔𝑖𝑗, where 𝑔𝑖𝑗
are sparse polynomials.

More recently, the bootstrapping phenomenon [AGS19; And20;
KST19] shows that PIT for very restricted classes of depth-4
circuits, even depth-3, would have very interesting conse-
quences for PIT of general circuits. These results make the
identity testing regime for depth-4 circuits, a very meaning-
ful pursuit. Very recently, a breakthrough result [LST21], by
Limaye, Srinivasan and Tavenas, gave the first determinis-
tic subexponential-time PIT algorithm for all constant-depth
circuits! This automatically raises the following meta ques-
tion.

Meta Question on PIT for constant-depth circuits

Can we design better than subexponential-time PIT for all
constant-depth circuits?

∗ There is a whitebox setting as well, where we are allowed to see the
internal structure of the circuit!
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Wepartially answer this for bounded depth-4 circuits.

Theorem 1.3.3 (Informal result on depth-4 PIT [DDS21a])
There is a deterministic quasipolynomial-time blackbox PIT
for bounded top (& bottom)-fanin depth-4 circuits.

Interestingly, efficient PITs for the depth-4 models, with the
firstΠ-gate, replaced by ∧, are already known [For15; Gur+17].
We exploited and almost reduced our models to the corre-
sponding ∧-models, and Eureka! For details, we refer to Chap-
ter 4.

1.3.3 De-bordering and derandomizing
restricted classes

From the definition, it is clear that the border of a circuit
class can be potentially much richer than the circuit class
itself. Quantitatively understanding how much richer, is an
important and wide open question in algebraic complexity
and GCT. On the other hand, one of the lessons of GCT is
that algebraic complexity is algebraic geometry, sometimes
in (thinly veiled) disguise! In the same spirit, here is a meta-
question, that is seemingly natural.

De-bordering

Given a polynomial 𝑓 ∈ 𝒞, for some class 𝒞, find another
‘nice’ class 𝒟, such that 𝑓 ∈ 𝒟.

If 𝒞 = 𝒞, then 𝒞 is said to be closed under approximation. A
few interesting examples are:

1. ΣΠ, the sparse polynomials, with complexity measure
being sparsity.

2. ΠΣ, the product of linear polynomials (Lemma 6.2.1).

3. Monotone ABPs [Blä+].

4. ROABP (read-once ABP) respectively ARO (any-order
ROABP), with measure being the width. ARO is an
ABP with a natural restriction on the use of variables
per layer; for definition and a formal proof, see Defini-
tion 2.6.3 and Lemma 6.2.3.
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Interestingly, depth-2 circuits are closed under taking limit,
i.e., ΠΣ = ΠΣ, and ΣΠ = ΣΠ; for a proof, see Lemma 6.2.1.
Now this leads to the following meta-question.

Meta-question on de-bordering

Can we de-border all constant-depth circuits? Or, are they
strictly more powerful?

In this thesis, we study border depth-3 circuits, and de-border
them by introducing a general de-bordering technique; we
call it DiDIL [DDS21b].

Theorem1.3.4 (Results on border depth-3 circuits [DDS21b])
Constant fanin border depth-3 circuits, Σ[𝑘]ΠΣ, are ‘easy’.
Moreover, PITs for these classes can be efficient derandom-
ized.

We also study 𝜏-conjectures in the border setting, and show
stronger complexity theoretic consequences. For details, we
refer to Chapter 6-Chapter 8.

1.4 Organization of the Thesis

In Chapter 2, we shall fix some notations which will be main-
tained for the rest of the thesis (unless specified otherwise).
It will also provide some necessary technical background and
mathematical tools for our results. The work on hardness
and roots of polynomials represented as a sum-of-squares
(SOS), and its variants, is discussed in Chapter 3. Chapter 4
discusses quasideranomization of two restricted depth-4 mod-
els, that had been left open for quite some time. We finish
the first part of the thesis on algebraic complexity, by some
concluding remarks and future directions in Chapter 5.

Next, we move on to the second part of the thesis where
we discuss our works on GCT. Chapter 6 discusses efficient
de-bordering of constant-fanin border depth-3 circuits, while
Chapter 7 discusses effiient derandomization of the same.
Next, Chapter 8 extends the results of Chapter 3 in the border
paradigm. Finally, we provide some concluding remarks and
some directions for future work on GCT in Chapter 9. Some
familiarities with basic algebra (rings, fields, inequalities)
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would be very helpful to the reader in understanding most of
the thesis.

Success is failure turned inside out …
And you can never tell how close you are.

It may be near when it seems so far.
So stick to the fight when you’re hardest hit.

It’s when things seem worst that you must not quit.

— Edgar A. Guest, Don’t Quit.
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“It starts with intellectual humility—knowing what we don’t
know.....If knowledge is power, knowing what we don’t know is

wisdom.”

— Adam Grant, Think Again.

In this chapter, we will formally define and state some con-
cepts and results that will be useful for the rest of the thesis.
We will also give proof sketches of many of the results. Fi-
nally, we will fix some notation that we use throughout the
thesis.

2.1 Basic Notation

xkcd.com

▶ We use lower-case boldface characters like 𝑥, 𝑦, 𝑧, 𝑎, …,
to denote vectors (ordered sets) of variables and con-
stants, and use indexed lower-case letters to refer to
individual elements, e.g., 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}. The num-
ber of variables 𝑛 may vary from context to context.
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▶ Wework with fields 𝔽 = ℚ,ℚ𝑝, or their fixed extensions.
All of our results hold for fields with large enough
characteristic.

▶ We denote [𝑛] = {1, … , 𝑛}. For nonnegative integers 𝑎, 𝑏,
we denote the set {𝑎, … , 𝑏} by [𝑎, 𝑏].

▶ For 𝑖 ∈ ℕ and 𝑏 ≥ 2, we denote by base𝑏(𝑖) the unique
𝑘-tuple (𝑖1, … , 𝑖𝑘) such that 𝑖 = ∑𝑘

𝑗=1 𝑖𝑗 ⋅ 𝑏𝑗−1.

▶ For an exponent vector 𝑒 = (𝑒1, … , 𝑒𝑚), we use 𝑥𝑒 to
denote the monomial 𝑥𝑒11 ⋯𝑥 𝑒𝑚𝑚 .

▶ We use 𝔽[𝑥], as the ring over the field 𝔽, which consists
of polynomials on the variables 𝑥. And, 𝔽(𝑥), as the
fraction field, which consists of rational polynomials
𝑔(𝑥)/ℎ(𝑥), where 𝑔, ℎ ∈ 𝔽[𝑥], and ℎ is nonzero. Finally,
𝔽[[𝑥]] denotes the ring of formal power series on 𝑥. For
definitions, see below.

Polynomials. For 𝑝 ∈ 𝔽[𝑥], where 𝑥 = (𝑥1, … , 𝑥𝑚), for some
𝑚 ≥ 1, the support of 𝑝, denoted by supp(𝑝), is the set of
nonzero monomials in 𝑝. The sparsity or support size of 𝑝 is
sp(𝑝) ∶= |supp(𝑝)|. If 𝑝 is 𝑚-variate of degree 𝑑, its sparsity
is bounded by

sp(𝑝) ≤ (
𝑚 + 𝑑
𝑑

) . (2.1)

By coef(𝑝) we denote the coefficient vector of 𝑝 (in some fixed
order).

For a polynomial 𝑝(𝑥, 𝑦) ∈ 𝔽[𝑥, 𝑦], the 𝑥-degree of 𝑝, denoted
by deg𝑥(𝑝), is the maximum degree of 𝑥 in 𝑝. That is, for
𝑝(𝑥, 𝑦) = ∑𝑒 𝑝𝑒(𝑥)𝑦𝑒, we define deg𝑥(𝑝) = max𝑒 deg(𝑝𝑒(𝑥)).

Notation for algebraicmodels. Here are some of the nota-
tions and symbols used uniformly for denoting algebraic mod-
els in the thesis. Unless there is an explicitly written bound
on the top fanin, it is assumed to be unbounded (bounded by
the size of the circuit).

▶ ΣΠ computes sparse polynomials of the form ∑𝑖 𝑐𝑖𝑥𝑒𝑖 ,
where each 𝑒𝑖 ∈ ℤ𝑛

≥0, and 𝑐𝑖 ∈ 𝔽.

▶ Σ∧ computes polynomials of the form ∑𝑖∈[𝑛] 𝑔𝑖(𝑥𝑖).
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▶ Σ∧Σ computes polynomials of the form ∑𝑖 𝑐𝑖 ⋅ ℓ
𝑒𝑖
𝑖 , where

ℓ𝑖 are linear polynomials of the form 𝑎𝑖0 + ∑𝑗∈[𝑛] 𝑎𝑖𝑗𝑥𝑗.
Each 𝑐𝑖, 𝑎𝑖𝑗 ∈ 𝔽.

▶ Σ∧Σ∧ computes polynomials of the form∑𝑖 𝑐𝑖 ⋅𝑔
𝑒𝑖
𝑖 , where

𝑔𝑖 = ∑𝑗∈[𝑛] 𝑔𝑖𝑗(𝑥𝑗), is a sum of univariates.

▶ ΠΣΠ computes product of sparse polynomials, i.e.∏𝑖 𝑔𝑖,
where each 𝑔𝑖 is a sparse polynomial.

▶ Σ∧ΣΠ[𝛿] computes polynomials of the form ∑𝑖 𝑓𝑖(𝑥)𝑒𝑖
where deg𝑓𝑖 ≤ 𝛿.

▶ ΣΠΣ computes polynomials of the form∑𝑖∏𝑗 ℓ𝑖𝑗, where
ℓ𝑖𝑗 are linear polynomials. Σ[𝑘]ΠΣ is of the same form
as above, with the top fanin being bounded by 𝑘.

▶ Σ[𝑘]ΠΣ∧ computes polynomials of the form∑𝑖∈[𝑘]∏𝑗(𝑔𝑖𝑗1(𝑥1)+
⋯ + 𝑔𝑖𝑗𝑛(𝑥𝑛)), where 𝑔𝑖𝑗ℓ ∈ 𝔽[𝑥ℓ].

▶ Σ[𝑘]ΠΣΠ[𝛿] computes polynomials form ∑𝑖∈[𝑘]∏𝑗 𝑔𝑖𝑗(𝑥),
where deg(𝑔𝑖𝑗) ≤ 𝛿.

One important remark is that the definitions of the sizes of
these circuits are rather nonuniform in the literature. Since,
all these models have small formulas, we also include the
exponents and the sparsity of the base polynomials in the
circuit size, for brevity and simplicity of calculations. When
needed for the ease of reading, we will explicitly define the
models and sizes again, in the respective chapters. Finally,
we will also be using ABP and ARO, extensively, through-
out the thesis. For their definitions and properties, we refer
to section 2.6.

Formal power series. The analytic tool that we will use
quite heavily in the thesis is the formal power series; it often
appears in algebra and complexity theory.

Inmathematics, a formal power series is a strict generalization
of a polynomial, where the number of terms is allowed to be
infinite; this implies giving up the possibility of replacing the
variables in the polynomial with arbitrary numbers. One may
think of a formal power series as a power series in which we
ignore questions of convergence by assuming the variables
as really ‘variables’ and not assuming numerical values. For
example, consider the series

𝑓 (𝑥) = 1 − 3𝑥 + 5𝑥2 − 7𝑥3 + 9𝑥4 − … .
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If we studied this as a power series, its properties would
include, for example, that its radius of convergence is 1. How-
ever, as a formal power series, we may ignore this completely;
the sequence of coefficients [1, −3, 5, −7, 9, …] is the only thing
relevant to us. Basic arithmetic operations, like, addition and
multiplication on formal power series are carried out by sim-
ply pretending that the series are polynomials (or vectors)
of infinite length. Once we have defined multiplication for
formal power series, we can define multiplicative inverses as
follows. The multiplicative inverse of a formal power series
𝐴 is a formal power series 𝐶 such that 𝐴 ⋅ 𝐶 = 1, provided
that such a formal power series exists. It turns out that if 𝐴
has a multiplicative inverse, it is unique, and we denote it by
𝐴−1. For example, the following identity plays a very crucial
role.

1
1 − 𝑥

= ∑
𝑖≥0

𝑥 𝑖 , (The inverse identity) .

Logarithmic derivative. Over a ring R and a variable 𝑦,
the logarithmic derivative dlog𝑦 ∶ R[𝑦] → R(𝑦) is defined
as

dlog𝑦(𝑓 ) ∶=
𝜕𝑦𝑓
𝑓

.

Here 𝜕𝑦 denotes the partial derivative with respect to the
variable 𝑦. One important property of dlog is that it is additive
over a product, as

dlog𝑦(𝑓 ⋅ 𝑔) =
𝜕𝑦(𝑓 ⋅ 𝑔)
𝑓 ⋅ 𝑔

=
(𝑓 ⋅ 𝜕𝑦𝑔 + 𝑔 ⋅ 𝜕𝑦𝑓 )

𝑓 ⋅ 𝑔
= dlog𝑦(𝑓 ) + dlog𝑦(𝑔) .

We refer to this effect as linearization of product.

Kronecker map and its inverse. The Kronecker substitu-
tion is a bijective map between univariate and multivariate
polynomials. We define two variants: The first one is the
standard one, the second one is a multilinear version of it. In
our application, we consider the sparsity of the polynomi-
als. There it seems as the standard Kronecker substitution
does not yield the bounds we need. Let 𝑝(𝑥) be a univariate
polynomial of degree 𝑑.
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1) Standard Kronecker substitution. Let 𝑘 and 𝑛 be
such that 𝑛 = ⌈(𝑑 + 1)1/𝑘⌉ − 1. Introduce 𝑘 variables 𝑥 =
(𝑥1, … , 𝑥𝑘). Define the Kronecker map 𝜙𝑘,𝑛 by

𝜙𝑛,𝑘 ∶ 𝑥 𝑖 ↦ 𝑥base𝑛+1(𝑖) , (2.2)

for all 𝑖 ∈ [𝑑]. By linear extension, define polynomial 𝑃𝑛,𝑘 =
𝜙𝑛,𝑘(𝑝). Note that 𝜙𝑘,𝑑 maps each 𝑥 𝑖 to a distinct 𝑘-variate
monomial of individual degree ≤ 𝑛, for 0 ≤ 𝑖 ≤ 𝑑.

Next, we consider the inverse map. Let 𝑃(𝑥1, … , 𝑥𝑘) be a poly-
nomial, where the variables have individual degree bounded
by 𝑛. Define 𝜓𝑛,𝑘 by

𝜓𝑛,𝑘 ∶ 𝑥𝑖 ↦ 𝑥(𝑛+1)
𝑖−1

, (2.3)

for 0 ≤ 𝑖 ≤ 𝑘, and 𝜓𝑛,𝑘(𝑃) by linear extension. Note that the
degree of 𝜓𝑛,𝑘(𝑃) is bounded by ∑𝑘

𝑖=1 𝑛(𝑛 + 1)𝑖−1 = (𝑛 + 1)𝑘 −
1 [Kro82]. Also, we have 𝜓𝑛,𝑘 ∘ 𝜙𝑛,𝑘(𝑝) = 𝑝.

2) Multilinear Kronecker substitution. Here, we choose
𝑘 and 𝑛 such that (𝑘 − 1)𝑛 ≤ 𝑑 + 1 ≤ 𝑘𝑛. Introduce 𝑘𝑛 vari-
ables 𝑦𝑗,ℓ, where 1 ≤ 𝑗 ≤ 𝑛 and 0 ≤ ℓ ≤ 𝑘 − 1. For every 𝑖 =
0, 1, … 𝑑, write 𝑖 in base-𝑘 representation, base𝑘(𝑖) = (𝑖1, … , 𝑖𝑛).
Define the injective map 𝜙lin𝑛,𝑘 by

𝜙lin𝑛,𝑘 ∶ 𝑥 𝑖 ↦
𝑛

∏
𝑗=1

𝑦𝑗,𝑖𝑗 . (2.4)

By linear extension, define polynomial 𝑃𝑛,𝑘 = 𝜙lin𝑛,𝑘(𝑝). Note
that 𝑃𝑛,𝑘 is a 𝑘𝑛-variate multilinear polynomial of degree 𝑛.

Mapping 𝜙lin𝑛,𝑘 can be inverted by 𝜓 lin
𝑛,𝑘 ,

𝜓 lin
𝑛,𝑘 ∶ 𝑦𝑗,ℓ ↦ 𝑥ℓ⋅𝑘

𝑗−1
. (2.5)

Again by linear extension, we have 𝜓 lin
𝑛,𝑘 ∘ 𝜙lin𝑛,𝑘(𝑝) = 𝑝.

It is also important to note that the sparsity of the polynomials
stays the same,

for the standard and the multilinear Kronecker map and their
inverses.
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2.2 Basic Mathematical Tools

q Binomial inequalities

For binomial coefficients, we use the following well known
bounds. For 1 ≤ 𝑘 ≤ 𝑛,

(𝑛
𝑘
)
𝑘
≤ (

𝑛
𝑘
) ≤ (𝑒𝑛

𝑘
)
𝑘
. (2.6)

There are multiple proofs known for the above inequality.
Here is my favorite one.

Proof. Both side inequalities are extremely elegant.

The right inequality.

(
𝑛
𝑘
) = 𝑛!

(𝑛 − 𝑘)!𝑘!
=

𝑛 ⋅ (𝑛 − 1)⋯ (𝑛 − 𝑘 + 1)
𝑘!

≤ 𝑛𝑘

𝑘!

= 𝑛𝑘

𝑘𝑘
⋅ 𝑘

𝑘

𝑘!

≤ 𝑛𝑘

𝑘𝑘
⋅ (∑

𝑗≥0

𝑘𝑗

𝑗!
) = (𝑒𝑛

𝑘
)
𝑘
.

In the above, we used the fact that 𝑒𝑘 = ∑𝑗≥0
𝑘𝑗
𝑗! .

The left inequality.

(
𝑛
𝑘
) = 𝑛!

(𝑛 − 𝑘)!𝑘!
=

𝑛 ⋅ (𝑛 − 1)⋯ (𝑛 − 𝑘 + 1)
𝑘!

=
𝑘−1
∏
𝑗=0

𝑛 − 𝑗
𝑘 − 𝑗

≥
𝑘−1
∏
𝑗=0

𝑛
𝑘
= (𝑛

𝑘
)
𝑘
.

In the above, we used the fact that 𝑛−𝑗
𝑘−𝑗 ≥ 𝑛

𝑘 , for any 𝑛 ≥ 𝑘.
This finishes the proof.
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q A maximization problem

For the time-complexity bound in Chapter 4, we need to
optimize the following function:

Lemma 2.2.1 Let 𝑘 ∈ ℕ≥4, and ℎ(𝑥) ∶= 𝑥(𝑘 − 𝑥)7𝑥. Then,

max
𝑖∈[𝑘−1]

ℎ(𝑖) = ℎ(𝑘 − 1) .

Proof sketch. Differentiate to get

ℎ′(𝑥) = (𝑘 − 𝑥)7𝑥 − 𝑥7𝑥 + 𝑥(𝑘 − 𝑥)(log 7)7𝑥

= 7𝑥 ⋅ [𝑥2(− log 7) + 𝑥(𝑘 log 7 − 2) + 𝑘] .

Note that, it vanishes at

𝑥 = (𝑘
2
− 1
log 7

) +
√
(𝑘
2
− 1
log 7

)
2
− 𝑘
log 7

.

It is not hard to show that 𝑥 ≈ 𝑘 − 1. Thus, ℎ is maximized at
the integer 𝑥 = 𝑘 − 1 (the maximization is only over positive
integers).

q Valuation and its properties

Valuation is a map val𝑦 ∶ R[𝑦] → ℤ≥0, over a ring R, such
that val𝑦(⋅) is defined to be the maximum power of 𝑦 dividing
the element. It can be easily extended to fraction field R(𝑦),
by defining val𝑦(𝑝/𝑞) ∶= val𝑦(𝑝) − val𝑦(𝑞); where it can be
negative.

Here is an important lemma to show that positive valuation
with respect to 𝑦, lets us express a function as a power-series
of 𝑦.

Lemma 2.2.2 (Valuation) Let 𝑓 ∈ 𝔽(𝑥, 𝑦) such that val𝑦(𝑓 ) ≥
0. Then, 𝑓 ∈ 𝔽(𝑥)[[𝑦]]⋂𝔽(𝑥, 𝑦) 1 1: 𝔽(𝑥, 𝑦) is the fraction field,

which consists of elements of the
form 𝑝

𝑞
, where 𝑝, 𝑞 ∈ 𝔽[𝑥, 𝑦].

.

Proof sketch. Let 𝑓 = 𝑔/ℎ such that 𝑔, ℎ ∈ 𝔽[𝑥, 𝑦]. Now,
val𝑦(𝑓 ) ≥ 0, implies val𝑦(𝑔) ≥ val𝑦(ℎ). Let val𝑦(𝑔) = 𝑑1 and
val𝑦(ℎ) = 𝑑2, where 𝑑1 ≥ 𝑑2 ≥ 0. Further, write 𝑔 = 𝑦𝑑1 ⋅ �̃� and
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ℎ = 𝑦𝑑2 ⋅ ℎ̃. Write, ℎ̃ = ℎ0 + ℎ1 𝑦 + ℎ2 𝑦2 + ⋯ + ℎ𝑑 𝑦𝑑, for some
𝑑; with ℎ𝑖 ∈ 𝔽[𝑥]. Note that ℎ0 ≠ 0. Thus

𝑓 = 𝑦𝑑1−𝑑2 ⋅ �̃�/(ℎ0 + ℎ1𝑦 + ⋯ + ℎ𝑑𝑦𝑑)

= 𝑦𝑑1−𝑑2 ⋅ (�̃�/ℎ0) ⋅ ((ℎ1/ℎ0) + (ℎ2/ℎ0)𝑦 + ⋯ + (ℎ𝑑/ℎ0)𝑦𝑑)
−1

∈ 𝔽(𝑥)[[𝑦]]

q Waring identity

We will often need an efficient way to write a product of a
few powers as a sum of powers, using simple interpolation.
For an algebraic proof, see [CCG12, Proposition 4.3].

Lemma 2.2.3 (Waring Identity for a monomial) Let 𝑀 =
𝑥𝑏11 ⋯𝑥𝑏𝑘𝑘 , where 1 ≤ 𝑏1 ≤ … ≤ 𝑏𝑘, and roots of unity 𝒵(𝑖) ∶=
{𝑧 ∈ ℂ ∶ 𝑧𝑏𝑖+1 = 1}. Then,

𝑀 = ∑
𝜀(𝑖)∈𝒵(𝑖)∶𝑖=2,⋯,𝑘

𝛾𝜀(2),…,𝜀(𝑘) ⋅ (𝑥1 + 𝜀(2)𝑥2 + … + 𝜀(𝑘)𝑥𝑘)
𝑑 ,

where 𝑑 ∶= deg(𝑀) = 𝑏1 + … + 𝑏𝑘, and 𝛾𝜀(2),…,𝜀(𝑘) are scalars
and ther are WR(𝑀) ∶= ∏𝑘

𝑖=2 (𝑏𝑖 + 1) many such scalars.

Remark 2.2.1 We actually need not work with 𝔽 = ℂ. We
can go to a small extension (at most 𝑑𝑘), for a monomial of
degree 𝑑, to make sure that 𝜀(𝑖) exists.

q Roots of univariate polynomials

Real-rooted polynomials will play a crucial role in Chapter
3. When are all the roots of a univariate polynomial real and
distinct? Kurtz [Kur92] came up with the following tight and
sufficient condition.

Theorem2.2.4 ([Kur92]) Let 𝑓 be a real polynomial of degree
𝑛 ≥ 2 with positive coefficients. If

𝑎2𝑖 > 4𝑎𝑖−1𝑎𝑖+1 , ∀ 𝑖 ∈ [𝑛 − 1] ,

then all the roots of 𝑓 are real and distinct.
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2: The size-bound in the previ-
ous such proofs usually counted
only the number of nodes in the
circuit, achieving square-root in
the bound; we use the number of
nodes and edges here.

Remark 2.2.2 1. Kurtz [Kur92] further showed the fol-
lowing: Given 𝜖 > 0, and an integer 𝑛 > 2, there is
a polynomial with positive coefficients of degree 𝑛
which has some non-real roots and whose coefficients
satisfy:

𝑎2𝑖 > (4 − 𝜖)𝑎𝑖−1𝑎𝑖+1 .

2. The requirement for positive coefficients is necessary.
For e.g., 𝑥3 − 5𝑥2 + 6𝑥 + 1, has two non-real roots,
namely

1
12

(20 + 14(1 − 𝜄√3) 3
√

2
47 − 3√93

+ 22/3(1 + 𝜄√3) 3√47 − 3√93) ,

and its conjugate.

Before going into details, we state a classical lemma due to
Descartes, which will be used throughout the paper.

Lemma 2.2.5 (Descartes’ rule of signs) Let 𝑝(𝑥) ∈ ℝ[𝑥] be a
polynomial with 𝑡many monomials. Then, number of distinct
positive roots in 𝑝(𝑥) can be at most 𝑡 − 1.

Remark 2.2.3 An 𝑠-sparse polynomial 𝑓 ∈ ℂ[𝑥] can have
at most 2(𝑠 −1)-many real roots. A real root 𝑎 of 𝑓must be a
real root of both the real part ℜ(𝑓 ) and the imaginary part
ℑ(𝑓 ). By above, there can be at most 𝑠 − 1 many positive
roots. The same bound holds for negative roots by 𝑥 ↦ −𝑥.

2.3 Explicit Functions

It is known that most of the polynomials of degree 𝑑 are
hard, i.e. they require Ω(𝑑) size circuits; for a self-contained
proof, see [CKW11, Theorem 4.2] 2. In fact, for 𝑝𝑖 being the
𝑖-th prime, the polynomial ∑𝑑

𝑖=0 √𝑝𝑖 𝑥 𝑖 and ∑𝑑
𝑖=0 22

𝑖
𝑥 𝑖, both re-

quire circuits of size Ω (𝑑/ log 𝑑), see [BCS13, Corollary 9.4]
& [Str74]. Such polynomials can be converted into an expo-
nentially hard multilinear polynomial 𝑓𝑛(𝑥), using the inverse
Kronecker map, section 2.1. Unfortunately, this strong lower
bound is insufficient to separate VP and VNP because the
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polynomial family is non-explicit– so 𝑓𝑛 may not be in VNP.
For details, see [HS80b; Bür13].

Thus, the explicitness of the family plays a major role in its
usefulness in algebraic complexity.

Definition 2.3.1 (Explicit functions) Let (𝑓𝑑)𝑑 be a polyno-
mial family, where 𝑓𝑑(𝑥) is of degree 𝑑. The family is explicit,
if its coefficient-function is computable in time poly log(𝑑)
and each coefficient can be at most poly(𝑑)-bits long. The
coefficient-function gets input (𝑗, 𝑖, 𝑑) and outputs the 𝑗-th bit
of the coefficient of 𝑥 𝑖 in 𝑓𝑑.

In alternative versions, one can define explicitness via the
coefficient-function, to be computable in #P/poly, or in the
counting hierarchy CH, which would be good enough for
our purpose (see Theorem 2.4.3). To understand them well,
let us go through the basic definitions of these complexity
classes.

q Complexity classes

The counting hierarchy (CH)was first introduced in [Wag86].
It can be defined by a counting operator C that can be ap-
plied to complexity classes. We denote by {0, 1}∗ × {0, 1}∗ →
{0, 1}∗, (𝑥, 𝑦) ↦ ⟨𝑥, 𝑦⟩, a pairing function (e.g. by duplicating
each bit of 𝑥 and 𝑦 and inserting 01 in between).

Definition 2.3.2 If 𝐾 is a complexity class, then we define an
operator C acting on 𝐾. The action, denoted by C ⋅𝐾, produces
a set of languages 𝐴, such that there exists a language 𝐵 ∈ 𝐾
and a polynomial 𝑝(⋅), obeying :

𝑥 ∈ 𝐴 ⟺ # {𝑦 ∈ {0, 1}𝑝(|𝑥|) ∶ ⟨𝑥, 𝑦⟩ ∈ 𝐵} > 1
2
⋅ 2𝑝(|𝑥|) .

The 𝑖-th level 𝐶𝑖P of the counting hierarchy is defined recur-
sively as 𝐶0P ∶= P and 𝐶𝑖P = C ⋅ 𝐶𝑖−1P. Finally, we define the
counting hierarchy: CH ∶= ⋃𝑖≥0 𝐶𝑖P. Often, PP ∶= 𝐶1P is
used in the literature. Observe that 𝐶2P = PPPP.

Let us recall the definition of other complexity classes. For a
survey of complexity classes, see [Joh90].

▶ FP denotes the class of all string functions which can
be computed by a polynomial time Turing machine.
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3: One can show that the
coefficients of Pochhammer-
Wilkinson polynomials are
computable in CH, see [Bür09].

4: Both (𝑥 + 1)𝑑 and 𝑇𝑑(𝑥) can
be computed by 𝑂(log 𝑑)-size cir-
cuits. (𝑥 + 1)𝑑 can be computed
by repeated squaring, while the
Chebyshev polynomial 𝑇𝑑 can be
computed using the following
two nice identities: (i) 𝑇2𝑑(𝑥) =
2𝑇 2

𝑑 (𝑥)−1, (ii) 𝑇2𝑑+1(𝑥) = 2𝑇𝑑−1(𝑥)⋅
𝑇𝑑(𝑥) − 𝑥.

▶ A polynomial advice is a function 𝛼 ∶ ℕ → {0, 1}∗ such
that 𝑛 ↦ 𝛼(𝑛) is poly-bounded. The (non-uniform) class
𝐶/poly for a complexity class 𝐶 consists of all string
functions of the form 𝜓(𝑥) =∶ 𝜙(⟨𝑥, 𝛼(|𝑥|)⟩), where 𝜙 ∈ 𝐶
and 𝛼 is some polynomial advice function.

▶ The problem is in #P, the class of problems that can be
defined as counting the number of accepting paths of a
polynomial-time non-deterministic Turing machine.

q Some explicit polynomial families

Throughout the paper, we will be using some interesting
examples of polynomial families. We also remark that differ-
ent proofs would require different explicitness (& its relax-
ations)!

An explicit candidate for the hard family is the Pochhammer-
Wilkinson 3 polynomial ∗,

𝑓𝑑(𝑥) ∶=
𝑑

∏
𝑖=1

(𝑥 − 𝑖) .

Other well known explicit families are: (𝑥 +1)𝑑 and the Cheby-
shev polynomial 𝑇𝑑(𝑥), that writes cos 𝑑𝜃 as a function of cos 𝜃,
i.e., 𝑇𝑑(cos 𝜃) = cos 𝑑𝜃 [MH02]. 4 These three are quite rele-
vant to this work.

We will call a family CH-explicit if the coefficients are com-
putable inCH. The proofs of Theorem 3.3.6 and Theorem 3.3.9
require CH explicitness of certain families.

Comment 2.3.1

One can show that the coefficients of 𝑓𝑑(𝑥) = (𝑥 + 1)𝑑,
are computable in CH. Consider the identity (𝑥 + 1)𝑑 =
𝑑
∑
𝑘=0

(
𝑑
𝑘
)𝑥𝑘. For 𝑥 = 2𝑑, we get

𝑣(𝑑) = (2𝑑 + 1)𝑑 =
𝑑
∑
𝑘=0

(
𝑑
𝑘
)2𝑑𝑘 .

∗ It can be showed that if size(𝑓𝑑) ≤ poly(log 𝑑), then integer factoring is
in P/poly. This connection is often dubbed as “factorials vs. factoring”.
For more details, we refer to [Sha79; Lip94].
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Note that, (𝑑𝑘) < 2𝑑. Thus, the bits of (𝑑𝑘), in the binary rep-
resentation of 𝑣(𝑑), do not overlap for different 𝑘’s, Hence,
the bits of (𝑑𝑘) can be read off the bit-vector of 𝑣(𝑑). It is
therefore sufficient to show that 𝑣(𝑑) is computable in CH.

Note that each bit of 2𝑑 +1 can be computed in polynomial
time. It is well-known that one can do exponential sum
and products in CH, see [Bür09; KP11]. Therefore, we get
that 𝑣(𝑑) is computable in CH.

2.4 VP vs VNP and the CH Collapse

In this section, we talk about the relation between Boolean
and algebraic class collapses. Further, we talk about a suffi-
cient condition for an explicit family, to be in VNP.

q Valiant’s hypothesis and GRH

Valiant conjectured thatVP ≠ VNP. Bürgisser [Bür00, Cor.1.2]
showed that if Valiant’s hypothesis is false and GRH holds,
then the polynomial hierarchy collapses (to P/poly). In fact,
something stronger holds: P/poly = NP/poly. From this, it is
not hard to deduce the following.

Theorem 2.4.1 If GRH is true and VP = VNP, then CH ⊆
P/poly.

The proof basically follows by observing the fact that PH ⊆
P/poly ⟹ PP ⊆ P/poly; inductively this implies that CH
collapses as well. Over finite fields, GRH is not needed; GRH
is required only for ℚ.

A sufficient property. Valiant [Val79] showed a sufficient
condition for a polynomial family (𝑓𝑛(𝑥))𝑛 to be in VNP. We
use a slightly modified version of the criterion and formulate
it only for multi-linear polynomials.

Theorem 2.4.2 (VNP criterion, [Val79], see also[Bür13])
Let 𝑓𝑛(𝑥) = ∑𝑒∈{0,1}𝑛 𝑐𝑛(𝑒) 𝑥𝑒 be a polynomial family such that
the coefficients 𝑐𝑛(𝑒) have length ≤ 𝑛 in binary. Then

𝑐𝑛(𝑒) ∈ #P/poly ⟹ 𝑓𝑛 ∈ VNP.
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In Chapter 3 and Chapter 8, we will consider univariate poly-
nomials, and define associated multivariate polynomials via
Kronecker maps. We want all of these polynomials to be
in VNP. For this, we will require further relaxation of Theo-
rem 2.4.2 so that the coefficients 𝑐𝑛(𝑒) can actually be 2𝑛 bits
long. Koiran and Perifel [KP11, Lemma 3.2] used a similar
idea. We also use the fact that VNP is closed under substi-
tution. That is, for a family of polynomials (𝑓 (𝑥, 𝑦)) ∈ VNP,
it also holds that (𝑓 (𝑥, 𝑦0)) ∈ VNP, for any value 𝑦0 ∈ 𝔽𝑛

assigned to the variables in 𝑦.

Theorem 2.4.3 (Relaxed Valiant’s criterion) Let

𝑓𝑛(𝑥) = ∑
𝑒∈{0,1}𝑛

𝑐𝑛(𝑒) 𝑥𝑒 ,

be a polynomial family such that the coefficients 𝑐𝑛(𝑒) have
length ≤ 2𝑛 in binary. Let 𝑐𝑛,𝑗(𝑒) be the 𝑗-th bit of 𝑐𝑛(𝑒). Then

𝑐𝑛,𝑗(𝑒) ∈ #P/poly ⟹ 𝑓𝑛 ∈ VNP.

Proof. For 𝑗 ∈ {0, 1, … , 2𝑛 − 1}, let bin(𝑗) = (𝑗1, … , 𝑗𝑛) denote
the 𝑛-bit base-2 representation of 𝑗 such that 𝑗 = ∑𝑛

𝑖=1 𝑗𝑖 2𝑖−1.
Introduce new variables 𝑦 = (𝑦1, … , 𝑦𝑛) and define

̃𝑐𝑛(𝑒, 𝑦) =
2𝑛−1
∑
𝑗=0

𝑐𝑛,𝑗(𝑒) 𝑦bin(𝑗) .

Let 𝑦0 = (22
0
, … , 22

𝑛−1
). Then, we have ̃𝑐𝑛(𝑒, 𝑦0) = 𝑐𝑛(𝑒). Fi-

nally, consider the 2𝑛-variate auxiliary polynomial ℎ𝑛(𝑥, 𝑦).

ℎ𝑛(𝑥, 𝑦) = ∑
𝑒∈{0,1}𝑛

̃𝑐𝑛(𝑒, 𝑦) 𝑥𝑒 = ∑
𝑒∈{0,1}𝑛

2𝑛−1
∑
𝑗=0

𝑐𝑛,𝑗(𝑒) 𝑦bin(𝑗) 𝑥𝑒 .

Then we have ℎ𝑛(𝑥, 𝑦0) = 𝑓𝑛(𝑥). Since, 𝑐𝑛,𝑗(𝑒) can be computed
in #P/poly, we have (ℎ𝑛(𝑥, 𝑦))𝑛 ∈ VNP. As VNP is closed under
substitution, it follows that (𝑓𝑛(𝑥))𝑛 ∈ VNP.

2.5 Matrix Rigidity

Before trying to prove a lower bound in the general settings,
we would like to remark that one of the major open problems
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in algebraic complexity is to prove any super-linear lower
bound for linear circuits, defined below. These are simple
circuits where we are only allowed to use addition and multi-
plication by a scalar. By definition, they can only compute
linear (affine) functions. In fact, any algebraic circuit, com-
puting a set of linear functions, can be converted into a linear
circuit with only a constant blow-up in size, see [BCS13,
Theorem 13.1]. Clearly, every set of 𝑛 linear functions on 𝑛
variables can be represented by a matrix in 𝔽𝑛×𝑛, which can
be computed by a linear circuit of size 𝑂(𝑛2).

Given the ubiquitous role linear transformations play in com-
puting, understanding the inherent complexity of explicit
linear transformations is important. Using dimension argu-
ment/counting, it can be shown that a randommatrix requires
Ω(𝑛2)-size circuit. However, showing the same for an explicit
𝐴𝑛 ∈ 𝔽𝑛×𝑛, still remains open. The standard notion of ex-
plicitness is that there is a deterministic algorithm which
outputs the matrix 𝐴𝑛 in poly(𝑛)-time. Weak super-linear
lower bounds are known for constant-depth linear circuits,
using superconcentrators and their minimal size, see [Val75;
Pip77; AP94; RT00]. It is also known that this technique
alone is insufficient for proving lower bounds for logarithmic
depth.

The quest for showing superlinear lower bound for logarith-
mic depth lead to the notion of matrix rigidity, a pseudoran-
dom property of matrices, introduced by Valiant [Val77], and
independently by Grigoriev [Gri76].

Definition 2.5.1 (Matrix rigidity) A matrix 𝐴 over 𝔽 is
(𝑟 , 𝑠)-rigid, if one needs to change > 𝑠 entries in 𝐴 to obtain
a matrix of rank ≤ 𝑟. That is, one cannot decompose 𝐴 into
𝐴 = 𝑅 + 𝑆, where rank(𝑅) ≤ 𝑟 and sp(𝑆) ≤ 𝑠, where sp(𝑆) is
the sparsity of 𝑆, i.e., the number of nonzero entries in 𝑆.

Valiant [Val77] showed that an explicit construction of a
(𝜖 ⋅ 𝑛, 𝑛1+𝛿)-rigid matrix, for some 𝜖, 𝛿 > 0, will imply a super-
linear lower bound for linear circuits of depth 𝑂(log 𝑛); for a
simple proof, refer to [SY10, Theorem 3.22]. Pudlak [Pud94]
observed that similar rigidity parameters implies even stronger
lower bounds for constant depth circuits. Here, we remark
that a random matrix is (𝑟 , (𝑛 − 𝑟)2)-rigid, but the best explicit
constructions have rigidity (𝑟 , 𝑛2/𝑟 ⋅ log(𝑛/𝑟)) [Fri93; SSS97],
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which is insufficient for proving lower bounds. For recent
works, we refer to [AC19; DGW19; Ram20].

2.6 Properties of Restricted Circuit
Classes

In this section, we will be talking about properties of ROABP,
Σ ∧ Σ and other restricted classes and their properties, which
will be used throughout the thesis.

q Cone-size measure and its relevance

We need to define cone-size, which will be crucially used
in Chapter 7.

Definition 2.6.1 (Cone-size of monomials) For a monomial
𝑥𝑎, the cone of 𝑥𝑎 is the set of all sub-monomials of 𝑥𝑎. The
cardinality of this set is called cone-size of 𝑥𝑎. It equals
∏𝑖∈[𝑛] (𝑎𝑖 + 1), where 𝑎 = (𝑎1, … , 𝑎𝑛). We will denote cs(𝑚), as
the cone-size of the monomial 𝑚.

Here is an important lemma, originally from [For14, Corol-
lary 4.14], which shows that small partial derivative space
implies existence of small cone-size monomial. For a detailed
proof, we refer [Gho19, Lemma 2.3.15]

Theorem 2.6.1 (Cone-size concentration) Let 𝔽 be a field of
characteristic 0 or greater than 𝑑. Let 𝒫 be a set of 𝑛-variate
𝑑-degree polynomials over 𝔽 such that for all 𝑃 ∈ 𝒫, the
dimension of the partial derivative space of 𝑃 is at most 𝑘.
Then every nonzero 𝑃 ∈ 𝒫 has a cone-size-𝑘 monomial with
nonzero coefficient.

The next lemma shows that there are only few low-cone
monomials in a non-zero 𝑛-variate polynomial.

Lemma 2.6.2 (Counting low-cones, [FGS18, Lemma 5])
The number of 𝑛-variate monomials with cone-size at most 𝑘
is 𝑂(𝑟𝑘2), where 𝑟 ∶= (3𝑛/ log 𝑘)log 𝑘.

The following lemma is the same as [FGS18, Lemma 4]. It is
proved by multivariate interpolation.
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Lemma 2.6.3 (Coefficient extraction) Given a circuit 𝐶, over
the underlying field 𝔽(𝜖), we can ‘extract’ the coefficient of a
monomial 𝑚 in 𝐶; in poly(size(𝐶), cs(𝑚), 𝑑) time, where cs(𝑚)
denotes the cone-size of 𝑚.

2.6.1 Properties of ABP

Some important properties of ABP, that we will use/assume
throughout the thesis.

1. ABP is closed under both addition and multiplication:
the size blow up is just additive. This is straightforward
from the definition.

2. We will assume that the ABP is layered, i.e. the vertices
are partitioned into layers and the edges only join suc-
cessive layers. I.e. an edge from the 𝑖-th layer can only
go to the (𝑖 + 1)-th layer.

Two important measures of an ABP are:

1. Length – the longest path from the source to the sink.
2. Width – the maximum number of vertices in a layer.

We also need to eliminate division in ABPs. Here is an im-
portant lemma stated below.

Lemma 2.6.4 (Strassen’s division elimination) Let 𝑔(𝑥, 𝑦)
and ℎ(𝑥, 𝑦) be computed by ABPs of size 𝑠 and degree < 𝑑.
Further, assume ℎ(𝑥, 0) ≠ 0. Then, 𝑔/ℎ mod 𝑦𝑑 can be
written as ∑𝑑−1

𝑖=0 𝐶𝑖 ⋅ 𝑦 𝑖, where each 𝐶𝑖 is of the form ABP/ABP
of size 𝑂(𝑠𝑑2).

Moreover, in case 𝑔/ℎ is a polynomial, then it has an ABP of
size 𝑂(𝑠𝑑2).

Proof. ABPs are closed under multiplication, which makes
interpolation, wrt 𝑦, possible. Interpolating the coefficient 𝐶𝑖,
of 𝑦 𝑖, gives a sum of 𝑑 ABP/ABP’s; which can be rewritten as
a single ABP/ABP of size 𝑂(𝑠𝑑2).

Next, assume that 𝑔/ℎ is a polynomial. For a random (𝑎, 𝑎0) ∈
𝔽𝑛+1, write ℎ(𝑥 + 𝑎, 𝑦 + 𝑎0) =∶ ℎ(𝑎, 𝑎0) − ℎ̃(𝑥, 𝑦) and define
𝑔′ ∶= 𝑔(𝑥 + 𝑎, 𝑦 + 𝑎0). Clearly 0 ≠ ℎ(𝑎, 𝑎0) ∈ 𝔽 and ℎ̃ ∈ ⟨𝑥, 𝑦⟩.
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Of course, ℎ̃ has a small ABP. Using the inverse identity in
𝔽[[𝑥, 𝑦]], we have

𝑔(𝑥 + 𝑎, 𝑦 + 𝑎0)
ℎ(𝑥 + 𝑎, 𝑦 + 𝑎0)

=

𝑔′

ℎ(𝑎,𝑎0)

(1 − ℎ̃
ℎ(𝑎,𝑎0)

≡
𝑔′

ℎ(𝑎, 𝑎0)
⋅ ( ∑

0≤𝑖<𝑑
( ℎ̃
ℎ(𝑎, 𝑎0)

)
𝑖
) mod ⟨𝑥, 𝑦⟩𝑑 .

Note that, the degree blowsup in the above summands to
𝑂(𝑑2) and the ABP-size is 𝑂(𝑠𝑑). ABPs are closed under ad-
dition/ multiplication; thus, we get an ABP of size 𝑂(𝑠𝑑2) for
the polynomial 𝑔(𝑥 + 𝑎, 𝑦 + 𝑎0)/ℎ(𝑥 + 𝑎, 𝑦 + 𝑎0). This implies
the ABP-size for 𝑔/ℎ as well.

2.6.2 Properties of any-order ROABP.

In this part, we will define ROABP and ARO (any-order
ROABP), whose properties will be exploited throughout the
thesis.

Definition 2.6.2 (ROABP) An ABP is a read-once oblivious
ABP (ROABP) if every variable 𝑥𝑖 is present in only one of the
layers of the ABP.

Two examples. The following is an example of an ROABP
computing the polynomial ∏𝑖∈[𝑛](1 + 𝑥𝑖) = ∑𝑆⊆[𝑛]∏𝑖∈𝑆 𝑥𝑖.

Figure 2.1: ROABP computing
∏𝑖∈[𝑛] (1 + 𝑥𝑖)

And the following is an example of an ROABP computing the
symmetric polynomial of degree 𝑘 over 𝑛 variables,

𝑒𝑛,𝑘 = ∑
𝑆⊆[𝑛],|𝑆| = 𝑘

∏
𝑖∈𝑆

𝑥𝑖 .

The following example might help the readers to think of
layers as more ‘robust’ than what we think, in the above
sense.
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Figure 2.2: ROABP computing the symmetric polynomial 𝑒𝑛,𝑘

Each path from 𝑠 to 𝑡 takes 𝑘-many northward steps and
𝑛 − 𝑘-many southward steps. On every northward step, we
associate a unique variable. Though the ROABP can com-
pute some interesting polynomials, the ‘read-once’ restric-
tion severely limits the power of the arithmetic branching
program. E.g., Kayal, Nair and Saha [KNS20] showed a poly-
nomial that cannot be computed by any ROABP of subexpo-
nential size.

Permutation associated with an ROABP. A permuta-
tion 𝜋 of the variables (𝑥𝑖)

𝑛
𝑖=1 can be associated with an ROABP.

If the variables (𝑥1, … , 𝑥𝑛) occur in the ROABP in the sequence
(𝑥𝜋(1), 𝑥𝜋(2), … , 𝑥𝜋(𝑛)), then the permutation 𝜋 is associated
with it. It is an important property of the ROABP. An ROABP
of a small width for a polynomial may exist in one permu-
tation 𝜋. But, it may not exist in some other permutation.
E.g., The polynomial 𝑓 (𝑥, 𝑦) = ∏𝑛

𝑖=1(1 + 𝑥𝑖𝑦𝑖) has a width 2
ROABP when the permutation is (𝑥1, 𝑦1, 𝑥2, 𝑦2, … , 𝑥𝑛, 𝑦𝑛). That
is because (1 + 𝑥𝑖𝑦𝑖) has a width-2 ROABP, for each 𝑖.

But, it can be shown, using Lemma 2.6.5 (which also holds for
individual ROABP of a particular permutation), that when the
permutation is (𝑦1, 𝑦2, … , 𝑦𝑛, 𝑥1, 𝑥2, … , 𝑥𝑛), any ROABP which
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Figure 2.3: ROABP computing ∏𝑛
𝑖=1(1 + 𝑥𝑖𝑦𝑖)

computes 𝑓 (𝑥, 𝑦) has width 2𝑛. We refer to [KNS20], for more
examples.

Now, we defineARO.

Definition 2.6.3 (Any-order ROABP (ARO)) A polynomial
𝑓 ∈ 𝔽[𝑥] is computable by ARO of size 𝑠 if for all possible
permutation of variables there exists a ROABP of size at most
𝑠 in that variable order.

We will start with defining the partial coefficient space of a
polynomial 𝑓 to ’characterise’ the width of ARO. We can
work over any field 𝔽.

Let 𝐴(𝑥) be a polynomial over 𝔽 in 𝑛 variables with individual
degree 𝑑. Denote the set 𝑀 ∶= {0, … , 𝑑}𝑛. Note that, one can
write 𝐴(𝑥) as

𝐴(𝑥) = ∑
𝑎∈𝑀

coef𝐴(𝑥𝑎) ⋅ 𝑥𝑎 .

Consider a partition of the variables 𝑥 into two parts 𝑦 and
𝑧, with |𝑦| = 𝑘. Then, 𝐴(𝑥) can be viewed as a polynomial in
variables 𝑦, where the coefficients are polynomials in 𝔽[𝑧].
For monomial 𝑦𝑎, let us denote the coefficient of 𝑦𝑎 in 𝐴(𝑥) by
𝐴(𝑦,𝑎) ∈ 𝔽[𝑧]. The coefficient 𝐴(𝑦,𝑎) can also be expressed as a
partial derivative 𝜕𝐴/𝜕𝑦𝑎, evaluated at 𝑦 = 0 (and multiplied
by an appropriate constant), see [FS13a, Section 6]. Moreover,
we can also write 𝐴(𝑥) as

𝐴(𝑥) = ∑
𝑎∈{0,…,𝑑}𝑘

𝐴(𝑦,𝑎) ⋅ 𝑦𝑎 .

One can also capture the space by the coefficient matrix (also
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known as the partial derivative matrix) where the rows are
indexed by monomials 𝑝𝑖 from 𝑦, columns are indexed by
monomials 𝑞𝑗 from 𝑧 = 𝑥\𝑦 and (𝑖, 𝑗)-th entry of the matrix is
coef𝑝𝑖⋅𝑞𝑗(𝑓 ).

The following lemma formalises the connection betweenARO
width and dimension of the coefficient space (or the rank of
the coefficient matrix).

Lemma 2.6.5 ([Nis91]) Let 𝐴(𝑥) be a polynomial of individ-
ual degree 𝑑, computed by an ARO of width 𝑤. Let 𝑘 ≤ 𝑛 and
𝑦 be any prefix of length 𝑘 of 𝑥. Then

dim𝔽{𝐴(𝑦,𝑎) ∣ 𝑎 ∈ {0, … , 𝑑}𝑘} ≤ 𝑤 .

We remark that the original statement was for a fixed variable
order. Since, ARO affords any-order, the above holds for
any-order as well. The following lemma is the converse of
the above lemma and shows us that the dimension of the
coefficient space is rightly captured by the width.

Lemma 2.6.6 (Converse lemma [Nis91]) Let 𝐴(𝑥) be a poly-
nomial of individual degree 𝑑 with 𝑥 = (𝑥1, … , 𝑥𝑛), such that
for some 𝑤, for any 1 ≤ 𝑘 ≤ 𝑛, and 𝑦, any-order-prefix of
length 𝑘, we have

dim𝔽{𝐴(𝑦,𝑎) ∣ 𝑎 ∈ {0, … , 𝑑}𝑘} ≤ 𝑤 .

Then, there exists an ARO of width 𝑤 for 𝐴(𝑥).

2.6.3 Properties of Σ∧Σ and Σ∧Σ∧ circuits

The key ingredient for seeing a sum of power of ‘nice’ forms
is to convert it to ARO, via the duality trick.

Lemma 2.6.7 (Duality trick [Sax08]) The polynomial 𝑓 =
(𝑥1 + … + 𝑥𝑛)𝑑 can be written as

𝑓 = ∑
𝑖∈[𝑡]

𝑓𝑖1(𝑥1)⋯ 𝑓𝑖𝑛(𝑥𝑛),

where 𝑡 = 𝑂(𝑛𝑑), and 𝑓𝑖𝑗 is a univariate polynomial of degree
at most 𝑑.
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We remark that the above proof works for fields of character-
istic = 0, or > 𝑑.

Using a simple interpolation, the coefficient of 𝑦 𝑒 can be ex-
tracted from 𝑓 (𝑥, 𝑦) ∈ Σ∧Σ again as a small Σ∧Σ representa-
tion.

Lemma2.6.8 (Σ∧Σ coefficient extraction) Let 𝑓 (𝑥, 𝑦) ∈ 𝔽[𝑥][𝑦]
be computed by a Σ∧Σ circuit of size 𝑠 and degree 𝑑. Then,
coef𝑦 𝑒(𝑓 ) ∈ 𝔽[𝑥] is a Σ∧Σ circuit of size 𝑂(𝑠𝑑), over 𝔽[𝑥].

Proof sketch. Let 𝑓 =∶ ∑𝑖 𝛼𝑖 ⋅ ℓ
𝑒𝑖
𝑖 , with 𝑒𝑖 ≤ 𝑠 and deg𝑦(𝑓 ) ≤ 𝑑.

Thus, write 𝑓 =∶ ∑𝑑
𝑖=0 𝑓𝑖 ⋅ 𝑦 𝑖, where 𝑓𝑖 ∈ 𝔽[𝑥]. Interpolate

using (𝑑 + 1)-many distinct points 𝑦 ↦ 𝛼 ∈ 𝔽, and conclude
that 𝑓𝑖 has a Σ∧Σ circuit of size 𝑂(𝑠𝑑).

Like coefficient extraction, differentiation of Σ∧Σ circuit is
easy too.

Lemma 2.6.9 (Σ∧Σ differentiation) Let 𝑓 (𝑥, 𝑦) ∈ 𝔽[𝑥][𝑦] be
computed by a Σ∧Σ circuit of size 𝑠 and degree 𝑑. Then, 𝜕𝑦 (𝑓)
is a Σ∧Σ circuit of size 𝑂(𝑠𝑑2), over 𝔽[𝑥][𝑦].

Proof sketch. Lemma 2.6.8 shows that each 𝑓𝑒 has 𝑂(𝑠𝑑) size
circuit where 𝑓 =∶ ∑𝑒 𝑓𝑒 𝑦 𝑒. Doing this for each 𝑒 ∈ [0, 𝑑]
gives a blowup of 𝑂(𝑠𝑑2) and the representation: 𝜕𝑦 (𝑓) =
∑𝑒 𝑓𝑒 ⋅ 𝑒 ⋅ 𝑦 𝑒−1 .

Remark 2.6.1 Same property holds for Σ∧Σ∧ circuits.

Σ ∧Σ∧ can be shown to be closed under multiplication i.e.,
product of two polynomials, each computable by a Σ∧Σ∧ circuit,
is computable by a single Σ∧Σ∧ circuit. Using Lemma 2.2.3,
we prove the closure result.

Lemma 2.6.10 Let 𝑓𝑖(𝑥, 𝑦) ∈ 𝔽[𝑦][𝑥], of syntactic degree ≤ 𝑑𝑖,
be computed by a Σ∧Σ∧ circuit of size 𝑠𝑖, for 𝑖 ∈ [𝑘] (wrt 𝑥). Then,
𝑓1⋯𝑓𝑘 has Σ∧Σ∧ circuit of size 𝑂((𝑑2 + 1)⋯ (𝑑𝑘 + 1) ⋅ 𝑠1⋯ 𝑠𝑘).

Proof. Let 𝑓𝑖 = ∑𝑗 𝑓
𝑒𝑖𝑗
𝑖𝑗 ; by assumption 𝑒𝑖𝑗 ≤ 𝑑𝑖 (by assump-

tion). Then using Lemma 2.2.3, 𝑓
𝑒1𝑗1
1𝑗1 ⋯𝑓

𝑒𝑘𝑗𝑘
𝑘𝑗𝑘 has size at most
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(𝑑2 + 1)⋯ (𝑑𝑘 + 1) ⋅ (∑𝑖∈[𝑘] size(𝑓𝑖𝑗𝑖)), for indices 𝑗1, … , 𝑗𝑘. Sum-
ming up for all 𝑠1⋯ 𝑠𝑘 many products (atmost) gives the upper
bound.

Remark 2.6.2 The same proof works for Σ∧Σ circuits as
well.

Lemma 2.6.11 If 𝑓 = ∑𝑗∈[𝑠] 𝑓
𝑒𝑗
𝑗 is computed by a Σ ∧Σ∧

circuit of size 𝑠, then 𝑓 can also be computed by an ROABP
(of any order) of size at most 𝑂(𝑠𝑛2𝐷2) = 𝑂(𝑠5).

Proof. Let 𝑔𝑒 = (𝑔1(𝑥1) + ⋯ + 𝑔𝑛(𝑥𝑛))
𝑒, where deg(𝑔𝑖) ⋅ 𝑒 ≤ 𝐷.

Using Lemma 2.6.7 we get 𝑔𝑒 = ∑𝑂(𝑛𝑒)
𝑖=1 ℎ𝑖1(𝑥1)⋯ ℎ𝑖𝑛(𝑥𝑛), where

each ℎ𝑖𝑗 is of degree at most 𝐷.

We do this for each power (i.e. each summand of 𝑓) indi-
vidually, to get the final sum-of-product-of-univariates; of
top-fanin 𝑂(𝑠𝑛𝑒) and individual degree at most 𝐷. This is an
ARO of size 𝑂(𝑠𝑛𝑒) ⋅ 𝑛 ⋅ 𝐷 ≤ 𝑂(𝑠𝑛2𝐷2).

Finally, if 𝑓 = ∑𝑗∈[𝑠] 𝑓
𝑒𝑗
𝑗 , then applying this to each individual

𝑓
𝑒𝑗
𝑗 , and using the fact that ∑𝑗 size(𝑓𝑗) ≤ 𝑠, the conclusion
follows.

2.7 Hitting Sets

Definition 2.7.1 (Hitting set) A set ℋ ⊆ 𝔽𝑛 is called a
Hitting Set for a class polynomial 𝒞 ⊆ 𝔽[𝑥], if for all 𝑔 ∈ 𝒞

𝑔 ≠ 0 ⟺ ∃𝑎 ∈ ℋ ∶ 𝑔(𝑎) ≠ 0.

In literature, PIT has a close association with hitting set,
as the two notions are provably equivalent (refer to [For14,
Lemma 3.2.9 and 3.2.10]). Note that the setℋworks for every
polynomial of the class. Instead of a PIT algorithm, we will
usually design such a set.

The simplest PIT algorithm for any circuit in general is due
to Polynomial Identity Lemma [Ore22; DL78; Zip79; Sch80].
When the number of variables is small, say 𝑂(1), then this
algorithm is very efficient.
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Lemma 2.7.1 (Trivial PIT) For a class of 𝑛-variate, individual
degree < 𝑑 polynomial 𝑓 ∈ 𝔽[𝑥] there exists a deterministic
PIT algorithm which runs in time 𝑂(𝑑𝑛).

Remark 2.7.1 It can be improved to the optimal size of
(𝑛+𝑑𝑑 ) [BDI21]. However, in this thesis, this (asymptotically)
does not give better results, since most of the time 𝑛, or 𝑑
would be constant or very small compared to one another, in
our particular applications. Thus, we will use Lemma 2.7.1
throughout.

In fact, a technical tool to solve blackbox PITs is to construct
an efficient hitting-set generator, which is a polynomial map
that “preserves the nonzeroness”.

Definition 2.7.2 (Hitting-set generator (HSG)) A polyno-
mial map 𝐺 ∶ 𝔽𝑘 → 𝔽𝑛 given by 𝐺(𝑧) = (𝑔1(𝑧), 𝑔2(𝑧), … , 𝑔𝑛(𝑧))
is a hitting-set generator (HSG) for a class 𝒞 ⊆ 𝔽[𝑥] of poly-
nomials, if for every nonzero 𝑓 ∈ 𝒞, we have that 𝑓 ∘ 𝐺 =
𝑓 (𝑔1, 𝑔2, … , 𝑔𝑛) is nonzero.

We say that 𝐺 is ‘𝑡 time’ HSG, if coef(𝑔𝑖) can be computed in
time 𝑡 and the maximum degree of 𝑔𝑖 is ≤ 𝑡.

Given a HSG, one can construct a hitting-set, a set 𝐻 such that
a non-zero circuit is non-zero at some points in 𝐻. Crucial
here is the size of 𝐻 which depends on the parameters of
the HSG. A 𝑡-time HSG 𝐺 gives a (𝑡𝑑)𝑂(𝑘) time blackbox PIT
algorithm, for circuits that compute polynomials of degree ≤
𝑑, over popular fields like rationalsℚ or their extensions, local
fields ℚ𝑝 or their extensions, or finite fields 𝔽𝑞. When 𝑘 is
constant, we get a poly-time blackbox PIT.

Very recently, Guo et al. [Guo+19] showed how to use the
hardness of a constant variate explicit polynomial family to
derandomize PIT. They need the algebraic circuit hardness
to be more than 𝑑3; which requires 𝑘 ≥ 4 for the family to
exist.

Theorem 2.7.2 [Guo+19] Let 𝑃 ∈ 𝔽[𝑥] be a 𝑘-variate poly-
nomial of degree 𝑑 such that coef(𝑃) can be computed in
poly(𝑑)-time. If size(𝑃) > 𝑠10𝑘+2 𝑑3, then there is a poly(𝑠)-
time HSG for 𝒞(𝑠, 𝑠, 𝑠).
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The following lemma is useful to construct hitting set for
product of two circuit classes when the hitting set of individ-
ual circuit is known.

Lemma 2.7.3 Let ℋ1,ℋ2 ⊆ 𝔽𝑛 of size 𝑠1 and 𝑠2 respectively
be the hitting set of the class of 𝑛-variate degree 𝑑 polynomials
computable by 𝒞1 and 𝒞2 respectively. Then, for the class of
polynomials computable by 𝒞1 ⋅ 𝒞2 there is an explicit hitting
set ℋ of size 𝑠1 ⋅ 𝑠2 ⋅ 𝑂(𝑑).

Proof. Let 𝑓 = 𝑓1 ⋅ 𝑓2 ∈ 𝒞1 ⋅ 𝒞2 such that 𝑓1 ∈ 𝒞1 and 𝑓2 ∈ 𝒞2.
For each 𝑎𝑖 ∈ ℋ1, 𝑏𝑗 ∈ ℋ2 define a ‘formal-sum’ evaluation
point (over 𝔽[𝑡]) 𝑐 ∶= (𝑐ℓ)1≤ℓ≤𝑛 such that 𝑐ℓ ∶= 𝑎𝑖ℓ+𝑡 ⋅𝑏𝑗ℓ; where
𝑡 is a formal variable. Collect these points, going over 𝑖, 𝑗, in a
set𝐻. It can be seen, by shifting and scaling, that non-zeroness
is preserved: there exists 𝑐 ∈ 𝐻 such that 0 ≠ 𝑓 (𝑐) ∈ 𝔽[𝑡] and
deg𝑓 (𝑐) = 𝑂(𝑑). Using trivial hitting set from Lemma 2.7.1
we obtain the final hitting set ℋ of size 𝑂(𝑠1 ⋅ 𝑠2 ⋅ 𝑑).

Remark 2.7.2 The above argument easily extends to cir-
cuit classes (𝒞1/𝒞1) ⋅ (𝒞2/𝒞2), which compute rationals
of the form (𝑔1/𝑔2) ⋅ (ℎ1/ℎ2), where 𝑔𝑖 ∈ 𝒞1 and ℎ𝑖 ∈ 𝒞2
(𝑔2ℎ2 ≠ 0).

2.7.1 PIT for ΠΣΠ circuits

Sparse PIT is testing the identity of polynomials with bounded
number of monomials. There have been a lot of work on
sparse-PIT, interested readers can refer [BT88; KS01] and
references therein. For the proof of poly-time hitting set of
Sparse PIT see [Sax09, Thm. 2.1].

Theorem 2.7.4 (Sparse-PIT map [KS01]) Let 𝑝(𝑥) ∈ 𝔽[𝑥], be
an 𝑛-variate polynomial with individual degree at most 𝑑, and
sparsity at most 𝑚. Then, there is a deterministic algorithm
to test its identity which runs in time poly(𝑚𝑛𝑑).

Indeed, if identity of sparse polynomial can be tested effi-
ciently, product of sparse polynomial can be tested efficiently.
We formalize and prove this in the following, which would
also trivially prove Theorem 2.7.4.
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Theorem 2.7.5 ([Sap21, Lemma 2.4]) For a class of 𝑛-variate
polynomial 𝑓 ∈ 𝔽[𝑥] computable by ΠΣΠ of size 𝑠, there is an
explicit hitting Set of size poly(𝑠).

Proof. We will show the following.

Lemma 2.7.6 Let 𝑓 (𝑥1, … , 𝑥𝑛) = ∏𝑟
𝑗=1 𝑓𝑖(𝑥1, … , 𝑥𝑛), where

each 𝑓𝑖 is an 𝑠-sparse polynomial with individual degree < 𝑑.
Then, there exists 1 ≤ 𝑚 ≤ poly(𝑟𝑠𝑛 log 𝑑), such that

𝑓 (𝑦 , 𝑦𝑑 mod 𝑚, … , 𝑦𝑑
𝑛−1 mod 𝑚) ≠ 0 (mod 𝑦𝑚 − 1) .

If the above lemma is true, one can simply use the follow-
ing hitting set for Theorem 2.7.5, since by the definition of
size 𝑟 , 𝑑, 𝑛 ≤ 𝑠:

𝐻 ∶= {(𝛼, 𝛼𝑑 mod 𝑚, … , 𝛼𝑑𝑛−1 mod 𝑚) ∣ 1 ≤ 𝛼, 𝑚 ≤ poly(𝑠)} .

Proof of Lemma 2.7.6. Let us first fix an 𝑖 ∈ [𝑟], and a prime 𝑚.
Let 𝑔𝑖 ∶= 𝑓𝑖(𝑦 , 𝑦𝑑, … , 𝑦𝑑

𝑛−1
) ∈ 𝔽[𝑦]. Note that, each monomial

in 𝑓𝑖 gets uniquely mapped to a monomial in 𝑔𝑖. Therefore,
trivially, 𝑔𝑖(𝑦) ≠ 0.

Now, suppose 𝑦𝑎 is a monomial in 𝑔𝑖 (we will write 𝑦𝑎 ∈
supp(𝑔𝑖). If 𝑔𝑖(𝑦) = 0 (mod 𝑦𝑚 − 1), then there must be an-
other monomial 𝑦 𝑏 in 𝑔𝑖, such that 𝑦 𝑏 ≡ 𝑦𝑎 (mod 𝑦𝑚−1). This
is possible only when 𝑚 ∣ (𝑏 − 𝑎). Let us call a prime 𝑚 ‘bad’
if 𝑔𝑖(𝑦) = 0 (mod 𝑦𝑚 − 1), for some 𝑖 ∈ [𝑟]. To avoid such a
bad prime, it suffices the following to be satisfied:

𝑚 ∤
𝑟

∏
𝑖=1

∏
𝑦𝑎,𝑦 𝑏∈supp(𝑔𝑖),𝑏≠𝑎

(𝑏 − 𝑎) =∶ 𝑅 .

This integer 𝑅 can be at most (𝑑𝑛)𝑠
2⋅𝑟; this is because |𝑏 − 𝑎| <

𝑑𝑛, and each 𝑔𝑖 is 𝑠-sparse implying there can be at most
𝑠2 many pairs of different (𝑎, 𝑏), and finally there are 𝑟 many
polynomials 𝑔𝑖. Since, 𝑅 has at most log𝑅many prime factors,
and there are log𝑅 + 1 many primes in the range [1, (log𝑅)2],
we will find a good prime 𝑚 within (log𝑅)2 = poly(𝑠𝑟𝑛 log 𝑑).
This finishes the proof.
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There have been quite a few results on blackbox PIT for
ROABPs as well [FS13a; FSS14; GKS17]. The current best
known algorithm works in quasipolynomial time.

Theorem 2.7.7 (Theorem 4.9 [GKS17]) For an 𝑛-variate
polynomial of individual-degree 𝑑, which is computable by
width-𝑤 ROABPs in any order, a (𝑛𝑑𝑤)𝑂(log log𝑤) time hitting
set can be constructed.

Known PIT for Depth-4 Circuits

Recall that a polynomial 𝑓 (𝑥) ∈ 𝔽[𝑥] is computable by a Σ∧
ΣΠ[𝛿] circuit if 𝑓 (𝑥) = ∑𝑖∈[𝑠] 𝑓𝑖(𝑥)𝑒𝑖 where deg𝑓𝑖 ≤ 𝛿. The
first nontrivial PIT algorithm for this model was designed in
[For15].

Theorem 2.7.8 (Proposition 4.18 [For15]) For the class of 𝑛-
variate, degree-(≤ 𝑑) polynomials 𝑓 (𝑥), computed by Σ∧ΣΠ[𝛿]

circuits of size 𝑠, there is a poly(𝑛, 𝑑, 𝛿 log 𝑠)-explicit hitting
set of size (𝑛𝑑)𝑂(𝛿 log 𝑠)

Similarly, Σ∧Σ∧ circuits compute polynomials of the form
𝑓 (𝑥) = ∑𝑖∈[𝑠] 𝑓

𝑒𝑖
𝑖 where 𝑓𝑖 is a sum of univariate polynomi-

als. Using duality trick [Sax08] and PIT results from [RS05;
GKS17], one can design efficient PIT algorithm for Σ∧Σ∧
circuits.

Lemma 2.7.9 (PIT for Σ∧Σ∧ circuits) Let 𝑃 ∈ Σ∧Σ∧ of size
𝑠. Then, there exists an 𝑠𝑂(log log 𝑠)) time blackbox PIT for the
same.

Proof sketch. If 𝑓 = ∑𝑗∈[𝑠] 𝑓
𝑒𝑗
𝑗 is computed by a Σ∧Σ∧ circuit

of size 𝑠, then clearly, 𝑓 can also be computed by an ROABP
(of any order) of size at most 𝑂(𝑠5) Lemma 2.6.11. So, the
blackbox PIT follows from Theorem Theorem 2.7.7.

2.8 Jacobian and Algebraic
Dependence

We will give the proof of Theorem 4.2.1 in Chapter 4. Before
the details, we will state a few important definitions and
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It would be useful to point out
why Theorem 2.8.1 is surpris-
ing! Let us say {𝑓1, … , 𝑓𝑟} is one
maximal algebraically indepen-
dent, and Φ is a map that en-
sures that {Φ(𝑓1), … , Φ(𝑓𝑟)} con-
tinue to remain algebraically in-
dependent. However, the circuit
𝐶 could involve only 𝑓𝑠+1, … , 𝑓𝑚,
and it is far from obvious why
just this suffices to preserve rela-
tions between them. But the fact
that {𝑓1, … , 𝑓𝑠} is a maximal alge-
braically independent set forces
all relations amongst the polyno-
mials 𝑓𝑖 to be preserved exactly
by Φ.

lemmas from [Agr+16] to be referenced later.

Definition 2.8.1 The Jacobian of a set of polynomials f =
{𝑓1, … , 𝑓𝑚} in 𝔽[𝑥] is defined to be the matrix

𝒥𝑥(f) ∶= (𝜕𝑥𝑗(𝑓𝑖))𝑚×𝑛
.

Notation. Let 𝑆 ⊆ 𝑥 = {𝑥1, … , 𝑥𝑛} and |𝑆| = 𝑚. Then, polyno-
mial 𝐽𝑆(f) denotes the minor (i.e. determinant of the subma-
trix) of 𝒥𝑥(f), formed by the columns corresponding to the
variables in 𝑆.

Definition 2.8.2 (Transcendence Degree) Polynomials 𝑇𝑖,
for 𝑖 ∈ [𝑚], are called algebraically dependent if there exists a
nonzero annihilator 𝐴 s.t. 𝐴(𝑇1, … , 𝑇𝑚) = 0. Transcendence
degree is the size of the largest subset 𝑆 ⊆ {𝑇1, … , 𝑇𝑚} that is
algebraically independent. Then 𝑆 is called a transcendence
basis.

The next definition we need is that of a faithful homomor-
phism.

Definition 2.8.3 (Faithful homomorphism) A homomor-
phism Φ ∶ 𝔽[𝑥] → 𝔽[𝑦] is faithful for T if trdeg𝔽(T) =
trdeg𝔽(Φ(T)).

The reason for interest in faithful maps is due its usefullness
in preserve the identity as shown in the following theorem.

Theorem2.8.1 (Theorem 2.4 [Agr+16]) Let 𝐶 ∈ 𝔽[𝑦1, … , 𝑦𝑚].
Then, 𝐶(T) = 0 ⟺ 𝐶(Φ(T)) = 0.

Proof. ⟹ is ‘obvious’. To show the other side, since Φ is
faithful to f, there is a transcendence basis (say, 𝑓1, … , 𝑓𝑠) of
f such that Φ(𝑓1), … , Φ(𝑓𝑠) is a transcendence basis of Φ(f).
The function field 𝐾 = 𝔽(f) ‘essentially’ consists of elements
that are polynomials in 𝑓𝑠+1, … , 𝑓𝑚, with coefficients from
𝔽(𝑓1, … , 𝑓𝑠). To see this, since {𝑓1, … , 𝑓𝑠} are algebraically in-
dependent, the field 𝔽(𝑓1, … , 𝑓𝑠) is isomorphic to 𝔽(𝑦1, … , 𝑦𝑠)
for some new variables 𝑦1, … , 𝑦𝑠. Further, since every other
𝑓𝑖 is algebraically dependent on {𝑓1, … , 𝑓𝑠}, it is also algebraic
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over 𝔽(𝑓1, … , 𝑓𝑠). Hence,

𝔽(𝑓1, … , 𝑓𝑚) ≡ (𝔽(𝑓1, … , 𝑓𝑠)) (𝑓𝑠+1, … , 𝑓𝑚)
≡ 𝔽(𝑓1, … , 𝑓𝑠) [𝑓𝑠+1, … , 𝑓𝑚] .

Now, suppose 𝐶(f) is a nonzero element of 𝐾, then there is
a unique inverse 𝑄 ∈ 𝐾 such that 𝑄 ⋅ 𝐶(f) = 1. Since 𝑄 is a
polynomial in 𝑓𝑠+1, … , 𝑓𝑚 with coefficients from 𝔽(𝑓1, … , 𝑓𝑠),
by clearing off the denominators of these coefficients in 𝑄, we
get an equation that �̃� ⋅ 𝐶 = 𝑃(𝑓1, … , 𝑓𝑠), where 𝑄 is a nonzero
polynomial in f and 𝑃 is a nonzero polynomial in 𝑓1, … , 𝑓𝑠.
Applying Φ to both sides of the equation, we conclude that

𝐶(Φ(f)) = Φ(𝐶(f)) ≠ 0 ,

otherwise,

𝑃(Φ(𝑓1), … , Φ(𝑓𝑠)) = Φ(𝑃(𝑓1, … , 𝑓𝑠)) = 0 ,

which is a contradiction as Φ(𝑓1), … , Φ(𝑓𝑠) are algebraically
independent and 𝑃 is a nonzero nontrivial polynomial! This
finishes the proof.

Here is an important criterion about the Jacobian matrix
which basically shows that it preserves algebraic indepen-
dence. For a proof, see [BMS13].

Theorem 2.8.2 (Jacobian criterion) Let f ⊂ 𝔽[𝑥] be a finite
set of polynomials of degree at most 𝑑, and trdeg𝔽(f) ≤ 𝑟. If
char(𝔽) = 0, or char(𝔽) > 𝑑 𝑟, then trdeg𝔽(f) = rank𝔽(𝑥)𝒥𝑥(f).

Jacobian criterion together with faithful maps give a recipe to
design a map which drastically reduces number of variables,
if trdeg is small; for a proof see [Agr+16].

Lemma 2.8.3 (Lemma 2.7 [Agr+16]) Let T ∈ 𝔽[𝑥] be be a
finite set of polynomials of degree at most 𝑑 and trdeg𝔽(T) ≤ 𝑟,
and char(F)=0 or > 𝑑 𝑟. Let Ψ′ ∶ 𝔽[𝑥] ⟶ 𝔽[𝑧1] such that
rank𝔽(𝑥)𝒥𝑥(T) = rank𝔽(𝑧1)Ψ

′(𝒥𝑥(T)).

Then, the map Φ ∶ 𝔽[𝑥] ⟶ 𝔽[𝑧1, 𝑡 , 𝑦], such that 𝑥𝑖 ↦
(∑𝑗 𝑦𝑗𝑡 𝑖𝑗) + Ψ′(𝑥𝑖), is a faithful homomorphism for T.
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q An important Jacobian identity

We have the following identity [Agr+16, Equation 3.1], where
𝑇𝑖 = ∏𝑗 𝑔𝑖𝑗, and 𝐿(𝑇𝑖) the multiset of polynomials that consti-
tute 𝑇𝑖:

Lemma 2.8.4 For T𝑘 = (𝑇1, … , 𝑇𝑘), we have

𝐽𝑥𝑘(T𝑘) = ∑
𝑔1∈𝐿(𝑇1),…,𝑔𝑘∈𝐿(𝑇𝑘)

(
𝑇1…𝑇𝑘
𝑔1…𝑔𝑘

) ⋅ 𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘) .

Proof. The proof essentially exploits linearity of determinants.
Here is a simple fact.

Fact
For any set of vectors vij ∈ 𝔽𝑛, for 𝑖 ∈ [𝑛], and 𝑗 ∈ [𝑘],

det[
𝑘
∑
𝑗=1

v1j, … ,
𝑘
∑
𝑗=1

vnj] = ∑
1≤𝑗1≤…≤𝑗𝑛≤𝑘

det [v1j1 , … , vnjn] .

Now, if 𝑇𝑖 = ∏𝑗∈[𝑑] 𝑔𝑖𝑗, then

dlog𝑥(𝑇𝑖) = ∑
𝑗∈[𝑑]

dlog𝑥 (𝑔𝑖𝑗) ⟹ 𝜕𝑥(𝑇𝑖) = 𝑇𝑖 ⋅ (∑
𝑗∈[𝑑]

𝜕𝑥𝑔𝑖𝑗
𝑔𝑖𝑗

) .

Using this with the linearity fact as above, 𝐽𝑥𝑘(T𝑘) takes the
following form:

𝐽𝑥𝑘(T𝑘) = ∑
𝑔1∈𝐿(𝑇1),…,𝑔𝑘∈𝐿(𝑇𝑘)

𝑇1⋯𝑇𝑘
𝑔1⋯𝑔𝑘

⋅ det [
𝜕𝑥1𝑔1 ⋯ 𝜕𝑥𝑘𝑔1
⋮ ⋯ ⋮

𝜕𝑥1𝑔𝑘 ⋯ 𝜕𝑥𝑘𝑔𝑘
]

= ∑
𝑔1∈𝐿(𝑇1),…,𝑔𝑘∈𝐿(𝑇𝑘)

𝑇1⋯𝑇𝑘
𝑔1⋯𝑔𝑘

⋅ 𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘) .

2.9 Limitations of Bounded Fan-in
Depth-3 circuits

The following theorem is a folkore [Kum20], which shows
that bounded depth-3 circuits are not universal. We present a
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proof here.

Theorem 2.9.1 The inner product polynomial

IP𝑛 =
𝑛
∑
𝑖=1

𝑥𝑖 ⋅ 𝑦𝑖 ,

cannot be computed by any Σ[𝑛−1]ΠΣ circuit, no matter how
large the product fan-in is.

Proof. Assume, for the sake of contradiction, IP𝑛 can be com-
puted by a ΣΠΣ circuit of top fan-in 𝑛 − 1:

IP𝑛 =
𝑛−1
∑
𝑖=1

𝑑𝑖
∏
𝑗=1

ℓ𝑖𝑗 . (2.7)

The proof idea is as follows: we reduce Equation 2.7 modulo
𝑛 − 1 many linear polynomials suitably picked from each
summand of the RHS. We get a contradiction, as the RHS
becomes zero modulo those linear polynomials, but the LHS
remains nonzero. Formally, we implement the proof below.

Assume, wlog, ∏𝑑1
𝑗=1 ℓ1𝑗 contains the variable 𝑥1 in one of its

factors. For some 𝑗, wlog we have ℓ1𝑗 = 𝑥1 − 𝑟1(𝑥2, … , 𝑥𝑛, 𝑦). If
ℓ1𝑗 = 𝑎1𝑥1 − 𝑟1(𝑥2, … , 𝑥𝑛, 𝑦), we can take out 𝑎1, and work with
(𝑥1 − 𝑟1/𝑎1). Taking mod by (𝑥1 − 𝑟1/𝑎1) essentially means
substituting 𝑥1 = 𝑟1/𝑎1, in Equation 2.7.

Now,we go modulo 𝑥1 − 𝑟1 in both sides of Equation 2.7. This
changes the IP𝑛 polynomial in the LHS, which becomes 𝑟1𝑦1 +
𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛. In the RHS, the first summand vanishes! So,
we get

𝑟1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛 =
𝑛−1
∑
𝑖=2

𝑑𝑖
∏
𝑗=1

ℓ𝑖𝑗(𝑟1, 𝑥2, … , 𝑥𝑛, 𝑦) . (2.8)

Now, note that 𝑟1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛 is not free of 𝑥2, as 𝑟1𝑦1
cannot cancel the term 𝑥2𝑦2. Thus, 𝑥2 must be present also
in the RHS of Equation 2.8. Wlog, assume that 𝑥2 is present
in ℓ2𝑗(𝑟1, 𝑥2, … , 𝑥𝑛, 𝑦), for some 𝑗. Assume it is of the form
𝑥2 − 𝑟2(𝑥3, … , 𝑥𝑛, 𝑦).

Now, we reduce Equation 2.8 modulo 𝑥2 − 𝑟2. This changes
the LHS to

𝑟1(𝑟2, … , 𝑥𝑛, 𝑦)𝑦1 + 𝑟2𝑦2 + 𝑥3𝑦3 + 𝑥𝑛𝑦𝑛 .
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At least one term in the RHS gets vanished. The resulting
polynomial in the LHS is not free of 𝑥3. Thus, 𝑥3 must be
present in the RHS too. We assume there is a linear term in
RHS of the form (𝑥3 − 𝑟3). Next, we go modulo (𝑥3 − 𝑟3).

We can continue this, 𝑛 − 1 times, and in the end RHS would
completely vanish. In the LHS, we would have ̃𝑟1𝑦1+ ̃𝑟2𝑦2+⋯+
̃𝑟𝑛−1𝑦𝑛−1 + 𝑥𝑛𝑦𝑛, for some linear polynomials ̃𝑟1, … , ̃𝑟𝑛−1. This
polynomial would have a nonzero term 𝑥𝑛𝑦𝑛, as 𝑥𝑛𝑦𝑛 cannot
be cancelled by ̃𝑟1𝑦1 + 𝑟2𝑦2 + ⋯ + ̃𝑟𝑛−1𝑦𝑛−1. This leads to a
contradiction.





Results in Algebraic Complexity





This chapter is based on two
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“An unexamined life is not worth living”.

— Socrates, Trial of Socrates.

Abstract. For a univariate polynomial 𝑓, a sum-of-squares
representation (SOS) has the form 𝑓 = ∑𝑖∈[𝑠] 𝑐𝑖𝑓

2
𝑖 , where 𝑐𝑖

are field elements and the 𝑓𝑖 are polynomials. The size of
the representation is the number of monomials that appear
across the polynomials 𝑓𝑖. We denote its minimum as the
support-sum 𝑆(𝑓 ) of 𝑓.

For a polynomial 𝑓 of degree 𝑑 of full support, a trivial lower
bound for the support-sum is 𝑆(𝑓 ) ≥ √𝑑. We show that the ex-
istence of an explicit polynomial 𝑓 with support-sum slightly
larger than the lower bound implies that VP ≠ VNP. We
also consider the sum-of-cubes representation (SOC) of poly-
nomials. In a similar way, we show that an explicit hard
polynomial implies that blackbox PIT is in P.

On the other hand, the famous Shub-Smale 𝜏-conjecture [SS95]
is a conjecture in algebraic complexity, asserting that a uni-
variate polynomial which is computable by a small algebraic
circuit, has a small number of integer roots. This has strong
implications in complexity theory. In this work, we conjec-
ture that the number of real roots of a univariate polynomial
can be at most a constant multiple of the support-sum. We
connect this conjecture with two central open questions in
algebraic complexity – matrix rigidity and VP vs. VNP.

Furthermore, a (stronger) conjecture for sum-of-cubes (SOC)
implies that blackbox PIT is in P. This is the first time a 𝜏-
conjecture has been shown to give a polynomial-time PIT.
We also establish some special cases of this conjecture, and
prove tight lower bounds for restricted depth-2 models.
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1: We already discussed in sec-
tion 2.3 that the 𝑑-th chebyshev
polynomial 𝑇𝑑 can be computed
by an 𝑂(log 𝑑) size circuit. But,
it has 𝑑-many real roots in the
interval [−1, 1].

2: 𝑓 ∶= ∑𝑛
𝑖=0 𝑎𝑖 𝑥 𝑖 is 𝑡-sparse if at

most 𝑡 of the coefficients 𝑎0, … , 𝑎𝑛
are non-zero.

3: In the constant-free setting,
you are not allowed to use arbi-
trary constant from the field. In-
stead, you have to compute it as a
circuit starting from ±1 (which is
cost-free), and the size of the con-
stants contribute to the original
size as well. For e.g., (222

𝑛

𝑥1 ⋯𝑥𝑛)𝑛
requires Ω(2𝑛) size VP0 circuits
while it has trivial 𝑂(𝑛) size VP
circuits.

3.1 Set-up and Our Results

The sum-of-squares representation (SOS) is one of the most
fundamental in number theory and algebra. Lagrange’s four-
squares theorem has inspired generations of mathematicians
[Ram17]. Hilbert’s 17th problem asks whether a multivariate
polynomial, that takes only non-negative values over the re-
als, can be represented as an SOS of rational functions [Pfi76].
In engineering, SOS has found many applications in approxi-
mation, optimization and control theory, see [Rez78; Las07;
Lau09; BM22].

The famous Shub-Smale 𝜏-conjecture [SS95] is a conjecture in
algebraic complexity, asserting that a univariate polynomial
which is computable by a small algebraic circuit has ‘a few’ in-
teger roots. It was established in [SS95] that the 𝜏-conjecture
implies Pℂ ≠ NPℂ, for the Blum–Shub–Smale (BSS) model
of computation over the complex numbers [BSS89; Blu+00].
Bürgisser [Bür09] obtained a similar result for VP vs. VNP.

Can real roots help? One possible disadvantage of the
𝜏-conjecture is the reference of integer roots. As a natural ap-
proach to the 𝜏-conjecture, one can try to bound the number
of real roots instead of integer roots. However, a mere replace-
ment of “integer roots” by “real roots” fails miserably as the
number of real roots of a univariate polynomial can be expo-
nential in its circuit size; for e.g., the Chebyshev polynomials
[Sma98]1.

Interestingly, Koiran [Koi11] came up with the following
𝜏-conjecture for the restricted (depth-4) circuits.

If 𝑓 ∈ ℝ[𝑥] is a polynomial of the form 𝑓 = ∑𝑘
𝑖=1∏

𝑚
𝑗=1 𝑓𝑖𝑗,

where each 𝑓𝑖𝑗 ∈ ℝ[𝑥] is 𝑡-sparse 2, then the number of distinct
real roots of 𝑓 can at most be poly(𝑘𝑚𝑡).

Note that, the conjecture is true for 𝑚 = 1, by Descartes’ rule
of signs (Lemma 2.2.5). Using the celebrated depth-4 reduc-
tion [AV08; Koi12], it was established that real 𝜏-conjecture
with 𝑚 = 𝜔(1), yields a strong separation in the constant-
free setting, i.e. VP0 ≠ VNP0

3. Later, it was shown to imply
VP ≠ VNP, see [Tav14; GKT15].
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An interesting anecdote

Consider a computational model where multiplication is
free, and we only count the number of additions to com-
pute a certain polynomial. It is also called the Additive
Complexity of a polynomial.

Suppose, 𝑓 ∈ ℝ[𝑥] has additive complexity at most 𝑘, i.e., it
can be computed by 𝑘 many number of additions. Can we
bound the number of real roots of 𝑓, in terms of 𝑘?

Theorem [Borodin-Cook’76 [BC76]]. Let 𝑓 ∈ ℝ[𝑥] is com-
putable by 𝑘 additions. Then, there is an explicit (astro-
nomical) function 𝜙 such that 𝑓 has at most 𝜙(𝑘) many real
roots.

In [Ris85], it was further established that one can take
𝜙(𝑘) = 2(4𝑘)

2
. These results lead to concretize the modern

Shub-Smale 𝜏-conjecture and later Koiran’s real 𝜏-conjecture.

3.1.1 Sum-of-squares model (SOS)

We give some background on sum-of-square representation,
give some examples, and define our hardness condition. We
first define the model and a complexity measure.

Definition 3.1.1 (SOS and support-sum size 𝑆𝑅(𝑓 )) Let 𝑅
be a ring. An 𝑛-variate polynomial 𝑓 (𝑥) ∈ 𝑅[𝑥] is represented
as a (weighted) sum-of-squares (SOS), if

𝑓 =
𝑠
∑
𝑖=1

𝑐𝑖𝑓 2
𝑖 , (3.1)

for some top-fanin 𝑠, where 𝑓𝑖(𝑥) ∈ 𝑅[𝑥] and 𝑐𝑖 ∈ 𝑅.

The size of the representation of 𝑓 in Equation 3.1 is the
support-sum, the sum of the support size (or sparsity) of the
polynomials 𝑓𝑖. The support-sum size of 𝑓, is defined as the
minimum support-sum of 𝑓, denoted by 𝑆𝑅(𝑓 ), or simply 𝑆(𝑓 ),
when the ring 𝑅 is clear from the context.

Remark 3.1.1 In real analysis, the SOS representation of
a polynomial is defined without the coefficients 𝑐𝑖, that is,
only for non-negative polynomials 𝑓. In these terms, what
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we define in Equation 3.1 is a weighted SOS. However, we
will skip the term “weighted” in the following.

If we consider the expression in Equation 3.1 as a Σ ∧[2] ΣΠ-
formula, then the support-sum is the number of Π-operations
directly above the input level.

For any 𝑁-variate polynomial 𝑓, let sp(𝑓 ) denote the sparsity
of 𝑓. For any field 𝑅 = 𝔽 of characteristic ≠ 2, we have

sp(𝑓 )1/2 ≤ 𝑆𝔽(𝑓 ) ≤ 2 sp(𝑓 ) + 2 . (3.2)

The lower bound can be shown by counting monomials. The
upper bound is because

𝑓 = (𝑓 + 1)2/4 − (𝑓 − 1)2/4 . (3.3)

In particular, when 𝑓 is univariate and has full sparsity, sp(𝑓 ) =
𝑑 + 1, we get

√𝑑 + 1 ≤ 𝑆(𝑓 ) ≤ 2𝑑 + 2 . (3.4)

By Equation 3.3, the SOS-model is complete for any field of
characteristic ≠ 2. It can be argued by a geometric-dimension
argument that for most 𝑁-variate (constant 𝑁 ≥ 1) polynomi-
als 𝑓 of degree 𝑑, we have 𝑆𝔽(𝑓 (𝑥)) = Θ(𝑑𝑁), as for random 𝑓,
we know that sp(𝑓 ) = Θ(𝑑𝑁). Note that this matches the
upper bound given in Equation 3.4 for univariate 𝑓.

We give two examples.

Example 3.1.1 Let 𝑓 (𝑥) = ∑𝑑−1
𝑘=0 𝑥𝑘. Note that

𝑑−1
∑
𝑘=0

𝑥𝑘 = (
√𝑑−1
∑
𝑘=0

𝑥𝑘) (
√𝑑−1
∑
𝑘=0

𝑥𝑘√𝑑) .

Hence, we have a representation of 𝑓 as 𝑓 = 𝑔ℎ, where
sp(𝑔),sp(ℎ) ≤ √𝑑. Such a product can be written as a SOS,

𝑔ℎ =
(𝑔 + ℎ)2

4
−
(𝑔 − ℎ)2

4
(3.5)

Because sp(𝑔 ± ℎ) ≤ 2√𝑑 we get that 𝑆(𝑓 ) ≤ 4√𝑑.

Observe that 𝑆(𝑓 ) essentially hits the lower bound in Equa-
tion 3.4, except for a constant factor.
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SOS is provably the simplest
model to show lower bound than
higher powers. For detailed argu-
ment, we refer to section 3.5.

Example 3.1.2 Let 𝑓 (𝑥) = (𝑥 + 1)𝑑. This has a trivial SOS-

representation with one summand: (𝑥 + 1)𝑑 = ((𝑥 + 1)𝑑/2)
2
,

for even 𝑑. So we get 𝑆(𝑓 ) ≤ 𝑑/2 + 1.

Note that this boundmeets the upper bound in Equation 3.4,
except for a constant factor. We conjecture that it is opti-
mal, i.e. that 𝑆(𝑓 ) = Ω(𝑑). This is somewhat in contrast to
the fact that 𝑓 has small circuits. By repeated squaring, the
circuit size of 𝑓𝑑 is 𝑂(log 𝑑). For more on SOS-complexity
versus circuit complexity, see subsection 3.1.3.

We call a polynomial family SOS-hard, if its support-sum is
just slightly larger than the trivial lower bound from Equa-
tion 3.4. For our results, it actually suffices to consider uni-
variate polynomials.

Definition 3.1.2 (SOS-hardness) We call a polynomial fam-
ily (𝑓𝑑(𝑥))𝑑, SOS-hard with hardness 𝜀, if 𝑆(𝑓𝑑) = Ω(𝑑0.5+𝜀).

Main results (assuming SOS-hardness). Our main re-
sults with respect to SOS-representation show that the ex-
istence of explicit SOS-hard families of polynomials imply
circuit lower bounds. The precise bounds depend on the size
of 𝜀:

1. For 𝜀 = 𝜔(1/√log 𝑑), we show that the permanent can-
not be computed by small ABPs, i.e., VBP ≠ VNP (Corol-
lary 3.3.3).

2. For 𝜀 = 𝜔(√log log 𝑑/ log 𝑑) we show that the perma-
nent cannot be computed by small circuits, i.e., VP ≠
VNP (Theorem 3.3.2).

3. For 𝜀 > 0 constant, we show that the permanent re-
quires exponential size circuits, i.e., we have an expo-
nential separation of VP and VNP (Theorem 3.3.6).

The technical foundation for these results are SOS decompo-
sitions for circuits (Lemma 3.3.1 and 3.3.5) that are based on
the known depth-reductions techniques. We show how to
express a polynomial 𝑝(𝑥) of degree 𝑑, given by a circuit of
size 𝑠, as a sum of squares

▶ of quasi-poly(𝑑, 𝑠) many polynomials, each of degree
at most 𝑑/2, in case of Lemma 3.3.1, and
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▶ of poly(𝑠) many polynomials, each of degree ‘close’
to 𝑑/2, in case of Lemma 3.3.5.

Hence, by our results, the major challenge in arithmetic com-
plexity, to separate VP from VNP, can be solved by exhibiting
an explicit univariate polynomial family 𝑓𝑑(𝑥) ∈ ℂ[𝑥] of de-
gree 𝑑 with SOS-hardness parameter 𝜀, just slightly above the
general lower bound, even for vanishing small 𝜀 = 𝜀(𝑑).

This would also have consequences for PIT, because Kabanets
and Impagliazzo [KI04, Theorem 7.7] showed that VP ≠ VNP
implies blackbox PIT ∈ SUBEXP. In the case of constant 𝜀,
where we have an exponential separation of VP and VNP, we
get blackbox PIT ∈ QP (quasipolynomial-time).

q A 𝜏-conjecture for SOS

The following question was originally raised by Arkadev
Chattopadhyay, as the simplest case of Koiran’s 𝜏-conjecture.

Conjecture 3.1.1 (Simplest 𝜏-conjecture) If the polynomi-
als 𝑓 (𝑥) and 𝑔(𝑥) have sparsity at most 𝑠, then the number
of real roots of the polynomial ℎ ∶= 𝑓 𝑔 + 1, can be at most
𝑂(𝑠).

Interestingly, 𝑓 𝑔 can have at
most 𝑂(𝑠)many real roots, which
follows from the fact that the real
roots of 𝑓 𝑔 can be either of 𝑓 or 𝑔
and the Descartes’ rule of signs
gives bound on the number of
real roots (Lemma 2.2.5).

In general, we are interested in the number of real roots of
𝑓, in terms of 𝑆(𝑓 ). Since the sparsity of 𝑓 can be at most
𝑆(𝑓 )2, 𝑓 can have at most 𝑆(𝑓 )2-many real roots by Descartes’
rule of signs (Lemma 2.2.5). Further, it can be shown that
a random polynomial 𝑓 can have at most 𝑂(𝑆(𝑓 ))-many real
roots, similar to [BB20, Theorem 1.1 with 𝑘 = 2]. Motivated
thus, we conjecture the following.

Conjecture 3.1.2 (SOS-𝜏-Conjecture) 44: An explicit 𝑑-degree polyno-
mial 𝑓𝑑, with 𝑑-many real roots
implies 𝑆(𝑓𝑑) ≥ Ω(𝑑) (optimal 𝜖 =
1). Thus, SOS-𝜏-conjecture is a
much more stronger postulation!

Consider any non-
zero polynomial 𝑓 (𝑥) ∈ ℝ[𝑥]. Then, there exists a positive
constant 𝑐 > 0 such that the number of distinct real roots
of 𝑓 is at most 𝑐 ⋅ 𝑆ℝ(𝑓 ).

Remarks. 1. One can show that Conjecture 3.1.2 implies 𝑆ℂ((𝑥+
1)𝑑) ≥ Ω(𝑑); see Lemma 3.9.1. The proof is identical to [Hru13;
Hru20], where strong distribution property of complex roots
with multiplicities were shown to be implied, from the real
𝜏-conjecture. We present it for
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2. In Equation 3.1, we could restrict the degrees of 𝑓𝑖 to be
𝑂(𝑑 log 𝑑). This might help us proving the conjecture; for
details, see subsection 3.3.4 (& remark).

3. The 𝑓 𝑔 + 1 case happens to be a special case of this new
conjecture for 3 squares. For the two squares,i.e. any 𝑓 ∈ ℝ[𝑥]
of the form 𝑐1𝑓 2

1 + 𝑐2𝑓 2
2 , can have at most 𝑂(|𝑓1|0 + |𝑓2|0)-many

real roots; for details see Theorem 3.8.1 in subsection 3.8.1.

Main results (assuming Conjecture 3.1.2). Our main
results with respect to SOS-𝜏-conjecture show that the con-
jecture implies strong circuit lower bounds.

1. We show that the conjecture implies “very” explicit
family of real rigid matrices.

2. We show that the conjecture implies that the perma-
nent requires exponential size circuits, i.e., we have an
exponential separation between VP and VNP.

3.1.2 Sum-of-cubes model (SOC)

It is not clear whether a strong lower bound in the SOS-model
can give a polynomial-time blackbox PIT. However, a different
complexity measure on the sum-of-cube representation of
polynomials indeed leads to a complete derandomization of
blackbox PIT. So, we start by defining the model and give
some background on it.

Definition 3.1.3 (SOC and support-union size 𝑈𝑅(𝑓 , 𝑠)) Let
𝑅 be a ring. An 𝑛-variate polynomial 𝑓 (𝑥) ∈ 𝑅[𝑥] is repre-
sented as a sum-of-cubes (SOC), if

𝑓 =
𝑠
∑
𝑖=1

𝑐𝑖𝑓 3
𝑖 , (3.6)

for some top-fanin 𝑠, where 𝑓𝑖(𝑥) ∈ 𝑅[𝑥] and 𝑐𝑖 ∈ 𝑅.

The size of the representation of 𝑓 in Equation 3.6 is the size
of the support-union, namely the number of distinct mono-
mials in the representation, | ⋃𝑠

𝑖=1 supp(𝑓𝑖)|, where support
supp(𝑓𝑖) denotes the set of monomials with a nonzero coeffi-
cient in 𝑓𝑖(𝑥). The support-union size of 𝑓 with respect to 𝑠,
denoted 𝑈𝑅(𝑓 , 𝑠), is defined as the minimum support-union
size when 𝑓 is written as in Equation 3.6.
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If we consider the expression in Equation 3.6 as a Σ ∧[3] ΣΠ
circuit, then the support-union size is the number of distinct
Π-operations directly above the input level.

The two measures– support-union and support-sum –are
largely incomparable, since 𝑈 (⋅) has the extra argument 𝑠. Still
one can show: 𝑆𝔽(𝑓 ) ≥ min𝑠 (𝑈𝔽(𝑓 , 4𝑠) − 1) (Lemma 3.6.8).

For any polynomial 𝑓 of sparsity sp(𝑓 ), we have

sp(𝑓 )1/3 ≤ 𝑈𝔽(𝑓 , 𝑠) ≤ sp(𝑓 ) + 1, (3.7)

where the upper bound is for 𝑠 ≥ 3 and for fields 𝑅 = 𝔽
of characteristic ≠ 2, 3. The lower bound can be shown by
counting monomials. The upper bound is because

𝑓 = (𝑓 + 2)3/24 + (𝑓 − 2)3/24 − 𝑓 3/12 . (3.8)

Hence, the SOC-model is complete for any field of character-
istic ≠ 2, 3.

In particular, when 𝑓 is univariate and has full sparsity, sp(𝑓 ) =
𝑑 + 1, we get

(𝑑 + 1)1/3 ≤ 𝑈𝔽(𝑓 , 𝑠) ≤ 𝑑 + 1 . (3.9)

More bounds and examples for the trade-off between 𝑠 and
the measure 𝑈 (𝑓 , 𝑠) can be found in section 3.5. Here, we
summarize:

Example 3.1.3 1. For small 𝑠 = Θ(𝑑1/2), we have

𝑈 (𝑓 , 𝑠) = 𝑂(𝑑1/2) , (𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 3.6.5) .

2. For large 𝑠 = Ω(𝑑2/3), we have

𝑈 (𝑓 , 𝑠) = Θ(𝑑1/3) , (𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.6.7) .

However, it is unclear whether it is possible to have a very
small fanin 𝑠, like 𝑠 = 𝑜(√𝑑), and at the same time a support-
union of 𝑜(𝑑). This motivated us to define the hardness of
univariate polynomials in the SOC-model as follows.

Definition 3.1.4 (SOC-hardness) We call a polynomial fam-
ily (𝑓𝑑(𝑥))𝑑, SOC-hard, if there is a constant 0 < 𝜀 < 1/2 such
that 𝑈𝔽 (𝑓𝑑, 𝑑 𝜀) = Ω(𝑑).
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Main results (assuming SOC-hardness). Ourmain result
with respect to SOC-representation shows that the existence
of an explicit SOC-hard family of polynomials leads to a
complete derandomization of blackbox PIT (Theorem 3.4.2).
From this, also the separation of VP and VNP follows.

The technical basis for our result is again a decomposition
lemma (Lemma 3.4.1), an extension of Lemma 3.3.5. It shows
how to express a polynomial 𝑝(𝑥) of degree 𝑑, given by a
circuit of size 𝑠, as a sum of cubes of poly(𝑠)many polynomials,
each of degree close to 𝑑/3.

A 𝜏-conjecture for SOC. With the aim of coming up with
a tenable approach to connect PIT with the number of real
roots, we conjecture the following.

Conjecture 3.1.3 (SOC-𝜏-conjecture) Consider any non-
zero polynomial 𝑓 ∈ ℝ[𝑥]. Then, there exist positive con-
stants 𝜀 < 1/2, and 𝑐 such that the number of distinct real
roots of 𝑓 is at most 𝑐 ⋅ 𝑈ℝ(𝑓 , 𝑑 𝜀).

Remark. We show that 𝑓 = 𝑐1𝑓 3
1 +𝑐2𝑓 3

2 , has atmost𝑂(supp(𝑓1)∪
supp(𝑓2))-many real roots (see Theorem 3.8.2).

3.1.3 Hard polynomial candidates

Some interesting explicit candidates for the SOS/SOC-hard
families are:

𝑓𝑑(𝑥) ∈ {
𝑑

∏
𝑖=1

(𝑥 − 𝑖), (𝑥 + 1)𝑑, 𝑇𝑑(𝑥),
𝑑
∑
𝑖=0

2𝑖
2
⋅ 𝑥 𝑖,

𝑑
∑
𝑖=0

22𝑖(𝑑−𝑖) ⋅ 𝑥 𝑖} .

𝑇𝑑(𝑥) is the Chebyshev polynomial that writes cos 𝑑𝜃 as a func-
tion of cos 𝜃, i.e. 𝑇𝑑(cos 𝜃) ∶= cos 𝑑𝜃.

SOS-complexity vs. circuit complexity

▶ The polynomials: ∏𝑑
𝑖=1 (𝑥−𝑖),∑

𝑑
𝑖=0 2𝑖

2
⋅𝑥 𝑖, ∑𝑑

𝑖=0 22𝑖(𝑑−𝑖)⋅
𝑥 𝑖, are all conjectured to be hard in the general circuit
model; i.e., they require Ω(𝑑) size circuits. However,
both (𝑥 + 1)𝑑 and 𝑇𝑑(𝑥) are easy polynomials, since
both can be computed by 𝑂(log 𝑑) size circuits! But,
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5: One could wonder why not
just work with very explicit poly-
nomials, like ∑𝑑

𝑖=0 2𝑖
2𝑥 𝑖, without

even mentioning GRH! Howbeit,
because of the ingrained patterns
and well-behaved (explicit) roots,
polynomials such as ∏𝑖(𝑥 − 𝑖), or
(𝑥 + 1)𝑑, could be easier to deal
with.

in this work, we conjecture these easy polynomials
(in the circuit model) to be SOS-hard.

▶ On the other hand, a random 𝑑1/2-sparse polynomial
is trivially SOS-easy (not SOS-hard), but it requires
𝜔(log 𝑑) size circuit!

▶ Finally, it is not hard to show that 𝑓𝑑(𝑥) ∶= ∑𝑑
𝑖=0 𝑥 𝑖,

is easy both in SOS and circuit model! The key idea
is to use the identity:

𝑓𝑛2−1(𝑥) = (1 + 𝑥 + ⋯𝑥𝑛−1) ⋅ (1 + 𝑥𝑛 + ⋯ + 𝑥𝑛(𝑛−1)) .

When 𝑛2−1 ≤ 𝑑 < (𝑛+1)2−1, use the fact that 𝑓𝑑(𝑥) =
𝑓𝑛2−1(𝑥) + 𝑥𝑛

2
⋅ 𝑓𝑑−𝑛2(𝑥), and compute 𝑓𝑑 recursively.

Requirement of GRH. To separate VP from VNP, we will
eventually try to create a multivariate hard polynomial family
from the SOS-hard polynomial family, via some explicit trans-
formation. However, by Theorem 2.4.3, it is sufficient to show
that the coefficients are #P/poly-explicit, in order to show
that the family is in VNP. As a result, without assuming GRH,
our current proof techniques fail for CH-explicit polynomial
families, such as (𝑥 +1)𝑑,∏𝑑

𝑖=1(𝑥 − 𝑖). Essentially, if both GRH
and VP = VNP are assumed, then Theorem 2.4.1 shows that
the transformed polynomial family is explicit enough to be
in VNP = VP; however the SOS-hardness parameter itself
shows that it cannot be computed by polynomial-sized cir-
cuits (i.e., ∉ VP). Thus, by simple logical deduction, it follows
that assuming GRH and SOS-hardness, VP ≠ VNP!

However, GRH is not required for many explicit polynomial
families, such as, ∑𝑑

𝑖=0 2𝑖
2
𝑥 𝑖.5

3.2 Comparison with Prior Works

SOS to non-commutative hardness. Hrubeš, Wigderson,
and Yehudayoff [HWY11] considered the sum-of-squares rep-
resentation in the non-commutative setting. They showed
that lower bounds for the SOS-representation of a specific
multivariate polynomial imply exponential lower bounds on
the circuit size of the permanent. Besides the non-commutative
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algebra, their setting differs in the precise SOS-model and the
complexity measure. So, hardly any comparison is possible.

Depth-4 circuits with unbounded powering. Much of
the previous works are concerned with multivariate depth-4
circuits that are a sum of unbounded-powers, i.e., Σ ∧[𝜔(1)] ΣΠ
circuits, because this is the form one gets after applying the
depth-reduction results [AV08; Koi12; Gup+16; AGS19]. The
sufficiency of proving lower bound on restricted models of
univariate polynomials was shown by Koiran [Koi11]. He
considered univariate explicit polynomials 𝑓𝑑 of degree 𝑑 over
an algebraically closed field 𝔽 that are written as

𝑓𝑑(𝑥) =
𝑠
∑
𝑖=1

𝑐𝑖 𝑄
𝑒𝑖
𝑖 (𝑥) ,

where 𝑐𝑖 ∈ 𝔽, and 𝑄𝑖 are polynomials with sparsity sp(𝑄𝑖) ≤ 𝑡
with unbounded exponents 𝑒𝑖 ≥ 1. He showed that when ev-
ery such presentation of 𝑓𝑑 requires 𝑠 = (𝑑/𝑡)Ω(1) summands,
then VP ≠ VNP.

Some initial lower bounds have been established for this
model.

▶ When deg(𝑄𝑖) ≤ 𝑡, [Kay+15] showed existence of an
explicit family such that 𝑠 ≥ Ω(√𝑑/𝑡).

▶ For deg(𝑄𝑖) ≤ 1, the bound 𝑠 ≥ Ω(𝑑) has been estab-
lished for certain polynomials using the concept of
Birkhoff Interpolation [GK17; KPG18].

Clearly, allowing arbitrary exponents gives much more flexi-
bility than fixed exponents as in SOS and SOC. In that sense,
it should be easier to obtain lower bounds in the SOS- or SOC-
model. Also the complexity measure is different, as Koiran
considers the number of summands, whereas we consider the
support-sum.

Existence of (𝑟 , 2)-elusive function vs. SOS-hardness.
Raz [Raz10] formalized a notion of elusive maps and estab-
lished a connection between the existence of explicit elusive
maps and VP vs. VNP. A polynomial map 𝐿 ∶ 𝔽𝑛 → 𝔽𝑚 is
(𝑟 , 2)-elusive, if for every polynomial of degree 2 that maps
𝑀 ∶ 𝔽𝑟 → 𝔽𝑚, we have Image(𝐿) ⊈ Image(𝑀). Formally,
he showed that any explicit polynomial map which is (𝑟 , 2)-
elusive, with 𝑚 = 𝑛𝜔(1) and 𝑟 = 𝑛0.9, implies VP ≠ VNP.
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Observe that one can reinterpret the coefficients of the 𝑓 2
𝑖 ’s

in Equation 3.1 as expressing coef(𝑓 ) via quadratic forms,
like 𝑀. However, the elusiveness notion is too general in
the following sense: the parameters 𝑟 and 𝑚 have a super-
polynomial large gap, and still 𝑀 has to elude all 𝐿. On the
other hand, SOS-hardness, say for 𝑁 = 1, goes a step fur-
ther and optimizes the gap to be vanishingly close to square.
Further, SOS gives a rather specialized degree-2 polynomial
mapping.

From hardness to derandomization. With respect to
the derandomization of the blackbox PIT, there are a few
(strong) conditional results. For example, it has been shown
that multivariate hard polynomials lead to blackbox PIT ∈ QP
(quasipolynomial-time) [KI04; AGS19]. Closer to our result is
the work of [Guo+19]. They showed that the circuit hardness
of a constant-variate polynomial family yields blackbox PIT
∈ P (Theorem 2.7.2). Still, our hardness assumption is merely
in the SOC-model and for univariate polynomials. For now,
SOC seems to be the simplest model where hardness implies
a complete derandomization.

Earlier 𝜏-conjectures vs. our SOS- or, SOC-𝜏-conjecture.
Technically, our SOS-𝜏-conjecture is incomparable to the ear-
lier 𝜏-conjectures, since all the previous works [Koi11; GKT15;
Koi+15] used the standard depth-reduction results [AV08;
Koi12; Gup+16; AGS19]; hence, they were concerned with
the sum-of unbounded-powers ΣΠ[𝑚]ΣΠ, with𝑚 = 𝜔(1), while
we work with 𝑚 = 2. This is the first time we are showing
connections to matrix-rigidity and PIT; these were perhaps
always desired of, nonetheless never achieved.

Moreover, the measure 𝑆(𝑓 ) in the 𝜏-conjecture is different
from the usual circuit size. If we consider the expression
in Equation 3.1 as a Σ ∧[2] ΣΠ-formula, then the support-sum
is the number of Π-operations directly above the input level.
However, the usual measure is the size of the depth-4 cir-
cuit Σ[𝑘]Π[𝑚]Σ[𝑡]Π. Even if we substitute 𝑚 = 2, there is no
direct dependence of 𝑡, the individual sparsity of the interme-
diate polynomials 𝑓𝑖, on 𝑆(𝑓 ), which implies that the sparsity
of some 𝑓𝑖 could be large. However, the upper bound re-
quirement in [Koi11] is poly(𝑘𝑚𝑡) while the SOS-𝜏-conjecture
demands a linear (stronger ) dependence on 𝑆(𝑓 ).
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Further, the polynomial family and the proof used in [Koi11;
GKT15] are different from those in Theorem 3.3.9, as it relies
on depth-4 reduction and the usual Kronecker map while our
proof relies on multilinearization ([DST21]) and a folklore
decomposition (Lemma 3.3.4), see [SY10; Raz10; Sap21].

3.3 Sum-of-Squares

In this section, let 𝔽 be a field of characteristic ≠ 2, 3.

3.3.1 From SOS-hardness to VP ≠ VNP

The connection between the SOS-model and general circuits
is mainly established by the next lemma. It shows that a
multivariate polynomial 𝑝(𝑥) of degree 𝑑, computed by a
circuit of size 𝑠, has a SOS-representation with (𝑠𝑑)𝑂(log 𝑑)

summands, where each summand polynomial has the degree
precisely 𝑑/2.

This is achieved by transforming the given circuit for 𝑝(𝑥)
in several steps into a homogeneous ABP. The point here is
that degrees of the polynomials computed at the interme-
diate nodes of the ABP increase gradually, as the labels are
linear forms. In particular, there exists a layer of vertices that
computes polynomials of degree exactly 𝑑/2. By cutting the
ABP at that layer, we get a representation of 𝑝 as a sum of
products of two polynomials of degree 𝑑/2 each. This yields
the desired SOS-representation.

Below, we present an SOS decomposition lemma, which is
similar to Lemma 3.3.5 below. It uses the frontiers based
depth-reduction technique of [Val+83]. However, this ap-
proach yields intermediate polynomials of degree only close
to 𝑑/2, whereas we want degree exactly 𝑑/2 here.

Lemma 3.3.1 (SOS Decomposition) Let 𝑝 ∈ 𝔽[𝑥] be an 𝑛-
variate polynomial of degree 𝑑, with size(𝑝) = 𝑠. Then there
exist 𝑝𝑖 ∈ 𝔽[𝑥] and 𝑐𝑖 ∈ 𝔽 such that

𝑝(𝑥) =
𝑠′

∑
𝑖=1

𝑐𝑖𝑝𝑖(𝑥)2 , (3.10)
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for 𝑠′ = (𝑠𝑑)𝑂(log 𝑑) and deg(𝑝𝑖) ≤ ⌈𝑑/2⌉, for all 𝑖 ∈ [𝑠′].

Proof. Let 𝐶 be a circuit of size 𝑠 that computes 𝑝. Let us first
assume that 𝑝 is a homogeneous polynomial. We transform 𝐶
by the following steps.

1. We apply depth-reduction to 𝐶 [Val+83], and get a homo-
geneous circuit 𝐶′ of depth log 𝑑 and size poly(𝑠) that
computes 𝑝.

2. Then we convert 𝐶′ into a formula 𝐹 by unfolding
the gates with fan-out larger than one. By induction
on the depth of the circuit, one can show that 𝐹 has
size 𝑠𝑂(log 𝑑).

3. Next, we convert 𝐹 to an ABP 𝐵. It is well known
that for any formula of size 𝑡, there exists an equiv-
alent ABP of size at most 𝑡 + 1, for details see [Sau12,
Lemma 2.14]. Thus, the ABP 𝐵 that computes 𝑝 has size
at most 𝑠𝑂(log 𝑑).

4. Finally, we homogenize 𝐵 to a layered ABP 𝐵′ as ex-
plained at the end of the preliminary section. Its size is
|𝐵′| = poly(𝑠𝑂(log 𝑑)) = 𝑠𝑂(log 𝑑).

To obtain the representation (Equation 3.10) of 𝑝, we cut
ABP 𝐵′ in half. That is, we split 𝐵′ along the nodes in the
⌈𝑑/2⌉-th layer. The 𝑖-th node 𝑣𝑖 in that layer (in some order)
defines two ABPs, one between the starting node of 𝐵′ and 𝑣𝑖
as end node, and a second one between 𝑣𝑖 as starting node and
the end node of 𝐵′. Let 𝑝𝑖,1 and 𝑝𝑖,2 be the two polynomials
computed by these ABPs, respectively. By the definition of
how ABPs compute polynomials, we have

𝑝 =
|𝐵′|
∑
𝑖=1

𝑝𝑖,1 𝑝𝑖,2 ,

where the degree of 𝑝𝑖,1, 𝑝𝑖,2 is at most ⌈𝑑/2⌉. Now each prod-
uct can be written as a SOS by Equation 3.5, as 𝑝𝑖,1 𝑝𝑖,2 =
1
4 ((𝑝𝑖,1 + 𝑝𝑖,2)2 − (𝑝𝑖,1 − 𝑝𝑖,2)2) to obtain (Equation 3.10). Hence,
we get a SOS-representation of 𝑝 with top fan-in 𝑠′ = 2|𝐵′|.

For a non-homogeneous polynomial 𝑝, it is known that the
homogeneous parts can be computed by homogeneous cir-
cuits of size 𝑂(𝑠𝑑2). Thus, for non-homogeneous polynomials,
we can replace the 𝑠 from above by 𝑂(𝑠𝑑2). Then the top-fanin
of the SOS-representation is (𝑠𝑑2)𝑂(log 𝑑) = (𝑠𝑑)𝑂(log 𝑑).
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Now we come to our main result. We show how to lift the
hardness of univariate polynomial 𝑓𝑑 of degree 𝑑 in the SOS-
model to a multivariate polynomial that has circuits of super-
polynomial size, it will be in VNP and not in VP.

Our technique is to convert 𝑓𝑑 into a multivariate polyno-
mial 𝑃𝑛,𝑘 via the multilinear Kronecker substitution defined in
the preliminary section. Polynomial 𝑃𝑛,𝑘 will have 𝑘𝑛 variables
and degree 𝑛, for carefully chosen parameters 𝑘 and 𝑛 that
depend on 𝑑 and the SOS-hardness parameter 𝜀 for 𝑓𝑑. Since 𝑛
is a function in 𝑘, it would actually suffice to index the family
over 𝑘. We will eventually show that size(𝑃𝑛,𝑘) = (𝑘𝑛)𝜔(1).

The proof goes via contradiction. If the size is smaller than
claimed, then, by Lemma 3.3.1, we can write 𝑃𝑛,𝑘 as the sum of
𝑑𝑜(𝜀)-many 𝑄2

𝑖 ’s, where the polynomials 𝑄𝑖 have 𝑘𝑛 variables
and degree at most 𝑛/2. Thus, the support-sum of 𝑃𝑛,𝑘, and
hence of 𝑓𝑑 as well, is bounded by 𝑑𝑜(𝜀) (𝑘𝑛+𝑛/2𝑛/2 ). We show
that, for carefully chosen parameters, the latter expression is
bounded by 𝑜(𝑑1/2+𝜀). Hence, we get a contradiction to the
SOS-hardness of 𝑓𝑑.

Theorem 3.3.2 If there exists an SOS-hard explicit fam-

ily (𝑓𝑑) with hardness 𝜀 = 𝜀(𝑑) = 𝜔 (
√

log log 𝑑
log 𝑑 ), then VP ≠

VNP.

Proof. Let 𝑓𝑑(𝑥) be an explicit SOS-hard polynomial with hard-
ness 𝜀 as in the theorem statement. We define parameters 𝑘
and 𝑛 as follows. Choose 𝑘 large enough such that

(𝑘 − 1)𝜀 ≥ 6 . (3.11)

That is, define 𝑘 = ⌈6
1
𝜀 + 1⌉. Then choose 𝑛 such that

(𝑘 − 1)𝑛 ≤ 𝑑 + 1 ≤ 𝑘𝑛 . (3.12)

Note that 𝑛 = Θ(𝜀 ⋅ log 𝑑) = 𝑂(log 𝑑).

Now we apply the multilinear Kronecker map 𝜙lin𝑛,𝑘 from Equa-
tion 2.4 to 𝑓𝑑 and define polynomial

𝑃𝑛,𝑘(𝑦) = 𝜙lin𝑛,𝑘(𝑓𝑑(𝑥)) .

Recall that 𝑃𝑛,𝑘 is multilinear of degree 𝑛 and has 𝑘𝑛 vari-
ables 𝑦𝑗,ℓ, where 1 ≤ 𝑗 ≤ 𝑛 and 0 ≤ ℓ ≤ 𝑘 − 1. We show that
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𝑃𝑛,𝑘 ∈ VNP and ∉ VP, thereby separating the classes.

Part 1: 𝑃𝑛,𝑘 ∈ VNP Let

𝑃𝑛,𝑘 = ∑
𝑒∈{0,1}𝑘𝑛

𝑐𝑛(𝑒) 𝑦𝑒 .

By the inverse multilinear Kronecker map 𝜓 lin
𝑛,𝑘 from Equa-

tion 2.5, we get an exponent 𝑒 such that 𝑥𝑒 = 𝜓 lin
𝑛,𝑘 (𝑦

𝑒). Note
that coefficient 𝑐𝑛(𝑒) in 𝑃𝑛,𝑘 is the coefficient of 𝑥𝑒 in 𝑓𝑑. We
can compute 𝑒 in time poly(𝑛, 𝑘) and each bit of 𝑐𝑛(𝑒) in time
poly(log 𝑑) = poly(𝑛 log 𝑘), by the explicitness of 𝑓𝑑. Hence,
𝑃𝑛,𝑘 ∈ VNP by Theorem 2.4.3.

Part 2: 𝑃𝑛,𝑘 ∉ VP Define

𝜇 = 1

√log 𝑑 log log 𝑑
.

We will show that size(𝑃𝑛,𝑘) ≥ 𝑑𝜇.

Assume to the contrary that size(𝑃𝑛,𝑘) ≤ 𝑑𝜇. By Lemma 3.3.1,
there exist polynomials 𝑄𝑖 such that 𝑃𝑛,𝑘 = ∑𝑠

𝑖=1 𝑐𝑖 𝑄
2
𝑖 , where

𝑠 = (𝑑𝜇 𝑛)𝑂(log 𝑛) and deg(𝑄𝑖) ≤ ⌈𝑛/2⌉.

We apply the inverse multilinear Kronecker map 𝜓 lin
𝑛,𝑘 to the

𝑄𝑖’s: Define 𝑔𝑖(𝑥) = 𝜓 lin
𝑛,𝑘 (𝑄𝑖(𝑦)). Note that the 𝑄𝑖’s might

no longer be multilinear. Anyway we can apply the 𝜓 lin-
transformation. Then we get

𝑓𝑑 =
𝑠
∑
𝑖=1

𝑐𝑖 𝑔2𝑖 .

Recall that sparsity of 𝑔𝑖 can be at most that of 𝑄𝑖. For the
sparsity of 𝑄𝑖, we use the general bound Equation 2.1. That
is, sp(𝑄𝑖) ≤ (𝑘𝑛+⌈𝑛/2⌉⌈𝑛/2⌉ ), for all 𝑖 ∈ [𝑠]. Thus,

𝑆(𝑓𝑑) ≤ 𝑠 (
𝑘𝑛 + ⌈𝑛/2⌉

⌈𝑛/2⌉
) . (3.13)

In the following two claims, we give upper bounds for 𝑠 and
the binomial coefficient in Equation 3.13. Let

𝛿 =
√

log log 𝑑
log 𝑑

.
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Note that 𝛿 = 𝜇 log log 𝑑 = 𝑜(𝜀).

Claim 3.3.1 𝑠 = 𝑑𝑂(𝛿) = 𝑑𝑜(𝜀).

Proof. Recall that 𝑠 = (𝑑𝜇 𝑛)𝑂(log 𝑛). We show that (𝑑𝜇 𝑛)𝑂(log 𝑛) =
𝑑𝑂(𝛿). Taking logarithms, we have to show that

log 𝑛 (𝜇 log 𝑑 + log 𝑛) = 𝑂(𝛿) log 𝑑 . (3.14)

Recall that 𝑛 = 𝑂(log 𝑑). Hence, we have log 𝑛 = 𝑂(log log 𝑑).
Now it suffices to show that

𝜇 log log 𝑑 +
(log log 𝑑)2

log 𝑑
= 𝑂(𝛿) . (3.15)

But this holds because by the definitions of 𝜇 and 𝛿, for large
enough 𝑑, we have

(log log 𝑑)2

log 𝑑
< 𝜇 log log 𝑑 = 𝛿 .

This proves the claim.

Claim 3.3.2 (𝑘𝑛+⌈𝑛/2⌉⌈𝑛/2⌉ ) ≤ 𝑑
1+𝜀
2 .

Proof. We use Equation 2.6 to bound the binomial coefficient.
We omit the ceiling brackets for better readability.

(
𝑘𝑛 + 𝑛/2

𝑛/2
) ≤ (

𝑒(𝑘𝑛 + 𝑛
2)

𝑛
2

)

𝑛
2

= (2𝑒𝑘 + 𝑒)
𝑛
2 ≤ (6(𝑘 − 1))

𝑛
2 .

(3.16)
The last inequality is because 2𝑒 < 6. Hence, we get that
2𝑒𝑘 + 𝑒 ≤ 6(𝑘 − 1), for large enough 𝑘.

By Equation 3.11, we get that 6(𝑘 − 1) ≤ (𝑘 − 1)1+𝜀 . Hence, we
can continue Equation 3.16 by

(6(𝑘 − 1))
𝑛
2 ≤ (𝑘 − 1)

𝑛
2 (1+𝜀) ≤ 𝑑

1+𝜀
2 .

The last inequality follows by our choice of 𝑛 such that (𝑘 −
1)𝑛 ≤ 𝑑. This proves the claim.
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We plug in the bounds from the two claims in Equation 3.13
and get

𝑆(𝑓𝑑) = 𝑑𝑜(𝜀) 𝑑
1+𝜀
2 = 𝑜(𝑑1/2+𝜀) .

This is a contradiction to the SOS-hardness of 𝑓𝑑. So size(𝑃𝑛,𝑘) ≥
𝑑𝜇.

It remains to show that 𝑑𝜇 is super-polynomial in parameters 𝑘
and 𝑛.

Claim 3.3.3 𝑑𝜇 = (𝑘𝑛)𝜔(1) .

Proof. Taking logarithms, we have to show that

𝜇 log 𝑑 = 𝜔(log 𝑘 + log 𝑛) . (3.17)

For the left hand side of Equation 3.17, we have

𝜇 log 𝑑 =
√

log 𝑑
log log 𝑑

= 𝜔(1/𝜀) .

For the right-hand side of Equation 3.17, we have

log 𝑘 = log⌈61/𝜀 + 1⌉ = 𝑂(1/𝜀) , (3.18)

log 𝑛 ≤ log log 𝑑 = 𝑜(1/𝜀) . (3.19)

This proves Equation 3.17, and the claim follows.

We conclude that 𝑃𝑛,𝑘 requires super-polynomial size circuits,
and therefore, 𝑃𝑛,𝑘 ∉ VP. This proves the theorem.

Remark 3.3.1 1. We used the multilinear Kronecker
substitution 𝜙lin because the standard one 𝜙 fromEqua-
tion 2.2 would not give our result. For 𝑑, 𝑘, 𝑛 as above,
polynomial 𝜙𝑛,𝑘(𝑓𝑑) would have only 𝑘 variables but
higher degree, 𝑘𝑛, compared to 𝑃𝑛,𝑘 from above. Then
the binomial coefficient in Equation 3.13 would be-
come (𝑘+𝑘𝑛/2𝑘 ) > (𝑛 + 1)𝑘 > 𝑑. Hence, Claim 3.3.2
would no longer hold.

2. Recall from the proof that deg(𝑄𝑖) ≤ 𝑛/2. Hence, for
𝑔𝑖(𝑥) = 𝜓𝑛,𝑘(𝑄𝑖(𝑦)), by the definition of 𝜓, we have

deg(𝑔𝑖) ≤
𝑛
2
(𝑘 − 1) 𝑘𝑛−1 < 𝑛 𝑘𝑛 = 𝑂(𝑛𝑑) = 𝑂(𝑑 log 𝑑) .
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Thus, in the SOS-hardness assumption for 𝑓𝑑 we could
additionally restrict the degree of the polynomials in
the SOS-representation to 𝑂(𝑑 log 𝑑), and still Theo-
rem 3.3.2 would hold.

3. Similarly, by Claim 3.3.1, we could additionally re-
strict the top fan-in 𝑠 in the SOS-representation to
𝑠 = 𝑑𝛿 and still Theorem 3.3.2 would hold. Note that
this is very small compared to 𝑑 since 𝑑𝛿 = 𝑑𝑜(𝜀).

Separating VBP and VNP. Recall that VBP ⊆ VP. If we are
interested in the weaker separation of VBP and VNP, then
actually a smaller hardness parameter 𝜀 suffices in the as-
sumption. The reason comes from Lemma 3.3.1: When we
start with a polynomial 𝑝 given by an ABP of size 𝑠, we can
skip transformation steps 1, 2, 3, and only do the homoge-
nization step 4. Then the resulting ABP has size only poly(𝑠),
i.e., we do not have the log 𝑑-term in the exponent. So we can
modify the proof of Theorem 3.3.2 and set 𝜀 = 𝜔(1/√log 𝑑)
and 𝜇 = 𝛿 = 1/√log 𝑑, and still all the calculations go through,
in particular Claim 3.3.1.

Corollary 3.3.3 (Determinant vs Permanent) If there exists
an SOS-hard explicit family (𝑓𝑑) with hardness parameter 𝜀 =
𝜔(1/√log 𝑑), then VBP ≠ VNP.

3.3.2 An exponential separation of VP and
VNP

The argument for an exponential separation of VP and VNP
follows the proof of Theorem 3.3.2. However, we use a dif-
ferent decomposition lemma and a different parameter set-
ting. The decomposition lemma is based on the circuit depth-
reduction technique of [Val+83]. See for example [Sap21]
for a very well written survey on frontier decomposition, the
technique to prove the following lemma.

Lemma 3.3.4 (Sum of product-of-2) Let 𝑝 ∈ 𝔽[𝑥] be an 𝑛-
variate homogeneous polynomial of degree 𝑑, computed by a
homogeneous circuit of size 𝑠. Then there exist polynomials
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𝑝𝑖,𝑗 ∈ 𝔽[𝑥] such that

𝑝 =
𝑠
∑
𝑖=1

𝑝𝑖,1 𝑝𝑖,2 , (3.20)

and for all 𝑖 ∈ [𝑠] and 𝑗 = 1, 2,

1. 𝑑
3 ≤ deg(𝑝𝑖,𝑗) ≤ 2𝑑

3 ,

2. deg(𝑝𝑖,1) + deg(𝑝𝑖,2) = 𝑑, and

3. 𝑝𝑖,𝑗 has a homogeneous circuit of size 𝑂(𝑠).

Remark 3.3.2 For a non-homogeneous polynomial 𝑝(𝑥),
we can apply Lemma 3.3.4 for each homogeneous part
of 𝑝(𝑥). It is well known that each homogeneous part
can be computed by a homogeneous circuit of size 𝑂(𝑠𝑑2).
Thus, for non-homogeneous polynomials, 𝑠 can be replaced
by 𝑂(𝑠𝑑2) and we get a similar conclusion.

The following lemma iterates the decomposition in Lemma 3.3.4
to bring the degree of the intermediate polynomials close
to 𝑑/2, while keeping the circuit size polynomial 𝑠. Note the
contrast to Lemma 3.3.4 where we got intermediate polyno-
mials of degree precisely 𝑑/2 but paid with super-polynomial
circuit size.

Lemma 3.3.5 Let 1
2 < 𝛾 < 1 be a constant. Then there

exists a constant 𝑐, such that for any 𝑛-variate homogeneous
polynomial 𝑝 ∈ 𝔽[𝑥] of degree 𝑑 that can be computed by a
homogeneous circuit of size 𝑠, we have a representation

𝑝 =
𝑠𝑐

∑
𝑖=1

𝑞2𝑖 , (3.21)

where 𝑞𝑖 ∈ 𝔽[𝑥], for all 𝑖 ∈ [𝑠𝑐], such that

1. deg(𝑞𝑖) < 𝛾𝑑,

2. 𝑞𝑖 has a homogeneous circuit of size 𝑂(𝑠).

Proof. By Lemma 3.3.4, we can write 𝑝(𝑥) = ∑𝑠
𝑖=1 ̃𝑝𝑖,1 ̃𝑝𝑖,2,

where deg( ̃𝑝𝑖,𝑗) ≤ 2𝑑/3, deg( ̃𝑝𝑖,1) + deg( ̃𝑝𝑖,2) = 𝑑, and ̃𝑝𝑖,𝑗 has
circuits of size 𝑂(𝑠).

Let 𝛿 = 𝛾 −1/2. Choose constant 𝑚 such that (2/3)𝑚 < 𝛿. That
is, let 𝑚 = ⌈log3/2(1/𝛿)⌉. Now we apply Lemma 3.3.4 recur-
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sively 𝑚-times to each ̃𝑝𝑖,𝑗. It follows that we can write 𝑝(𝑥)
as

𝑝(𝑥) =
𝑠2
𝑚−1

∑
𝑖=1

̂𝑝𝑖,1 ̂𝑝𝑖,2 ⋯ ̂𝑝𝑖,2𝑚 , (3.22)

where deg( ̂𝑝𝑖,𝑗) ≤ (2/3)𝑚 𝑑 < 𝛿𝑑. For all 𝑖 ∈ [𝑠2
𝑚−1], we have

∑2𝑚
𝑗=1 deg( ̂𝑝𝑖,𝑗) = 𝑑 and size( ̂𝑝𝑖,𝑗) = 𝑂(𝑠), for all 𝑗 ∈ [2𝑚].

For each product ̂𝑝𝑖,1 ⋯ ̂𝑝𝑖,2𝑚 , pick the smallest 𝑗0 ∈ [2𝑚] such
that

𝑑
2

≤
𝑗0
∑
𝑗=1

deg( ̂𝑝𝑖,𝑗) < 𝛾𝑑 .

Define 𝑝𝑖,1 = ̂𝑝𝑖,1 ⋯ ̂𝑝𝑖,𝑗0 and 𝑝𝑖,2 = ̂𝑝𝑖,𝑗0+1 ⋯ ̂𝑝𝑖,2𝑚 . Then we
have

𝑝 =
𝑠2
𝑚−1

∑
𝑖=1

𝑝𝑖,1 𝑝𝑖,2 . (3.23)

By definition, 𝑑/2 ≤ deg(𝑝𝑖,1) < 𝛾𝑑, and therefore, deg(𝑝𝑖,2) =
𝑑 − deg(𝑝𝑖,1) ≤ 𝑑/2 < 𝛾𝑑. Because each ̂𝑝𝑖,𝑗 has a homoge-
neous circuit of size 𝑂(𝑠), so does 𝑝𝑖,𝑗. Finally, we use equal-
ity Equation 3.5 as 𝑝𝑖,1 𝑝𝑖,2 =

1
4 ((𝑝𝑖,1 + 𝑝𝑖,2)2 − (𝑝𝑖,1 − 𝑝𝑖,2)2) to

obtain Equation 3.21 with 𝑐 = 2𝑚.

Remark 3.3.3 Similar as remarked for Lemma 3.3.4, for
a non-homogeneous polynomial 𝑝(𝑥), the size 𝑠 can be re-
placed by 𝑂(𝑠𝑑2) and we get a similar conclusion.

Lemma 3.3.5 provides the tool for an exponential separation
of VP and VNP. The argument follows the proof of Theo-
rem 3.3.2. Instead of Lemma 3.3.1, we use Lemma 3.3.5. Also
we use a different parameter setting.

Theorem 3.3.6 (Constant 𝜀) If there exists an SOS-hard ex-
plicit family with constant hardness parameter 𝜀 > 0, then
VNP is exponentially harder than VP.

Proof. Let 𝑓𝑑(𝑥) be an explicit SOS-hard polynomial with con-
stant hardness parameter 𝜀 < 1

2 . First, we define parameters 𝑘
and 𝑛. Let

𝛾 = 1
2
+ 𝜀
4
. (3.24)

Choose constant 𝑘 large enough such that

(𝑘 − 1)
𝜀
12 ≥ 6𝛾 , (3.25)



80 3 A 𝜏-Conjecture for sum-of-squares and its consequences

and 𝑛 again such that (𝑘 − 1)𝑛 ≤ 𝑑 + 1 ≤ 𝑘𝑛. Note that 𝑛 =
𝑂(𝑘 log 𝑑) = 𝑂(log 𝑑). Then define 𝑃𝑛,𝑘(𝑦) = 𝜙𝑛,𝑘(𝑓𝑑(𝑥)). Again,
we have 𝑃𝑛,𝑘 ∈ VNP.

We show that 𝑃𝑛,𝑘 requires exponential size circuits. We apply
Lemma 3.3.5 to 𝑃𝑛,𝑘 with parameter 𝛾. Let 𝑐 be the constant
such that 𝑠𝑐 bounds the top fan-in in Equation 3.21. That is,
when size(𝑃𝑛,𝑘) = 𝑠, we get a representation

𝑃𝑛,𝑘 =
𝑠𝑐

∑
𝑖=1

𝑐𝑖𝑄2
𝑖 , (3.26)

where deg(𝑄𝑖) ≤ 𝛾𝑛. Define constant

𝜇 = 𝜀
3𝑐

. (3.27)

Claim 3.3.4 size(𝑃𝑛,𝑘) > 𝑑𝜇.

Proof. Assume that size(𝑃𝑛,𝑘) ≤ 𝑑𝜇. Via the inverse Kronecker
map applied to the 𝑄𝑖’s, we get a bound similar to Equa-
tion 3.13:

𝑆(𝑓𝑑) ≤ 𝑑 𝑐𝜇 (
𝑘𝑛 + ⌈𝛾𝑛⌉

⌈𝛾𝑛⌉
) . (3.28)

We bound the binomial coefficient:

(
𝑘𝑛 + 𝛾𝑛

𝛾𝑛
) ≤ (

𝑒(𝑘𝑛 + 𝛾𝑛)
𝛾𝑛

)
𝛾𝑛

≤ (2𝑒𝑘 + 𝑒)𝛾𝑛 ≤ (6(𝑘 − 1))𝛾𝑛 .

(3.29)
The last inequality is again for large enough 𝑘. By Equa-
tion 3.25 and the definition of 𝛾, we get that

(6(𝑘 − 1))𝛾𝑛 ≤ (𝑘 − 1)𝑛(
𝜀
12+𝛾) ≤ 𝑑

1
2+

𝜀
3 .

Plugging the bound into Equation 3.28, we get by definition
of 𝜇

𝑆(𝑓𝑑) ≤ 𝑑 𝑐𝜇 𝑑
1
2+

𝜀
3 = 𝑑

1
2+

2
3 𝜀 = 𝑜(𝑑

1
2+𝜀) . (3.30)

This is a contradiction to the SOS-hardness of 𝑓𝑑. This proves
the claim.

Finally observe that by the definition of 𝑛, and since 𝜇 and 𝑘
are constants, we have 𝑑𝜇 = Ω(𝑘𝜇𝑛) = 2Ω(𝑘𝑛). Hence, 𝑃𝑛,𝑘
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requires exponential size circuits. This shows an exponential
separation between VP and VNP.

3.3.3 From SOS-𝜏-conjecture to Matrix
Rigidity

Assuming Conjecture 3.1.2, one can show existence of explicit
rigid matrices.

Theorem 3.3.7 If Conjecture 3.1.2 holds, then there exist
𝜖 > 0 and a “very”-explicit family of real matrices (𝐴𝑛)𝑛 such
that 𝐴𝑛 is (𝜖 ⋅ 𝑛, 𝑛1+𝛿)-rigid, for any 𝛿 < 1.

Proof. The essential idea is to show that a non-rigid matrix
can be factored into two ‘sparse’ matrices (Part 1). And then,
one construct matrices from the ‘explicit’ polynomial family
defined by 𝑓𝑑 ∶= ∏𝑖∈[𝑑](𝑥 − 𝑖), which cannot be factored into
sparse matrices (Part 2). These two parts together imply that
the matrix family must be rigid.

Part 1: Non-rigid matrices as ‘small’ depth-2 circuits.
We argue via linear circuits which we have defined in sec-
tion 2.5. Linear circuits can compute linear functions; for
details, refer to [KV21, Section 1.2]). As a graph, the nodes
of a linear circuit are either input nodes or addition nodes,
and the edges are labeled by scalars. If an edge from 𝑢 to 𝑣 is
labeled by 𝑐 ∈ 𝔽, then the output of 𝑢 is multiplied by 𝑐 and
then given as input to 𝑣.

We eventually establish that any matrix 𝐴 ∈ ℝ𝑛×𝑛 which is
not (𝑟 , 𝑠)-rigid, for some 𝑟 , 𝑠, can be computed by a depth−2
circuit of size 2𝑟𝑛 + 𝑠 + 𝑛; see item 1-4 below. This will be
crucial in the proof of Theorem 3.3.7. We give this bound
over any general field 𝔽.

1. Let 𝑎 = (𝑎1, … , 𝑎𝑛) be a vector. Consider 𝑎 as a linear
function 𝔽𝑛 → 𝔽. It can be computed by a linear circuit
of depth 1 with 𝑛 inputs and one addition-gate as output
gate. The edge from the 𝑖-th input is labeled by 𝑎𝑖. The
size of the circuit is 𝑛. However, we omit edges labeled
by 0. Hence, the size of the circuit is actually sp(𝑎) ≤ 𝑛,
the sparsity of 𝑎.
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Similarly, we consider an 𝑛 × 𝑛 matrix 𝐴 as a linear
transformation 𝔽𝑛 → 𝔽𝑛. For each row vector of 𝐴
we get a linear circuit as described above. Hence we
represent 𝐴 by circuit of depth 1 with 𝑛 output gates
and size sp(𝐴) ≤ 𝑛2.

2. The model gets already interesting for linear circuits of
depth 2. Suppose 𝐴 = 𝐵𝐶, where 𝐵 is a 𝑛 × 𝑟 matrix and
𝐶 is a 𝑟 × 𝑛 matrix. Then we can take the depth-1 circuit
for 𝐶 at the bottom as in item 1 and combine it with
the depth-1 circuit for 𝐵 on top. The resulting depth-2
circuit is layered : all edges go either from the bottom
to the middle layer, or from the middle to the top layer.
The size of the circuit is sp(𝐵) + sp(𝐶) ≤ 2𝑟𝑛.
In particular, there is a representation 𝐴 = 𝐵𝐶 with
𝑟 = rank(𝐴). Hence the rank of 𝐴 is involved in the
circuit size bound for 𝐴. Also note that 𝑟 is bounded by
the size of the circuit because be omit all zero-edges.
Note that any layered linear circuit of depth 2 in turn
gives a factorization of 𝐴 as a product of 2 matrices,
𝐴 = 𝐵𝐶, where the top edges define 𝐵 and the bottom
edges 𝐶.

3. Let 𝐴 = 𝐵𝐶 +𝐷, where 𝐵, 𝐶 are as above and 𝐷 is a 𝑛 × 𝑛
matrix. Thenwe can represent𝐴 by a depth-2 circuit for
𝐵𝐶 as in item 2 plus edges from the inputs directly to the
output nodes to represent 𝐷 as in item 1. The resulting
circuit has depth 2 and size sp(𝐵) + sp(𝐶) + sp(𝐷) ≤
2𝑟𝑛 + 𝑛2, but it would not be layered. We can transform
it into a layered circuit by writing 𝐴 as 𝐴 = 𝐵𝐶 + 𝐼𝐷,
where 𝐼 is the 𝑛×𝑛 identity matrix. Then we get a depth-
2 circuit for 𝐼𝐷 similar to 𝐵𝐶 and can combine the two
circuits into one. The size increases by ≤ 𝑛 edges for 𝐼.

4. Now consider matrix 𝐴 that is not (𝑟 , 𝑠)-rigid, for some
𝑟 , 𝑠. Hence, we canwrite𝐴 as𝐴 = 𝑅+𝑆, where rank(𝑅) =
𝑟 and sp(𝑆) = 𝑠. Then 𝑅 can be written as as 𝑅 = 𝐵𝐶,
where 𝐵 is a 𝑛 × 𝑟 matrix and 𝐶 is a 𝑟 × 𝑛 matrix. From
item 3, we have that 𝐴 = 𝐵𝐶 + 𝑆 has a layered linear
circuit of depth 2 of size ≤ 2𝑟𝑛 + 𝑠 + 𝑛.

Part 2: Construction of rigid matrices. Consider the
polynomial family 𝑓𝑑 ∶= ∏𝑖∈[𝑑](𝑥 − 𝑖). Let 𝑑 =∶ 𝑛2 − 1, for
some 𝑛 ∈ ℕ. Conjecture 3.1.2 implies that 𝑆ℝ(𝑓𝑑) > 𝛿′ ⋅ 𝑑, for
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some 𝛿′ > 0. Note that 𝛿′ ≤ 2, as 𝑆ℝ(𝑓𝑑) ≤ 2𝑑 + 2, from the
upper bound (see Equation 3.2). This 𝛿′ will play a crucial
role in the proof.

Define the bivariate polynomial 𝑔𝑛 ∈ ℝ[𝑥1, 𝑥2] from 𝑓𝑑 such
that after the Kronecker substitution, 𝑔𝑛(𝑥, 𝑥𝑛) = 𝑓𝑑. It is
easy to construct 𝑔𝑛 from a given 𝑑; just convert every 𝑥𝑒, for
𝑒 ∈ [0, 𝑑] to 𝑥𝑒11 ⋅ 𝑥 𝑒22 , where 𝑒 =∶ 𝑒1 + 𝑒2 ⋅ 𝑛, and 0 ≤ 𝑒𝑖 ≤ 𝑛 − 1.
Thus, the individual degree of each 𝑥𝑖 in 𝑔𝑛 is at most 𝑛 − 1.

Let 𝑔𝑛(𝑥1, 𝑥2) = ∑1≤𝑖,𝑗≤𝑛 𝑎𝑖,𝑗 𝑥
𝑖−1
1 𝑥 𝑗−12 . By the definition of 𝑓𝑑,

𝑎𝑖,𝑗 = coef𝑥 (𝑖−1)+(𝑗−1)𝑛(𝑓𝑑). Define the 𝑛×𝑛matrix𝐴𝑛 = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛
and vectors

[𝑥1]𝑛 = (1 𝑥1 ⋯ 𝑥𝑛−11 ) , [𝑥2]𝑛 = (1 𝑥2 ⋯ 𝑥𝑛−12 ) .

Thus, 𝑔𝑛(𝑥1, 𝑥2) = [𝑥1]𝑛𝐴𝑛[𝑥2]𝑇𝑛. Further, 𝑎𝑖,𝑗 is poly(𝑛)-computable
implies 𝐴𝑛 is poly(𝑛)-explicit. Next we show a lower bound
on the linear circuit size of 𝐴𝑛.

Lemma 3.3.8 Conjecture 3.1.2 ⟹ any layered linear circuit
of depth 2 that computes 𝐴𝑛, has size > (𝛿′/2) ⋅ 𝑑.

Proof of Lemma 3.3.8. Conjecture 3.1.2 implies that 𝑆ℝ(𝑓𝑑) >
𝛿′ ⋅ 𝑑, for some 𝛿′ > 0. We show that, size of the linear circuit
computing 𝐴𝑛 has size > (𝛿′/2) ⋅ 𝑑.

Assume that this is false. Then we can write 𝐴𝑛 = 𝐵𝐶, where
𝐵 ∈ ℝ𝑛×𝑡, 𝐶 ∈ ℝ𝑡×𝑛, such that 𝑡 ≤ sp(𝐵) + sp(𝐶) ≤ (𝛿′/2) ⋅ 𝑑.

Denote

[𝑥1]𝑛 𝐵 = (ℓ1(𝑥1) ℓ2(𝑥1) ⋯ 𝑙𝑡(𝑥1)) ,

and
𝐶 [𝑥2]𝑇𝑛 = ( ̃ℓ1(𝑥2) ℓ̃2(𝑥2) ⋯ ℓ̃𝑡(𝑥2))

𝑇
.

Then

𝑔𝑛(𝑥1, 𝑥2) = [𝑥1]𝑛𝐴𝑛[𝑥2]𝑇𝑛 = [𝑥1]𝑛 𝐵𝐶[𝑥2]𝑇𝑛 =
𝑡

∑
𝑖=1

ℓ𝑖(𝑥1) ℓ̃𝑖(𝑥2) .

Since sp(𝐵) + sp(𝐶) ≤ (𝛿/2) ⋅ 𝑑, we have ∑𝑡
𝑖=1(|ℓ𝑖|0 + |ℓ̃𝑖|0) ≤
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(𝛿′/2) ⋅ 𝑑. Substituting 𝑥1 = 𝑥 and 𝑥2 = 𝑥𝑛, we get

𝑓𝑑(𝑥) = 𝑔(𝑥, 𝑥𝑛) =
𝑡

∑
𝑖=1

ℓ𝑖(𝑥) ℓ̃𝑖(𝑥𝑛)

=
𝑡

∑
𝑖=1

(
ℓ𝑖(𝑥) + ℓ̃𝑖(𝑥𝑛)

2
)
2

−
𝑡

∑
𝑖=1

(
ℓ𝑖(𝑥) − ℓ̃𝑖(𝑥𝑛)

2
)
2

.

Thus, we have a representation of 𝑓𝑑 as ≤ 2𝑡 ≤ 𝛿′ ⋅ 𝑑 sum of
squares. Note that, this means

𝑆ℝ(𝑓𝑑) ≤
𝑡

∑
𝑖=1

2 ⋅ (|ℓ𝑖|0 + |ℓ̃𝑖|0) ≤ 𝛿′ ⋅ 𝑑 , (3.31)

contradicting the assumption on the hardness of 𝑓𝑑. This
proves Lemma 3.3.8.

We now show that 𝐴𝑛 is ((𝛿′/8) ⋅ 𝑛, 𝑛1+𝛿)-rigid, for any 𝛿 < 1.
For the sake of contradiction, assume that this is false. Then
there is a 𝛿 < 1, and a decomposition 𝐴𝑛 = 𝑅 + 𝑆, where
rank(𝑅) = 𝑟 = (𝛿′/8) ⋅ 𝑛, and sp(𝑆) = 𝑠 = 𝑛1+𝛿. By item 4
above, 𝐴𝑛 has a layered linear circuit 𝐶𝑛 of depth 2 of size

size(𝐶𝑛) ≤ 2𝑟𝑛 + 𝑠 + 𝑛 ≤ 𝛿′ ⋅ 𝑛2

4
+ 2𝑛1+𝛿 . (3.32)

Recall that 𝛿′ is a constant and 𝛿 < 1. Hence, for large
enough 𝑛, we have 2𝑛1+𝛿 ≤ 𝛿′ ⋅ (𝑛

2−2
4 ). Note: 𝛿 = 1 is not

achievable as 𝛿′ ≤ 2. Now, we can continue the inequalities
in Equation 3.32 by

size(𝐶𝑛) ≤ 𝛿′ ⋅ (𝑛
2 − 1
2

) = (𝛿′/2) ⋅ 𝑑 . (3.33)

For the last equation, recall that 𝑑 = 𝑛2−1. The bound in Equa-
tion 3.33 contradicts Lemma 3.3.8. Therefore we conclude
that 𝐴𝑛 is (𝜖 ⋅ 𝑛, 𝑛1+𝛿)-rigid for any 𝛿 < 1, where 𝜖 ∶= 𝛿′/8
(remember 𝛿′ was fixed at the beginning).

Remark 3.3.4 1. The matrix 𝐴𝑛 is not only poly(𝑛)-
explicit, it is ‘very’ explicit in the good common sense:
one could consider them as simple as binomial co-
efficients, recorded one row at a time. This is quite
interesting given the recent dramatic developments
that have killed virtually all known candidates.
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2. Our proof requires the upper bound of 𝑂(𝑆(𝑓 )) in
Conjecture 3.1.2; any weaker upper bound does not
yield the same rigidity parameter. Also, the same
proof holds over ℂ, using Lemma 3.9.2.

3. One can also work with 𝑓𝑑 = (𝑥 + 1)𝑑, but one needs
to use Lemma 3.9.1.

3.3.4 From SOS-𝜏-conjecture to VP ≠ VNP

Theorem 3.3.9 Conjecture 3.1.2 implies that VNPℂ is expo-
nentially harder than VPℂ.

Proof. We will construct an explicit (multivariate) polyno-
mial family from the univariate 𝑓𝑑 ∶= ∑𝑑

𝑖=0 22𝑖(𝑑−𝑖) ⋅ 𝑥 𝑖, and
show that it requires exponential size circuit (assuming Con-
jecture 3.1.2). Moreover, we show that the family is in VNP,
and the conclusion would directly follow. The hardness and
VNP-inclusion proof are ’specialized’ versions of the proof of
Theorem 3.3.6 in subsection 3.3.2. However for the sake of
completeness, we present the detailed version.

Kurtz condition. We show that the coefficients 𝑎𝑖 ∶= 22𝑖(𝑑−𝑖)

satisfies the Kurtz condition (Theorem 2.2.4). For that, it suf-
fices to check that

4 𝑖 (𝑑 − 𝑖) > 2 + 2 (𝑖 − 1) (𝑑 − 𝑖 + 1) + 2 (𝑖 + 1) (𝑑 − 𝑖 − 1) ,

which is true since LHS - RHS=2. Therefore, roots of 𝑓𝑑 are
all distinct and real.

Construction. Wewill construct (𝑃𝑛,𝑘)𝑛 from 𝑓𝑑, where 𝑃𝑛,𝑘
is a multilinear degree-𝑛 and 𝑘𝑛-variate polynomial, where
𝑘 is a fixed constant (to be fixed in Lemma 3.3.11), and 𝑛 =
𝑂(log 𝑑); thus 𝑘𝑛 = 𝑂(log 𝑑).

The basic relation between 𝑑, 𝑛 and 𝑘 is that 𝑘𝑛 ≥ 𝑑 + 1 >
(𝑘−1)𝑛. Introduce 𝑘𝑛many new variables 𝑦𝑗,ℓ, where 1 ≤ 𝑗 ≤ 𝑛
and 0 ≤ ℓ ≤ 𝑘 − 1. Let 𝜙𝑛,𝑘 be the map,

𝜙𝑛,𝑘 ∶ 𝑥 𝑖 ↦
𝑛

∏
𝑗=1

𝑦𝑗,𝑖𝑗 ,where 𝑖 =∶
𝑛
∑
𝑗=1

𝑖𝑗⋅𝑘𝑗−1, 0 ≤ 𝑖𝑗 ≤ 𝑘−1 .
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For 𝑖 ∈ [0, 𝑑], 𝜙𝑛,𝑘 maps 𝑥 𝑖 uniquely to a multilinear monomial
of degree 𝑛. By linear extension, define 𝜙𝑛,𝑘(𝑓𝑑) =∶ 𝑃𝑛,𝑘. By
construction, 𝑃𝑛,𝑘 is 𝑛-degree, 𝑘𝑛-variate multilinear polyno-
mial. Let 𝜓𝑛,𝑘 be the homomorphism that maps any degree-𝑛
multilinear monomial, defined on variables 𝑦𝑗,ℓ, such that
𝑦𝑗,ℓ ↦ 𝑥ℓ⋅𝑘

𝑗−1
. Trivially, 𝜓𝑛,𝑘 ∘ 𝜙𝑛,𝑘(𝑓 ) = 𝑓, for any degree ≤ 𝑑

polynomial 𝑓 ∈ ℂ[𝑥].

Lemma 3.3.10 (𝑃𝑛,𝑘)𝑛 ∈ VNP.

Proof. By construction, 𝑃𝑛,𝑘 is a 𝑘𝑛-variate, individual degree-𝑛
multilinear polynomial. Hence,

𝑃𝑛,𝑘 = ∑
𝑒∈{0,1}𝑘𝑛

𝛾 (𝑒) ⋅ 𝑦𝑒 .

Here, 𝑦 denotes the 𝑘𝑛 variables 𝑦𝑗,ℓ where 1 ≤ 𝑗 ≤ 𝑛 and
0 ≤ ℓ ≤ 𝑘 − 1, and 𝑒 denotes the exponent-vector. As each 𝑥𝑒

in supp(𝑓𝑑) maps to a monomial 𝑦𝑒 uniquely; given 𝑒, one can
easily compute 𝑒 ∶= ∑𝑛

𝑗=1 𝑒𝑗 ⋅ 𝑘𝑗−1, and thus 𝛾 (𝑒) = coef𝑥 𝑒(𝑓𝑑) =
22𝑒(𝑑−𝑒). Note that, 𝛾 (𝑒) < 2𝑑

2
, for all 𝑒. We also remark that

each bit of 𝛾 (𝑒) is computable in poly(log 𝑑) = poly(𝑘𝑛)-time.

Write each 𝛾 (𝑒) in binary, i.e. 𝛾 (𝑒) =∶ ∑𝑑2−1
𝑗=0 𝛾𝑗(𝑒) ⋅ 2𝑗, where

𝛾𝑗(𝑒) ∈ {0, 1} is computable in P. As 𝑑2 − 1 < 𝑘2𝑛, introduce
new variables 𝑧 = (𝑧1, … , 𝑧𝑚), where 𝑚 ∶= 2𝑛 log 𝑘 = 𝑂(𝑛) [so
that, 𝑑2 − 1 ≤ 2𝑚 − 1]; and consider the auxiliary polynomial
̃𝛾 (𝑒, 𝑧) ∶= ∑𝑗∈{0,1}𝑚 𝛾𝑗(𝑒) ⋅ 𝑧bin(𝑗). Here, we identify 𝑗 ∈ [0, 2𝑚 −
1] as a unique 𝑗 ∈ {0, 1}𝑚, via bin(𝑗),i.e. 𝛾𝑗 = 𝛾𝑗. Let 𝑧0 ∶=
(22

0
, … , 22

𝑚−1
). Note that, ̃𝛾 (𝑒, 𝑧0) = 𝛾(𝑒). Finally, consider the

(𝑚 + 𝑘𝑛)-variate (where 𝑚 + 𝑘𝑛 = 𝑂(𝑛)) auxiliary polynomial
ℎ𝑛,𝑘(𝑦, 𝑧) as:

ℎ𝑛,𝑘(𝑦, 𝑧) ∶= ∑
𝑒∈{0,1}𝑘𝑛

̃𝛾 (𝑒, 𝑧) ⋅ 𝑦𝑒 = ∑
𝑒∈{0,1}𝑘𝑛

∑
𝑗∈{0,1}𝑚

𝛾𝑗(𝑒) ⋅ 𝑧𝑗 ⋅ 𝑦𝑒 .

Then, we have ℎ𝑛,𝑘(𝑦, 𝑧0) = 𝑃𝑛,𝑘(𝑦). Since each bit 𝛾𝑗(𝑒) is com-
putable in P, thus by Valiant’s criterion (Theorem 2.4.3), we
have (ℎ𝑛,𝑘(𝑦, 𝑧))𝑛 ∈ VNP. As VNP is closed under substitution,
it follows that (𝑃𝑛,𝑘(𝑦))𝑛 ∈ VNP.

Next we show that 𝑃𝑛,𝑘 is exponentially hard assuming Con-
jecture 3.1.2.
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Lemma 3.3.11 Conjecture 3.1.2 implies 𝑃𝑛,𝑘 requires expo-
nential size circuit.

Proof. We show that over ℂ, size of the minimal circuit com-
puting 𝑃𝑛,𝑘, namely size(𝑃𝑛,𝑘) > 𝑑1/7 = 2Ω(𝑘𝑛). If not, then
apply Lemma 3.3.4 to conclude that

𝑃𝑛,𝑘 =
𝑠
∑
𝑖=1

𝑐𝑖 ⋅ 𝑄2
𝑖 ⟹ 𝑓𝑑 =

𝑠
∑
𝑖=1

𝑐𝑖 ⋅ 𝜓𝑛,𝑘(𝑄𝑖)2 ,

where, deg(𝑄𝑖) ≤ 2𝑛/3, and 𝑠 = 𝑂(𝑑1/7 ⋅ 𝑛2). Above equation
implies: 𝑆ℂ(𝑓𝑑) ≤ 𝑠 ⋅(𝑘𝑛+2𝑛/32𝑛/3 ). We want to show that 𝑆ℂ(𝑓𝑑) ≤
𝑜(𝑑), this will contradict Conjecture 3.1.2. This is because the
coefficients of 𝑓𝑑 satisfies the Kurtz condition implying 𝑓𝑑
has all distinct real roots, then Conjecture 3.1.2 implies that
𝑆ℝ(𝑓𝑑) ≥ Ω(𝑑) ⟹ 𝑆ℂ(𝑓𝑑) ≥ Ω(𝑑), from Lemma 3.9.2.

By assumption, 𝑠 ≤ 𝑂(𝑑1/7 ⋅ log2 𝑑). It suffices to show that
(𝑘𝑛+2𝑛/32𝑛/3 ) ≤ 𝑑5/7, so that 𝑆(𝑓𝑑) ≤ 𝑂(𝑑6/7 ⋅ log2 𝑑) = 𝑜(𝑑), the
desired contradiction. Use Equation 2.6 to show the upper
bound on the binomial:

(
𝑘𝑛 + 2𝑛/3

2𝑛/3
) ≤ (𝑒 + 3𝑒𝑘/2)2𝑛/3 ≤ (5(𝑘 − 1))2𝑛/3

≤ (𝑘 − 1)5𝑛/7 ≤ 𝑑5/7 .

The second inequality holds for 𝑒 + 3𝑒𝑘/2, ≤ 5(𝑘 − 1); so 𝑘 ≥ 9
suffices. For the third inequality to be true, (𝑘 − 1)5/7 ≥
(5(𝑘 −1))2/3 suffices; this holds true for (𝑘 −1)1/21 ≥ 52/3 ⟺
𝑘 ≥ 514 + 1. We also used 𝑑 ≥ (𝑘 − 1)𝑛 (by assumption).

Both the above Lemma 3.3.10-3.3.11 imply the desired con-
clusion.

Remark 3.3.5 1. As deg(𝑄𝑖) ≤ 2𝑛/3, we have

deg(𝜓𝑛,𝑘(𝑄𝑖)) ≤ 2𝑛/3 ⋅ (𝑘 − 1) ⋅ 𝑘𝑛−1

< 𝑛.𝑘𝑛 = 𝑂(𝑛𝑑)
= 𝑂(𝑑 log 𝑑) .

Thus, it is enough to consider the restricted-degree
SOS representation, and prove the conjecture.
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2. One could directly obtain that Conjecture 3.1.2 im-
plies 𝑆ℝ(𝑓𝑑) ≥ Ω(𝑑), where 𝑓𝑑 ∶= ∏𝑑

𝑖=1(𝑥 − 𝑖). How-
ever, to separate VP and VNP, using the proof tech-
niques of [DST21] (with 𝜀 = 1) require GRH (General-
ized Riemann Hypothesis).

3. To show an unconditional lower bound, weworkwith
𝑓𝑑 ∶= ∑𝑑

𝑖=0 22𝑖(𝑑−𝑖) ⋅ 𝑥 𝑖 (a similar family was consid-
ered in [GKT15, Equation 8]). However, the hardness
proof is completely different from [GKT15], due to
disparate settings and parameters.

3.4 Sum-of-Cubes

In this section, let 𝔽 be a field of characteristic ≠ 2, 3. The
following lemma is the crucial ingredient to connect general
circuits to a SOC-representation. It is similar to Lemma 3.3.5.
There, we represented a polynomial 𝑝 as a sum of squares of
polynomials with degree close to 1/2. Now, we write 𝑝 as a
sum of cubes of polynomials with degree close to 1/3.

Lemma 3.4.1 (SOC decomposition) There exists a constant 𝑐,
such that for any 𝑛-variate homogeneous polynomial 𝑝 ∈ 𝔽[𝑥]
of degree 𝑑 that can be computed by a homogeneous circuit
of size 𝑠, we have a representation

𝑝 =
𝑠𝑐

∑
𝑖=1

𝑞3𝑖 , (3.34)

where 𝑞𝑖 ∈ 𝔽[𝑥], for all 𝑖 ∈ [𝑠𝑐], such that

1. deg(𝑞𝑖) <
4
11 𝑑,

2. 𝑞𝑖 has a homogeneous circuit of size 𝑂(𝑠).

Proof. We start exactly as in the proof of Lemma 3.3.5, with
parameters 𝛾 = 4/11 and 𝛿 = 𝛾 − 1/3 = 1/33. Then we
choose 𝑚 such that (2/3)𝑚 < 𝛿. Hence, we can set 𝑚 = 9 and
we can write 𝑝 as in Equation 3.22:

𝑝 =
𝑠2
𝑚−1

∑
𝑖=1

̂𝑝𝑖,1 ̂𝑝𝑖,2 ⋯ ̂𝑝𝑖,2𝑚 , (3.35)
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where deg( ̂𝑝𝑖,𝑗) ≤ (2/3)𝑚 𝑑 < 𝛿𝑑. For all 𝑖 ∈ [𝑠2
𝑚−1], we have

∑2𝑚
𝑗=1 deg( ̂𝑝𝑖,𝑗) = 𝑑 and size( ̂𝑝𝑖,𝑗) = 𝑂(𝑠), for all 𝑗 ∈ [2𝑚].

In Lemma 3.3.5, we split each product ̂𝑝𝑖,1 ⋯ ̂𝑝𝑖,2𝑚 into two
parts of degree close to 𝑑/2. Now, we similarly split it into
three parts of degree close to 1/3. So we first pick the smallest
𝑗0 ∈ [2𝑚] such that

𝑑
3

≤
𝑗0
∑
𝑗=1

deg( ̂𝑝𝑖,𝑗) < 𝛾𝑑 ,

and define 𝑝𝑖,1 = ̂𝑝𝑖,1 ⋯ ̂𝑝𝑖,𝑗0 . Then we pick the smallest 𝑗1,
where 𝑗0 < 𝑗1 ≤ 2𝑚, such that

𝑑
3

≤
𝑗1
∑

𝑗=𝑗0+1
deg( ̂𝑝𝑖,𝑗) < 𝛾𝑑 ,

and define 𝑝𝑖,2 = ̂𝑝𝑖,𝑗0+1 ⋯ ̂𝑝𝑖,𝑗1 and 𝑝𝑖,3 = ̂𝑝𝑖,𝑗1+1 ⋯ ̂𝑝𝑖,2𝑚 . Then
we have

𝑝 =
𝑠2
𝑚−1

∑
𝑖=1

𝑝𝑖,1 𝑝𝑖,2 𝑝𝑖,3 , (3.36)

where 𝑑/3 ≤ deg(𝑝𝑖,𝑗) < 𝛾𝑑, for all 𝑖 ∈ [𝑠𝑐] and 𝑗 = 1, 2, 3.

Finally, we write the products in Equation 3.36 as sums of
cubes by the following identity:

24𝑎𝑏𝑐 = (𝑎+𝑏+𝑐)3 − (𝑎−𝑏+𝑐)3 − (𝑎+𝑏−𝑐)3 + (𝑎−𝑏−𝑐)3 .
(3.37)

Remark 3.4.1 In case of non-homogeneous polynomials,
we can consider the homogeneous parts separately. The
size 𝑠 has then again to by replaced by 𝑂(𝑠𝑑2).

We now come to the main result of this section, that the exis-
tence of a SOC-hard family implies the derandomization of
blackbox PIT. The proof outline is roughly similar to the proof
of Theorem 3.3.2, but with some crucial modifications. Given
a SOC-hard polynomial 𝑓𝑑(𝑥), we apply the standard Kro-
necker map to construct a polynomial 𝑃𝑛,𝑘 that is 𝑘-variate,
for some constant 𝑘, and the variables have individual de-
gree 𝑛. We show that size(𝑃𝑛,𝑘) = 𝑛Ω(1).

The proof of the size lower bound goes again by contradiction,
and this is where Lemma 3.4.1 comes into the play. Via the
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SOC decomposition of 𝑃𝑛,𝑘 and the inverse Kronecker map,
we get a SOC-representation of 𝑓𝑑 that would be smaller than
the assumed SOC-hardness of 𝑓𝑑.

Thus 𝑃𝑛,𝑘 fulfills the assumptions made in Theorem 2.7.2, by
[Guo+19], and we can conclude that blackbox PIT ∈ P .

Theorem 3.4.2 If there is a poly(𝑑)-explicit66: The coefficients are com-
putable in poly(𝑑)-time. This is a
much more lenient condition, be-
cause we may use 𝑓𝑑 = ∏(𝑥 − 𝑖),
or, 𝑓𝑑 = (𝑥 + 1)𝑑, as candidate
SOC-hard families without re-
quiring GRH! This occurs due
to the fundamental difference be-
tween the VP ≠ VNP and PIT ∈ P
proofs, where the former trans-
lates the SOS-hard polynomial
into an 𝑂(log 𝑑)-variate polyno-
mial and the latter into a constant
variate polynomial.

SOC-hard fam-
ily (𝑓𝑑)𝑑, then blackbox-PIT ∈ P.

Proof. Let 𝑓𝑑(𝑥) be an explicit SOC-hard polynomial such
that 𝑈 (𝑓𝑑, 𝑑 𝜀) ≥ 𝛿𝑑, for constants 0 < 𝜀 < 1/2 and 𝛿 > 0. Let
furthermore 𝑐 be the constant from Lemma 3.4.1.

We define parameters 𝑘 and 𝑛 as follows. Let 𝛼 = 1 − 1
110 .

Choose 𝑘 large enough such that

𝑘 > 9𝑐
𝜀

and 𝛼𝑘 < 𝛿, (3.38)

and define 𝑛 = ⌈(𝑑 + 1)1/𝑘⌉ − 1. Now we apply the Kronecker
map 𝜙𝑛,𝑘 from Equation 2.2 to 𝑓𝑑 and define polynomial

𝑃𝑛,𝑘(𝑦) = 𝜙𝑛,𝑘(𝑓𝑑(𝑥)) .

Recall that 𝑃𝑛,𝑘 has 𝑘 variables of individual degree 𝑛, and
therefore total degree 𝑘𝑛. Since 𝑓𝑑 is explicit, we have 𝑃𝑛,𝑘 ∈
VNP.

Define 𝜇 as
𝜇 = 1

2
(𝜀
𝑐
− 1
𝑘
) . (3.39)

Note that 𝜇 > 0 by our choice of 𝑘 in Equation 3.38.

Claim 3.4.1 (Hardness of 𝑃𝑛,𝑘) size(𝑃𝑛,𝑘) > 𝑑𝜇, for large
enough 𝑛.

Proof. Assume to the contrary that size(𝑃𝑛,𝑘) ≤ 𝑑𝜇. By Lemma 3.4.1,
there exist polynomials 𝑄𝑖 such that 𝑃𝑛,𝑘 = ∑𝑠0

𝑖=1 𝑐𝑖 𝑄
3
𝑖 , where

𝑠0 ≤ (𝑑𝜇 𝑘𝑛)𝑐 and deg(𝑄𝑖) ≤
4
11 𝑘𝑛.

We apply the inverse Kronecker map 𝜓𝑛,𝑘 to the polynomials
𝑄𝑖: Define 𝑔𝑖(𝑥) = 𝜓𝑛,𝑘(𝑄𝑖(𝑦)). Then we get

𝑓𝑑 =
𝑠0
∑
𝑖=1

𝑐𝑖 𝑔3𝑖 .
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Recall that 𝑔𝑖 and 𝑄𝑖 have the same sparsity. Therefore

𝑠1 = |⋃
𝑖
supp(𝑔𝑖)| ≤ |⋃

𝑖
supp(𝑄𝑖)| ≤ (

𝑘 + 4
11𝑘𝑛
𝑘

) .

Thus, 𝑈 (𝑓𝑑, 𝑠0) ≤ 𝑠1.

We want to show that 𝑠0 < 𝑑 𝜀
′
and 𝑠1 < 𝛿𝑑, for large enough 𝑛.

Then, we have 𝑈 (𝑓𝑑, 𝑑 𝜀) < 𝛿𝑑, for large enough 𝑑, which con-
tradicts the SOC-hardness of 𝑓𝑑.

Bound on 𝑠0 Recall that 𝑑 = (𝑛 + 1)𝑘 − 1 > 𝑛𝑘, for large 𝑛.
Therefore we get for large enough 𝑛, and thus 𝑑,

𝑠0 ≤ (𝑑𝜇 𝑘𝑛)𝑐 < (𝑑𝜇 𝑘𝑑
1
𝑘 )𝑐 = (𝑘𝑑𝜇+

1
𝑘 )𝑐 < 𝑑 𝜀 . (3.40)

In the last inequality we used that 𝜇 + 1/𝑘 < 𝜀/𝑐, by the
definition of 𝜇.

Bound on 𝑠1 By Equation 2.6, we have

𝑠1 = (
𝑘 + 4

11𝑘𝑛
𝑘

) ≤ (𝑒 (1 + 4
11

𝑛))
𝑘
< (𝛼𝑛)𝑘 < 𝛼𝑘𝑑 < 𝛿𝑑 .

(3.41)
As 4𝑒 ≈ 10.873, we used that 𝑒 (1 + 4

11𝑛) < 𝛼𝑛 and 𝑑 > 𝑛𝑘,
for large 𝑛. The last inequality is by our choice of 𝑘. This
proves Claim 3.4.1.

It remains to show that from the hardness of 𝑃𝑛,𝑘, the as-
sumption in Theorem 2.7.2 can be fulfilled, that size(𝑃𝑛,𝑘) >
𝑠10𝑘+2deg(𝑃𝑛,𝑘)3, for some growing function 𝑠 = 𝑠(𝑛). Recall

that deg(𝑃𝑛,𝑘) ≤ 𝑘𝑛. We define, 𝑠(𝑛) = 𝑛
1

10𝑘+3 . Then we have

𝑠10𝑘+2 (𝑘𝑛)3 = 𝑛
10𝑘+2
10𝑘+3 (𝑘𝑛)3 = 𝑘3 𝑛4−

1
10𝑘+3 < 𝑛4 , (3.42)

for large enough 𝑛. By the first condition in our choice of 𝑘
in Equation 3.38, we have

𝜇 = 1
2
(𝜀
𝑐
− 1
𝑘
) ≥ 1

2
(9
𝑘
− 1
𝑘
) = 4

𝑘
,

and therefore 𝑘𝜇 ≥ 4. Recall also that 𝑛𝑘 < 𝑑, for large 𝑛.
Hence, we can continue Equation 3.42 as

𝑛4 ≤ 𝑛𝑘𝜇 < 𝑑𝜇 < size(𝑃𝑛,𝑘) . (3.43)
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A brief history of struggle:We
started with 𝑟 = 25, and
showed that a (really) large
lower bound on 𝑆𝔽(𝑓 , 25) sepa-
rates VP ≠ VNP [DST20]. It was
then improved to 𝑟 = 4 with
slightly relaxed requirement on
the bound [DS20]. Finally, we set-
tled for 𝑟 = 2, with the require-
ment on the lower bound tanta-
lizingly close to the trivial one!

7: Recall support-unionmeasure
has an extra 𝑠 parameter which
denotes the top-fanin.

Equation 3.42) and Equation 3.43 give the desired hardness
of 𝑃𝑛,𝑘. Thus, Theorem 2.7.2 gives a poly(𝑠)-time HSG for
𝒞(𝑠, 𝑠, 𝑠). Hence, blackbox PIT ∈ P.

Remark 3.4.2 The degree of the 𝑄𝑖’s in the above proof
is bounded by 4

11𝑘𝑛. Hence, the degree of the 𝑔𝑖’s obtained
via the inverses Kronecker substitution is bounded by

(𝑛 + 1)𝑘−1 4
11

𝑘𝑛 < 4
11

𝑘(𝑛 + 1)𝑘 ≤ 4
11

𝑘(𝑑 + 1) = 𝑂(𝑑) ,

where the last equality is because 𝑘 is a constant. Thus, it
suffices to study the representation of 𝑓𝑑 as sum-of-cubes
𝑔3𝑖 , where deg(𝑔𝑖) = 𝑂(𝑑), and still Theorem 3.4.2 would
hold.

3.5 Sum-of-Constant-Powers (SOCP)

In this section, let 𝔽 be a field of characteristic 0 or large.
Similar to SOS or SOC model, one can study higher constant
powers; the model is to represent a given univariate poly-
nomial as a sum-of-constant-powers (SOCP), namely, writing
polynomial 𝑓 (𝑥) as

𝑓 (𝑥) =
𝑠
∑
𝑖=1

𝑐𝑖𝑓 𝑟
𝑖

for some top-fanin 𝑠, constant 𝑟, polynomials 𝑓𝑖 and coeffi-
cients 𝑐𝑖. This representation corresponds to a depth-four cir-
cuit that has the form Σ[𝑠]∧[𝑟]ΣΠ. One can similarly define the
support-sum size 𝑆𝔽(𝑓 , 𝑟), and support-union size 𝑈𝔽(𝑓 , 𝑟 , 𝑠)7.

By trivial monomial counting, 𝑆𝔽(𝑓 , 𝑟), 𝑈𝔽(𝑓 , 𝑟 , 𝑠) ≥ sp(𝑓 )1/𝑟.
To upper bound 𝑆𝔽(𝑓 , 𝑟), we prove the following.

Lemma 3.5.1 Let 𝔽 be a field of characteristic 0 or large. Let
ℎ(𝑥) ∈ 𝔽[𝑥] and 0 ≤ 𝑚 ≤ 𝑟. There exist 𝑐𝑚,𝑖 ∈ 𝔽 and distinct
𝜆𝑖 ∈ 𝔽, for 0 ≤ 𝑖 ≤ 𝑟, such that

ℎ(𝑥)𝑚 =
𝑟

∑
𝑖=0

𝑐𝑚,𝑖 (ℎ(𝑥) + 𝜆𝑖)𝑟 . (3.44)
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Proof. Consider the polynomial (ℎ(𝑥) + 𝑡)𝑟, where 𝑡 is a new
indeterminate different from 𝑥. We have

(ℎ(𝑥) + 𝑡)𝑟 =
𝑟

∑
𝑖=0

(
𝑟
𝑖
) ℎ(𝑥)𝑖 𝑡 𝑟−𝑖 .

Choose 𝑟 + 1 many distinct 𝜆𝑖’s and put 𝑡 = 𝜆𝑖, for 𝑖 = 0, 1, … , 𝑟.
We get 𝑟 + 1 many linear equations which can be represented
in matrix form 𝐴𝑣 = 𝑏, for matrix 𝐴 = ((𝑟𝑗) 𝜆

𝑟−𝑗
𝑖 )

0≤𝑖,𝑗≤𝑟
, and

vectors 𝑣 = (ℎ𝑖)0≤𝑖≤𝑟 and 𝑏 = ((ℎ + 𝜆𝑖)𝑟)0≤𝑖≤𝑟.

Note that except for the binomial factors, 𝐴 is a Vandermonde
matrix. When computing the determinant, one can pull out
the binomial factor (𝑟𝑗) from the 𝑗-th column, for 𝑗 = 0, 1, … , 𝑟.
Then a Vandermonde matrix remains, and hence

det(𝐴) =
𝑟

∏
𝑗=0

(
𝑟
𝑗
) ∏

0≤𝑖<𝑗≤𝑟
(𝜆𝑗 − 𝜆𝑖) ≠ 0 .

Therefore, 𝐴 is invertible and we have 𝑣 = 𝐴−1𝑏. Let 𝑐𝑚 be
the (𝑚 + 1)-th row of 𝐴−1. Then we have ℎ(𝑥)𝑚 = 𝑐𝑚𝑏 which
is exactly Equation 3.44.

SOS is the easiest model
The SOCP-hardness (wrt. both support-sum and support-
union size), can be defined in the same way as the SOS-,
or SOC-hardness, using the same parameters, and shown
to have identical complexity theoretic consequences.

Due to Equation 3.44, if a polynomial 𝑓 has a small SOS-
or, SOC-representation, the support-sum, or the support-
union in the sum of 𝑟-th powers changes insignificantly.
When ℎ2, for a univariate polynomial ℎ, is written as a
sum of 𝑟-th powers changes the top-fanin (and hence the
support-sum) by a factor of (𝑟 + 1), which is a constant.
While the adjustment is additive for the support-union!
Therefore, proving hardness in the higher power model
is more difficult than showing results in the SOS! In this
sense, our SOS model is really optimal to work with.
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8: In many cases, proving lower
bound over ℤ, could already be
very challenging. It is conjec-
tured that perm𝑛, over ℤ, can-
not be computed by a small de-
terminant. Moreover, this is al-
ready implied by assuming a
stronger (nonuniform) version of
the P ≠ NP conjecture, namely
NP ⊈ P/poly, or even the weaker
#P ⊈ NC. For a detailed discus-
sion, we refer to [Mul12].

3.5.1 Strong lower bound over ℤ

The SOS-hardness of (𝑥 + 1)𝑑 over 𝔽 = ℚ is open, however we
show a strong lower bound over localized integer rings (e.g.ℤ)
for the same, giving substantial evidence for the hardness
being provably true. 8 For the algebraic number theory terms,
see [Lan13].

For any number field 𝐾, let 𝒪𝐾 be the ring of integers in 𝐾,
e.g. ℤ in ℚ. Let ℙ be a prime ideal of 𝒪𝐾, e.g. ⟨𝑝⟩ of ℤ. Define
the localization (𝒪𝐾)ℙ ∶= {𝑟/𝑠 ∣ 𝑟 , 𝑠 ∈ 𝒪𝐾, 𝑠 ∉ ℙ} which is a
domain larger than 𝒪𝐾, e.g. ℤ⟨𝑝⟩; it has all fractions except
the ones like 1/𝑝. We show the hardness (wrt. support-union
measure) over 𝑅 ∶= (𝒪𝐾)ℙ, whenever ℙ ∣ ⟨𝑟⟩𝒪𝐾 (equivalently
ℙ ⊇ ⟨𝑟⟩𝒪𝐾).

Theorem 3.5.2 (Unconditional lower bound) Fix a prime-
power 𝑟, any 𝑠 ≥ 1, and 𝑓𝑑(𝑥) ∶= (𝑥 + 1)𝑑. Fix a number
field 𝐾 and its prime ideal ℙ such that ℙ ∣ ⟨𝑟⟩𝒪𝐾 . Then,
𝑈(𝒪𝐾)ℙ (𝑓𝑑, 𝑟 , 𝑠) > 𝑑99: The same proof also works for

support-sum measure.
, for infinitely many 𝑑.

Remark 3.5.1 1. he lower bound of 𝑑+1 is the strongest
one could possibly achieve. This suggests that con-
stants like 1/𝑟 ∈ ℚ = 𝔽 may help a bit in writing as
sum-of-𝑟-th-powers.

2. The flow of all our proofs is such that proving the
hardness for infinitely many 𝑑 (over ℚ) actually suf-
fices to separate VP ≠ VNP. Thus, ‘infinitely many’
is not a weakness at all.

The main technical lemma is a celebrated theorem due to
Lucas [Luc78].

Theorem 3.5.3 (Lucas’s Theorem, [Luc78]) For 𝑚, 𝑛 ∈ ℕ
and a prime 𝑝, let

𝑚 = 𝑚𝑘𝑝𝑘 + 𝑚𝑘−1𝑝𝑘−1 + … + 𝑚1𝑝 + 𝑚0

𝑛 = 𝑛𝑘𝑝𝑘 + 𝑛𝑘−1𝑝𝑘−1 + … + 𝑛1𝑝 + 𝑛0

be the base-𝑝 representation of 𝑚 and 𝑛. Then

(
𝑚
𝑛
) ≡

𝑘
∏
𝑖=0

(
𝑚𝑖
𝑛𝑖
) (mod 𝑝) .
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Lemma 3.5.4 Let 𝑑 = 𝑟 ℓ − 1, for some prime 𝑟 and ℓ ∈ ℕ.
Then

(𝑥 + 1)𝑑 ≡
𝑑
∑
𝑘=0

(−1)𝑘 𝑥𝑘 (mod 𝑟) . (3.45)

Therefore, we have for the support size |(𝑥 + 1)𝑑 mod 𝑟 |1 =
𝑑 + 1.

Proof. The base-𝑟 representation of 𝑑 is 𝑑 = ∑ℓ−1
𝑖=0 (𝑟 − 1) 𝑟 𝑖. Let

0 ≤ 𝑘 ≤ 𝑑 and write 𝑘 in base-𝑟 representation, 𝑘 = ∑ℓ−1
𝑖=0 𝑘𝑖𝑟 𝑖.

By Lucas’s Theorem, we have

(
𝑑
𝑘
) ≡

ℓ−1
∏
𝑖=0

(
𝑟 − 1
𝑘𝑖

) (mod 𝑟). (3.46)

Now observe that (𝑟−1𝑘𝑖 ) ≡ (−1)𝑘𝑖 (mod 𝑟). This is because

(𝑟 − 1)(𝑟 − 2)⋯ (𝑟 − 𝑘𝑖) ≡ (−1)𝑘𝑖𝑘𝑖! (mod 𝑟) ,

and hence

(
𝑟 − 1
𝑘𝑖

) ≡
(−1)𝑘𝑖𝑘𝑖!

𝑘𝑖!
≡ (−1)𝑘𝑖 (mod 𝑟) .

Plugging this into Equation 3.46, we get

(
𝑑
𝑘
) ≡ (−1)∑

ℓ−1
𝑖=0 𝑘𝑖 .

Finally observe that 𝑘 = ∑ℓ−1
𝑖=0 𝑘𝑖𝑟 𝑖 ≡ ∑ℓ−1

𝑖=0 𝑘𝑖 (mod 2), because
𝑟 is odd. This proves Equation 3.45.

Proof of Theorem 3.5.2. Let 𝑟 be a power of a prime 𝑟0 and
𝑑 = 𝑟 ℓ − 1, for some ℓ ∈ ℕ.

By Lemma 3.5.4, we have |(𝑥 +1)𝑑 mod 𝑟0|1 = 𝑑 +1. Moreover,
𝑟0 does not divide any of the coefficients (𝑑𝑘) because (𝑑𝑘) ≡
(−1)𝑘 (mod 𝑟0), for any 0 ≤ 𝑘 ≤ 𝑑.

Consider the given prime ideal ℙ of 𝒪𝐾 that contains ⟨𝑟⟩𝒪𝐾 ,
and hence contains ⟨𝑟0⟩𝒪𝐾 . Suppose (

𝑑
𝑗) ∈ ⟨𝑟0⟩(𝒪𝐾)ℙ , for some

0 ≤ 𝑗 ≤ 𝑑. Then, simply by ideal definition, there exists
𝑚 ∈ (𝒪𝐾)ℙ such that (𝑑𝑗) = 𝑚𝑟0. Since 𝑟0 does not divide (𝑑𝑗)

and 𝑟0 ∈ ℙ, the quotient (𝑑𝑗)/𝑟0 cannot lie in the localization
(𝒪𝐾)ℙ, which is a contradiction.
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Thus, (𝑑𝑗) ∉ ⟨𝑟0⟩(𝒪𝐾)ℙ , for all 0 ≤ 𝑗 ≤ 𝑑. Whence,

𝑓𝑑(𝑥) = ∑
𝑖∈[𝑠]

𝑐𝑖 ℓ𝑟𝑖 ⟹ 𝑓𝑑(𝑥) ≡ ∑
𝑖∈[𝑠]

𝑐𝑖 ℓ𝑖(𝑥 𝑟) mod ⟨𝑟0⟩(𝒪𝐾)ℙ

⟹ | ⋃
𝑖∈[𝑠]

supp(ℓ𝑖(𝑥 𝑟))| ≥ 𝑑 + 1

⟹ | ⋃
𝑖∈[𝑠]

supp(ℓ𝑖)| ≥ 𝑑 + 1,

which gives a lower bound on the support-union size as
promised.

Remark 3.5.2 1. The fact that ℙ is a prime ideal is cru-
cial in the above proof. This proof works for the
polynomial 𝑔 ∶= ∑𝑑

𝑖=0 2𝑖
2
𝑥 𝑖 as well, as long as 𝑟 is odd.

This is simply because 2𝑖
2
≠ 0 mod 𝑟0, for any odd

prime 𝑟0. The rest of the proof remains unchanged.
For even 𝑟 (say 𝑟 = 2), one can work with the alterna-
tive ℎ ∶= ∑𝑑

𝑖=0 3𝑖
2
𝑥 𝑖.

2. This also proves that for any prime-power 𝑟, for any
integer 𝑚 coprime to 𝑟, and for all 𝑑 of the form 𝑟 ℓ − 1,
we have 𝑈ℤ (𝑚𝑓𝑑, 𝑟 , ⋅) > 𝑑. This behavior changes
when 𝑚, 𝑟 are not coprime.

3.6 Sum-of-Constant-Powers with
Small Support

In this section, we talk about different constructions of ‘small
support-union’ representations of any univariate polynomial
in different sum-of-constant-power models.

3.6.1 Upper bounding 𝑈𝔽(𝑓 , 𝑟 , 𝑠) with large 𝑠

Let us ask the following question. Can we write 𝑓 as sum-
of-constant-powers with the support-union as close as the
lower bound 𝑑1/𝑟? In this subsection, we show that indeed
it is possible when we can relax 𝑠 to be as large as Ω(𝑑);
see Corollary 3.6.2!
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Minkowski sum. Here we use the notion of sumsets. In
additive combinatorics, the sumset, also called the Minkowski
sum of two subsets 𝐴 and 𝐵 of an abelian group 𝐺, is defined
to be the set of all sums of an element from 𝐴with an element
from 𝐵,

𝐴 + 𝐵 = { 𝑎 + 𝑏 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 } .

The 𝑛-fold iterated sumset of 𝐴 is 𝑛𝐴 = 𝐴 + ⋯ + 𝐴, where
there are 𝑛 summands.

We want a small support-union representation of a 𝑑-degree
polynomial 𝑓 as a sum of 𝑟-th powers, where 𝑟 is constant.

Let 𝑡 be the unique non-negative integer such that (𝑡 − 1)𝑟 <
𝑑 + 1 ≤ 𝑡 𝑟. Define set 𝐵 as

𝐵 = { 𝑎 𝑡ℓ ∣ 0 ≤ 𝑎 ≤ 𝑡 − 1 and 0 ≤ ℓ ≤ 𝑟 − 1 } .

Hence |𝐵| = 𝑟 𝑡 = 𝑂(𝑑1/𝑟). Let 𝑘 ∈ {0, 1, … , 𝑑}. The base-𝑡
representation of 𝑘 is a sum of at most 𝑟 elements from 𝐵.
Hence, {0, 1, … , 𝑑} ⊆ 𝑟𝐵. The largest element in 𝐵 is 𝑚 =
(𝑡 − 1)𝑡 𝑟−1 = 𝑂(𝑑). Since 𝑟 is a constant, the largest element
in 𝑟𝐵 is 𝑟𝑚 = 𝑂(𝑑).

We show next that any polynomial can be written as a sum
of 𝑟-th powers of polynomials with support in 𝐵.

Theorem 3.6.1 For any 𝑓 ∈ 𝔽[𝑥] of degree 𝑑, there exist
ℓ𝑖 ∈ 𝔽[𝑥] with supp(ℓ𝑖) ⊆ 𝐵 and 𝑐𝑖 ∈ 𝔽, for 𝑖 = 0, 1, … , 𝑚𝑟, such
that 𝑓 = ∑𝑚𝑟

𝑖=0 𝑐𝑖 ℓ
𝑟
𝑖 .

Proof. Let us set up the polynomials ℓ𝑖 we seek as

ℓ𝑖(𝑥) = ∑
𝑗∈𝐵

𝑎𝑖,𝑗𝑥 𝑗 ,

for unknown coefficients 𝑎𝑖,𝑗 ∈ 𝔽, for 𝑖 = 0, 1, … , 𝑟𝑚 and 𝑗 ∈ 𝐵.
We determine the 𝑎𝑖,𝑗’s via the multivariate polynomial

𝐿𝑖(𝑧𝑖, 𝑥) = ∑
𝑗∈𝐵

𝑧𝑖,𝑗𝑥 𝑗 ,

where we replaced the coefficients of ℓ𝑖 by distinct indetermi-
nates 𝑧𝑖,𝑗.
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Note that deg𝑥(𝐿𝑖) ≤ 𝑚. Taking the 𝑟-th power, we can write

𝐿𝑟𝑖 =
𝑚𝑟
∑
𝑗=0

𝑄𝑗(𝑧𝑖) 𝑥 𝑗 ,

for 0 ≤ 𝑖 ≤ 𝑟𝑚, for polynomials 𝑄𝑗 of degree 𝑟 with |𝐵| = 𝑟 𝑡
many variables, 0 ≤ 𝑗 ≤ 𝑟𝑚.

Let 𝑆 = { 𝑗 ∣ 𝑄𝑗 ≠ 0 } ⊆ {0, 1, … , 𝑚𝑟}. Note that from any mono-
mial in 𝑄𝑗 we can recover 𝑗. This follows because supp(𝑄𝑗1) ∩
supp(𝑄𝑗2) = ∅, for any 𝑗1 ≠ 𝑗2 in 𝑆. Therefore, the polynomials
{ 𝑄𝑗 ∣ 𝑗 ∈ 𝑆 } are 𝔽-linearly independent.

Note that by the definition of 𝐵, we have {0, 1, … , 𝑑} ⊆ 𝑆.

We want to find 𝑐 = (𝑐1 𝑐2 ⋯ 𝑐|𝑆|) ∈ 𝔽|𝑆| and 𝑎 = (𝑎𝑖,𝑗)𝑖,𝑗
such that

𝑓 (𝑥) =
𝑚𝑟
∑
𝑖=0

𝑐𝑖 ℓ𝑟𝑖(𝑥) =
𝑚𝑟
∑
𝑖=0

𝑐𝑖 𝐿𝑟𝑖(𝑎, 𝑥) . (3.47)

Let 𝑓 (𝑥) = ∑𝑑
𝑖=0 𝑓𝑖 𝑥 𝑖. We set up a linear system to determine

the unknowns. Define the coefficient vector 𝑓 of 𝑓 over 𝑆 and
a |𝑆| × |𝑆|-matrix 𝐴 as

𝑓 = (𝑓0 𝑓1 ⋯ 𝑓𝑑 0 ⋯ 0) , (3.48)

𝐴 =
⎛
⎜
⎜
⎜
⎝

𝑄𝑗1(𝑧1) 𝑄𝑗2(𝑧1) ⋯ 𝑄𝑗𝑠(𝑧1)
𝑄𝑗1(𝑧2) 𝑄𝑗2(𝑧2) ⋯ 𝑄𝑗𝑠(𝑧2)

⋮ ⋮ ⋯ ⋮
𝑄𝑗1(𝑧|𝑆|) 𝑄𝑗2(𝑧|𝑆|) ⋯ 𝑄𝑗𝑠(𝑧|𝑆|)

⎞
⎟
⎟
⎟
⎠

. (3.49)

Then Equation 3.47 is equivalent to

𝑐 𝐴(𝑎) = 𝑓 .

As the 𝑧𝑖’s are distinct variables, the first column of 𝐴 consists
of different variables at each coordinate. Moreover, the first
row of 𝐴 contains 𝔽-linearly independent 𝑄𝑗’s. Thus, for a
random 𝑎 = (𝑎𝑖,𝑗), matrix 𝐴(𝑎) has full rank over 𝔽. Fix such
an 𝑎. This yields 𝑐 = 𝑓 (𝐴(𝑎))−1. For these values 𝑐 and 𝑎, we
get Equation 3.47 as desired.

Remark 3.6.1 1. The above calculation does not give
small support-sum representation of 𝑓, as the top-
fanin is already Ω(𝑑).
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2. The above representation crucially requires a field 𝔽.
E.g. it does not exist for 𝑓𝑑 over the ring ℤ.

The number of distinct monomials across the ℓ𝑗’s in the above
proof is |𝐵| = 𝑂(𝑑1/𝑟), while the top-fanin is ≤ 𝑚𝑟 + 1 = Θ(𝑑).
Of particular interest for us are the cases 𝑟 = 2, 3.

Corollary 3.6.2 Any polynomial 𝑓 ∈ 𝔽[𝑥] of degree 𝑑 has
a SOS- and a SOC-representation with top-fanin 𝑂(𝑑) and
support-union 𝑂(√𝑑), respectively 𝑂( 3√𝑑).

In the following, we improve Theorem 3.6.1 for 𝑟 = 2, 3. We
show a SOS- and SOC-representation for any polynomial 𝑓 (𝑥),
wherein both the top-fanin and the support-union size are
small, namely 𝑂(√𝑑). We assume that characteristic of 𝔽 is ≠ 2
in case of SOS, and ≠ 3, in case of SOC. The representations
are based on discussions with Agrawal [Agr20].

3.6.2 Constructing small SOS

By Corollary 3.6.2, any polynomial 𝑓 of degree 𝑑 has a SOS-
representation with top-fanin 𝑂(𝑑) and support-union 𝑂(√𝑑)
We show that also the top-fanin can be reduced to 𝑂(√𝑑). The
technical key for this is the following lemma. It shows how to
decrease the top-fanin in a representation without increasing
the support-union.

Lemma 3.6.3 Let 𝑓 ∈ 𝔽[𝑥] be written as 𝑓 = ∑𝑠
𝑖=1 𝑐𝑖 𝑓𝑖,1𝑓𝑖,2,

with support-union 𝑡 = |⋃𝑖,𝑗 supp(𝑓𝑖,𝑗)|. Then there exists a
representation 𝑓 = ∑𝑡

𝑖=1 𝑐
′
𝑖 𝑓 ′

𝑖,1𝑓 ′
𝑖,2 with support-union ≤ 𝑡.

Proof. For the given representation of 𝑓, we assume w.l.o.g.
that deg(𝑓𝑖,1) ≥ deg(𝑓𝑖,2) and that 𝑓𝑖,1, 𝑓𝑖,2 are monic, for 𝑖 =
1, 2, … , 𝑠. Let 𝑆 = ⋃𝑖,𝑗 supp(𝑓𝑖,𝑗).

We construct the representation claimed in the lemma by
ensuring the following properties:

1. For every 𝑥𝑒 ∈ 𝑆, there is exactly one 𝑖 such that deg(𝑓 ′
𝑖,1) =

𝑒,

2. ⋃𝑖,𝑗 supp(𝑓
′
𝑖,𝑗) ⊆ 𝑆,
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Since we also maintain that deg(𝑓 ′
𝑖,1) ≥ deg(𝑓 ′

𝑖,2), it follows
that the top-fanin is indeed bounded by 𝑡 = |𝑆| as claimed.

We handle the monomials in 𝑆 successively according to
decreasing degree. Let 𝑥𝑒 ∈ 𝑆 be the monomial with the
largest 𝑒 that occurs more than once as the degree of a 𝑓𝑖,1,
say deg(𝑓1,1) = deg(𝑓2,1) = 𝑒.

Define 𝑔1 = 𝑓2,1 − 𝑓1,1. Then we have 𝑓2,1 = 𝑓1,1 + 𝑔1 and
deg(𝑔1) < 𝑒. Moreover, the support of 𝑔1 is contained in
the support of 𝑓1,1 and 𝑓2,1 If deg(𝑓2,2) = 𝑒, then we define
similarly 𝑔2 = 𝑓2,2 − 𝑓1,1. Then 𝑓2,2 = 𝑓1,1 + 𝑔2 and deg(𝑔2) < 𝑒.
Now we can write

𝑐1𝑓1,1𝑓1,2 + 𝑐2𝑓2,1𝑓2,2
= 𝑐1𝑓1,1𝑓1,2 + 𝑐2(𝑓1,1 + 𝑔1)(𝑓1,1 + 𝑔2)
= 𝑓1,1 (𝑐1𝑓1,2 + 𝑐2𝑓1,1 + 𝑐2𝑔1 + 𝑐2𝑔2) + 𝑐2𝑔1𝑔2 . (3.50)

The second line is a new sum of two products, where only
the first product has terms of degree 𝑒, whereas in the second
product, 𝑔1, 𝑔2 have smaller degree. Also, the support-union
set has not increased.

In case when deg(𝑓2,2) < 𝑒, we can just work with 𝑓2,2 directly
instead of 𝑓1,1+𝑔2, and the above equations gets even simpler.

So when we start with the SOS-representation for polyno-
mial 𝑓 provided by Theorem 3.6.1 and apply Lemma 3.6.3, It

follows that 𝑓 can be re-written as 𝑓 (𝑥) = ∑𝑂(√𝑑)
𝑖=1 𝑐′𝑖 𝑓𝑖,1 𝑓𝑖,2,

where | ⋃𝑖,𝑗 supp(𝑓𝑖𝑗)| = 𝑂(√𝑑). This can be turned into a SOS-
representation by 𝑓𝑖,1 𝑓𝑖,2 = (𝑓𝑖,1+𝑓𝑖,2)2/4−(𝑓𝑖,1−𝑓𝑖,2)2/4. Note
that the last step does not change the support-union, and at
most doubles the top-fanin. Hence, we get

Theorem 3.6.4 (Small SOS-Representation) Any polyno-
mial 𝑓 ∈ 𝔽[𝑥] of degree 𝑑 has a SOS-representation such that
the top-fanin and the support-union are bounded by 𝑂(√𝑑).

3.6.3 Constructing small SOC

We show two small SOC-representation with different pa-
rameters. First, we show a √𝑑 SOC-representation that fol-
lows essentially from Theorem 3.6.4. In particular, one can
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use Equation 3.44, for 𝑚 = 2 and 𝑟 = 3, to rewrite a SOS-
representation as a SOC-representation.

Observe that the support on both sides of Equation 3.44 is
the same, except maybe for an extra constant term on the
right hand side. Hence, for any given polynomial 𝑓, we can
take the SOS-representation from Theorem 3.6.4 and rewrite
each square as a sum of four cubes by Lemma 3.5.1. Then we
get

Corollary 3.6.5 (√𝑑 SOC-representation) Any polynomial
𝑓 ∈ 𝔽[𝑥] of degree 𝑑 has a SOC-representation such that the
top-fanin and the support-union are bounded by 𝑂(√𝑑).

Remark 3.6.2 Recall Definition 3.1.4 that 𝑓𝑑 is SOC-hard
if 𝑈𝔽 (𝑓𝑑, 𝑑 𝜀) = Ω(𝑑), for some 0 < 𝜀 < 1/2. Corollary 3.6.5
shows, that SOC-hardness is not possible for 𝜀 = 1/2.

The second way to get a small SOC-representation technically
follows the way we got Theorem 3.6.4. We first show a reduc-
tion similar to Lemma 3.6.3 for the sum of product-of-3.

Lemma 3.6.6 Let 𝑓 ∈ 𝔽[𝑥]. If 𝑓 = ∑𝑠
𝑖=1 𝑐𝑖 𝑓𝑖,1𝑓𝑖,2𝑓𝑖,3, with

support-union 𝑡, then there exists a representation of the form
𝑓 = ∑𝑡2

𝑖=1 𝑐
′
𝑖 𝑓 ′

𝑖,1𝑓 ′
𝑖,2𝑓 ′

𝑖,3 with support-union ≤ 𝑡.

Proof. The argument is similar to the proof of Lemma 3.6.3.
For the given representation of 𝑓, we assume that deg(𝑓𝑖,1) ≥
deg(𝑓𝑖,2) ≥ deg(𝑓𝑖,3) and that 𝑓𝑖,1, 𝑓𝑖,2, 𝑓𝑖,3 are monic, for 𝑖 =
1, 2, … , 𝑠. Let 𝑆 = ⋃𝑖,𝑗 supp(𝑓𝑖,𝑗).

Let 𝑥𝑒 ∈ 𝑆 be the monomial with the largest 𝑒 that occurs more
than once as the degree of a 𝑓𝑖,1. W.l.o.g. assume deg(𝑓1,1) = 𝑒.
Write all the other 𝑓𝑖,𝑗’s where 𝑥𝑒 occurs as

𝑓𝑖,𝑗 = 𝑓1,1 + 𝑔𝑖,𝑗, (3.51)

for 𝑗 ∈ [𝑠] and 𝑘 ∈ [3]. Note that deg(𝑔𝑖,𝑗) < 𝑒.

Now we plug in Equation 3.51 in the representation of 𝑓 given
by assumption and multiply out. This gives

𝑓 = ∑
𝑖∈[𝑚]

𝑐𝑖 𝑓𝑖,1𝑓𝑖,2𝑓𝑖,3 = 𝑓1,1 𝑃 + 𝑅, (3.52)
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where 𝑃 is a sum of product-of-2 and 𝑅 is a sum of product-
of-3, where each intermediate polynomial has degree < 𝑒.
Note that the last expression still has the same support-union.

Apply Lemma 3.6.3 on 𝑃, to reduce its top-fanin to 𝑡. Observe
that then 𝑓1,1𝑃 has a sum of product-of-3 expression with top
fanin at most 𝑡. Iterating the procedure to 𝑅, we finally get a
representation of 𝑓 with top fanin bounded by 𝑡2.

By Corollary 3.6.2, any polynomial 𝑓 of degree 𝑑 has a SOC-
representation with top-fanin 𝑂(𝑑) and support-union 𝑂( 3√𝑑).
By Lemma 3.6.6, this can be re-written as a sum product-
of-3 with top-fanin 𝑂(𝑑2/3). Finally, any product-of-3 can be
written as a sum of four cubes, by Equation 3.37. Hence, we
get

Theorem 3.6.7 (𝑑2/3 SOC-representation) Any polynomial
𝑓 ∈ 𝔽[𝑥] of degree 𝑑 has a SOC-representation with top-fanin
𝑂(𝑑2/3) and support-union 𝑂(𝑑1/3).

Finally, we observe that Lemma 3.5.1 also provides a connec-
tion between the two complexity measures 𝑆(𝑓 ) from SOS
and 𝑈 (𝑓 , 𝑠) from SOC.

Lemma 3.6.8 For any 𝑓 ∈ 𝔽[𝑥], we have

𝑆(𝑓 ) ≥ min
𝑠

(𝑈 (𝑓 , 4𝑠) − 1) .

Proof. Suppose 𝑓 = ∑𝑠
𝑖=1 𝑐𝑖 𝑓

2
𝑖 . By Lemma 3.5.1, each 𝑓 2

𝑖 can
be written as 𝑓 2

𝑖 = ∑4
𝑗=1 𝑐𝑖𝑗 (𝑓𝑖 + 𝜆𝑖𝑗)3, for distinct 𝜆𝑖𝑗 ∈ 𝔽. Thus,

𝑈 (𝑓 , 4𝑠) ≤ 1 + ∑𝑠
𝑖=1 sp(𝑓𝑖). Taking minimum over 𝑠 gives the

desired inequality.

Corollary 3.6.9 For 𝑠 = Ω(𝑑2/3), we have 𝑈 (𝑓 , 𝑠) = Θ(𝑑1/3).

3.7 Lower Bound for Restricted
Models

Kumar and Volk [KV21] showed a strong connection between
matrix rigidity and depth-2 linear circuit lower bound. They
argued (similarly done in [Pud94] in a different language) that
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depth-2 Ω(𝑛2) lower bound for an explicit matrix is necessary
and sufficient for proving super-linear lower bound for general
𝑂(log 𝑛)-depth circuits (or matrix rigidity).

Symmetric depth-2 circuit. Over ℝ, it is a circuit of the
form 𝐵𝑇 ⋅ 𝐵, for some 𝐵 ∈ ℝ𝑚×𝑛. [Over ℂ, one should take the
conjugate-transpose 𝐵∗ instead of 𝐵𝑇.] Symmetric circuits
are a natural computational model for computing a positive
semi-definite (PSD) matrix.

Invertible depth-2 circuit. It is a circuit 𝐵⋅𝐶, where at least
one of the matrices 𝐵, 𝐶 is invertible. We stress that invertible
circuits can compute non-invertible matrices. Invertible cir-
cuits generalize many of the common matrix decompositions,
such as QR decomposition, eigen decomposition, singular
value decomposition (SVD), and LUP decomposition.

[KV21, Theorem 1.3 & Theorem 1.5] prove asymptotically
optimal lower bounds for both the models.

Theorem 3.7.1 [KV21] There exists an explicit family of
real 𝑛 × 𝑛 PSD matrices (𝐴𝑛)𝑛∈ℕ such that every symmetric
circuit (respectively invertible circuits) computing 𝐴𝑛 (over
ℝ) has size Ω(𝑛2).

We present a simple, alternative proof of Theorem 3.7.1 using
lower bounds on the SOS representation (with restriction) of
two different explicit families 𝑓𝑑 over ℝ. For details, see 3.7.5,
and 3.7.7, in Theorem 3.7.

3.7.1 Lower bound for symmetric circuits
over ℝ: Proof of the first part of
Theorem 3.7.1

We state a lemma from classical mathematics for the study of
fewnomials and give a simple proof. This would be critical
to prove explicit lower bounds.

Lemma 3.7.2 (Hajós Lemma) Suppose 𝑓 (𝑥) ∈ ℂ[𝑥] be a
univariate polynomial with 𝑡 ≥ 1 monomials. Let 𝛼 be a
non-zero root of 𝑓 (𝑥). Then, the multiplicity of 𝛼 in 𝑓 can be
at most 𝑡 − 1.
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Proof. We will prove this by induction on 𝑡. When 𝑡 = 1,
𝑓 (𝑥) = 𝑎𝑚𝑥𝑚 for some 𝑚. It has no non-zero roots and we
are trivially done. Assume that, it is true upto 𝑡. We want to
prove the claim for 𝑡 + 1.

Suppose |𝑓 |0 = 𝑡 + 1. There exists 𝑚 ≥ 0 such that 𝑓 (𝑥) =
𝑥𝑚.𝑔(𝑥), with |𝑔|0 = 𝑡 + 1 and 𝑔(0) ≠ 0. It suffices to prove
the claim for 𝑔. Let, 𝛼 be a non-zero root of 𝑔(𝑥). Suppose,
𝑔(𝑥) = (𝑥 − 𝛼)𝑠 ⋅ ℎ(𝑥), for some 𝑠 ≥ 1 and ℎ(𝛼) ≠ 0. Observe
that, multiplicity of 𝛼 in 𝑔′ is 𝑠 − 1. As 𝑔(0) ≠ 0, |𝑔′|0 = 𝑡.
Therefore by induction hypothesis, 𝑠 − 1 ≤ 𝑡 − 1 ⟹ 𝑠 ≤ 𝑡.
Hence, multiplicity of 𝛼 in 𝑔 (thus in 𝑓) can be at most 𝑡. This
finishes the induction step.

Corollary 3.7.3 Suppose 𝑓 (𝑥) = (𝑥 + 𝛼)𝑡 ⋅ 𝑔(𝑥), for some
non-zero 𝛼 and 𝑔(⋅), then we must have |𝑓 |0 ≥ 𝑡 + 1.

We prove an important lower bound on SOS representation
for a non-zero multiple of (𝑥 + 1)𝑑; it will be important to
prove the first part of Theorem 3.7.1.

Lemma 3.7.4 Let 𝑓 (𝑥) be a non-zero polynomial in ℝ[𝑥].
Suppose, there exist non-zero ℓ𝑖 ∈ ℝ[𝑥], for 𝑖 ∈ [𝑚] such that
(𝑥 +1)𝑑 ⋅ 𝑓 (𝑥) = ∑𝑚

𝑖=1 ℓ
2
𝑖 . Then, ∑𝑖∈[𝑚] |ℓ𝑖|0 ≥ 𝑚 ⋅ (⌊𝑑/2⌋+1).

Proof. Denote 𝑔(𝑥) ∶= gcd(ℓ1, … , ℓ𝑚). We will prove that
(𝑥 + 1)𝑡 ∣ 𝑔(𝑥) where 𝑡 ∶= ⌊𝑑/2⌋. Suppose not, assume that
(𝑥 + 1)𝑘||𝑔(𝑥) (i.e (𝑥 + 1)𝑘+1 ∤ 𝑔(𝑥)) such that 𝑘 < 𝑡 (and thus
𝑑 − 2𝑘 > 0). Then, 𝑔(𝑥) = ℎ(𝑥) ⋅ (𝑥 + 1)𝑘 where ℎ(𝑥) ∈ ℝ[𝑥]
with ℎ(−1) ≠ 0. Define ℓ̃𝑖 ∶= ℓ𝑖/(𝑥 + 1)𝑘. By assumption,
(𝑥 + 1) ∤ gcd(ℓ̃1, … , ℓ̃𝑚) =∶ ℎ(𝑥). Thus,

𝑘
∑
𝑖=1

ℓ𝑖(𝑥)2 = (𝑥 + 1)𝑑 ⋅ 𝑓 (𝑥) ⟹
𝑚
∑
𝑖=1

ℓ̃𝑖(𝑥)2 = (𝑥 + 1)𝑑−2𝑘 ⋅ 𝑓 (𝑥)

⟹
𝑚
∑
𝑖=1

ℓ̃𝑖(−1)2 = 0

⟹ ℓ̃𝑖(−1) = 0 , ∀𝑖 ∈ [1, 𝑚]
⟹ (𝑥 + 1) ∣ ℓ̃𝑖(𝑥) , ∀𝑖 ∈ [1, 𝑚]
⟹ (𝑥 + 1) ∣ gcd(ℓ̃1, … , ℓ̃𝑚) = ℎ(𝑥)

which is a contradiction. Thus, 𝑘 ≥ 𝑡.
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This implies, each ℓ𝑖 is non-zero polynomial multiple of (𝑥+1)𝑡.
Since Corollary 3.7.3 implies that |ℓ𝑖|0 ≥ 𝑡 + 1, for all 𝑖 ∈ [𝑚];
the lemma follows.

Recall that a symmetric depth-2 circuit (over ℝ) is a circuit of
the form 𝐵𝑇 ⋅ 𝐵 for some 𝐵 ∈ ℝ𝑚×𝑛. We prove the first part of
Theorem 3.7.1.

Theorem 3.7.5 (Reproving Theorem 1.3 of [KV21]) There
exists an explicit family of real 𝑛 × 𝑛 PSD matrices {𝐴𝑛}𝑛∈ℕ
such that every symmetric circuit computing 𝐴𝑛 (over ℝ) has
size Ω(𝑛2).

Proof. Denote [𝑥]𝑛 ∶= [1 𝑥 … 𝑥𝑛−1]. Denote 𝑘 ∶= ⌊𝑛/2⌋.
Define 𝑔𝑖(𝑥) ∶= (𝑥 + 1)𝑘 ⋅ 𝑥⌊(𝑖−1)/2⌋, for 𝑖 ∈ [𝑛]. Note that,
deg(𝑔𝑖) = 𝑘 + ⌊(𝑖 − 1)/2⌋ ≤ 𝑘 + ⌊(𝑛 − 1)/2⌋ = 𝑛 − 1. Define 𝑛 × 𝑛
matrix 𝑀𝑛 such that

𝑀𝑛 ⋅ [𝑥]𝑇𝑛 ∶=
⎡
⎢
⎢
⎢
⎣

𝑔1(𝑥)
𝑔2(𝑥)
⋮

𝑔𝑛(𝑥)

⎤
⎥
⎥
⎥
⎦

.

It is easy to see that 𝑔1, 𝑔3, 𝑔5, … are linearly independent
over ℝ. Therefore, rank(𝑀𝑛) = rankℝ(𝑔1(𝑥), … , 𝑔𝑛(𝑥)) = ⌊(𝑛 −
1)/2⌋ + 1 = ⌊(𝑛 + 1)/2⌋.

Define𝐴𝑛 ∶= 𝑀𝑇
𝑛 ⋅𝑀𝑛. By definition,𝐴𝑛 is PSD and rank(𝐴𝑛) =

⌊(𝑛 + 1)/2⌋. This follows from the classical fact that for any
matrix 𝐴 over ℝ, rank(𝐴𝑇𝐴) = rank(𝐴). Also 𝐴𝑛 is explicit
(entries are P-computable from definition). Now, assume
there is some𝑚×𝑛matrix 𝐵 such that𝐴𝑛 = 𝐵𝑇 ⋅𝐵. Then, denote
𝐵[𝑥]𝑛 ∶= [ℓ1 ℓ2 … ℓ𝑚]

𝑇
, where ℓ𝑖 ∈ ℝ[𝑥] are univariate

polynomials of degree at most 𝑛 − 1. Observe that number of
non-zero entries in 𝐵 is precisely ∑𝑖∈[𝑚] |ℓ𝑖|0. Thus, it suffices
to show that ∑𝑖∈[𝑚] |ℓ𝑖|0 ≥ Ω(𝑛2).

As rank(𝐵) = rank(𝐵𝑇𝐵) = rank(𝐴𝑛) = ⌊(𝑛 + 1)/2⌋, we must
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have 𝑚 ≥ ⌊(𝑛 + 1)/2⌋. Thus,

𝐴𝑛 = 𝐵𝑇 ⋅ 𝐵 ⟹ [𝑥]𝑛𝑀𝑇
𝑛 ⋅ 𝑀𝑛[𝑥]𝑇𝑛 = [𝑥]𝑛𝐵𝑇 ⋅ 𝐵[𝑥]𝑇𝑛

⟺
𝑛
∑
𝑖=1

𝑔𝑖(𝑥)2 =
𝑚
∑
𝑖=1

ℓ2𝑖

⟺ (𝑥 + 1)2𝑘 ⋅ 𝑓 (𝑥) =
𝑚
∑
𝑖=1

ℓ2𝑖 ,where 𝑓 (𝑥) ∶=
𝑛
∑
𝑖=1

𝑥2⋅⌊(𝑖−1)/2⌋

⟹
𝑚
∑
𝑖=1

|ℓ𝑖|0 ≥ (⌊(𝑛 + 1)/2⌋) ⋅ (𝑘 + 1) ≥ 𝑛2

4
.

The last line follows by Lemma 3.7.4.

3.7.2 Lower bound for invertible circuits over
ℝ: Proof of the second part of
Theorem 3.7.1

This subsection is devoted to proving the second part of The-
orem 3.7.1. This proof uses SOS lower bound for a bivari-
ate polynomial. Investigating sum of product of two poly-
nomials is similar to looking at the SOS; as, one can write
𝑓 ⋅ 𝑔 = ((𝑓 + 𝑔)/2)2 − ((𝑓 − 𝑔)/2)2. The summand fan-in at
most doubles. Thus, proving lower bound for sum of product
of two polynomials is ‘same’ as proving SOS lower bound.
The following lemma proves certain lower bound on sum
of sparsity when a specific bivariate polynomial is written
as sum of product of two polynomials (with certain restric-
tions).

Lemma 3.7.6 Let 𝑓𝑑 ∶= 𝑓𝑑,𝑡(𝑥, 𝑦) ∶= (∏𝑖∈[𝑑](𝑥 − 𝑖)(𝑦 − 𝑖)) ⋅
𝑝(𝑥, 𝑦), for some polynomial 𝑝 ∈ ℝ[𝑥, 𝑦] such that deg𝑥(𝑝) =
deg𝑦(𝑝) = 𝑡. Suppose, 𝑓𝑑 = ∑𝑖∈[𝑑+𝑡+1] ℓ𝑖(𝑥) ⋅ ℓ̃𝑖(𝑦), where ℓ𝑖, ℓ̃𝑖’s
are polynomials of degree at most 𝑑 + 𝑡; with the additional
property that ℓ̃1, … , ℓ̃𝑑+𝑡+1 are ℝ-linearly independent.

Then, ∑𝑑+𝑡+1
𝑖=1 |ℓ𝑖|0 ≥ 𝑚 ⋅ (𝑑 + 1), where 𝑚 is the number of

non-zero ℓ𝑖.

Proof. Suppose, 𝑔(𝑥) ∶= gcd(ℓ1, … , ℓ𝑑+𝑡+1). We claim that
∏𝑑

𝑖=1(𝑥 − 𝑖) ∣ 𝑔(𝑥). Note that, it suffices to prove the claim; as,
∏𝑑

𝑖=1(𝑥 − 𝑖) ∣ ℓ𝑖(𝑥) for each non-zero ℓ𝑖 implies |ℓ𝑖|0 ≥ 𝑑 + 1 by
Lemma 2.2.5.
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We prove the claim by contradiction. Suppose, there exists
𝑗 ∈ [𝑑] such that 𝑥 − 𝑗 ∤ 𝑔(𝑥), so 𝑔(𝑗) ≠ 0. Fix this 𝑗. Hence,
there exists 𝑖 such that ℓ𝑖(𝑗) ≠ 0.

In particular, 𝑣 ∶= [ℓ1(𝑗) ℓ2(𝑗) … ℓ𝑑+𝑡+1(𝑗)]
𝑇
≠ 0. Define

the (𝑑 + 𝑡 + 1) × (𝑑 + 𝑡 + 1) matrix 𝐴 as

[𝑦]𝑑+𝑡+1 ⋅ 𝐴 ∶= [ℓ̃1 ℓ̃2 … ℓ̃𝑑+𝑡+1] ,

where
[𝑦]𝑑+𝑡+1 ∶= [1 𝑦 … 𝑦𝑑+𝑡] .

Observe: rankℝ(ℓ̃1, … , ℓ̃𝑑+𝑡+1) = 𝑑 + 𝑡 + 1 ⟺ 𝐴 is invertible.
But,

𝑣 ≠ 0 and 𝐴 is invertible ⟹ 𝐴 ⋅ 𝑣 ≠ 0
⟹ [𝑦]𝑑+𝑡+1 ⋅ 𝐴𝑣 ≠ 0

⟹
𝑑+𝑡+1
∑
𝑖=1

ℓ̃𝑖(𝑦) ⋅ ℓ𝑖(𝑗) ≠ 0

⟹ 𝑓𝑑,𝑡(𝑗, 𝑦) ≠ 0

which is a contradiction! Therefore, ∏𝑑
𝑖=1(𝑥 − 𝑖) ∣ 𝑔(𝑥) and so

we are done.

Recall that an invertible depth-2 circuit computes a matrix 𝐴
such that whenever 𝐴 = 𝐵𝐶, either 𝐵 or 𝐶 has to be invertible.
We prove the second part of Theorem 3.7.1.

Theorem 3.7.7 (Reproving Theorem 1.5 of [KV21]) There
exists an explicit family of 𝑛 × 𝑛 PSD matrices {𝐴𝑛}𝑛∈ℕ such
that every invertible circuit over ℝ computing 𝐴𝑛 has size
Ω(𝑛2).

Proof. Denote 𝑘 ∶= ⌊𝑛/2⌋. Define 𝑔𝑖(𝑥) ∶= ∏𝑘
𝑖=1(𝑥 − 𝑖) ⋅

𝑥⌊(𝑖−1)/2⌋, for 𝑖 ∈ [𝑛]. Note that deg(𝑔𝑖) = 𝑘 + ⌊(𝑖 − 1)/2⌋ ≤
𝑘 + ⌊(𝑛 − 1)/2⌋ = 𝑛 − 1. Define the 𝑛 × 𝑛 matrix 𝑀𝑛 as

𝑀𝑛 ⋅ [𝑥]𝑇𝑛 ∶=
⎡
⎢
⎢
⎢
⎣

𝑔1(𝑥)
𝑔2(𝑥)
⋮

𝑔𝑛(𝑥)

⎤
⎥
⎥
⎥
⎦

.

It is easy to see that 𝑔1, 𝑔3, 𝑔5, … are linearly independent
over ℝ. Therefore, rank(𝑀𝑛) = rankℝ (𝑔1(𝑥), … , 𝑔𝑛(𝑥)) = ⌊(𝑛 −
1)/2⌋ + 1 = ⌊(𝑛 + 1)/2⌋.
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Define𝐴𝑛 ∶= 𝑀𝑇
𝑛 ⋅𝑀𝑛. By definition,𝐴𝑛 is PSD and rank(𝐴𝑛) =

⌊(𝑛 + 1)/2⌋. This follows from the classical fact that for any
matrix 𝐴, rank(𝐴𝑇𝐴) = rank(𝐴) over ℝ. Also 𝐴𝑛 is explicit
(entries are P-computable from definition).

Suppose, there exists 𝑛 × 𝑛 invertible matrix 𝐵 and some 𝑛 × 𝑛
matrix 𝐶 such that 𝐴𝑛 = 𝐵 ⋅ 𝐶 (the other case where 𝐶 is
invertible is similar). Note that, from classical property of
rank of matrices, rank(𝐶) ≥ rank(𝐴𝑛) = ⌊(𝑛 + 1)/2⌋. With the
usual notation of [𝑥]𝑛 and [𝑦]𝑛 used before, denote

[𝑦]𝑛 ⋅ 𝐵 ∶= [ ̃ℓ1(𝑦) ℓ̃2(𝑦) … ℓ̃𝑛(𝑦)] ,

and
𝐶 ⋅ [𝑥]𝑇𝑛 ∶= [ℓ1(𝑥) ℓ2(𝑥) … ℓ𝑛(𝑥)]

𝑇
.

Note that the degree of each ℓ𝑖, ℓ̃𝑖 can be at most 𝑛 − 1. Thus,

𝐴𝑛 = 𝐵 ⋅ 𝐶 ⟹ [𝑦]𝑛𝑀𝑇
𝑛 ⋅ 𝑀𝑛[𝑥]𝑇𝑛 = [𝑦]𝑛 ⋅ 𝐵 ⋅ 𝐶 ⋅ [𝑥]𝑇𝑛

⟺
𝑛
∑
𝑖=1

𝑔𝑖(𝑥) ⋅ 𝑔𝑖(𝑦) =
𝑛
∑
𝑖=1

ℓ𝑖(𝑥) ⋅ ℓ̃𝑖(𝑦)

⟺ (
𝑘

∏
𝑖=1

(𝑥 − 𝑖)(𝑦 − 𝑖)) ⋅ 𝑝(𝑥, 𝑦) =
𝑛
∑
𝑖=1

ℓ𝑖(𝑥) ⋅ ℓ̃𝑖(𝑦)

where 𝑝(𝑥, 𝑦) ∶= ∑𝑖∈[𝑛] (𝑥𝑦)⌊(𝑖−1)/2⌋. The LHS is actually of
the form 𝑓𝑘,⌊(𝑛−1)/2⌋(𝑥, 𝑦) as in Lemma 3.7.6. From the lower
bound on rank of 𝐶, we know that there must be at least
⌊(𝑛 + 1)/2⌋ many non-zero ℓ𝑖’s. Therefore, by Lemma 3.7.6, it
follows that

𝑛
∑
𝑖=1

|ℓ𝑖|0 ≥ ⌊(𝑛 + 1)/2⌋ ⋅ (𝑘 + 1) ≥ 𝑛2/4 .

Remark 3.7.1 The defined matrix 𝐴𝑛 in the above proof
also works for the Theorem 3.7.5. For that, one needs to
replace the polynomial ∏𝑑

𝑖=1(𝑥 − 𝑖) ⋅ 𝑓 (𝑥), in Lemma 3.7.4,
and prove similar lower bound on sum of sparsity. The
proof details of theorem remains almost unchanged until at
the very end, one has to use Descartes’ rule (Lemma 2.2.5)
instead of Corollary 3.7.3.
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3.8 𝜏-conjectures for Top-fanin 2
Hold True

In this section, we show that both SOS-𝜏-conjecture and
SOC-𝜏-conjecture hold true for top fanin-2.

3.8.1 SOS-𝜏-conjecture for sum of two squares

We show that when 𝑓 is a sum of two squares, number of real
roots is indeed linear in the support-sum.

Theorem 3.8.1 If 𝑓 = ∑𝑠
𝑖=1 𝑐𝑖 ⋅ 𝑓 2

𝑖 ∈ ℝ[𝑥], where 𝑠 ≤ 2, then
𝑓 can have at most 𝑂(∑𝑠

𝑖=1 |𝑓𝑖|0)-many real roots.

Proof. There are two cases to consider:

Case I (𝑠 = 1): In this case, 𝑓 = 𝑐1 ⋅ 𝑓 2
1 . Thus, the real roots of

𝑓 are precisely the roots of 𝑓1. However, by Descartes’ rule
(Lemma 2.2.5), 𝑓1 can have at most 2(|𝑓1|0−1)-many real roots.

Case II (𝑠 = 2): Without loss of generality, assume that 𝑐1
and 𝑐2 are of opposite signs ; otherwise, any real root of 𝑓
must also be roots of 𝑓1 and 𝑓2, and trivially we are done by
Lemma 2.2.5. When, the signs are opposite, note that, 𝑓 has
the following factoring over ℝ[𝑥]:

𝑓 = 𝑐1 ⋅ (𝑓1 + 𝛾 ⋅ 𝑓2) ⋅ (𝑓1 − 𝛾 ⋅ 𝑓2) , where 𝛾 ∶= √−𝑐2/𝑐1 ∈ ℝ .

It directly follows that |𝑓1±𝛾 ⋅𝑓2|0 ≤ |𝑓1|0+|𝛾 ⋅𝑓2|0 = |𝑓1|0+|𝑓2|0.
However, the real roots of 𝑓must also be real roots of 𝑓1±𝛾 ⋅𝑓2.
Each 𝑓1±𝛾 ⋅𝑓2 can have atmost 2(|𝑓1|0+|𝑓2|0)−2many real roots,
by Descartes’ rule (Lemma 2.2.5). Therefore, the conclusion
follows.

Remark 3.8.1 We could strengthen the above theorem
by replacing 𝑂(|⋃𝑖∈[2] supp(𝑓𝑖)|). Since, |supp(𝑓1 ± 𝛾 ⋅ 𝑓2)| ≤
|supp(𝑓1)⋃ supp(𝑓2)|, using Lemma 2.2.5, the conclusion
follows.
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3.8.2 SOC-𝜏-conjecture for sum of two cubes

We show that when 𝑓 is a sum of two squares, number of real
roots is indeed linear in the support-union.

Theorem 3.8.2 If 𝑓 = ∑𝑠
𝑖=1 𝑐𝑖 ⋅ 𝑓 3

𝑖 ∈ ℝ[𝑥] where 𝑠 ≤ 2, then
𝑓 can have at most 𝑂(|⋃𝑠

𝑖=1 supp(𝑓𝑖)|)-many real roots.

Proof. There are two cases to consider:

Case I (𝑠 = 1): In this case, 𝑓 = 𝑐1 ⋅ 𝑓 3
1 . Thus, the real roots of

𝑓 are precisely the roots of 𝑓1. However, by Descartes’ rule
(Lemma 2.2.5), 𝑓1 can have at most 2(|𝑓1|0−1)-many real roots.

Case II (𝑠 = 2): Note that, 𝑓 has the following factoring over
ℝ[𝑥]:

𝑓 = 𝑐1⋅(𝑓1+𝛾 ⋅𝑓2)⋅(𝑓 2
1 −𝛾 ⋅𝑓1𝑓2+𝛾 2⋅𝑓 2

2 ) , where 𝛾 ∶= 3√𝑐2/𝑐1 ∈ ℝ .

However,

𝑓 2
1 − 𝛾 ⋅ 𝑓1𝑓2 + 𝛾 2 ⋅ 𝑓 2

2 = (𝑓1 −
𝛾
2
⋅ 𝑓2)2 + (

3𝛾 2

4
) ⋅ 𝑓 2

2 ,

which has𝑂(|⋃2
𝑖=1 supp(𝑓𝑖)|)-many real roots by Theorem 3.8.1

(and its remark). Also 𝑓1+𝛾 ⋅𝑓2 has at most 𝑂(|⋃2
𝑖=1 supp(𝑓𝑖)|)-

many real roots by Descartes’ rule (Lemma 2.2.5). Moreover,
any real root of 𝑓 must also be real roots of either 𝑓1 + 𝛾 ⋅ 𝑓2 or
𝑓 2
1 − 𝛾 ⋅ 𝑓1𝑓2 + 𝛾 2 ⋅ 𝑓 2

2 . Therefore, the conclusion follows.

3.9 SOS-𝜏-conjecture to SOS Lower
Bound on (𝑥 + 1)𝑑

Lemma 3.9.1 If Conjecture 3.1.2 is true, then 𝑆ℂ(𝑓𝑑) ≥ Ω(𝑑),
where 𝑓𝑑 ∶= (𝑥 + 𝑎)𝑑, for any 0 ≠ 𝑎 ∈ ℝ.

Before proving the above, we establish an interesting lemma.
For 𝑓 ∈ ℂ[𝑥], we denote ℜ(𝑓 ) as the real part of 𝑓, and
ℑ(𝑓 ) as the imaginary part, i.e. 𝑓 = ℜ(𝑓 ) + 𝜄 ⋅ ℑ(𝑓 ). Note,
|ℜ(𝑓 )|0, |ℑ(𝑓 )|0 ≤ |𝑓 |0.
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Lemma 3.9.2 𝑆ℝ(ℜ(𝑓 )) ≤ 2 ⋅ 𝑆ℂ(𝑓 ), for any 𝑓 ∈ ℂ[𝑥].

Proof. Suppose, 𝑓 (𝑥) = ∑𝑠
𝑖=1 𝑓 2

𝑖 , for 𝑓𝑖 ∈ ℂ[𝑥] is a minimal
representation in SOS-model over ℂ (we ignore the constants
𝑐𝑖 as in Equation 3.1 as √𝑐𝑖 can be taken inside), i.e. 𝑆ℂ(𝑓 ) =
∑𝑠

𝑖=1 |𝑓𝑖|0. Note that

ℜ(𝑓 ) =
𝑠
∑
𝑖=1

ℜ(𝑓 2
𝑖 ) =

𝑠
∑
𝑖=1

ℜ(ℜ(𝑓𝑖) + 𝜄 ⋅ ℑ(𝑓𝑖))2

=
𝑠
∑
𝑖=1

(ℜ(𝑓𝑖)2 − ℑ(𝑓𝑖)2) .

The last expression implies that

𝑆ℝ(ℜ(𝑓 )) ≤
𝑠
∑
𝑖=1

|ℜ(𝑓𝑖)|0 +
𝑠
∑
𝑖=1

|ℑ(𝑓𝑖)|0 ≤
𝑠
∑
𝑖=1

2|𝑓𝑖|0 = 2⋅𝑆ℂ(𝑓 ) .

Proof of Lemma 3.9.1. It suffices to prove the bound for 𝑓𝑑 =
(𝑥 + 1)𝑑, as 𝑆ℂ((𝑥 + 𝑎)𝑑) = 𝑆ℂ((𝑥 + 1)𝑑) [just by replacing
𝑥 ↦ 𝑥/𝑎]. Consider the complex polynomial 𝑔𝑑(𝑥) ∶= 𝑓𝑑(𝜄𝑥)+
𝑓𝑑(−𝜄𝑥). Its degree is either 𝑑, if 𝑑 is even, or 𝑑 − 1, if it is odd.
The roots are of the form

𝜄 ⋅
1 − 𝜁
1 + 𝜁

,

where 𝜁 is 𝑑-th root of −1 (𝜁 ≠ 1). There are again either 𝑑 or
𝑑 − 1 such roots, depending on the parity of 𝑑. Further, they
are all distinct. Since |𝜁 | = 1, each root

𝜄 ⋅
1 − 𝜁
1 + 𝜁

= 𝜄 ⋅
(1 − 𝜁 )(1 + 𝜁)
(1 + 𝜁 )(1 + 𝜁)

= 𝜄 ⋅
𝜁 − 𝜁

|1 + 𝜁 |2
=

2ℑ(𝜁 )
|1 + 𝜁 |2

is real. Therefore, 𝑔𝑑(𝑥) must be a real polynomial with dis-
tinct real roots. Hence Conjecture 3.1.2 implies that 𝑆ℝ(𝑔𝑑) =
Ω(𝑑). Using Lemma 3.9.2, one can directly conclude that
𝑆ℂ(𝑔𝑑) = Ω(𝑑). It is straightforward to see that 𝑆ℂ(𝑓 ) remains
unchanged under the map 𝑥 ↦ 𝑐 ⋅ 𝑥, for any 𝑐 ≠ 0. Therefore,
in particular, 𝑆ℂ(𝑓𝑑(𝜄𝑥)) = 𝑆ℂ(𝑓𝑑(−𝜄𝑥)) = 𝑆ℂ(𝑓𝑑). Finally, we
must have
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10: These conjectures are inde-
pendent in the sense that we
know of no implication between
two of them.

Ω(𝑑) = 𝑆ℂ(𝑔𝑑) ≤ 𝑆ℂ(𝑓𝑑(𝜄𝑥)) + 𝑆ℂ(𝑓𝑑(−𝜄𝑥)) = 2 ⋅ 𝑆ℂ(𝑓𝑑) .

Hence, the conclusion follows.

3.10 Newton Polygon and Bivariate
SOS Lower Bound

In [Koi+15], Koiran proposed a 𝜏-conjecture for Newton poly-
gons of bivariate polynomials. Like the real 𝜏-conjecture, it
deals with sums of products of sparse polynomials and im-
plies that the permanent is hard. A common idea to all these
𝜏-conjectures is that “simple” arithmetic circuits should com-
pute only “simple” polynomials. In the original 𝜏-conjecture,
the simplicity of a polynomial is measured by the number of
its integer roots; in the real 𝜏-conjecture (or its counterpart in
SOS-, or, SOC-model), it is measured by the number of its real
roots; and in [Koi+15], by the number of edges of its Newton
polygon; for basic definitions see below 10.

Consider a bivariate polynomial 𝑓 ∈ 𝔽[𝑋 , 𝑌 ]. To each mono-
mial 𝑋 𝑖𝑌 𝑗 appearing in 𝑓 with a nonzero coefficient, we asso-
ciate a point with coordinate (𝑖, 𝑗) in the Euclidean plane. Let
Mon(𝑓 ) denotes this finite set of points. If 𝐴 is a set of points
in the plane, we denote by conv(𝐴) the convex hull of 𝐴. By
definition, the Newton polygon of 𝑓, denoted by Newt(𝑓 ), is
the convex hull of Mon(𝑓 ), i.e., Newt(𝑓 ) = conv(Mon(𝑓 )).
Note that Newt(𝑓 ) has at most 𝑡 edges if 𝑓 has 𝑡 monomials.

In this section, we use similar techniques to [Koi+15] (of
Newton polygon) to prove an interesting lower bound for a
bivariate polynomial in the sum-of-constant-power model;
see Theorem 3.10.4. Before proving that, we state some basics
to build the foundation of the proof. The following result is
well known in the literature.

Theorem3.10.1 [Ost75]Newt(𝑓 𝑔) = Newt(𝑓 )+Newt(𝑔) ∶=
{𝑝 + 𝑞 ∣ 𝑝 ∈ Newt(𝑓 ), 𝑞 ∈ Newt(𝑔)}.

From the above theorem, one can deduce that Newt(𝑓 2) =
2⋅Newt(𝑓 ). However, if 𝑆 is a convexly independent subset of
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2⋅Newt(𝑓 ), how large can 𝑆 be? [A set is called convexly inde-
pendent if its elements are exactly the vertices of its convex
hull.]

This will be crucial in the next section. Here is an important
theorem (which is optimal up to constant factors) regarding
the size of 𝑆; compare the bound with the trivial 𝑚𝑛.

Theorem 3.10.2 [Eis+08] Let 𝑃 and 𝑄 be two planar point
sets with |𝑃 | = 𝑚 and |𝑄| = 𝑛. Let S be a convexly independent
subset of the Minkowski sum 𝑃 + 𝑄. Then, we have |𝑆| ≤
𝑂(𝑚2/3𝑛2/3 + 𝑚 + 𝑛).

Corollary 3.10.3 Let 𝑃 be a planar point set with |𝑃 | = 𝑛.
Let 𝑆 be a convexly independent subset of 𝑟𝑃 (𝑟 is a constant).
Then, |𝑆| ≤ 𝑂(𝑛𝑟

log(4/3)
).

Proof. Let 𝑇 (𝑟) be the maximum size of convexly independent
subset of 𝑟𝑃. Thus, we must have 𝑇 (𝑟) ≤ 𝑂(𝑇 (𝑟/2)4/3) with
𝑇 (1) ≤ 𝑛. Thus, 𝑇 (𝑟) ≤ 𝑂(𝑛(4/3)

log 𝑟
) = 𝑂(𝑛𝑟

log(4/3)
).

Using convexity theory, we establish the lower bound of
Ω(𝑑1/𝑟

log(4/3)
) for the bivariate polynomial ∑𝑑

𝑖=0 𝑥 𝑖𝑦 𝑖
2
. This

polynomial was studied in [Koi+15].

Theorem3.10.4 For 𝑓 (𝑥, 𝑦) ∶= ∑𝑑
𝑖=0 𝑥 𝑖𝑦 𝑖

2
, we have 𝑆ℝ(𝑓 , 𝑟 , 𝑠) ≥

Ω(𝑑1/𝑟
log(4/3)

), for any 𝑠 ≥ 1 and constant 𝑟.

Proof sketch. Write 𝑓 (𝑥, 𝑦) = ∑𝑖∈[𝑠] ℓ𝑖(𝑥, 𝑦)𝑟. Let 𝑆𝑖 be the set
of points in the plane corresponding to the monomials of ℓ𝑟𝑖
which appear in 𝑓 with a nonzero coefficient. Since Newt(𝑓 )
is the convex hull of ∪𝑖conv(𝑆𝑖), it is enough to bound the
number of vertices of conv(𝑆𝑖).

Of course, the vertices of conv(𝑆𝑖) is a convexly independent
subset of Mon(ℓ𝑟𝑖) ⊆ 𝑟Mon(ℓ𝑖). Hence, by Corollary 3.10.3,

we get that conv(𝑆𝑖) has at most 𝑂(|ℓ𝑖|1)
𝑟 log(4/3) many vertices.

Thus, the convex hull of⋃𝑖 conv(𝑆𝑖) has atmost𝑂(∑𝑖 ||ℓ𝑖||𝑟
log(4/3)

)
vertices. On the other hand, as 𝑦 = 𝑥2 is a convex function,
Newt(𝑓 ) has 𝑑 + 1 many vertices. Therefore,

∑
𝑖
(|ℓ𝑖|1)

𝑟 log(4/3) ≥ 𝑑 + 1 ⟹ ∑
𝑖
|ℓ𝑖|1 ≥ Ω(𝑑1/𝑟

log(4/3)
) .
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By definition, we must have 𝑆ℝ(𝑓 , 𝑟 , 𝑠) ≥ Ω(𝑑1/𝑟
log(4/3)

), for any
𝑠 ≥ 1.

Remark 3.10.1 As log(4/3) ≈ 0.415 < 1, the above is a
better lower bound on 𝑆ℝ(⋅) than the trivial lower bound of
sp(𝑓 )1/𝑟 = (𝑑 + 1)1/𝑟.

3.11 Discussion

The findings in this chapter suggest that proving the “simple
looking” lower bounds (in this context, the lower bounds on
the size of the SOS representations) - is perhaps more difficult
than one might assume. Flipping the coin, it simply conveys
that proving an upper bound on the number of real roots, of
a polynomial, represented as the ‘simplest’ model is more
difficult, and has very fundamental consequences.

Moreover, an important ingredient of these results essentially
establish that a small algebraic circuit has a small SOS or
SOC representation. These results can be thought as a “fine-
grained” version of the famous chasm results [AV08; Gup+16].
It would be nice to know some more potential application of
these compact, small representations.

Finally, the idea behind “multivariate↔ univariate” is old, due
to Kronecker substitution. However, in this work, we used a
different map. Unfortunately, both of these transformations
are uni-directional, in the sense that the easiness in the multi-
variate setting translates to the univariate one; however, we
do not know whether the opposite direction is also true! We
conclude this chapter with the following meta-question.

Food for thought

Are there any interesting ‘explicit’ map which transforms
univariate polynomials tomultivariate ones uniquely, while
preserving the hardness in both the directions?
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“Everything we care about lies somewhere in the middle, where
pattern and randomness interlace.”

— James Gleick, The Information: A History, a Theory, a Flood.

Abstract. Polynomial Identity Testing (PIT) is a fundamen-
tal computational problem. The famous depth-4 reduction
result by Agrawal and Vinay [AV08], and its subsequent im-
provements have made PIT for depth-4 circuits an enticing
pursuit. A restricted depth-4 circuit computing a 𝑛-variate
degree-𝑑 polynomial of the form Σ𝑘

𝑖=1Π𝑗𝑔𝑖𝑗, where, deg(𝑔𝑖𝑗) ≤ 𝛿,
is called Σ[𝑘]ΠΣΠ[𝛿] circuit. On further restricting 𝑔𝑖𝑗 to be sum
of univariates we obtain Σ[𝑘]ΠΣ∧ circuits. The largely open,
special-cases of Σ[𝑘]ΠΣΠ[𝛿] for constant 𝑘 and 𝛿, and Σ[𝑘]ΠΣ∧
have been a source of many great ideas in the last two decades.
For e.g., depth-3 ideas of Dvir and Shpilka [DS07], Kayal
and Saxena [KS07], and Saxena and Seshadhri [SS11; SS12];
depth-4 ideas of Beecken, Mittmann and Saxena [BMS13],
Saha, Saxena and Saptharishi [SSS13], Forbes [For15], and
additionally, geometric Sylvester-Gallai ideas of Kayal and
Saraf [KS09], and Peleg and Shpilka [PS20; PS21] have been
quite diverse and rich in mathematics.

Very recently, a subexponential-time blackbox PIT algorithm
for constant-depth circuits was obtained via lower bound
breakthrough of Limaye, Srinivasan, Tavenas [LST21]. We
solve one of the basic underlying open problem in this work.

We give the first quasipolynomial-time blackbox PIT for both
Σ[𝑘]ΠΣ∧ and Σ[𝑘]ΠΣΠ[𝛿] circuits. A common technical ingredi-
ent for both of them is how the low algebraic rank, along with
the logarithmic derivative operator, modify the top Π-gate to
∧.
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4.1 Set-up: Bounded Depth-4 Circuits

In a series of surprising results, Agrawal and Vinay [AV08],
followed by Koiran [Koi12] and Tavenas [Tav15] showed that
any VP family (𝑓𝑛)𝑛 has depth-4 algebraic circuits (ΣΠΣΠ) of
size 𝑛𝑂(√𝑑𝑛 log 𝑑𝑛), where 𝑑𝑛 is the degree of 𝑑𝑛. For instance,
this result shows that if perm𝑛 has poly(𝑛) size circuits, then it
also has depth-4 circuits of size 𝑛𝑂(√𝑛 log 𝑛). This is potentially
useful for a lower bound proof: to show that the permanent
does not have polynomial size circuits, we “only” have to
show that it requires depth-4 circuits of size 𝑛𝜔(√𝑛 log 𝑛).

Further, efficient derandomization of PIT for just depth-4
ΣΠΣΠ circuits implies an exponential lower bound for general
circuits, and an efficient derandomization of PIT for general
circuits of poly-degree [AV08; AS09]. We briefly sketch the
proof.

Proposition 4.1.1 If there is a PIT algorithm for depth-4
circuit running in deterministic polynomial-time, then there is
a deterministic subexponential PIT algorithm for any general
circuit computing a low degree polynomial.

Proof sketch. Given any circuit of size 𝑠, we can convert it
to a depth-4 circuit of size 2𝑂(√𝑠 log 𝑠) = 2𝑜(𝑠). Further, this
conversion can be done in time 2𝑜(𝑠) as well. Therefore, a
polynomial-time PIT algorithm for depth-4 would yield a
2𝑜(𝑠) time algorithm for general circuits of size 𝑠 (and poly-
degree).

Due to Proposition 4.1.1, in the last two decades, there has
been an incredibly large number of results for ΣΠΣΠ-circuits
with diverse restrictions; e.g. ‘locally’ bounded independence,
bounded read/occur, bounded variables.

Our Bounded Depth-4 Models. In this chapter, we con-
sider two models.

1. The bounded sum of product of sum of univariate poly-
nomials Σ[𝑘]ΠΣ∧ (formally first studied in [SSS13]). These
circuits compute polynomials of the form

∑
𝑖∈[𝑘]

∏
𝑗
(𝑔𝑖𝑗1(𝑥1) + ⋯ + 𝑔𝑖𝑗𝑛(𝑥𝑛)) ,where 𝑔𝑖𝑗ℓ ∈ 𝔽[𝑥ℓ] .
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A well-known theorem in
incidence geometry, called the
Sylvester-Gallai (SG) theorem,
states that : if there are 𝑛 distinct
points on the real plane such
that, for every pair of distinct
points, the line through them
also contains a third point, then
they all lie on the same line.
Ankit Gupta [Gup14] proposed
a new line of SG theorems for
non-linear polynomials. And
this can be devised to give
PIT algorithms for Σ[𝑘]ΠΣΠ[𝛿]

circuits.

To see this, they defined SG-type
circuits which essentially means
if 𝐶 = ∑𝑖∈[𝑘] 𝑇𝑖, where 𝑇𝑖 ∈ ΠΣΠ[𝛿],
then ∀ 𝑖 ∈ [𝑘] ,⋂𝑗≠𝑖 𝑉 (𝑇𝑗) ⊆ 𝑉 (𝑇𝑖).
Here, 𝑉 (𝑓 ) denotes the variety,
the set of zeroes, of the polyno-
mial 𝑓.

In [Gup14], it was conjec-
tured that for SG-type circuits,
𝐶 = 0 implies small (constant)
transcendence degree, depending
on 𝑘, and 𝛿. Assuming the
conjecture, one can show
a polynomial-time PIT for
SG-type Σ[𝑘]ΠΣΠ[𝛿] circuits.
Further, non-SG-type circuits
already have a polynomial-time
PIT [Gup14; Guo21]. We remark
that in this work, we donot
go via this algebraic-gemetric
approach of solving bounded
depth-4 PITs.

2. The bounded sum of product of bounded degree polyno-
mials Σ[𝑘]ΠΣΠ[𝛿]; these circuits compute polynomials
which are of the form

∑
𝑖∈[𝑘]

∏
𝑗
𝑔𝑖𝑗(𝑥) , where deg(𝑔𝑖𝑗) ≤ 𝛿 .

We remark that even 𝛿 = 2, has been quite a challenging open
problem [KS16, Open Problem 2].

Circuit size. The size of the circuit could be defined as
follows: For circuits 𝑔𝑖 ∈ ΣΠ[𝛿]∗, respectively ∈ Σ∧, the size
of their product is simply the sum of the individual size (the
degree included):

size(𝑔1⋯𝑔𝑠) = ∑
𝑖∈[𝑠]

(sp(𝑔𝑖) + deg(𝑔𝑖)) .

Similarly, for 𝑇𝑖 ∈ ΠΣΠ[𝛿], respectively ΠΣ∧,size is defined
as size(∑𝑖 𝑇𝑖) = ∑𝑖 size(𝑇𝑖).

4.2 Our Results and Main Techniques

Throughout the chapter, we will work with 𝔽 = ℚ, though all
the results hold for the field of large characteristic.

Theorem 4.2.1 (Blackbox depth-4 PIT) Let 𝑘 and 𝛿 be arbi-
trary fixed positive integers. Then,

(a) There is a 𝑠𝑂(𝛿2 𝑘 log 𝑠)-time blackbox PIT algorithm for
Σ[𝑘]ΠΣΠ[𝛿] circuits of size 𝑠, over 𝔽.

(b) There is a 𝑠𝑂(𝑘 log log 𝑠)-time blackbox PIT algorithm for
Σ[𝑘]ΠΣ∧ circuits of size 𝑠, over 𝔽.

Remark 4.2.1 1. Our results are quasipolynomial-time
even up to 𝑘, 𝛿 = poly(log 𝑠).

2. Theorem 4.2.1 (b) is better than Theorem 4.2.1 (a),
because Σ∧Σ∧ has a faster algorithm known than
Σ∧ΣΠ[𝛿].

3. Even for Σ[3]ΠΣ∧ and Σ[3]ΠΣΠ[3] models, we leave the
poly-time blackbox question open! When 𝑘 = 3, 𝛿 = 2,

∗ ΣΠ[𝛿] circuits compute polynomials of the form 𝑔, where deg(𝑔) ≤ 𝛿.
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[PS20; PS21] showed a polynomial-time algorithm
for the same.

Comment 4.2.1
A recurring theme in the blackbox PIT research on depth-
3/depth-4 circuits has been that of rank. If we consider
a circuit 𝐶 = Σ[𝑘]ΠΣ = ∑𝑖∈[𝑘]∏𝑗 ℓ𝑖𝑗, where ℓ𝑖,𝑗 are linear
forms, then rank(𝐶) is defined to be the linear rank of the
set of forms {ℓ𝑖,𝑗}𝑖,𝑗, each viewed as a vector in 𝔽𝑛.

In [BMS13] the authors generalized this notion of rank for
depth-4 circuits as well, and more importantly, one that is
useful in blackbox PIT. It was via transcendence degree.
Further, it was established that the depth-4 circuits with
top-fanin 𝑘 = 2, after reducing it to the simplest minimal
form, must have the rank=1. Finally, using it, one can
give a polynomial-time blackbox PIT for Σ[2]ΠΣΠ[𝛿], even
when 𝛿 = 𝑂(√log 𝑠).

[Gup14] further generalized the approach of [BMS13], in
a more geometric way, as discussed in the margin note.
Moreover, the classification into SG-type and non-SG-
type circuits, along with efficient PIT for non-SG circuits,
in [Gup14], showed something “more” remarkable: it gives
polynomial-time PIT unconditionally for “most” Σ[𝑘]ΠΣΠ[𝛿]

circuits. By this we mean that if one fixes the parame-
ters 𝑘, 𝛿, and samples the 𝑔𝑖𝑗’s randomly over any large
enough subset of 𝔽, one can show that w.h.p., the circuit 𝐶
will not be an SG-type circuit!

q Jacobian hits again

In Theorem 4.2.1 we exploit the prowess of the Jacobian poly-
nomial, which was first introduced in the context of PIT
in [BMS13], and later explored in [Agr+16] to unify known
PIT algorithms and design new ones; for the basic definitions
and properties, we refer to Chapter 2.

Suppose, we want to test ∑𝑖∈[𝑘] 𝑇𝑖
?= 0, where 𝑇𝑖 ∈ ΠΣΠ[𝛿]

(respectively ΠΣ∧). We associate the Jacobian 𝐽 (𝑇1, … , 𝑇𝑟) to
captures the algebraic independence of, 𝑇1, … , 𝑇𝑟 assuming
this to be a transcendence basis of the 𝑇𝑖’s. We design a
variable reducing linear map Φ which preserves the algebraic
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1: These reductions are quite
powerful, also in the sense that
usually a Π gate to ∧ gate would
incur an exponential blowup in
the fanin, due to theWaring iden-
tity (Lemma 2.2.3); clearly we
cannot do that.

Independence of 𝑇1, … , 𝑇𝑟 and show that for any 𝐶:

𝐶(𝑇1, … , 𝑇𝑘) = 0 ⟺ 𝐶(Φ(𝑇1), … , Φ(𝑇𝑘)) = 0 .

Such a map is called ‘faithful’ [Agr+16]; see Definition 2.8.3.
The map Φ ultimately provides a hitting set for 𝑇1 +…+𝑇𝑘, as
we reduce to a PIT of a polynomial over ‘few’ (roughly equal
to 𝑘) variables, yielding a quasipolynomial-time algorithm.

Finding such an ‘explicit’ map Φ is very analytical as we use
logarithmic derivative, and its power series expansion, which
greatly transform the respective models. Both the proofs are
one-shot proofs. In both the cases, we essentially reduce the
respective models to the well-understood wedge models, that
have unbounded top-fanin1; yet PITs for these models are
known.

4.2.1 Prior works on related models

There have been numerous results on PIT for depth-3 circuits
with bounded top fanin (known as Σ[𝑘]ΠΣ-circuits). Dvir and
Shpilka [DS07] gave the first quasipolynomial-time determin-
istic whitebox algorithm for 𝑘 = 𝑂(1), using rank based meth-
ods, which finally lead Karnin and Shpilka [KS11] to design
an algorithm of the same complexity in the blackbox setting.
Kayal and Saxena [KS07] gave the first polynomial-time al-
gorithm of the same. Later, a series of works in [SS11; SS12;
SS13; Agr+16] generalized the model and gave 𝑛𝑂(𝑘)-time al-
gorithm when the algebraic rank of the product polynomials
are bounded.

There has also been some progress on PIT for restricted
classes of depth-4 circuits. A quasipolynomial-time blackbox
PIT algorithm for multilinear Σ[𝑘]ΠΣΠ-circuits was designed
in [Kar+13], which was further improved to a 𝑛𝑂(𝑘2)-time
deterministic algorithm in [SV18]. A quasipolynomial black-
box PIT was given in [BMS13; KS16] when the algebraic
rank of the irreducible factors in each multiplication gate
as well as the bottom fanin are bounded. Further, interest-
ing restrictions like sum of product of fewer variables, and
more structural restrictions have been exploited, see [FS13a;
ASS13; For15; Muk16; KS17]. Some progress has also been
made for bounded top-fanin and bottom-fanin depth-4 cir-
cuits via incidence geometry [Gup14; Shp20; PS20]. In fact,
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very recently, [PS21] gave a polynomial-time blackbox PIT
for Σ[3]ΠΣΠ[2]-circuits.

Model Time Ref.

Σ[𝑘]Π[𝑑]Σ poly(𝑠, 𝑑𝑘) [SS12]

Multilinear Σ[𝑘]ΠΣΠ poly(𝑠𝑂(𝑘2)) [SV18; Agr+16]

ΣΠΣΠ of bounded trdeg poly(𝑠trdeg) [BMS13]

Σ[𝑘]ΠΣΠ[𝑑] of bounded local trdeg QP(𝑠) [KS17]

Σ[3]ΠΣΠ[2] poly(𝑠, 𝑑) [PS21]

ΣΠΣΠ SUBEXP(𝑛) [LST21]

Whitebox Σ[𝑘]ΠΣ∧ 𝑠𝑂(𝑘 7𝑘) [DDS21a].

Σ[𝑘]ΠΣ∧ 𝑠𝑂(𝑘 log log 𝑠) This chapter.

Σ[𝑘]ΠΣΠ[𝛿] 𝑠𝑂(𝛿2 𝑘 log 𝑠) This chapter.

[LST21] breakthrough. In a breakthrough result by Li-
maye, Srinivasan and Tavenas [LST21], the first superpolyno-
mial lower bound for constant depth circuits was obtained.
Their lower bound result, together with the ‘hardness vs
randomness’ tradeoff result of [CKS18] gives the first deter-
ministic blackbox PIT algorithm for general depth-4 circuits
which runs in 𝑠𝑂(𝑛𝜖) for all real 𝜖 > 0. Their result is the
first subexponential-time PIT algorithm for depth-4 circuits.
Moreover, compared to their algorithm, our quasipolynomial-
time blackbox and polynomial-time whitebox algorithms are
significantly faster.

PIT in the border. Recently, with my coauthors Dwivedi
and Saxena, we generalized the DiDI-technique introduced
in [DDS21a], to solve ’border PIT’ of depth-4 circuits [DDS21b].
Specifically, we give a 𝑠𝑂(𝑘⋅7𝑘⋅log 𝑙𝑜𝑔𝑠) time and 𝑠𝑂(𝛿2⋅𝑘⋅7𝑘⋅log 𝑠)

time blackbox PIT algorithm for Σ[𝑘]ΠΣ∧ and, Σ[𝑘]ΠΣΠ[𝛿] re-
spectively. By definition, border classes capture exact com-
plexity classes, hence border PIT results seemingly subsumes
the results we present in this paper. However, the time com-
plexity of blackbox PIT algorithms has a way better depen-
dence on 𝑘 and 𝛿! Moreover, the Jacobian criteria seems to
not work in the border. We have not included these results
in this thesis.
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q Limitations of known techniques

People have studied depth-4 PIT only with extra restrictions,
mostly due to the limited applicability of the existing tech-
niques, as they were tailor-made for the specific models and
do not generalize. E.g. the previous methods handle 𝛿 = 1
(i.e. linear polynomials at the bottom) or 𝑘 = 2 (via factor-
ing, [SSS13]). While 𝑘 = 2 to 3, or 𝛿 = 1 to 2 (i.e. ‘linear’
to ‘quadratic’) already demands a qualitatively different ap-
proach.

Whitebox Σ[𝑘]ΠΣ∧ model generalizes the famous bounded
top fanin depth-3 circuits Σ[𝑘]ΠΣ of [KS07]; but their Chi-
nese Remaindering (CR) method, loses applicability and thus
fails to solve even a slightly more general model. The black-
box setting involved similar ‘certifying path’ ideas in [SS12]
which could be thought of as general CR. It comes up with
an ideal 𝐼 such that 𝑓 ≠ 0 mod 𝐼 and finally preserves it under
a constant-variate linear map. The preservation gets harder
(for both Σ[𝑘]ΠΣ∧ and Σ[𝑘]ΠΣΠ[𝛿]) due to the increased non-
linearity of the ideal 𝐼 generators. Intuitively, larger 𝛿 via
ideal-based routes, brings us to the Gröbner basis method
(which is doubly-exponential-time in 𝑛) [Vas04]. We know
that ideals even with 3-generators (analogously 𝑘 = 4) already
capture the whole ideal-membership problem [Sap21].

The algebraic-geometric approach to tackle Σ[𝑘]ΠΣΠ[𝛿] has
been explored in [BMS13; Gup14; Muk16; Guo21]. The fam-
ilies which satisfy a certain Sylvester–Gallai configuration
(called SG-circuits) is the harder case which is conjectured to
have constant transcendence degree [Gup14, Conj. 1]. Non-
SG circuits is the case where the nonzeroness-certifying-path
question reduces to radical-ideal non-membership questions
[GS20]. This is really a variety question where one could use
algebraic-geometry tools to design a poly-time blackbox PIT.
In fact, very recently, Guo [Guo21] gave a 𝑠𝛿

𝑘
-time PIT by

constructing explicit variety evasive subspace families. Un-
fortunately, this is not the case in the ideal non-membership;
this scenario makes it much harder to solve Σ[𝑘]ΠΣΠ[𝛿]. From
this viewpoint, radical-ideal-membership explains well why
the intuitive Σ[𝑘]ΠΣ methods do not extend to Σ[𝑘]ΠΣΠ[𝛿].

Interestingly, Forbes [For15] found a quasipolynomial-time
PIT for Σ∧ΣΠ[𝛿] using shifted-partial derivative techniques;
but it naively fails when one replaces the ∧-gate by Π (because
the ‘measure’ becomes too large). The duality trick of [Sax08]
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completely solves whitebox PIT for Σ∧Σ∧, by transforming it
to a read-once oblivious ABP (ROABP); but it is inapplicable
to our models with the top Π-gate (due to large Waring rank
and ROABP-width). A priori, our models are incomparable
to ROABP, and thus the famous PIT algorithms for ROABP
[FS13a; FSS14; GKS17] are not expected to help either.

Similarly, a naive application of the Jacobian and certifying
path technique from [Agr+16] fails for our models because
it is difficult to come up with a faithful map for constant-
variate reduction. Kumar and Saraf [KS16] crucially used
that the computed polynomial has low individual degree
(such that [DSY10] can be invoked), while in [KS17] they
exploit the low algebraic rank of the polynomials computed
below the top Π-gate. Neither of them hold in general for our
models. Very recently, Peleg and Shpilka [PS21] gave a poly-
time blackbox PIT for Σ[3]ΠΣΠ[2], via incidence geometry
(e.g. Edelstein-Kelly theorem involving ‘quadratic’ polyno-
mials), by solving [Gup14, Conj. 1] for 𝑘 = 3, 𝛿 = 2. The
method seems very strenuous to generalize even to ‘cubic’
polynomials (𝛿 = 3 = 𝑘).

PIT for other models. Blackbox PIT algorithms for many
restricted models are known. Egs. ROABP related models
[RS05; JQS10; Agr+15; GKS17; Gur+17; FSS14; And+18], log-
variate circuits [FGS18; BS21], and non-commutative models
[Gar+16; LMP19].

4.2.2 Some basic tools and notations

The analytic tools used in this chapter are inspired frompower
series, Wronskian (linear dependence) [KPT15, Theorem 7]
[Kay+15], Jacobian (algebraic dependence) [BMS13; Agr+16;
PSS18], and logarithmic derivative operator dlog 𝑧(𝑓 ).

We will be working with the division operator (e.g. R(𝑧),
over a certain ring R). However, the divisions do not come for
free as they require invertibility with respect to 𝑧 throughout
(again landing us in R[[𝑧]]. For circuit classes, 𝐶 and 𝐷, we
define class

𝒞/𝒟 ∶= {𝑓 /𝑔 ∣ 𝑓 ∈ 𝒞 ,𝒟 ∋ 𝑔 ≠ 0}.

Similarly 𝒞 ⋅𝒟 to denotes the class taking respective products.
Wewill also use rank, in the fraction field 𝔽(𝑥), which conveys
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the obvious meaning of linear rank.

4.3 PIT for Σ[𝑘]ΠΣΠ[𝛿] Circuits

We solve the PIT for a more general model than Σ[𝑘]ΠΣΠ[𝛿]

by solving the following problem.

Problem 4.3.1 Let {𝑇𝑖 | 𝑖 ∈ [𝑚]} beΠΣΠ[𝛿] circuits of (syntac-
tic) degree at most 𝑑 and size 𝑠. Let the transcendence degree
of 𝑇𝑖’s, trdeg𝔽(𝑇1, … , 𝑇𝑚) = 𝑘 ≪ 𝑠. Further, 𝐶(𝑥1, … , 𝑥𝑚) be a
circuit of (size+deg) < 𝑠′. Design a blackbox PIT algorithm
for 𝐶(𝑇1, … , 𝑇𝑚).

Trivially, Σ[𝑘]ΠΣΠ[𝛿] is a very special case of the above set-
ting.

Solution to Problem 4.3.1. Let T ∶= {𝑇1, … , 𝑇𝑚}. Let T𝑘 ∶=
{𝑇1, … , 𝑇𝑘} be a transcendence basis. For 𝑇𝑖 = ∏𝑗 𝑔𝑖𝑗, we denote
the set

𝐿(𝑇𝑖) ∶= {𝑔𝑖𝑗 ∣ 𝑗} .

We sketch the road-map of the solution below.

1. Construct a map Φ which is faithful (Lemma 2.8.3). To
do that, we –

▶ find an explicit homomorphismΨ ∶ 𝔽[𝑥] → 𝔽[𝑥, 𝑧]
such that Ψ(𝒥𝑥(T)) is of a ‘nice’ form (product of
small ΠΣΠ[𝛿] and Σ∧ΣΠ[𝛿] circuits),

▶ fix 𝑥 suitably, in the image, to get a composed map
Ψ′ ∶ 𝔽[𝑥] ⟶ 𝔽[𝑧] such that

rank𝔽(𝑥)𝒥𝑥(T) = rank𝔽(𝑧)Ψ′(𝒥𝑥(T)) ,

▶ extend this map to Φ ∶ 𝔽[𝑥] ⟶ 𝔽[𝑧, 𝑦, 𝑡] such that

Φ ∶ 𝑥𝑖 ↦ (
𝑘
∑
𝑗=1

𝑦𝑗𝑡 𝑖𝑗) + Ψ′(𝑥𝑖) .

2. We show that the map Φ can be efficiently constructed
using a scaling and shifting map Ψ, which is eventually
fixed by the hitting set 𝐻 ′, of a polynomial size Σ∧ΣΠ[𝛿]

circuit, which defines Ψ′.
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3. Overall, Φ(𝑓 ) is a 𝑘 + 2-variate polynomial. It can be
shown that 𝑓 ≡ 0 ⟺ Φ(𝑓 ) ≡ 0. And, for Φ(𝑓 ), a
trivial hitting set exists.

Wlog, 𝒥𝑥(T) is full rank with respect to the variable set 𝑥𝑘 =
(𝑥1, … , 𝑥𝑘). Thus, by assumption, 𝐽𝑥𝑘(T𝑘) ≠ 0 (for notation,
see Chapter 2).

Recall, we want to construct a Ψ such that Ψ(𝐽𝑥𝑘(T𝑘)) has an
‘easier’ PIT. We have the following identity (see Lemma 2.8.4)
where 𝑇𝑖 = ∏𝑗 𝑔𝑖𝑗:

𝐽𝑥𝑘(T𝑘) = ∑
𝑔1∈𝐿(𝑇1),…,𝑔𝑘∈𝐿(𝑇𝑘)

(
𝑇1…𝑇𝑘
𝑔1…𝑔𝑘

) ⋅ 𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘) . (4.1)

q The homomorphism Ψ
To ensure the invertibility of all 𝑔 ∈ ⋃𝑖 𝐿(𝑇𝑖), consider

ℎ ∶= ∏
𝑖∈[𝑘]

∏
𝑔∈𝐿(𝑇𝑖)

𝑔 = ∏
𝑖∈[ℓ]

𝑔 ,

where 𝑔 ∈ ⋃𝑖 𝐿(𝑇𝑖), and ℓ ≤ 𝑘 ⋅𝑠. Note that, deg(ℎ) ≤ 𝑑 ⋅𝑘 ⋅𝑠, and
ℎ is computable by a ΠΣΠ circuit of size 𝑂(𝑠). Theorem 2.7.5
gives the relevant polynomial-time hitting setℋ ⊆ 𝔽𝑛, which
contains an evaluation point 𝑎 = (𝑎1, … , 𝑎𝑛), such that, ℎ(𝑎) ≠
0 implying 𝑔(𝑎) ≠ 0, for all 𝑔 ∈ ⋃𝑖 𝐿(𝑇𝑖).

Since, we are in the blackbox setting, we do not have individ-
ual access of 𝑔, to verify for the correct 𝑎. Thus, we try out
all 𝑎 ∈ ℋ, to see whichever works. If the input polynomial 𝑓
is non-zero, then one such 𝑎 must exist. This search adds a
multiplicative blowup of poly(𝑠), since the size of ℋ is poly(𝑠).

Fix an 𝑎 = (𝑎1, ⋯ , 𝑎𝑛) ∈ ℋ and define Ψ ∶ 𝔽[𝑥] → 𝔽[𝑥, 𝑧] as

Ψ ∶ 𝑥𝑖 ↦ 𝑧 ⋅ 𝑥𝑖 + 𝑎𝑖 .

Let us denote the ring R[𝑥], where R ∶= 𝔽[𝑧]/⟨𝑧𝐷⟩, and 𝐷 ∶=
𝑘 ⋅ (𝑑 − 1) + 1. Being 1-1, Ψ is clearly a non-zero preserving
map. Moreover, we claim the following.

Claim 4.3.1 𝐽𝑥𝑘(T𝑘) = 0 ⟺ Ψ(𝐽𝑥𝑘(T𝑘)) = 0, in R[𝑥].

Proof. As deg(𝑇𝑖) ≤ 𝑑, each entry of the matrix can be of
degree at most 𝑑 −1; therefore deg(𝐽𝑥𝑘(T𝑘)) ≤ 𝑘(𝑑 −1) = 𝐷−1.
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Thus, deg𝑧(Ψ(𝐽𝑥𝑘(T𝑘))) < 𝐷. Hence, the conclusion.

Equation 4.1 implies that

Ψ(𝐽𝑥𝑘(T𝑘)) = Ψ(𝑇1⋯𝑇𝑘) ⋅ ∑
𝑔1∈𝐿(𝑇1),…,𝑔𝑘∈𝐿(𝑇𝑘)

Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘))
Ψ(𝑔1…𝑔𝑘)

.

(4.2)

As 𝑇𝑖 has product fanin 𝑠, the top-fanin in the sum in Equa-
tion 4.2 can be at most 𝑠𝑘. Then define,

̃𝐹 ∶= ∑
𝑔1∈𝐿(𝑇1),…,𝑔𝑘∈𝐿(𝑇𝑘)

Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘))
Ψ(𝑔1…𝑔𝑘)

, in R[𝑥]. (4.3)

Some immediate questions are:

1. Why is ̃𝐹 well-defined?

2. How does ̃𝐹 help in the whole scenario, since, it may
seem that we are working with the partial information
of Ψ(𝐽𝑥𝑘(T𝑘)), in Equation 4.2? See Claim 4.3.2.

We discuss the above issues below.

Well-definability of ̃𝐹. Note that,

Ψ(𝑔𝑖) ≡ Ψ1(𝑔𝑖) mod 𝑧 ≠ 0 ⟹ 1
Ψ(𝑔1⋯𝑔𝑘)

∈ 𝔽[[𝑥, 𝑧]] .

Thus, RHS is an element in 𝔽[[𝑥, 𝑧]], and taking mod 𝑧𝐷, it
is in R[𝑥]. We remark that instead of minimally reducing
mod 𝑧𝐷, we will work with an 𝐹 ∈ 𝔽[𝑧, 𝑥] such that 𝐹 = ̃𝐹
in the ring R[𝑥]. Further, we ensure that the degree of 𝑧
is polynomially bounded. Moreover, the following claim is
trivial.

Claim 4.3.2 Over R[𝑥], Ψ(𝐽𝑥𝑘(T𝑘)) = 0 ⟺ 𝐹 = 0.

Proof sketch. This follows from the invertibility of Ψ(𝑇1⋯𝑇𝑘)
in 𝑅[𝑥].

q Size bound for circuit size of 𝐹
Next, Claim 4.3.3 bounds the size of 𝐹.
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Claim 4.3.3 (Main size bound) 𝐹 ∈ R[𝑥] has Σ∧ΣΠ[𝛿]-circuit
of size (𝑠3𝛿)𝑂(𝑘).

The proof studies the two parts of Equation 4.3—

1. The numerator Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘)) has 𝑂(3𝛿2𝑘𝑘!𝑘𝑠) size Σ∧
ΣΠ[𝛿−1]-circuit (see Lemma 4.3.1), and

2. 1/Ψ(𝑔1⋯𝑔𝑘), for 𝑔𝑖 ∈ 𝐿(𝑇𝑖) has (𝑠3𝛿)𝑂(𝑘) size Σ∧ΣΠ[𝛿]-
circuit; both in R[𝑥] (see Lemma 4.3.2).

We need the following two claims to prove the numerator
size bound.

Claim 4.3.4 Let 𝑔𝑖 ∈ 𝐿(𝑇𝑖), where 𝑇𝑖 ∈ ΠΣΠ[𝛿] of size at-
most 𝑠, then the polynomial 𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘) is computable by
Σ[𝑘!]Π[𝑘]ΣΠ[𝛿−1] of size 𝑂(𝑘! 𝑘𝑠).

proof-sketch. Each entry of the matrix has a degree at most
𝛿 −1. Trivial expansion gives 𝑘! top-fanin where each product
(of fanin 𝑘) has size ∑𝑖 size(𝑔𝑖). As, size(𝑇𝑖) ≤ 𝑠, trivially each
size(𝑔𝑖) ≤ 𝑠. Therefore, the total size is 𝑘! ⋅ ∑𝑖 size(𝑔𝑖) =
𝑂(𝑘! 𝑘𝑠).

Claim 4.3.5 Let 𝑔 ∈ ΣΠ[𝛿], then, Ψ(𝑔) ∈ ΣΠ[𝛿] of size
3𝛿 ⋅ size(𝑔) (for 𝑛 ≫ 𝛿).

Proof. Since, ∑𝑖 𝑒𝑖 ≤ 𝛿, each monomial 𝑥𝑒 of degree 𝛿, can
produce

∏
𝑖
(𝑒𝑖 + 1) ≤ (

∑𝑖 𝑒𝑖 + 𝑛
𝑛

)
𝑛
≤ (𝛿

𝑛
+ 1)𝑛

many monomials, by AM-GM inequality. As 𝛿/𝑛 → 0, we
have (1 + 𝛿/𝑛)𝑛 → 𝑒𝛿. Since, 𝑒 < 3, the upper bound follows.

Lemma 4.3.1 (Numerator size) Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘)) can be com-
puted by Σ∧ΣΠ[𝛿−1] circuits of size 𝑂(3𝛿 2𝑘𝑘 𝑘!𝑠) =∶ 𝑠2.

Proof. In Claim 4.3.4, we showed that 𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘) can be
computed by a Σ[𝑘!]ΠΣΠ[𝛿−1] circuit of size 𝑂(𝑘!𝑘𝑠). Moreover,
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for a 𝑔 ∈ ΣΠ[𝛿−1], we have Ψ(𝑔) ∈ ΣΠ[𝛿−1] of size at most
3𝛿 ⋅ size(𝑔), in R[𝑥] due to Claim 4.3.5).

Combining these, one concludes that

Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘)) ∈ Σ[𝑘!]Π[𝑘]ΣΠ[𝛿−1]

of size 𝑂(3𝛿 𝑘!𝑘𝑠). We convert the Π-gate to ∧ gate using War-
ing identity (Lemma 2.2.3) which blowsup the size by a mul-
tiple of 2𝑘−1. Thus, Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘)) ∈ Σ ∧ ΣΠ[𝛿−1], of size
𝑂(3𝛿 2𝑘𝑘 𝑘!𝑠).

In the following lemma, using power series expansion of
expressions like 1/(1 − 𝑎 ⋅ 𝑧), we conclude that 1/Ψ(𝑔) has a
small Σ∧ΣΠ[𝛿]-circuit, which would further imply the same
for 1/Ψ(𝑔1⋯𝑔𝑘).

Lemma 4.3.2 (Denominator size) Let 𝑔𝑖 ∈ 𝐿(𝑇𝑖). Then,
1/Ψ(𝑔1⋯𝑔𝑘) can be computed by a Σ∧ΣΠ[𝛿]-circuit of size
𝑠1 ∶= (𝑠3𝛿)𝑂(𝑘), in R[𝑥].

Proof. Let 𝑔 ∈ 𝐿(𝑇𝑖) for some 𝑖. Assume, Ψ(𝑔) = 𝐴 − 𝑧 ⋅ 𝐵, for
some 𝐴 ∈ 𝔽 and 𝐵 ∈ R[𝑥] of degree 𝛿, with size(𝐵) ≤ 3𝛿 ⋅ 𝑠,
from Claim 4.3.5. Note that, in R[𝑥],

1
Ψ(𝑔)

= 1
𝐴(1 − 𝐵

𝐴 ⋅ 𝑧)
= 1

𝐴
⋅
𝐷−1
∑
𝑖=0

( 𝐵
𝐴
)
𝑖
⋅ 𝑧𝑖 . (4.4)

As, size(𝐵𝑖) has a trivial ∧ΣΠ[𝛿]-circuit (over R[𝑥]) of size ≤
3𝛿 ⋅ 𝑠 + 𝑖; summing over 𝑖 ∈ [𝐷 − 1], the overall size is at most
𝐷 ⋅ 3𝛿 ⋅ 𝑠 + 𝑂(𝐷2). As 𝐷 < 𝑘 ⋅ 𝑑, we conclude that 1/Ψ(𝑔) has
Σ∧ΣΠ[𝛿] of size poly(𝑠 ⋅ 𝑘 ⋅ 𝑑3𝛿), in R[𝑥]. Multiplying 𝑘-many
such products directly gives an upper bound of (𝑠 ⋅ 3𝛿)𝑂(𝑘),
using Lemma 2.6.10 (basically, waring identity).

Proof of Claim 4.3.3. Combining Lemmas 4.3.1-4.3.2, observe
that Ψ(𝐽𝑥𝑘(⋅))/Ψ(⋅) has Σ ∧ ΣΠ[𝛿]-circuit of size at most (𝑠1 ⋅
𝑠2)2 = (𝑠 ⋅ 3𝛿)𝑂(𝑘), in R[𝑥], using Lemma 2.6.10. Summing up at
most 𝑠𝑘 many terms (by definition of 𝐹), the size still remains
(𝑠 ⋅ 3𝛿)𝑂(𝑘).

Finally, we construct the hitting set 𝐻 ′, as follows.
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The hitting set 𝐻 ′. By 𝐽𝑥𝑘(T𝑘) ≠ 0, and Claims 4.3.1-4.3.2,
we have 𝐹 ≠ 0, in R[𝑥]. We want to find 𝐻 ′ ⊆ 𝔽𝑛, such that

Ψ(𝐽𝑥𝑘(T𝑘))|𝑥=𝑎 ≠ 0 ,

for some 𝑎 ∈ 𝐻 ′, which will ensure the rank-preservation.
Since, Claim 4.3.3 shows that 𝐹 has 𝑠𝑂(𝛿𝑘) size Σ∧ΣΠ[𝛿]-circuit
in R[𝑥], by Theorem 2.7.8, it also immediately gives the hitting
set 𝐻 ′ in time 𝑠𝑂(𝛿2𝑘 log 𝑠).

We also require the syntactic degrees, not to blowup much.
The next paragraph is dedicated to argue that this is indeed
the case.

Degree bound. As, syntactic degree of 𝑇𝑖 are bounded by
𝑑, and Ψ maintain deg𝑥 = deg𝑧, we must have

deg𝑧(Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘)) = deg𝑥(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘)) ≤ 𝐷 − 1 .

Note that, Lemma 4.3.1 actually works in 𝔽[𝑥, 𝑧] and thus
there is no additional degree-blow up (in 𝑧). However, there
is some degree blowup in Lemma 4.3.2, due to Equation 4.4.

Note that Equation 4.4 shows that in R[𝑥],

1
Ψ(𝑔)

= ( 1
𝐴𝐷) ⋅ (

𝐷−1
∑
𝑖=0

𝐴𝐷−1−𝑖𝑧𝑖 ⋅ 𝐵𝑖) =∶
𝑝(𝑥, 𝑧)

𝑞
,

where 𝑞 = 𝐴𝐷. We think of 𝑝 ∈ 𝔽[𝑥, 𝑧] and 𝑞 ∈ 𝔽. Note,
deg𝑧(Ψ(𝑔)) ≤ 𝛿 implies deg𝑧(𝑝) ≤ deg𝑧((𝐵 𝑧)

𝐷−1) ≤ 𝛿 ⋅ (𝐷 − 1).

Finally, denote 1/Ψ(𝑔1⋯𝑔𝑘) =∶ 𝑃𝑔1,…,𝑔𝑘/𝑄𝑔1,…,𝑔𝑘 , in R[𝑥]. This
is just multiplying 𝑘-many (𝑝/𝑞)’s; implying a degree blowup
by a multiple of 𝑘. In particular – deg𝑧(𝑃(⋅)) ≤ 𝛿 ⋅ 𝑘 ⋅ (𝐷 − 1)
Thus, in Equation 4.3, summing up 𝑠𝑘-many terms gives an
expression (over R[𝑥]):

𝐹 = ∑
𝑔1∈𝐿(𝑇1),…,𝑔𝑘∈𝐿(𝑇𝑘)

Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘))⋅(
𝑃𝑔1,…,𝑔𝑘
𝑄𝑔1,…,𝑔𝑘

) =∶
𝑃(𝑥, 𝑧)

𝑄
.

Verify that 𝑄 ∈ 𝔽. The degree of 𝑧 also remains bounded by

max
𝑔𝑖∈𝐿(𝑇𝑖),𝑖∈[𝑘]

deg𝑧(𝑃𝑔1,…,𝑔𝑘) + 𝛿𝑘 ≤ poly(𝑠).
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Using the degree bounds, we finally have 𝑃 ∈ 𝔽[𝑥, 𝑧] as a
Σ∧ΣΠ[𝛿]-circuit (over 𝔽(𝑧)) of size

𝑛𝑂(𝛿) (𝑠3𝛿)𝑂(𝑘) = 3𝑂(𝛿𝑘)𝑠𝑂(𝑘+𝛿) =∶ 𝑠3 .

q Final algorithm

We know that

𝐶(𝑇1, … , 𝑇𝑚) = 0 ⟺ 𝐸 ∶= Φ(𝐶(𝑇1, … , 𝑇𝑚)) = 0.

We wanted to construct a set 𝐻 ′ ⊆ 𝔽𝑛, such that the action
𝑃(𝐻 ′, 𝑧) ≠ 0. By previous discussion and using [For15] (The-
orem 2.7.8), we conclude that it has 𝑠𝑂(𝛿 log 𝑠3) = 𝑠𝑂(𝛿2𝑘 log 𝑠)

size hitting set which is constructible in a similar time.

Since, 𝐻 ′ can be constructed in 𝑠𝑂(𝛿2 𝑘 log 𝑠)-time, it is trivial
to find a hitting set for 𝐸|𝐻 ′ (which is just a 𝑘 + 2-variate
polynomial with the aforementioned degree bounds). Hence,
the construction of Φ follows, making Φ(𝑓 ), a (𝑘 + 2)-variate
polynomial. Finally, by the obvious degree bounds of 𝑦, 𝑧, 𝑡
from the definition of Φ, we get the blackbox PIT algorithm
with time-complexity 𝑠′𝑂(𝑘) ⋅ 𝑠𝑂(𝛿2𝑘 log 𝑠) time.

In particular, we get the blackbox PIT algorithm with time-
complexity 𝑠𝑂(𝛿2𝑘 log 𝑠); finishing Theorem 4.2.1 (a).

Remark 4.3.1 1. As Jacobian Criterion (Theorem 2.8.2)
holds when the characteristic is > 𝑑 trdeg, it is easy to
conclude that our theorem holds for all fields of char
> 𝑑𝑘.

2. The above proof gives an efficient reduction from
blackbox PIT for Σ[𝑘]ΠΣΠ[𝛿] circuits to Σ∧ΣΠ[𝛿] cir-
cuits. In particular, a poly-time hitting set for Σ∧ΣΠ[𝛿]

circuits would put PIT for Σ[𝑘]ΠΣΠ[𝛿] in P.

3. An alternative proof based on the DiDI-technique, in-
troduced in the same paper [DDS21a] directly gives
a blackbox algorithm, but the complexity is exponen-
tially worse (in terms of 𝑘 in the exponent) for its
recursive blowups.
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4.4 PIT for Σ[𝑘]ΠΣ∧ Circuits

The proof of Theorem 4.2.1(b) is similar to the one we dis-
cussed in section 4.3. Here we sketch the proof, stating some
relevant changes. Similar to Theorem 4.2.1(a), we generalize
this theorem and prove for a much bigger class of polynomi-
als.

Problem 4.4.1 Let {𝑇𝑖 | 𝑖 ∈ [𝑚]} beΠΣ∧ circuits of (syntactic)
degree at most 𝑑 and size 𝑠. Let the transcendence degree
of 𝑇𝑖’s, trdeg𝔽(𝑇1, … , 𝑇𝑚) =∶ 𝑘 ≪ 𝑠. Further, 𝐶(𝑥1, … , 𝑥𝑚)
be a circuit of size + degree < 𝑠′. Design a blackbox PIT
algorithm for 𝐶(𝑇1, … , 𝑇𝑚).

It is trivial to see that Σ[𝑘]ΠΣ∧ is a very special case of the
above settings. We will use the same idea (& notation) as in
Theorem 4.2.1(a), using the Jacobian technique. Themain idea
is to come up with Ψ map, and correspondingly the hitting
set 𝐻 ′. If 𝑔 ∈ 𝐿(𝑇𝑖), then size(𝑔) ≤ 𝑂(𝑑𝑛). The 𝐷 (and hence
𝑅[𝑥]) remains as before. Claims 4.3.1-4.3.2 hold similarly. We
will construct the hitting set 𝐻 ′ by showing that 𝐹 has a small
Σ∧Σ∧ circuit in 𝑅[𝑥].

Note that, Claim 4.3.4 remains the same for Σ∧Σ∧ (implying
the same size blowup). However, Claim 4.3.5, the size blowup
is 𝑂(𝑑 size(𝑔)), because each monomial 𝑥𝑒 can only produce
𝑑 + 1 many monomials. Therefore, similar to Lemma 4.3.2,
one can show that Ψ(𝐽𝑥𝑘(𝑔1, … , 𝑔𝑘)) ∈ Σ∧Σ∧ , of size 𝑂(2𝑘𝑘!𝑘𝑑𝑠).
Similarly, the size in Lemma 4.3.1 can be replaced by 𝑠𝑂(𝑘).
Therefore, we get (similar to Claim 4.3.3):

Claim 4.4.1 𝐹 ∈ 𝑅[𝑥] has Σ∧Σ∧ -circuit of size 𝑠𝑂(𝑘).

Next, the degree bound also remains the same. Following the
same footsteps, it is not hard to see that while degree bound
on 𝑧 remains poly(𝑘𝑠𝑑). Therefore, 𝑃 ∈ 𝔽[𝑥, 𝑧] has Σ∧Σ∧ -circuit
of size 𝑠𝑂(𝑘).

We want to construct a set 𝐻 ′ ⊆ 𝔽𝑛 such that the action
𝑃(𝐻 ′, 𝑧) ≠ 0. By Lemma 2.7.9, we conclude that it has 𝑠𝑂(𝑘 log log 𝑠)

size hitting set which is constructible in a similar time. Hence,
the construction of map Φ and the theorem follows (from 𝑧-
degree bound).
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Solution to Problem 4.4.1. We know that

𝐶(𝑇1, … , 𝑇𝑚) = 0 ⟺ 𝐸 ∶= Φ(𝐶(𝑇1, … , 𝑇𝑚)) = 0.

Since, 𝐻 ′ can be constructed in 𝑠𝑂(𝑘 log log 𝑠) time, it is trivial
to find the hitting set for 𝐸|𝐻 ′ (which is just a 𝑘 + 2-variate
polynomial with the aforementioned degree bounds). The
final hitting set for 𝐸 can be constructed in 𝑠′𝑂(𝑘) ⋅ 𝑠𝑂(𝑘 log log 𝑠)

time.

4.5 Discussion

At hindsight, the Jacobian criterion did the magic for bounded
depth-4 circuits; however, the inverse power series identity
played a crucial role to convert Π-gate to ∧. Unfortunately, it
is not clear what happens when we work with the inverse of a
general sparse polynomial (or its shift): 1

ΣΠ(𝑥+𝑎) . We conclude
this chapter by asking the following related open question.

Rational identity testing for sum-of-inverse-of-sparse

Design an efficient PIT for rational functions of the form
Σ (1/Σ ∧ Σ) or Σ (1/ΣΠ) (for unbounded top-fanin).
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“ To make progress, we have to constantly go back to the facts,
acknowledge our errors, and move.”

— Abhijit Banerjee, Good Economics for Hard Times.

We investigate the significance of roots and non-roots in al-
gebraic complexity (Q2, Q4 and Q5). Chapter 3 establishes
that studying the number of real roots of univariate polyno-
mials for sum-of-squares representation (respectively cubes)
is fecund, and leads to strong lower bound results. While,
Chapter 4 demonstrates that algebraic dependence with its
inherent analytic nature can lead to efficient derandomiza-
tion algorithms. Both the chapters leave scope for future
directions. These are some obvious steps to take towards
advancing the current state-of-the-art.

5.1 𝜏-conjecture and SOS Lower
Bounds

We showed that an SOC-hard family will lead to complete de-
randomization of PIT. This immediately raises the following
question.

Open Problem 3.1

Does the existence of an SOS-hard family solve PIT com-
pletely?

The current proof technique fails to reduce from cubes to
squares. Basically, in the proof of Theorem 3.4.2, the main
goal was to devise an amply hard polynomial with a constant
number of variables only. Even if we are able to get an optimal
SOS decomposition of 𝑑/2 with polynomial blowup in the
top-fanin, the current transformations would eventually lead
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to the support-union size to be (𝑘+𝑘𝑛/2𝑘 ), via naive monomial
counting. It is not hard to show that for a constant 𝑘 ≥ 3,

(
𝑘 + 𝑘𝑛/2

𝑘
) ≥ (𝑛 + 1)𝑘 > 𝑑 .

To prove this, note that, (𝑘+𝑘𝑛/2𝑘 ) = (1+𝑛/2)⋅(𝑘+𝑘𝑛/2−1𝑘−1 ) > 2(1+
𝑛/2) ⋅ ((𝑘−1)⋅(𝑛/2+1)𝑘−1 ). Here, we used the fact that (𝑘+𝑘𝑛/2−1𝑘−1 ) >
2 ⋅ ((𝑘−1)⋅(𝑛/2+1)𝑘−1 ), for large enough 𝑛, and constant 𝑘 ≥ 3. In-
ductively, the rest follows.

So, there could be two approaches to the above problem –

1. either one needs to better understand the decomposi-
tion, and characterize all 𝑘𝑛/2-degree monomials that
appear, to show a better bound (than the current naive
monomial-counting), or,

2. one has to come up with an entirely different lifting-
map.

In either case, this appears to be intriguingly challenging. The
other related question is to show some concrete lower bound
on the support-sum for the sum-of-constantly-many-squares.
In particular, the following question seems to be tractable.

Open Problem 3.2

Come up with an explicit polynomial 𝑓 such that 𝑆(𝑓 ) =
Θ(𝑑), when the SOS-representation is restricted to the top-
fanin 𝑠 = 3.

Spurred by the intriguing connection between SOS-𝜏-conjecture
and two fundamental lower bound questions, namely matrix
rigidity and VP vs. VNP, one could ask to prove the ‘simplest’
SOS-𝜏-conjecture.

Open Problem 3.3

If the polynomials 𝑓 (𝑥) and 𝑔(𝑥) have sparsity at most 𝑠,
then the number of real roots of the polynomial ℎ ∶= 𝑓 𝑔+1,
can be at most 𝑂(𝑠)

In fact, in any ‘relevant’ model, understanding deeper con-
nections between roots, and representations, would be nice
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to explore in the near future.

5.2 Some Interesting PIT Questions

Here are some natural questions in the spirit of the results
from Chapter 4.

Open Problems 3.4

1. Canwe design a polynomial-time PIT for Σ[𝑘]ΠΣΠ[𝛿]?

2. Design a polynomial-time PIT for Σ∧ΣΠ[𝛿] circuits
(i.e. unbounded top-fanin)?

3. Can we solve PIT for Σ[𝑘]ΠΣ∧[2] efficiently, i.e. in
polynomial-, or, quasipolynomial-time?

Moreover, our Jacobian technique does not infer anything
about the rank of the circuit, as informally defined in Chap-
ter 4. This remains an exciting open question to prove any
interesting rank bound for Σ[𝑘]ΠΣΠ[𝛿], which only (perhaps
polynomially) depends on 𝑘 and 𝛿, as conjectured in [Gup14],
and discussed in the introduction of this chapter.
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This chapter is based on the first
half of the article titled Demys-
tifying the border of depth-3 al-
gebraic circuits, which is a joint
work with Prateek Dwivedi and
Nitin Saxena, that appeared in
FOCS 2021 [DDS21b], and in-
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“Although this may seem a paradox, exact science is
dominated by the idea of approximation.”

— Bertrand Russell, World Unity, Vol. IX, 3rd edition (1931).

Abstract. Border complexity of polynomials plays an in-
tegral role in GCT (Geometric complexity theory) approach
to P ≠ NP. It tries to formalize the notion of approximation
(of polynomials) via limits (Bürgisser FOCS’01). This raises
the open question VP

?= VP; as the approximation involves
exponential precision which may not be efficiently simulable.
Recently (Kumar ToCT’20) proved the universal power of the
border of top-fanin-2 depth-3 circuits (Σ[2]ΠΣ). Here we an-
swer some related open questions. We show that the border
of bounded top-fanin depth-3 circuits (Σ[𝑘]ΠΣ for constant 𝑘)
is relatively easy– it can be computed by a polynomial size
algebraic branching program (ABP). There were hardly any
de-bordering results known for prominent models before our
result.

Our de-bordering paradigm is a multi-step process; in short
we call it DiDIL –divide, derive, induct, with limit. It ‘al-
most’ reduces Σ[𝑘]ΠΣ to special cases of read-once oblivious
algebraic branching programs (ROABPs) in any-order.

6.1 Why Care About Upper Bounds?

One of the fundamental questions in GCT is whether VP
?= VP

[Mul12]. Confirmation or refutation of this question has mul-
tiple consequences, both in the algebraic complexity and at
the frontier of algebraic geometry. If VP = VP, then any proof
of VP ≠ VNP will in fact also show that VNP ⊈ VP, as conjec-
tured in [Mul12]; however a refutation would imply that any
realistic approach to the VP vs. VNP conjecture would even
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have to separate the permanent from the families in VP\VP
(and for this, one needs a far better understanding than the
current state of the art).

The other significance of the upper bound result arises from
the flip [Mul10; Mul12] whose basic idea in a nutshell is to
understand the theory of upper bounds first, and then use
this theory to prove lower bounds later. Taking this further
to the realm of algorithms: showing de-bordering results,
for even restricted classes (e.g., depth-3, small-width ABPs),
could have potential identity testing implications. For details,
see Chapter 7.

De-bordering results in GCT are in a very nascent stage;
for example, the boundary of 3 × 3 determinants was only
recently understood [HL16]. Note that here both the number
of variables 𝑛 and the degree 𝑑 are constant. In this work,
however, we target polynomial families with both 𝑛 and 𝑑
unbounded. So getting exact results about such bordermodels
is highly nontrivial considering the current state of the art.

Known de-bordering results. The exponential degree
dependence of 𝜖 [Bür04; Bür20] suggests us to look for sepa-
ration of restricted complexity classes or try to upper bound
them by some other means. In [BIZ18], the authors showed
that VBP2 ⊆ VBP2 = VF ; here VBP2 denotes the class of
polynomials computed by width-2 ABP. Surprisingly, we also
know that VBP2 ⊆ VF = VBP3 [BC92; AW16]. Very recently,
[Blä+] showed polynomial gap between ABPs and border-
ABPs, in the trace model, for noncommutative and also for
commutative monotone settings (along with VQP ≠ VNP).

Unfortunately, de-bordering results in GCT are in a very
nascent stage. Some well known de-bordering results are –

1. the boundary of 3 × 3 determinants [HL16],

2. VBP2 ⊆ VF [BIZ18]; here VBP2 denotes the class of
polynomials computed by width-2 ABP,

3. VBPnoncom = VBPnoncom, i.e.VBP, in the non-commutative
setting is closed under taking limit [Nis91],

4. Σ∧Σ ⊆ VBP [BDI21] .

We will talk about some important de-bordering proofs in
the next section.
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6.2 De-bordering Simple Models

In this section, we will discuss known de-bordering results
of restricted models like product of sum of univariates and
ARO. Some of these facts will be crucially used in our main
de-bordering result as well.

Polynomials approximated by ΠΣ can be easily de-bordered
[BIZ18, Proposition A.12]. In fact, it is the only constructive
de-bordering result known so far. We extend it to show that
same holds for polynomials approximated by ΠΣ∧ circuits. In
fact, we start it by showing a much more general theorem.

Let 𝒞 and𝒟 be two classes in 𝔽[𝑥]. Consider the bloated-class
(𝒞/𝒞) ⋅ (𝒟/𝒟), which has elements of the form (𝑔1/𝑔2) ⋅
(ℎ1/ℎ2), where 𝑔𝑖 ∈ 𝒞 and ℎ𝑖 ∈ 𝒟 (𝑔2ℎ2 ≠ 0). One can also
similarly define its border (which will be an element in 𝔽(𝑥)).
Here is an important observation.

Lemma 6.2.1 (𝒞/𝒞) ⋅ (𝒟/𝒟) = (𝒞/𝒞) ⋅ (𝒟/𝒟).

Proof. To show ⊆: Suppose (𝑔1/𝑔2) ⋅(ℎ1/ℎ2) = 𝑓 +𝜖 ⋅𝑄, where
𝑄 ∈ 𝔽(𝑥, 𝜖), and 𝑓 ∈ 𝔽(𝑥). Let val𝜖(𝑔𝑖) =∶ 𝑎𝑖 and val𝜖(ℎ𝑖) =∶ 𝑏𝑖.
Denote, 𝑔𝑖 =∶ 𝜖𝑎𝑖 ⋅ �̃�𝑖, similarly ℎ̃𝑖. Further, assume �̃�𝑖 =∶
�̂�𝑖+𝜖 ⋅ �̂�′𝑖 ; similarly for ℎ̃𝑖, we define ℎ̂𝑖 ∈ 𝔽[𝑥]. Note that �̂�𝑖 ∈ 𝒞,
similarly ℎ̂𝑖 ∈ 𝒟.

So, LHS = 𝜖𝑎1−𝑎2+𝑏1−𝑏2 ⋅ (�̃�1/�̃�2) ⋅ (ℎ̃1/ℎ̃2). Since, limit of LHS,
lim𝜖→0 LHS, is well-defined, so 𝑎1 + 𝑏1 − 𝑎2 − 𝑏2 ≥ 0. If it is
≥ 1, the limit in RHS is 0, and so 𝑓 = 0. If 𝑎1 + 𝑏1 − 𝑎2 − 𝑏2 = 0,
then

𝑓 = (�̂�1/�̂�2) ⋅ (ℎ̂1/ℎ̂2) ∈ (𝒞/𝒞) ⋅ (𝒟/𝒟) .

To show ⊇: Suppose, 𝑔1/𝑔2 ∈ 𝒞/𝒞, for 𝑔𝑖 ∈ 𝒞, and ℎ1/ℎ2 ∈
𝒟/𝒟, where ℎ𝑖 ∈ 𝒟. Let �̂�𝑖 = 𝑔𝑖+𝜖 ⋅𝑅𝑖, and ℎ̂𝑖 = ℎ𝑖+𝜖 ⋅ 𝑆𝑖. Here,
�̂�𝑖 and ℎ̂𝑖 are over 𝔽(𝜖). Then,

(𝑔1/𝑔2) ⋅ (ℎ1/ℎ2) = lim
𝜖→0

(�̂�1/�̂�2) ⋅ (ℎ̂1/ℎ̂2) ∈ (𝒞/𝒞) ⋅ (𝒟/𝒟) .

Now, we show an important de-bordering result on ΠΣ∧ cir-
cuits.
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Lemma 6.2.2 (De-bordering ΠΣ∧) Consider a polynomial
𝑓 ∈ 𝔽[𝑥] which is approximated by ΠΣ∧ of size 𝑠 over 𝔽(𝜖).
Then there exists aΠΣ∧ (hence anARO) of size 𝑠which exactly
computes 𝑓 (𝑥).

Proof. We will show that

ΠΣ∧ = ΠΣ∧ ⊆ ARO .

From Lemma 6.2.1 (and its proof), it follows that ΠΣ∧ ⊆ Π(Σ∧).
However, we note that Σ∧ = Σ∧ and it does not change the size
(as it can not increase the sparsity). Therefore, the size does
not increase and further it is an ARO. Thus, the conclusion
follows.

Next we show that polynomials approximated by ARO can
be easily de-bordered. To the best of our knowledge the
following lemma was sketched in [For16]; also implicitly in
[GKS17].

Lemma 6.2.3 (De-bordering ARO) Consider a polynomial
𝑓 ∈ 𝔽[𝑥] which is approximated by ARO of size 𝑠 in 𝔽(𝜖)[𝑥].
Then, there exists an ARO of size 𝑠 which exactly computes
𝑓 (𝑥).

Proof. By definition, there exists a polynomial 𝑔 = 𝑓 + 𝜖𝑄
computable by width 𝑤 ARO over 𝔽(𝜖). Note that 𝑤 ≤ 𝑠. In
this proof, we will use the partial derivative matrix. With re-
spect to any-order-prefix 𝑦 ⊂ 𝑥, consider the partial derivative
matrix 𝑁(𝑔). Using Lemma 2.6.5 and 2.6.6, we know that

rank𝔽(𝜖)(𝑁 (𝑔)) ≤ 𝑤 .

This means the determinant of any (𝑤 + 1) × (𝑤 + 1) minor
of 𝑁(𝑔) is identically zero. One can see that the entries of
the minor are coefficients of monomials of 𝑔 which are in
𝔽[𝜖][𝑥 ⧵ 𝑦]. Thus, the determinant polynomial will remain
zero even under the limit of 𝜖 = 0. Since, lim𝜖→0 𝑔 = 𝑓,
each minor (under limit) captures the partial derivative ma-
trix of 𝑓 of corresponding rows and columns. Thus, we get
rank𝔽(𝑁 (𝑓 )) ≤ 𝑤. Lemma 2.6.6 shows that there exists an
ARO, of width 𝑤 over 𝔽, which exactly computes 𝑓.
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1: This is not true in the classical
sense. The inner product polyno-
mial ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖, cannot be written
as a depth-3 circuit of fan-in 𝑛−1;
for a proof, see Theorem 2.9.1.

2: In [BT15], they showed it over
ℝ; but it is easy to see that the
rank over ℝ may be significantly
larger than that over ℂ, because
of the complexification. So triv-
ially, the bound holds over ℂ.

An obvious consequence of Lemma 2.6.11 and Lemma 6.2.3
is the following de-bordering result.

Lemma 6.2.4 (De-bordering Σ∧Σ∧) Consider a polynomial
𝑓 ∈ 𝔽[𝑥] which is approximated by Σ∧Σ∧ of size 𝑠 over 𝔽(𝜖),
and syntactic degree 𝐷. Then there exists an ARO of size
𝑂(𝑠𝑛2𝐷2) which exactly computes 𝑓 (𝑥).

6.3 Border Depth-3 Circuits

Since, depth-2 circuits (ΣΠ, ΠΣ) are closed under approxima-
tion, it is natural to study border of depth-3 circuits. Again, it
is not hard to show that ΠΣΠ = ΠΣΠ, which leaves us to un-
derstand ΣΠΣ circuits. Kumar [Kum20] showed that border
depth-3 fanin-2 circuits are ’universal’; i.e. Σ[2]Π[𝐷]Σ, over
ℂ(𝜖), can approximate any homogeneous 𝑑-degree, 𝑛-variate
polynomial 1; though this expression requires an exceedingly
large 𝐷 = exp(𝑛, 𝑑). It is easy to see that the same proof
works for even non-homogeneous polynomials. For brevity,
we state and prove it. We remark that our upper bound is
slightly better than the bound achieved in [Kum20], because
we use the best knownWaring rank upper bound for a generic
form [BT15].

Theorem 6.3.1 Let 𝑃 ∈ ℂ[𝑥], be any 𝑛-variate, degree-𝑑
polynomial. Then, there is a Σ[2]ΠΣ circuit 𝐶 ∈ ℂ(𝜖)[𝑥], of
size 𝑂((𝑛+𝑑𝑑−1)), such that

𝐶(𝑥, 𝜖) = 𝑃 + 𝜖 ⋅ 𝑄 ,

where 𝑄 ∈ ℂ[𝜖, 𝑥].

Proof. Let ̃𝑃 be the homogenized version of 𝑃, i.e.,

̃𝑃 = 𝑥𝑑0 ⋅ 𝑃 (
𝑥1
𝑥0
, … ,

𝑥𝑛
𝑥0
) .

In the above, 𝑥0 is a new variable. By definition, ̃𝑃 (𝑥) is a
homogeneous polynomial of degree 𝑑 in 𝑛 + 1 variables.

Let WR( ̃𝑃) = 𝑚. By [BT15]2,
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𝑚 ≤ 2 ⋅ ⌈ 1
𝑛 + 1

⋅ (
𝑛 + 𝑑
𝑑

)⌉ .

By definition, there are linear forms ℓ𝑖, such that

̃𝑃 =
𝑚
∑
𝑖=1

ℓ𝑑𝑖 .

Now, consider

𝐴(𝑥0, 𝑥1, … , 𝑥𝑛) ∶=
𝑚
∏
𝑖=1

(1 + ℓ𝑑𝑖 )

=
𝑚
∏
𝑖=1

𝑑
∏
𝑗=1

(𝛼𝑗 + ℓ𝑖) ,

where 𝛼𝑗 ∈ ℂ. Note that

𝐴 = 1 + ̃𝑃 + 𝐵 ,

where deg(𝐵) ≥ 2𝑑. Now, replace each 𝑥𝑖, by 𝜖 ⋅ 𝑥𝑖, for a new
variable 𝜖, to get that

𝑚
∏
𝑖=1

𝑑
∏
𝑗=1

(𝛼𝑗 + 𝜖 ⋅ ℓ𝑖) = 1 + 𝜖𝑑 ⋅ ̃𝑃 + 𝜖2𝑑 ⋅ 𝑅(𝑥, 𝜖) .

Divide by 𝜖𝑑, and rearrange to get

̃𝑃 + 𝜖𝑑 ⋅ 𝑅(𝑥, 𝜖) = −𝜖−𝑑 + 𝜖−𝑑 ⋅
𝑚
∏
𝑖=1

𝑑
∏
𝑗=1

(𝛼𝑗 + 𝜖 ⋅ ℓ𝑖)

∈ Σ[2]Π[𝑚𝑑]Σ .

Finally, substitute 𝑥0 = 1; note that the top-fanin remains 2.
Also, it is easy to see that

𝑚𝑑 ≤ 𝑂(𝑑
𝑛
⋅ (
𝑛 + 𝑑
𝑑

)) = 𝑂 (
(𝑛 + 𝑑)!

(𝑑 − 1)! ⋅ (𝑛 + 1)!
⋅ 𝑛 + 1

𝑛
) = 𝑂 ((

𝑛 + 𝑑
𝑑 − 1

)) ,

as desired!
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6.4 Border Depth-3 Circuits: A
Geometric View

In [Gup+16], the authors (implicitly) proposed a geometric
method to approach Valiant’s conjecture, via determining
equations for chow embedding of the secant varieties; this was
observed and explicitly mentioned in [Mul17]. For formal
definitions and the statement, see below.

Notation. Let 𝑊 be a complex vector space, and 𝑋 ⊂ ℙ𝑊
be an algebraic variety. ℙ𝑉 denotes the projective space, and
we denote [𝑣] as a corresponding point. Finally, we denote
by 𝑆𝑑𝑊, the space of polynomials of degree 𝑑 on 𝑊 ∗

Secant variety. Now, define

𝜎0
𝑘 (𝑋) = ⋃

𝑝1,…,𝑝𝑘∈𝑋
⟨𝑝1, … , 𝑝𝑘⟩ ⊂ ℙ𝑊 ,

where ⟨𝑝1, … , 𝑝𝑘⟩ denotes the projective plane spanned by
𝑝1, … , 𝑝𝑘. Define the 𝑘-th secant variety of 𝑋 to be

𝜎𝑘(𝑋) = 𝜎0
𝑘 (𝑋) ⊂ ℙ𝑊 ,

where the overline denotes closure in the Zariski topology.

Chow variety and Chow rank. Once we have defined
the secant varieties, we come to one important variety, called
the Chow variety. Informally, if one specializes to group of
diagonal matrices and takes the orbit closure, one obtains the
chow variety Ch𝑑(𝑊 ) ⊂ ℙ𝑆𝑑𝑊. Formally,

Ch𝑑(𝑊 ) ∶= {[𝑧] ∈ ℙ𝑆𝑑𝑊 ∣ 𝑧 = 𝑤1…𝑤𝑑, for𝑤𝑗 ∈ 𝑊 } .

Therefore, one can define the Chow rank of a homogeneous
polynomial 𝑓 of degree 𝑑, denoted rankCh(𝑓 ), to be the min-
imum 𝑘 such that 𝑓 = ∑𝑘

𝑖=1∏
𝑑
𝑗=1 ℓ𝑖𝑗, where ℓ𝑖𝑗 are linear

forms. Often in the literature, rankCh(𝑓 ) = 𝑘 is equivalently
expressed as: the smallest 𝑘 such that 𝑓 (as a point) is in
𝜎0
𝑘 (Ch𝑑(𝑊 )) (= set of points with Ch𝑑(𝑊 )-rank at most 𝑘).
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Moving to the border setting, one defines Chow border rank,
rankCh(𝑓 ), as the border analogue of the Chow rank. In other
words,

rankCh(𝑓 ) = 𝑘 ⟺ 𝑓 ∈ 𝜎𝑘(Ch𝑑(𝑊 ))

where 𝜎𝑘(Ch𝑑(𝑊 )) is the Zariski closure inℙ𝑆𝑑𝑊 of 𝜎0
𝑘 (Ch𝑑(𝑊 )).

For details, refer to [Lan15; Lan17]. These two ranks hap-
pen to exactly coincide with the depth-3 respectively border
depth-3 homogeneous circuits of 𝑓, with the smallest fanin
𝑘.

The following theorem is the geometric rephrasing of the
result that appeared in [Gup+16].

Theorem 6.4.1 ([Gup+16; Lan15]) If for all but a finite
number of 𝑚, for all 𝑟 , 𝑛, with 𝑟 ⋅ 𝑛 = 2𝜔(√𝑚 log𝑚), one has

[ℓ𝑛−𝑚 ⋅ perm𝑚] ∉ 𝜎𝑟(Ch𝑛(ℂ𝑚2+1)) ,

then, VP ≠ VNP holds.

From an algebraic complexity perspective, we are usually in-
terested in the non-homogeneous setting. Moreover, Kumar’s
expression [Kum20, Section 3.1] is strictly non-homogeneous.
However, with suitable padding (&𝑊 = ℂ𝑛+1), Kumar’s result
translates into geometric terms:

For any degree-𝑑 homogeneous polynomial 𝑓, there
exists a linear form ℓ such that [ℓ𝑚−𝑑𝑓 ] ∈ 𝜎2(Ch𝑚(𝑊 )),
or equivalently, rankCh(ℓ𝑚−𝑑𝑓 ) = 2, where 𝑚 =
exp(𝑛, 𝑑).

Here is an important question which we will try to answer
in this chapter.

Characterize Chow border rank-2 polynomials

Characterize [ℓ𝑚−𝑑𝑓 ] ∈ 𝜎2(Ch𝑚(𝑊 )), when 𝑚 = poly(𝑛, 𝑑).
More simply put, find a ‘nice’ class𝒞, such that polynomial-
sized Σ[2]ΠΣ circuits are in 𝒞.

6.4.1 Our results

The universality result of border depth-3 fanin-2 circuits
makes it imperative to study Σ[2]Π[𝑑]Σ, for 𝑑 = poly(𝑛), and
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It is not hard to extend our
results to constant top-fanin
depth-4 circuits, see [DDS21b].
But we donot include the results
in this thesis.

understand its computational power. To start with, are poly-
nomials in this class even ‘explicit’ (i.e. the coefficients are
efficiently computable)? If yes, is Σ[2]Π[𝑑]Σ ⊆ VNP? (See
[GMQ16; Edi18] for more general questions in the same
spirit.)

To our surprise, we show that the class is very explicit; in fact
every polynomial in this class has a small ABP. We remark
that our proof does not reveal the polynomial dependence on
the 𝜖-degree. However, this positive result could be thought
as a ‘baby step’ towards VP = VP. We assume the field 𝔽
characteristic to be = 0, or large enough. For a detailed
statement, see Theorem 6.5.1.

Theorem 6.4.2 (De-bordering depth-3 circuits) For any con-
stant 𝑘, Σ[𝑘]ΠΣ ⊆ VBP, i.e. any polynomial in the border of
constant top-fanin size-𝑠 depth-3 circuits, can also be com-
puted by a poly(𝑠) size algebraic branching program (ABP).

Remarks. 1. When 𝑘 = 1, we have a better bound, be-
cause ΠΣ = ΠΣ [BIZ18, Proposition A.12], see Lemma 6.2.2.

2. The size of the ABP turns out to be 𝑠exp(𝑘). It is an interest-
ing open question whether 𝑓 ∈ Σ[𝑘]ΠΣ has a subexponential
ABP when 𝑘 = Θ(log 𝑠).

3. Σ[𝑘]ΠΣ is the orbit closure of 𝑘-sparse polynomials [MS21,
Theorem 1.31]. Separating the orbit and its closure of certain
classes is the key difficulty in GCT. Theorem 6.4.2 is one of
the first such results to demystify orbit closures (of constant-
sparse polynomials).

6.4.2 Proof idea of Theorem 6.4.2

In this section, we sketch the proof of Theorem 6.4.2. The
proof is analytic, based on induction on the top fan-in. It
uses logarithmic derivative, and the power-series expansion,
that emerges from the following inverse identity: (1− 𝑥1)−1 =
∑𝑖≥0 𝑥 𝑖1; we call the technique asDiDIL (Di =Divide,D=Derive,
I = Induct, L = Limit). We essentially reduce to thewell-known
‘wedge’ model (as fractions, with unbounded top-fanin) and
then ‘interpolate’ it.
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The road-map. The base case when the top fan-in 𝑘 = 1,
i.e., we have a single product of affine linear forms, and we
are interested in its border. It is not hard to see that the
polynomial in the border is also just a product of appropriate
affine forms; for details, refer to section 6.5). Now, suppose
we have a depth-3 circuit of top fan-in 2, 𝑔(𝑥, 𝜖) = 𝑇1 + 𝑇2,
where each 𝑇𝑖 is a product of affine linear forms. The goal is
to somehow reduce this to the case of single summand.

Before moving forward, we remark that some ideas described
below, can even be ‘formally’ incorrect! Nonetheless, this
sketch is “morally’” correct and, the eventual road-map insin-
uates the strength of the DiDIL-technique.

For simplicity, let us assume that each linear form has a non-
zero constant term (for instance by a random translation of
the variables). Moreover, every variable 𝑥𝑖 is replaced by 𝑥𝑖 ⋅ 𝑧
for a new variable 𝑧; this variable 𝑧 is the ‘degree counter’ that
helps to keep track of the degree of the polynomials involved.
Now, dividing both sides by 𝑇1, we get 𝑔/𝑇1 = 1 + 𝑇2/𝑇1, and
taking derivatives with respect to the variable 𝑧, we get

𝜕𝑧(𝑔/𝑇1) = 𝜕𝑧(𝑇2/𝑇1) .

This has reduced the number of summands on the right-
hand side to 1, although each summand has become more
complicated now, and we have no control on what happens
as 𝜖 → 0!

Since, 𝑇1 is invertible in the power series ring in 𝑧, 𝑇2/𝑇1
is well-defined as well. Moreover, lim𝜖→0 𝑇1 exists (well not
really, but formally a proper 𝜖-scaling of it does, which suffices
since derivative wrt 𝑧 does not affect the 𝜖-scaling!) and is
non-zero. From this it follows that after some truncation wrt
high degree 𝑧 monomials, lim𝜖→0 𝜕𝑧(𝑇2/𝑇1) exists, and has a
nice relation to the original limit of 𝑔; see Claim 6.5.2!

Lastly, and crucially, the following expression can be com-
puted by a not-too-complicated circuit structure:

𝜕𝑧(𝑇2/𝑇1) mod 𝑧𝑑 = (𝑇2/𝑇1) ⋅ dlog(𝑇2/𝑇1) mod 𝑧𝑑 .

Interestingly, the circuit form is closed under this operation
of dividing, taking derivatives and taking limits! Note that,
the dlog operator distributes the product gate into summa-
tion giving dlog(𝑇2/𝑇1) = ∑ dlog(Σ), where Σ denotes linear
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polynomials. Further, we observe that

dlog(Σ) = Σ/Σ ∈ Σ∧Σ ,

the depth-3 powering circuits, over some ‘nice’ ring. The idea
is to expand 1/ℓ, where ℓ is a linear polynomial, as the sum
of powers of linear terms using the inverse identity:

1/(1 − 𝑎 ⋅ 𝑧) ≡ 1 + 𝑎 ⋅ 𝑧 + ⋯ + 𝑎𝑑−1 ⋅ 𝑧𝑑−1 mod 𝑧𝑑 .

When there is a single remaining summand, the border of the
more general structure is easy-to-compute, and can be shown
to have an algebraic branching program (ABP) of not too
large size. For details, we refer to Claim 6.5.4. For a constant
𝑘 (& even general bounded depth-4 circuits), the above idea
can be extended with some additional clever division and
computation.

6.4.3 Limitation of standard techniques

In this section, we briefly discuss the standard techniques for
the upper bounds, in the border sense, and point out why
they fail to yield our results.

Why known upper bound techniques fail? One of the
most obvious way to de-border restricted classes is to essen-
tially show a polynomial 𝜖-degree bound and interpolate. In
general, the bound is known to be exponential [Bür20, The-
orem 5.7] which crucially uses [LL89, Proposition 1]. This
proposition essentially shows the existence of an irreducible
curve 𝐶, whose degree is bounded in terms of the degree of
the affine variety, that we are interested in. The degree is
in general exponentially upper bounded by the size [BCS13,
Theorem 8.48]. Unless and until, one improves these bounds
for varieties induced by specific models (which seems hard),
one should not expect to improve the 𝜖-degree bound, and
thus the interpolation trick seems useless.

As mentioned before, Σ∧Σ-circuits could be de-bordered us-
ing the duality trick [Sax08] (see Lemma 2.6.7) to make it
an ARO and finally using Nisan’s characterization giving
ARO = ARO [Nis91; For16; GKS17] (Lemma 6.2.3). But this
trick is directly inapplicable to our models with the Π-gate,
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due to large Waring rank & ROABP-width, as one could ex-
pect 2𝑑-blowup in the top fanin while converting Π-gate to ∧.
We also remark that the duality trick was made field indepen-
dent in [For14, Lemma 8.6.4]. In fact, very recently, [BDI21,
Theorem 4.3] gave an improved duality trick with no size
blowup, independent of degree and number of variables.

Moreover, all the non-trivial current upper bound methods,
for limit, seem to need an auxiliary linear space, which even
for Σ[2]ΠΣ is not clear, due to the possibility of heavy cancella-
tion of 𝜖-powers. To elaborate, one of the major bottleneck is
that individually lim𝜖→0 𝑇𝑖, for 𝑖 ∈ [2] may not exist, however,
lim𝜖→0(𝑇1 + 𝑇2) does exist, where 𝑇𝑖 ∈ ΠΣ (over 𝔽(𝜖)). For
e.g.,

𝑇1 ∶= 𝜖−1(𝑥 + 𝜖2𝑦)𝑦, and 𝑇2 ∶= −𝜖−1(𝑦 + 𝜖𝑥)𝑥 .

No generic tool is available to ‘capture’ such cancellations,
and may even suggest a non-linear algebraic approach to
tackle the problem.

Furthermore, [SSS13] explicitly classified certain factor poly-
nomials to solve non-border Σ[2]ΠΣ∧ PIT. This factoring-
based idea seems to fail miserably when we study factor-
ing mod ⟨𝜖𝑀⟩. In fact, in that case, we get non-unique, usu-
ally exponentially-many, factorization. For e.g.,

𝑥2 ≡ (𝑥 − 𝑎 ⋅ 𝜖𝑀/2) ⋅ (𝑥 + 𝑎 ⋅ 𝜖𝑀/2) mod ⟨𝜖𝑀⟩ ,

for all 𝑎 ∈ 𝔽. In this case, there are, in fact, infinitely many
factorizations. Moreover,

lim
𝜖→0

1
𝜖𝑀

⋅ (𝑥2 − (𝑥 − 𝑎 ⋅ 𝜖𝑀/2) ⋅ (𝑥 + 𝑎 ⋅ 𝜖𝑀/2)) = 𝑎2 .

Therefore, infinitely many factorizations may give infinitely
many limits. To top it all, Kumar’s result [Kum20] hinted
a possible hardness of border-depth-3 (top-fanin-2). In that
sense, ours is a very non-linear algebraic proof for restricted
models which successfully opens up a possibility of finding
non-representation-theoretic, and elementary, upper bounds.
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6.5 Proof of Theorem 6.4.2

Before getting into the proof, we discuss the bloated model
on which we will induct.

Definition 6.5.1 (Bloated model) We call a circuit 𝒞 ∈
Gen(𝑘, 𝑠), in the fractional ring R(𝑥), with parameter 𝑘 and
size 𝑠, if it computes 𝑓 ∈ R(𝑥), where

𝑓 = ∑
𝑖∈[𝑘]

𝑇𝑖 , such that 𝑇𝑖 = (𝑈𝑖/𝑉𝑖) ⋅ (𝑃𝑖/𝑄𝑖) ,

with 𝑈𝑖, 𝑉𝑖, 𝑃𝑖, 𝑄𝑖 ∈ R[𝑥] such that 𝑈𝑖, 𝑉𝑖 ∈ ΠΣ and 𝑃𝑖, 𝑄𝑖 ∈ Σ∧Σ.

Further, size(𝒞 ) = ∑𝑖∈[𝑘] size(𝑇𝑖), and, finally,

size(𝑇𝑖) = size(𝑈𝑖) + size(𝑉𝑖) + size(𝑃𝑖) + size(𝑄𝑖) .

It is easy to see that size-𝑠 Σ[𝑘]ΠΣ lies in Gen(𝑘, 𝑠), which
will be our general model of induction. Here is the main
de-bordering theorem for depth-3 circuits.

Theorem6.5.1 (De-bordering Σ[𝑘]ΠΣ) Let 𝑓 (𝑥) ∈ 𝔽[𝑥1, … , 𝑥𝑛],
such that 𝑓 can be computed by a Σ[𝑘]ΠΣ-circuit of size 𝑠. Then
𝑓 is also computable by an ABP (over 𝔽), of size 𝑠𝑂(𝑘⋅7𝑘).

Proof. We will use DiDIL technique as discussed in para-
graph 6.4.2. The 𝑘 = 1 case is obvious, as ΠΣ = ΠΣ and
trivially it has a small ABP. Further, as discussed before, 𝑘 = 2
is already non-trivial. Eventually it involves de-bordering
Gen(1, 𝑠); as DiDIL technique reduces the 𝑘 = 2 problem to
Gen(1, 𝑠) and then we interpolate.

q Base step: De-bordering Gen(1, 𝑠)

Let 𝑔(𝑥, 𝜖) ∈ 𝑅(𝑥, 𝜖) be approximating 𝑓 ∈ 𝑅(𝑥); here 𝑅 is a
commutative ring (the ring will be clear later in the next few
paragraphs). We also assume the syntactic degree bound, of
the denominator and numerator computing 𝑔 to be 𝑑. Here is
the de-bordering result.

Claim 6.5.1 Gen(1, 𝑠) ∈ ABP/ABP, of size 𝑂(𝑠𝑑2𝑛2), while
the syntactic degree blows up to 𝑂(𝑛𝑑).
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Proof. Using Definition 6.5.1,

𝑔(𝑥, 𝜖) =∶ (𝑈 (𝑥, 𝜖)/𝑉 (𝑥, 𝜖)) ⋅ 𝑃(𝑥, 𝜖)/𝑄(𝑥, 𝜖) = 𝑓 (𝑥)+𝜖 ⋅ 𝑆(𝑥, 𝜖) ,

where 𝑈 , 𝑉 , 𝑃, 𝑄 ∈ ℝ(𝜖)[𝑥] such that 𝑈 , 𝑉 ∈ ΠΣ, 𝑃, 𝑄 ∈ Σ∧Σ. Let
𝑎1 ∶= val𝜖(𝑈 ), 𝑎2 ∶= val𝜖(𝑉 ), 𝑏1 ∶= val𝜖(𝑃) and 𝑏2 ∶= val𝜖(𝑄).
Extracting the maximum 𝜖-power, we get

𝑓 + 𝜖 ⋅ 𝑆 = 𝜖(𝑎1−𝑎2)+(𝑏1−𝑏2) ⋅ (�̃� /�̃� ) ⋅ ( ̃𝑃/�̃�) ,

where �̃� , �̃� , ̃𝑃 , 𝑄 ∈ 𝑅(𝜖)[𝑥], and their valuations wrt. 𝜖 are zero
i.e. lim𝜖→0 �̃� exists (similarly for �̃� , ̃𝑃 , �̃�). Since, LHS is well-
defined at 𝜖 = 0, it must happen that (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2) ≥ 0.
If (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2) ≥ 1, then 𝑓 = 0, and we have trivially
de-bordered. Therefore, we can assume (𝑎1−𝑎2)+(𝑏1−𝑏2) = 0
which implies that

𝑓 = (lim
𝜖→0

�̃� / lim
𝜖→0

�̃� ) ⋅ (lim
𝜖→0

̃𝑃/ lim
𝜖→0

�̃�)

∈ (ΠΣ/ΠΣ) ⋅ (ARO/ARO)
⊆ ABP/ABP .

We have used the fact that �̃� , �̃� ∈ ΠΣ and ̃𝑃 , 𝑄 ∈ Σ∧Σ of size at
most 𝑠, over 𝑅(𝜖). Further, by Lemma 6.2.2 and Lemma 6.2.4,
we know that ΠΣ = ΠΣ and Σ∧Σ ⊆ ARO; therefore 𝑓 is com-
putable by a ratio of two ABPs of size at most 𝑂(𝑠 ⋅ 𝑑2𝑛2), and
the degree gets blown up to atmost 𝑂(𝑛𝑑). The last simply
follows from Lemma 2.6.7.

qBloat out: Reducing Σ[𝑘]ΠΣ to de-borderingGen(𝑘 − 1, ⋅)

Let 𝑓0 ∶= 𝑓 be an arbitrary polynomial in Σ[𝑘]ΠΣ, approxi-
mated by 𝑔0 ∈ 𝔽(𝜖)[𝑥], computed by a depth-3 circuit 𝐶 of size
𝑠 over 𝔽(𝜖), i.e.,

𝑔0 ∶= 𝑓0 + 𝜖 ⋅ 𝑆0 .

Further, assume that deg(𝑓0) < 𝑑0 ∶= 𝑑 ≤ 𝑠; we keep the
parameter 𝑑 separately, to optimize the complexity later. Here,
we also stress that one could think of the degree to be the
syntactic degree as well. Then, 𝑔0 =∶ ∑𝑖∈[𝑘] 𝑇𝑖,0, such that
𝑇𝑖,0 is computable by a ΠΣ-circuit of size at most 𝑠 over 𝔽(𝜖).
Moreover, define

𝑈𝑖,0 ∶= 𝑇𝑖,0, 𝑉𝑖,0 ∶= 𝑃𝑖,0 ∶= 𝑄𝑖,0 = 1 ,

as the base input case of Gen(1, ⋅). As explained in the prelim-
inaries, we do a safe division and derivation for reduction.
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Φ homomorphism. To ensure invertibility and facilitate deriva-
tion, we define a homomorphism

Φ ∶ 𝔽(𝜖)[𝑥] → 𝔽(𝜖)[𝑥, 𝑧] , such that 𝑥𝑖 ↦ 𝑧 ⋅ 𝑥𝑖 + 𝛼𝑖 ,

where 𝛼𝑖 are random elements in 𝔽. Essentially, it suffices to
ensure that Φ(𝑇𝑖,0)|𝑥=𝑎 = 𝑇𝑖,0(𝑎) ≠ 0 for all 𝑖 ∈ [𝑘]. We will be
working with different ring ℛ𝑖(𝑥), at 𝑖-th step of induction,
with ℛ0 ∶= 𝔽[𝑧]/ ⟨𝑧𝑑⟩; here think of the 𝑧-variable as ‘cost-
free’. The map Φ can be thought of as a ‘shift & scale’ map.
In a way, choosing random 𝑧 and then shifting and scaling it
back gives the original 𝑓. So, our target is to prove the size
upper bound for Φ(𝑓0) in the ring ℛ(𝑥), and thereby prove
the upperbound for 𝑓0.

Divide and derive. Let 𝑣𝑖,0 ∶= val𝑧(Φ(𝑇𝑖,0)). By Φ-map, 𝑣𝑖,0 ≥ 0,
for each 𝑖 ∈ [𝑘]. Further, wrt 𝜖-valuation, assume that

Φ(𝑇𝑖,0) =∶ 𝜖𝑎𝑖,0 ⋅ ̃𝑇𝑖,0 ,

where ̃𝑇𝑖,0 =∶ 𝑡𝑖,0 + 𝜖 ⋅ ̃𝑡𝑖,0(𝑥, 𝑧, 𝜖), i.e., 𝑡𝑖,0 = ̃𝑇𝑖,0|𝜖=0. Note that,
𝑣𝑖,0 = val𝑧( ̃𝑇𝑖,0). Without loss of generality, assume that

min
𝑖∈[𝑘]

val𝑧( ̃𝑇𝑖,0) = 𝑣𝑘,0 ,

i.e. the minimum is wrt 𝑘, otherwise we can rearrange. Then,
we divide Φ(𝑔0) by ̃𝑇𝑘,0, and derive wrt 𝑧:

Φ(𝑓0)/ ̃𝑇𝑘,0 + 𝜖 ⋅ Φ(𝑆0)/ ̃𝑇𝑘,0 = 𝜖𝑎𝑘,0 +
𝑘−1
∑
𝑖=1

Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0 [Divide]

⟹ 𝜕𝑧 (Φ(𝑓0)/ ̃𝑇𝑘,0) + 𝜖𝜕𝑧 (Φ(𝑆0)/ ̃𝑇𝑘,0) =
𝑘−1
∑
𝑖=1

𝜕𝑧 (Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0) [Derive]

=
𝑘−1
∑
𝑖=1

(Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0) ⋅ dlog (Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0)

(6.1)

=∶ 𝑔1 .

Definability. Letℛ1 ∶= 𝔽[𝑧]/⟨𝑧𝑑1⟩, and 𝑑1 ∶= 𝑑0−𝑣𝑘,0−1. For
𝑖 ∈ [𝑘 − 1], define

𝑇𝑖,1 ∶= (Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0)⋅dlog(Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0) , and 𝑓1 ∶= 𝜕𝑧 (Φ(𝑓0)/𝑡𝑘,0) .

Here is an important claim.
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Claim 6.5.2 𝑔1 approximates 𝑓1 correctly, i.e. lim𝜖→0 𝑔1 =
𝑓1, where 𝑔1 (respectively 𝑓1) are well-defined in ℛ1(𝜖, 𝑥)
(respectively ℛ1(𝑥)).

Proof. Aswe divide by theminimumvaluation, by Lemma 2.2.2,
we have

val𝑧(Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0) ≥ 0 ⟹ Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0 ∈ 𝔽(𝑥, 𝜖)[[𝑧]]
⟹ 𝑇𝑖,1 ∈ 𝔽(𝑥, 𝜖)[[𝑧]] .

Note that,

val𝑧(Φ(𝑓0) + 𝜖 ⋅ 𝑆0) = val𝑧(∑
𝑖∈[𝑘]

Φ(𝑇𝑖,0)) ≥ 𝑣𝑘,0 .

Setting 𝜖 = 0, implies that val𝑧(Φ(𝑓0)) ≥ 𝑣𝑘,0, and hence,
Φ(𝑓0)/ ̃𝑇𝑘,0 ∈ 𝔽(𝑥, 𝜖)[[𝑧]] (by Lemma 2.2.2). Moreover,

(Φ(𝑓0)/ ̃𝑇𝑘,0)|𝜖=0 = Φ(𝑓0)/𝑡𝑘,0 ∈ 𝔽(𝑥, 𝑧) .

Combining these it follows that

Φ(𝑓0)/𝑡𝑘,0 ∈ 𝔽(𝑥)[[𝑧]] ⟹ 𝑓1 ∈ 𝔽(𝑥)[[𝑧]] .

Once we know that each 𝑇𝑖,1 and 𝑓1 are well-defined power-
series, we claim that (Equation 6.1) holds mod 𝑧𝑑0−𝑣𝑘,0−1. Note
that, Φ(𝑓0) + 𝜖 ⋅ Φ(𝑆0) = ∑𝑖∈[𝑘] 𝑇𝑖, holds mod 𝑧𝑑. Thus after
dividing by the minimum valuation element (with 𝑧-valuation
𝑣𝑘,0), it holds mod 𝑧𝑑0−𝑣𝑘,0 ; finally after differentiation it must
hold mod 𝑧𝑑0−𝑣𝑘,0−1.

Further, as lim𝜖→0 ̃𝑇𝑘,0 exists, we must have 𝜕𝑧(Φ(𝑓0)/𝑡𝑘,0) =
lim𝜖→0 𝑔1; i.e. 𝑔1 approximates 𝑓1 correctly, in ℛ1(𝑥).

However, we stress that we also think of these as elements
in 𝔽(𝑥, 𝑧, 𝜖), with 𝑧-degree being ‘kept track of’ (which could
be > 𝑑). All these different ‘lenses’ of looking and computing
will be important later.

Now what with the lower fanin? The main claim now is to
show that– 1) 𝑓1 ∈ Gen(𝑘 − 1, ⋅), and 2) assuming we know
Gen(𝑘 − 1, ⋅) has small ABP/ABP, how to lift it for 𝑓0 (we
will show how to generally reduce fanin in the next few
paragraphs).
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To show that, we will show that each 𝑇𝑖,1 has small (ΠΣ/ΠΣ) ⋅
(Σ∧Σ/Σ∧Σ)-circuit in ℛ1(𝑥, 𝜖) and then we will interpolate.
Once the degree of 𝑧 is maintained to be small, this interpola-
tion would not be costly, which will finally achieve our goal;
as polynomially many sum of ratios of ABPs is still a ratio
of small ABPs. We remark that these two steps are needed
in the general reduction as well, and thus once we show the
general inductive reduction, we will illustrate these steps.

q Inductive step (𝑗-th step): Reducing Gen(𝑘 − 𝑗, ⋅) to
Gen(𝑘 − 𝑗 − 1, ⋅)

Suppose, we are at the 𝑗-th (𝑗 ≥ 1) step. Our induction hy-
pothesis assumes–

1. ∑𝑖∈[𝑘−𝑗] 𝑇𝑖,𝑗 =∶ 𝑔𝑗, in ℛ𝑗(𝑥, 𝜖), such that it approximates
𝑓𝑗 correctly, where 𝑓𝑗 ∈ ℛ𝑗(𝑥), where ℛ𝑗 ∶= 𝔽[𝑧]/⟨𝑧𝑑𝑗⟩.

2. Here, 𝑇𝑖,𝑗 =∶ (𝑈𝑖,𝑗/𝑉𝑖,𝑗) ⋅ (𝑃𝑖,𝑗/𝑄𝑖,𝑗), where

𝑈𝑖,𝑗, 𝑉𝑖,𝑗 ∈ ΠΣ and 𝑃𝑖,𝑗, 𝑄𝑖,𝑗 ∈ Σ∧Σ, each in ℛ𝑗(𝜖)[𝑥] .

Each can be thought as an element in 𝔽(𝑥, 𝑧, 𝜖)⋂𝔽(𝑥, 𝜖)[[𝑧]]
as well. Assume that the syntactic degree of each de-
nominator and numerator of 𝑇𝑖,𝑗 is bounded by 𝐷𝑗.

3. 𝑣𝑖,𝑗 ∶= val𝑧(𝑇𝑖,𝑗) ≥ 0, for 𝑖 ∈ [𝑘 − 𝑗]. Wlog, assume that
min𝑖 𝑣𝑖,𝑗 = 𝑣𝑘−𝑗,𝑗. Moreover, 𝑈𝑖,𝑗|𝑧=0 ∈ 𝔽(𝜖)\{0} (similarly
for 𝑉𝑖,𝑗).

We proceed, like the 𝑗 = 0-th step done above, without apply-
ing any new homomorphism. Similar to that reduction, we
divide and derive to reduce the fanin further by 1.

Divide and Derive. Let 𝑇𝑘−𝑗,𝑗 =∶ 𝜖𝑎𝑘−𝑗,𝑗 ⋅ ̃𝑇𝑘−𝑗,𝑗, where ̃𝑇𝑘−𝑗,𝑗 =∶
(𝑡𝑘−𝑗,𝑗 + 𝜖 ⋅ ̃𝑡𝑘−𝑗,𝑗) is not divisible by 𝜖. Divide 𝑔𝑗 =∶ 𝑓𝑗 + 𝜖 ⋅ 𝑆𝑗, by
̃𝑇𝑘−𝑗,𝑗, to get:
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𝑓𝑗/ ̃𝑇𝑘−𝑗,𝑗 + 𝜖 ⋅ 𝑆𝑗/ ̃𝑇𝑘−𝑗,𝑗 = 𝜖𝑎𝑘−𝑗,𝑗 +
𝑘−𝑗−1
∑
𝑖=1

𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗

⟹ 𝜕𝑧 (𝑓𝑗/ ̃𝑇𝑘−𝑗,𝑗) + 𝜖 ⋅ 𝜕𝑧 (𝑆𝑗/ ̃𝑇𝑘−𝑗,𝑗) =
𝑘−𝑗−1
∑
𝑖=1

𝜕𝑧 (𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗)

=
𝑘−𝑗−1
∑
𝑖=1

(𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗) ⋅ dlog (𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗)

(6.2)

=∶ 𝑔𝑗+1 .

Definability. Let ℛ𝑗+1 ∶= 𝔽[𝑧]/⟨𝑧𝑑𝑗+1⟩, where 𝑑𝑗+1 ∶= 𝑑𝑗 −
𝑣𝑘−𝑗,𝑗 − 1. For 𝑖 ∈ [𝑘 − 𝑗 − 1], define

𝑇𝑖,𝑗+1 ∶= (𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗)⋅dlog (𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗) , and 𝑓𝑗+1 ∶= 𝜕𝑧(𝑓𝑗/𝑡𝑘−𝑗,𝑗) .

Claim6.5.3 (Induction hypotheses) (i) 𝑔𝑗+1 (respectively 𝑓𝑗+1)
are well-defined in ℛ𝑗+1(𝑥, 𝜖) (respectively ,ℛ𝑗+1(𝑥)).

(ii) 𝑔𝑗+1 approximates 𝑓𝑗+1 correctly, i.e., lim𝜖→0 𝑔𝑗+1 = 𝑓𝑗+1.

Proof. Remember, 𝑓𝑗 and 𝑇𝑖,𝑗’s are elements in 𝔽(𝑥, 𝑧, 𝜖) which
also belong to 𝔽(𝑥, 𝜖)[[𝑧]]. After dividing by the minimum
valuation, by similar argument as in Claim 6.5.2, it follows that
𝑇𝑖,𝑗+1 and 𝑓𝑗+1 are elements in 𝔽(𝑥, 𝑧, 𝜖)⋂𝔽(𝑥, 𝜖)[[𝑧]], proving
the second part of induction-hypothesis-(2). In fact, trivially
𝑣𝑖,𝑗+1 ≥ 0, for 𝑖 ∈ [𝑘 − 𝑗 − 1] proving induction-hypothesis-(3).

Similarly, Equation 6.2 holds in ℛ𝑗+1(𝜖, 𝑥), or equivalently
mod 𝑧𝑑𝑗+1 ; this is because of the division by 𝑧-valuation of
𝑣𝑘−𝑗,𝑗 and then differentiation, showing induction-hypothesis-
(1). So, Equation 6.2 being computed mod 𝑧𝑑𝑗+1 is indeed
valid. We also mention that using similar argument as in
Claim 6.5.2, 𝑓𝑗+1 ∈ 𝔽(𝑥)[[𝑧]].

Finally, as 𝑓𝑗+1 exists, it is obvious to see that lim𝜖→0 𝑔𝑗+1 =
𝑓𝑗+1.

Invertibility of ΠΣ-circuits. Before going into the size analysis,
we want to remark that the dlog computation plays a crucial
role here and the invertibility of the ΠΣ-circuits are crucial



6.5 Proof of Theorem 6.4.2 157

for our arguments to go through. The action dlog(Σ∧Σ) ∈
(Σ∧Σ/Σ∧Σ), is of polynomial size (Lemma 2.6.9).

What is the action on ΠΣ? As dlog distributes the product
additively, so it suffices to work with dlog(ΠΣ); and we show
that dlog(ΠΣ) ∈ Σ∧Σ, is of polynomial size. For the time being,
assume these hold. Then, we simplify

𝑇𝑖,𝑗
̃𝑇𝑘−𝑗,𝑗

= 𝜖−𝑎𝑘−𝑗,𝑗 ⋅
(𝑈𝑖,𝑗 ⋅ 𝑉𝑘−𝑗,𝑗)
(𝑉𝑖,𝑗 ⋅ 𝑈𝑘−𝑗,𝑗)

⋅
(𝑃𝑖,𝑗 ⋅ 𝑄𝑘−𝑗,𝑗)
(𝑄𝑖,𝑗 ⋅ 𝑃𝑘−𝑗,𝑗)

,

and its dlog. Therefore, one can define 𝑈𝑖,𝑗+1 ∶= 𝜖−𝑎𝑘−𝑗,𝑗 ⋅ 𝑈𝑖,𝑗 ⋅
𝑉𝑘−𝑗,𝑗; similarly 𝑉𝑖,𝑗+1 ∶= 𝑉𝑖,𝑗 ⋅ 𝑈𝑘−𝑗,𝑗. We stress that dlog com-
putation will produce (Σ∧Σ/Σ∧Σ), which will further multiply
with 𝑃 ′𝑠 and 𝑄’s; it will be clear after the lemma. This directly
means:

𝑈𝑖,𝑗+1|𝑧=0, 𝑉𝑖,𝑗+1|𝑧=0 ∈ 𝔽(𝜖) ⧵ {0} .

This proves the second part of induction-hypothesis-(3).

The overall size blowup. Finally, we show the main step:
how to use dlog which is the crux of our reduction. We
assume that at the 𝑗-th step, size(𝑇𝑖,𝑗) ≤ 𝑠𝑗 and by assumption
𝑠0 ≤ 𝑠.

Claim 6.5.4 (Size blowup from DiDIL)

𝑇1,𝑘−1 ∈ (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) ∈ ℛ𝑘−1(𝑥, 𝜖) ,

of size 𝑠𝑂(𝑘7𝑘). It is computed as an element in 𝔽(𝜖, 𝑥, 𝑧), with
syntactic degree (in 𝑥, 𝑧) 𝑑𝑂(𝑘).

Proof. Steps 𝑗 = 0 vs 𝑗 > 0 are slightly different because of
the homomorphism Φ. However, the main idea of using dlog
and expand it as a power-series is the same, which eventually
shows that dlog(ΠΣ) ∈ Σ∧Σ with a controlled blowup.

For 𝑗 = 0, we want to study dlog’s effect on Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0. As
dlog distributes over product, and thus it suffices to study
dlog(ℓ), where ℓ ∈ ℛ(𝜖)[𝑥]. However, by the property of Φ,
each ℓmust be of the form ℓ = 𝐴−𝑧𝐵, where 𝐴 ∈ 𝔽(𝜖)\{0} and
𝐵 ∈ 𝔽(𝜖)[𝑥]. Using the power series expansion, we have the
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following, in ℛ1(𝑥, 𝜖):

dlog(ℓ) = −
𝜕𝑧 (𝐴 − 𝑧 ⋅ 𝐵)
𝐴 (1 − 𝑧 ⋅ 𝐵/𝐴)

= −𝐵
𝐴

⋅
𝑑1−1
∑
𝑗=0

(𝑧 ⋅ 𝐵
𝐴

)
𝑗
. (6.3)

Note,(𝐵/𝐴) and (−𝑧 ⋅ 𝐵/𝐴)𝑗 have a trivial ∧Σ circuits, each of
size 𝑂(𝑠). For all 𝑗 use Lemma 2.6.10 on (𝐵/𝐴) ⋅ (−𝑧 ⋅ 𝐵/𝐴)𝑗 to
obtain an equivalent Σ∧Σ of size 𝑂(𝑗 ⋅ 𝑑 ⋅ 𝑠). Re-indexing gives
us the final Σ∧Σ circuit for dlog(ℓ) of size 𝑂(𝑑3 ⋅ 𝑠). We use the
fact that 𝑑1 ≤ 𝑑0 = 𝑑. Here the syntactic degree blowsup to
𝑂(𝑑2).

For 𝑗 > 0, the above equation holds in ℛ𝑗(𝑥). However, as
mentioned before, the degree could be 𝐷𝑗 (possibly > 𝑑𝑗) of
the corresponding 𝐴 and 𝐵. Thus, the overall size after the
power-series expansion would be 𝑂(𝐷2

𝑗 𝑑size(ℓ)) [here again
we use that 𝑑𝑗 ≤ 𝑑].

The effect of dlog on Σ∧Σ is, naturally, more straightforward.
This is because Lemma 2.6.9 shows that dlog is closed under
differentiation. Using Lemma 2.6.9, we obtain Σ∧Σ/Σ∧Σ cir-
cuit for dlog(𝑃𝑖,𝑗) of size 𝑂 (𝐷2

𝑗 ⋅ 𝑠𝑗). Similar claim can be made
for dlog(𝑄𝑖,𝑗). Also, dlog(𝑈𝑖,𝑗 ⋅ 𝑉𝑘−𝑗,𝑗) ∈ ∑ dlog(Σ), which could
be computed using the above Equation. Thus,

dlog(𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗) ∈ dlog(ΠΣ/ΠΣ) ± Σ[4]dlog(Σ∧Σ)

⊆ Σ∧Σ + Σ[4] (Σ∧Σ/Σ∧Σ) = (Σ∧Σ/Σ∧Σ) .

Here, Σ[4] means sum of 4-many expressions. The first con-
tainment is by linearization. The steps and the size blowups
are as follows:

1. Express dlog(ΠΣ/ΠΣ) as a single Σ∧Σ-expression of size
𝑂(𝐷2

𝑗 𝑑𝑗𝑠𝑗), by summing up the Σ∧Σ-expressions obtained
from dlog(Σ).

2. Next, there are 4-many Σ∧Σ/Σ∧Σ expressions of size
𝑂(𝐷2

𝑗 𝑠𝑗) as there are 4-many 𝑃’s and 𝑄’s.

3. Additionally, the syntactic degree of each denominator
and numerator of (Σ∧Σ/Σ∧Σ) grows up to 𝑂(𝐷𝑗).

4. Next, we club (Σ∧Σ/Σ∧Σ) expressions (4 of them) to ex-
press it as a single (Σ∧Σ/Σ∧Σ) expression using Lemma 2.6.9,
with size blowup of 𝑂(𝐷12

𝑗 𝑠4𝑗 ).
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5. Finally, add the single Σ∧Σ expression of size 𝑂(𝐷3
𝑗 𝑠𝑗),

and degree 𝑂(𝑑𝐷𝑗), to get 𝑂(𝑠5𝑗 𝐷
16
𝑗 𝑑) size representation.

Also, we need to multiply with 𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗 which is of the form
(ΠΣ/ΠΣ) ⋅ (Σ∧Σ/Σ∧Σ), where each Σ∧Σ is basically the product
of two Σ∧Σ expressions of size 𝑠𝑗, and syntactic degree 𝐷𝑗
and clubbed together, owing a blowup of 𝑂(𝐷𝑗𝑠2𝑗 ). Hence,
multiplying this (ΠΣ/ΠΣ) ⋅ (Σ∧Σ/Σ∧Σ)-expression with the
Σ∧Σ/Σ∧Σ expression obtained from dlog-compuation, gives a
size blowup of

𝑠𝑗+1 ∶= 𝑠7𝑗 𝐷
𝑂(1)
𝑗 𝑑 .

As mentioned before, the main blowup of syntactic degree
in the dlog computation could be 𝑂(𝑑𝐷𝑗) and clearing expres-
sions and multiplying the without dlog expression increases
the syntactic degree only by a constant multiple. Therefore,
𝐷𝑗+1 ∶= 𝑂(𝑑𝐷𝑗) ⟹ 𝐷𝑗 = 𝑑𝑂(𝑗). Hence,

𝑠𝑗+1 = 𝑠7𝑗 ⋅ 𝑑𝑂(𝑗) ⟹ 𝑠𝑗 ≤ (𝑠𝑑)𝑂(𝑗⋅7𝑗) .

In particular, 𝑠𝑘−1 ≤ 𝑠𝑂(𝑘⋅7𝑘); here we used that 𝑑 ≤ 𝑠. This
calculation quantitatively establishes induction-hypothesis-
(2).

Roadmap to trace back 𝑓0. The above claim established that
𝑔𝑘−1 ∈ Gen(1, ⋅) and approximates 𝑓𝑘−1 correctly. We also
know that Gen(1, ⋅) ∈ ABP/ABP, from Claim 6.5.1. Whence,
𝑔𝑘−1 having 𝑠𝑂(𝑘7𝑘) size bloated-circuit implies: it can be
computed as a ratio of ABPs with size 𝑠𝑂(𝑘7𝑘) ⋅ 𝐷2

𝑘−1 ⋅ 𝑛
2 =

𝑠𝑂(𝑘7𝑘), and syntactic degree 𝑛 ⋅ 𝐷𝑘−1 = 𝑑𝑂(𝑘). Now, we recur-
sively ‘lift’ this quantity, via interpolation, to recover in order,
𝑓𝑘−2, 𝑓𝑘−3, … , 𝑓0; which we originally wanted.

Interpolation: To integrate and limit. As mentioned
above, we will interpolate recursively. We know 𝑓𝑘−1 =
𝜕𝑧(𝑓𝑘−2/𝑡2,𝑘−2) has a ABP/ABP circuit in 𝔽(𝑥, 𝑧), i.e. each de-
nominator and numerator is being computed in 𝔽[𝑥, 𝑧], and
size bounded by 𝒮𝑘−1 ∶= 𝑠𝑂(𝑘7𝑘). Here is an important claim
about the size of 𝑓𝑘−2 (we denote it by 𝒮𝑘−2).

Claim 6.5.5 (Tracing back one step) 𝑓𝑘−2 can be expressed
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as

𝑓𝑘−2 =
𝑑𝑘−2−1
∑
𝑖=0

(ABP/ABP) 𝑧𝑖 ,

of size 𝑠𝑂(𝑘7𝑘) and syntactic degree 𝑑𝑂(𝑘).

Proof. Let the degree of 𝑓𝑘−1 (both denominator and numera-
tor) be bounded by 𝐷′

𝑘−1 ∶= 𝑑𝑂(𝑘), and further, we know that
keeping information (of the power series) till mod 𝑧𝑑𝑘−1 suf-
fices. While computing it, it may happen that the valuation
of each denominator and numerator is > 0, i.e. it is of the
form 𝑧𝑒1 ⋅ (ABP)/𝑧𝑒2 ⋅ (ABP) (𝑒1, 𝑒2 being valuations wrt 𝑧). It
must happen that 𝑒1 ≥ 𝑒2, if it is indeed a power series in 𝑧;
the 𝑒𝑖’s are bounded by 𝐷′

𝑘−1.

Furthermore, these ABPs (after dividing by 𝑧-power) have
similar size as 𝑧 is considered free [think of them being com-
puted in 𝔽(𝑧)[𝑥]]. Therefore, (ABP/ABP) can be expressed as
∑𝑑𝑘−1−1

𝑖=0 𝐶𝑖,𝑘−1 ⋅ 𝑧𝑖, by using the inverse identity:

1/(1 − 𝑧) ≡ 1 + … + 𝑧𝑑𝑘−1−1 mod 𝑧𝑑𝑘−1 .

Here, each 𝐶𝑖,𝑘−1 has an (ABP/ABP) of size at most 𝑂(𝒮𝑘−1 ⋅
𝐷′
𝑘−1

2); for details, see Lemma 2.6.4.

Once we get 𝑓𝑘−1 = ∑𝑑𝑘−1−1
𝑖=0 𝐶𝑖,𝑘−1𝑧𝑖, definite-integration im-

plies:

𝑓𝑘−2/𝑡2,𝑘−2 − 𝑓𝑘−2/𝑡2,𝑘−2|𝑧=0 ≡
𝑑𝑘−1
∑
𝑖=1

(𝐶𝑖,𝑘−1/𝑖) ⋅ 𝑧𝑖 mod 𝑧𝑑𝑘−1+1 .

The final trick is to get 𝑓𝑘−2/𝑡2,𝑘−2|𝑧=0, and ‘reach’ 𝑓𝑘−2. As,
𝑓𝑘−2/𝑡2,𝑘−2 ∈ 𝔽(𝑥)[[𝑧]], substituting 𝑧 = 0, yields an element
in 𝔽(𝑥). Recall the identity:

𝑓𝑘−2/𝑡2,𝑘−2|𝑧=0 = lim
𝜖→0

(𝑇1,𝑘−2/ ̃𝑇2,𝑘−2|𝑧=0 + 𝜖𝑎2,𝑘−2)

∈ lim
𝜖→0

(𝔽(𝜖) ⋅ (Σ∧Σ/Σ∧Σ) + 𝜖𝑎2,𝑘−2) .

Since, 𝔽(𝜖) ⋅ (Σ∧Σ/Σ∧Σ) + 𝜖𝑎2,𝑘−2 ∈ (Σ∧Σ/Σ∧Σ), in 𝔽(𝜖)(𝑥), we
know that the limit exists and is (ARO/ARO), and of course,
trivially,

(ARO/ARO) ⊆ (ABP/ABP) .

Further, the syntactic degree is 𝑑𝑂(𝑘), and the size is 𝑠𝑘−1 ⋅𝑑𝑂(𝑘).
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Thus, from the above equation, it follows:

𝑓𝑘−2/𝑡2,𝑘−2 = 𝑓𝑘−2/𝑡2,𝑘−2|𝑧=0 +
𝑑𝑘−1
∑
𝑖=1

(𝐶𝑖,𝑘−1/𝑖) ⋅ 𝑧𝑖 ∈
𝑑𝑘−1
∑
𝑖=0

(ABP/ABP) ⋅ 𝑧𝑖 ,

of size 𝑑𝑘−1 ⋅ 𝒮𝑘−1𝐷
′2
𝑘−1 + 𝑠𝑘−1 ⋅ 𝑑𝑂(𝑘), and degree 𝐷′

𝑘−1 + 𝑑𝑂(𝑘).
Lastly,

𝑡2,𝑘−2 ∈ lim
𝜖→0

(ΠΣ/ΠΣ) ⋅ (Σ∧Σ/Σ∧Σ)

⊆ (ΠΣ/ΠΣ) ⋅ (ARO/ARO) .

Thus, it has size 𝑠𝑘−2, by previous claims, and degree bound
𝐷𝑘−2. Moreover, we know that val𝑧(𝑡2,𝑘−2) ≥ 𝑣2,𝑘−2 = 𝑑𝑘−2 −
𝑑𝑘−1−1. Thus, multiply 𝑡2,𝑘−2 and truncate it till 𝑑𝑘−2−1. This
gives us the blowup: size 𝒮𝑘−2 = 𝑑𝑘−1 ⋅ 𝒮𝑘−1𝐷

′2
𝑘−1 + 𝑠𝑘−1 ⋅ 𝑑𝑂(𝑘)

and degree 𝐷′
𝑘−2 = 𝐷′

𝑘−1 + 𝑑𝑂(𝑘).

So, we get: 𝑓𝑘−2 has ∑𝑑𝑘−2−1
𝑖=0 (ABP/ABP)𝑧𝑖 of size 𝒮𝑘−2 =

𝑠𝑂(𝑘7𝑘) and degree 𝐷′
𝑘−2 = 𝑑𝑂(𝑘).

The 𝑧 = 0-evaluation. To trace back further, we imitate the
step as above; and get 𝑓𝑗 one by one. But we first need a claim
about the 𝑧 = 0 evaluation of 𝑓𝑗/𝑡𝑘−𝑗,𝑗.

Claim 6.5.6 (For definite integration)

𝑓𝑗/𝑡𝑘−𝑗,𝑗|𝑧=0 ∈ ARO/ARO ⊆ ABP/ABP

of size 𝑠𝑂(𝑘7𝑘).

Proof. Note that, 𝑔𝑗/ ̃𝑇𝑘−𝑗,𝑗 = ∑𝑖∈[𝑘−𝑗] 𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗 ∈ 𝔽(𝑥)[[𝑧, 𝜖]],
as the valuation wrt 𝑧, respectively 𝜖, is non-negative. There-
fore,

(
𝑓𝑗

𝑡𝑘−𝑗,𝑗
) |

𝑧=0
= lim

𝜖→0
∑

𝑖∈[𝑘−𝑗]
(

𝑇𝑖,𝑗
̃𝑇𝑘−𝑗,𝑗

) |
𝑧=0

= lim
𝜖→0

∑
𝑖∈[𝑘−𝑗]

(𝜖−𝑎𝑘−𝑗,𝑗 ⋅
𝑈𝑖,𝑗 ⋅ 𝑉𝑘−𝑗,𝑗
𝑈𝑘−𝑗,𝑗 ⋅ 𝑉𝑖,𝑗

⋅
𝑃𝑖,𝑗 ⋅ 𝑄𝑘−𝑗,𝑗

𝑃𝑘−𝑗,𝑗 ⋅ 𝑄𝑖,𝑗
) |

𝑧=0

∈ lim
𝜖→0

∑
𝑖∈[𝑘−𝑗]

(𝔽(𝜖) ⋅ Σ∧Σ
Σ∧Σ

) = lim
𝜖→0

(Σ∧Σ
Σ∧Σ

) ⊆ (ARO
ARO

) .

Here we crucially used induction-hypothesis-(3) part: each
𝑈𝑖,𝑗, 𝑉𝑖,𝑗 at 𝑧 = 0, is an element in 𝔽(𝜖). Also, we used that Σ∧Σ
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is closed under constant-fold multiplication (Lemma 2.6.10).
Finally, we take the limit to conclude that

(Σ∧Σ/Σ∧Σ) ⊆ (ARO/ARO) .

To show the upper bound on the ABP size, let us denote the
size(𝑓𝑗/𝑡𝑘−𝑗,𝑗|𝑧=0) =∶ 𝑆′𝑗 , and the syntactic degree𝐷′

𝑗 . We claim
that

𝑆′𝑗 = 𝑂(𝑠𝑂(𝑘−𝑗)
𝑗 ⋅ 𝐷′

𝑗
2𝑛2) .

Because, we have a sum of 𝑘 − 𝑗 many (Σ∧Σ/Σ∧Σ) expressions
each of size 𝑠𝑗 (the syntactic degrees are also bounded by
𝑠𝑗); Σ∧Σ is closed under multiplication (Lemma 2.6.10) and
Σ∧Σ to ARO conversion introduces exponent 2 in the degree
(Lemma 2.6.11). Each time the syntactic degree blowup is
only a constant multiple, thus 𝐷′

𝑗 ∶= 𝑑𝑂(𝑘) (which is ≤ 𝑠𝑂(𝑘)).
Therefore,

𝑆′𝑗 = 𝑠𝑂(𝑘−𝑗)⋅𝑗7𝑗 = 𝑠𝑂(𝑗(𝑘−𝑗)7𝑗) = 𝑠𝑂(𝑘7𝑘) .

Here, we again use the fact that max𝑗∈[𝑘−1] 𝑗(𝑘 − 𝑗)7𝑗 = (𝑘 −
1)7𝑘−1 (see Lemma 2.2.1). This finishes the proof.

Size blowup. Suppose the size of the ABP, comptuing 𝑓𝑗 is 𝒮𝑗;
thus we need to estimate 𝒮0.

We remark that we do not need to eliminate division at each
tracing-back-step (which we did to obtain 𝑓𝑘−2). Since, once
we have ∑

𝑑𝑗−1
𝑖=0 (ABP/ABP) ⋅ 𝑧𝑖, it is easy to integrate (wrt 𝑧)

without any blowup as we already have all the (ABP/ABP)’s
in hand (they are 𝑧-free). The main size blowup (= 𝑆′𝑗 ) hap-
pens due to 𝑧 = 0 computation which we calculated above
(Claim 6.5.6). Thus, the final recurrence is

𝒮𝑗 = 𝒮𝑗+1 + 𝑆′𝑗 .

This gives 𝒮0 = 𝑠𝑂(𝑘7𝑘), which is the size of Φ(𝑓 ), in the ring
𝔽(𝑧, 𝑥), being computed as an (ABP/ABP).

Finally, plugging ‘random’ 𝑧, shifting-and-scaling, gives us
𝑓; represented as an (ABP/ABP) of similar size. At the fi-
nal stage, we eliminate the division-gate which gives us 𝑓
represented as an ABP of size 𝑠𝑂(𝑘7𝑘).

Remark. Our proof de-bordered Gen(𝑘, 𝑠), and that too for
any field of characteristic = 0 or ≥ 𝑑.
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6.6 Discussion

Depth-3 circuits with constant top fan-in themselves seem
like fairly ‘simple’ models of computation, but have been
objects of intense study in algebraic complexity. The prior
known de-bordering techniques are mostly rank-based, or,
very simple; they do not appear to extend to the border of
these circuits, at least in obvious ways. In this work, we
introduce new ideas and techniques which help bridge this
gap in understanding. The method is quite powerful, which
almost converts a Π-gate to an ∧-gate! It is not too-wishful
to expect some more applications of DiDIL, on de-bordering
a more general circuit class, and related problems. It will be
particularly nice to see if DiDIL can be expedited.

In particular, the current method gives exp(𝑘), in the expo-
nent, since DiDIL works linearly, and at each step, there is
a multiplicative blowup. If the same process can be done
in a divide-and-conquer fashion, the same method will give
poly(𝑘), in the exponent. However, we agree that our current
analysis might not be very optimized, and thus, it might still
be possible to get 4𝑘 or 5𝑘, instead of 7𝑘. But it clearly does
not give better than exp(𝑘), and hence, we do not get into
messy optimizations!
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“The timeless in you is aware of life’s timelessness. And knows
that yesterday is but today’s memory and tomorrow is today’s

dream.”

— Khalil Gibran, The Prophet.

Abstract. In this chapter, we give the first quasipolynomial-
time blackbox identity test for constant fanin border depth-3
circuits (Σ[𝑘]ΠΣ, for constant 𝑘). Constructing a set of points
𝐻 ⊂ ℂ𝑛, of small bit complexity, that is guaranteed to be a
hitting set for polynomials that can be infinitesimally approx-
imated by small algebraic circuits over the complex numbers,
is an interesting complexity theoretic question. Forbes and
Shpilka [FS18] introduced the concept of robust hitting set
and gave a PSPACE algorithm for constructing a small hitting
set for VP. Very recently, [LST21] gave a sub-exponential PIT
for any constant-depth circuits, which can in fact be extended
to the border paradigm [AF21], giving a similar time PIT.

Since, no sub-exponential derandomization of PIT for gen-
eral ABPs is known, this is really ”independent” of the de-
bordering result, presented in Chapter 6. This result also has
a similar high level strategy as Chapter 6, and uses DiDIL-
technique, though thee are additional technical difficulties,
which some additional care, and multi-stage combination of
hitting set points.

7.1 Border PIT

Before going into the details, let us formally define what we
mean by border PIT.

Definition 7.1.1 (Hitting set for border classes) ℋ is a
hitting set for a class 𝒞, if 𝑔(𝑥, 𝜖) ∈ 𝒞𝔽(𝜖), approximates a
nonzero polynomial 𝑓 (𝑥) ∈ 𝒞, then ∃𝑎 ∈ ℋ such that 𝑔(𝑎, 𝜖) ∉
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𝜖 ⋅ 𝔽[𝜖], i.e. 𝑓 (𝑎) ≠ 0.

Note that, asℋwill also ‘hit’ polynomials of class𝒞, construc-
tion of hitting set for the border classes (we call it ‘border PIT’)
is a natural, and possibly a different avenue to derandomize
PIT. Here, we emphasize that 𝑎 ∈ 𝔽𝑛 such that 𝑔(𝑎, 𝜖) ≠ 0, may
not hit the limit polynomial 𝑓 since 𝑔(𝑎, 𝜖) might still lie in
𝜖 ⋅𝔽[𝜖]; because 𝑓 could have really high complexity compared
to 𝑔. Intrinsically, this property makes it harder to construct
an explicit hitting set for VP. For an explicit example, see the
margin note.

We also remark that there is no ‘whitebox’ setting in the bor-
der, and thus we cannot really talk about ‘𝑡-time algorithm’;
rather we would only be using the term ‘𝑡-time hitting set’,
since the given circuit after evaluating on 𝑎 ∈ 𝔽𝑛, may require
arbitrarily high-precision in 𝔽(𝜖).

Prior known border PITs. Mulmuley [Mul17] asked the
question of constructing an efficient hitting set for VP. Forbes
and Shpilka [FS18] gave a PSPACE algorithm over the field ℂ.
In [Guo+19], the authors extended this result to any field. A
very few better hitting set constructions are known for the
restricted border classes, e.g.,

1. polynomial-time hitting set for ΠΣ = ΠΣ [BT88; KS01],

2. quasipolynomial-time hitting set for all the three re-
spective classes Σ∧Σ ⊆ ARO ⊆ ROABP [FS13a; Agr+15;
Gur+17],

3. polynomial-time hitting set for the border of a restricted
sum of log-variate ROABPs [BS21].

Why care about border PIT? PIT for VP has a lot of
applications in the context of borderline geometry and com-
putational complexity, as observed by Mulmuley [Mul12].
For e.g., Noether’s Normalization Lemma (NNL); it is a funda-
mental result in algebraic geometry where the computational
problem of constructing explicit normalization map reduces
to constructing small size hitting set of VP [Mul17; FS13b].
Close connection between certain formulation of derandom-
ization of NNL, and the problem of showing explicit circuit
lower bounds, is also known [Mul17; Muk16].
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1: To understand the dis-
crepancy, consider the
example in Chapter 1:
ℎ𝜖(𝑥, 𝑦) = 1

3𝜖
((𝑥 + 𝜖𝑦)3 − 𝑥3).

As argued before,
lim𝜖→0 ℎ𝜖 = ℎ ∶= 𝑥2𝑦.
Now consider (𝑥, 𝑦) = (0, 1).
Note that, ℎ𝜖((0, 1)) = 𝜖2/3 ≠ 0;
but in the limit we get zero.
However, the limit polynomial is
not a zero polynomial.

The secondmotivation comes from the hope to find an explicit
‘robust’ hitting set for VP [FS18]; this is a hitting set ℋ such
that after an adequate normalization, there will be a point in
ℋ on which 𝑓 evaluates to (say) 1. This notion overcomes the
discrepancy between a hitting set for VP, and a hitting set
for VP [FS18; MS21] 1. We know that a small robust hitting
set exists [CW01], but an explicit PSPACE construction was
given in [FS18]. It is not at all clear whether the efficient
hitting sets known for restricted depth-3 circuits are robust
or not.

7.2 Our Border PIT Results

We continue our study on Σ[𝑘]Π[𝑑]Σ circuits, and ask for an
efficient hitting set. Already, a polynomial-time hitting set
is known for Σ[𝑘]Π[𝑑]Σ [SS11; SS12; Agr+16]. But, the border
class seems to be more powerful, and the known hitting sets
seem to fail. However, using our structural understanding
and the analytic DiDIL technique, we are able to completely
quasi-derandomize the class. For the detailed statement, see
Theorem 7.3.1.

Theorem 7.2.1 (Quasi-derandomizing depth-3 [DDS21b])
There exists an explicit quasipolynomial-time (𝑠𝑂(log log 𝑠))
hitting set for Σ[𝑘]ΠΣ-circuits of size 𝑠 and constant 𝑘.

Remarks. 1. For 𝑘 = 1, as 𝑓 ∈ ΠΣ = ΠΣ, there is an explicit
polynomial-time hitting set. In particular, 𝑓 (𝑧, 𝑧2, … , 𝑧𝑛) ≠ 0,
where 𝑧 is a new variable!

2. Our technique necessarily blows up the size to 𝑠exp(𝑘)⋅log log 𝑠.
Therefore, it would be interesting to design a subexponential-
time algorithm when 𝑘 = Θ(log 𝑠); or polynomial-time for
𝑘 = 𝑂(1).

3. We can not directly use the de-bordering result of Theo-
rem 6.4.2 and try to find efficient hitting set, as we do not
know explicit good hitting set for general ABPs.

4. One can extend this technique to construct quasipolynomial-
time hitting set for depth-4 classes: Σ[𝑘]ΠΣ∧ and Σ[𝑘]ΠΣΠ[𝛿],
when 𝑘 and 𝛿 are constants, [DDS21b]. However, we have not
include these results in this thesis.
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The log-variate regime. In recent developments [AGS19;
KST19; Guo+19; DST21] low-variate polynomials, even in
highly restricted models, have gained a lot of clout for their
general implications in the context of derandomization and
hardness results. A slightly non-trivial hitting set for trivari-
ate ΣΠΣ∧-circuits [AGS19]would in fact imply quasipolynomial-
time PIT for general circuits (optimized to polynomial-time
in [Guo+19] with a hardness hypothesis). This motivation
has pushed researchers to work on log-variate regime and
design efficient PITs. Some of the most important PITs in the
log-variate regime are:

1. In [FGS18], the authors showed a poly(𝑠)-time black-
box identity test for 𝑛 = 𝑂(log 𝑠) variate size-𝑠 circuits
that have poly(𝑠)-dimensional partial derivative space;
e.g., log-variate depth-3 diagonal circuits.

2. Very recently, Bisht and Saxena [BS21] gave the first
poly(𝑠)-time blackbox PIT for sum of constant-many,
size-𝑠, 𝑂(log 𝑠)-variate constant-width ROABPs (and its
border).

We remark that non-trivial border-PIT in the low-variate
bootstraps to non-trivial PIT for VP as well [AGS19; Guo+19].
Motivated thus, we try to derandomize log-variate Σ[𝑘]ΠΣ-
circuits. Unfortunately, direct application of Theorem 7.2.1
fails to give a polynomial-time PIT. Surprisingly, adapting
techniques from [FGS18] to extend the existing result (The-
orem 7.4.1), combined with our DiDIL-technique, we prove
the following. For details, see Theorem 7.4.2.

Theorem 7.2.2 (Derandomizing log-variate depth-3 cir-
cuits [DDS21b]) There exists an explicit poly(𝑠)-time hitting
set for 𝑛 = 𝑂(log 𝑠) variate, size-𝑠, Σ[𝑘]ΠΣ circuits, for constant
𝑘.

7.2.1 The 100-foot view of the proofs

The PIT results also have a similar high level strategy as
of Theorem 6.4.2, although there are additional technical
difficulties which need some care at every stage. At the core,
the idea is really “primal”, and depends on the following.
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Observation
If a bivariate polynomial 𝐺(𝑋 , 𝑍) ≠ 0, then either its deriva-
tive 𝜕𝑍 𝐺(𝑋 , 𝑍) ≠ 0, or its constant-term 𝐺(𝑋 , 0) ≠ 0 (note:
𝐺(𝑋 , 0) = 𝐺 mod 𝑍).

So, if 𝐺(𝑎, 0) ≠ 0 or 𝜕𝑍𝐺(𝑏, 𝑍) ≠ 0, then the union-set {𝑎, 𝑏} hits
𝐺(𝑋 , 𝑍), i.e., either 𝐺(𝑎, 𝑍) ≠ 0 or 𝐺(𝑏, 𝑍) ≠ 0.

Therefore, after the DiDIL-technique, we convert the Π-gate
to ∧-gate (with unbounded fanin), where efficient hitting
sets are known. Moreover, in the log-variate regime, the
classical hitting set proof is rank-based [FGS18], and thus can
be extended to the border setting as well.

7.2.2 Why known PIT techniques fail?

Once we understand an interesting upperbound for Σ[𝑘]ΠΣ, it
is natural to look for efficient derandomization. However, as
we do not know any efficient PIT for ABPs, known techniques
would not yield an efficient PIT for the same. Further, in
a nutshell—(i) limited (almost non-existent) understanding
of linear/algebraic dependence under limit, (ii) exponential
upper bound on 𝜖, and (iii) not-good-enough understanding of
restricted border classes make it really hard to come up with
an efficient hitting set. We elaborate these points below.

Dvir and Shpilka [DS07] gave a rank-based approach to de-
sign the first quasipolynomial-time algorithm for Σ[𝑘]ΠΣ.
A series of works [KS09; SS11; SS12; SS13] finally gave a
𝑠𝑂(𝑘)-time algorithm for the same. Their techniques depend
on either generalizing Chinese remaindering (CR) via ideal-
matching or certifying paths, or via efficient variable-reduction,
to obtain a good enough rank-bound on the multiplication
(ΠΣ) terms. Most of these approaches required a linear space,
but the possibility of exponential 𝜖-powers and non-trivial
cancellations make these methods fail miserably in the limit.
Similar obstructions also hold for [MS21; ST21; BG21] which
give efficient hitting sets for the orbit of sparse polynomials
(which is in fact dense in ΣΠΣ). In particular, Medini and
Shpilka [MS21] gave PIT for the orbits of variable disjoint
monomials (see [MS21, Definition 1.29]), under the affine
group, but not the closure of it. Thus, they do not even give
a subexponential PIT for Σ[2]ΠΣ.
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Recently, Guo [Guo21] gave an 𝑠𝛿
𝑘
-time PIT, for non-SG

Σ[𝑘]ΠΣΠ[𝛿] circuits, by constructing explicit variety evasive
subspace families; but to apply this idea to border PIT, one
has to devise a radical-ideal based PIT idea. Currently, this
does not work in the border, as 𝜖 mod ⟨𝜖𝑀⟩ has an expo-
nentially high nilpotency. Since radical⟨𝜖𝑀⟩ = ⟨𝜖⟩, it ’kills’
the necessary information unless we can show a polynomial
upper bound on 𝑀.

Finally, [Agr+16] came upwith faithfulmap by using Jacobian
+ certifying path technique, which is more about algebraic
rank rather than linear-rank. However, it is not at all clear
how it behaves wrt lim𝜖→0. For e.g. 𝑓1 = 𝑥1 + 𝜖𝑀 ⋅ 𝑥2, and
𝑓2 = 𝑥1, where 𝑀 is arbitrary large. Note that the underlying
Jacobian 𝐽 (𝑓1, 𝑓2) = 𝜖𝑀 is nonzero; but it flips to zero in the
limit. This makes the whole Jacobian machinery collapse
in the border setting; as it cannot possibly give a variable
reduction for the border model. (E.g., one needs to keep both
𝑥1 and 𝑥2 above.)

In Chapter 4, we gave a quasipolynomial-time hitting set
for exact Σ[𝑘]ΠΣ∧ and Σ[𝑘]ΠΣΠ[𝛿] circuits, when 𝑘 and 𝛿 are
constant. This result is dependent on the Jacobian technique,
which fails under taking the limit, as mentioned above. How-
ever, a polynomial-time whitebox PIT for Σ[𝑘]ΠΣ∧ circuits
was shown using DiDI-technique (Divide, Derive and Induct).
This cannot be directly used because there was no 𝜖 (i.e. with-
out limit) and Σ[𝑘]ΠΣ∧ has only blackbox access. Further,
Theorem 6.4.2 gives an ABP, where DiDI-technique cannot
be directly applied. Therefore, our DiDIL-technique can be
thought of as a strict generalization of the DiDI-technique,
first introduced in [DDS21a], which now applies to uncharted
borders.

In a recent breakthrough result, Limaye, Srinivasan and Tave-
nas [LST21] showed the first superpolynomial lower bound
for constant-depth circuits. Their lower bound result, to-
gether with the ‘hardness vs randomness’ tradeoff result
of [CKS18] gives the first deterministic subexponential-time
blackbox PIT algorithm for general constant-depth circuits.
Interestingly, these methods can be adapted in the border set-
ting as well [AF21]. However, compared to their algorithms,
our hitting sets are significantly faster!
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7.3 Quasi-derandomizing Σ[𝑘]ΠΣ
Circuits

Induction step of DiDIL is important to give any meaning-
ful upper bound of circuit complexity. However, hitting set
construction demands less— each inductive step of fanin re-
duction must preserve nonzeroness. Eventually, we exploit
this to give an efficient hitting set construction for Σ[𝑘]ΠΣ, and
in the process of reducing the top fanin analyse the bloated
model Gen(𝑘, ⋅).

Theorem 7.3.1 (Efficient hitting set for Σ[𝑘]ΠΣ) There exists
an explicit quasipolynomial-time (𝑠𝑂(𝑘⋅7𝑘⋅log log 𝑠)) hitting set
for Σ[𝑘]ΠΣ-circuits of size 𝑠 and constant 𝑘.

Proof. The basic reduction strategy is same as section 6.5. Let
𝑓0 ∶= 𝑓 be an arbitrary polynomial in Σ[𝑘]ΠΣ, approximated
by 𝑔0 ∈ 𝔽(𝜖)[𝑥], computed by a depth-3 circuit 𝐶 of size 𝑠 over
𝔽(𝜖), i.e. 𝑔0 ∶= 𝑓0 + 𝜖 ⋅ 𝑆0. Further, assume that deg(𝑓0) <
𝑑0 ∶= 𝑑 ≤ 𝑠. Let 𝑔0 =∶ ∑𝑖∈[𝑘] 𝑇𝑖,0, such that 𝑇𝑖,0 is computable
by a ΠΣ-circuit of size atmost 𝑠 over 𝔽(𝜖). As before, define
ℛ0 ∶= 𝔽[𝑧]/⟨𝑧𝑑⟩. Thus, 𝑓0 + 𝜖 ⋅ 𝑆0 = ∑𝑖∈[𝑘] 𝑇𝑖,0, holds in
ℛ0(𝑥, 𝜖).

Define 𝑈𝑖,0 ∶= 𝑇𝑖,0 and 𝑉𝑖,0 ∶= 𝑃𝑖,0 ∶= 𝑄𝑖,0 = 1 to set the input
instance of Gen(𝑘, 𝑠). Of course, we assume that each 𝑇𝑖,0 ≠ 0
(otherwise it is a smaller fanin than 𝑘).

Φ homomorphism. To ensure invertiblity and facilitate deriva-
tion, we define the same Φ as in section 6.5, i.e. Φ ∶ 𝔽(𝜖)[𝑥] →
𝔽(𝜖)[𝑥, 𝑧] such that 𝑥𝑖 ↦ 𝑧 ⋅ 𝑥𝑖 + 𝛼𝑖. For the upper bound proof,
we took 𝛼𝑖 ∈ 𝔽 to be random; but for the PIT purpose, we
cannot work with a random shift. The purpose of shifting
was to ensure the invertibility, i.e., 𝔽(𝜖) ∋ 𝑇𝑖,0(𝑎) ≠ 0; that is
easy to ensure since over any field,

∏
𝑖
𝑇𝑖,0(𝑦 , 𝑦2, … , 𝑦𝑛) = ∏

ℓ∣𝑇𝑖,0

ℓ(𝑦 , 𝑦2, … , 𝑦𝑛) ≠ 0 .

Trivially, deg(∏𝑖 𝑇𝑖,0) ≤ 𝑠, therefore, 𝑎 = (𝑖, 𝑖2, … , 𝑖𝑛), for some
𝑖 ∈ [𝑠] works, as a hitting point, to ensure the invertibility!
In the proof, we will work with every such 𝑎 (𝑠-many), and
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for the right-value, nonzeroness will be preserved, which
suffices.

q 0-th step: Reduction from 𝑘 to 𝑘 − 1

Wewill use the same notation as in section 6.5. We know that
𝑔1 approximates 𝑓1 correctly in the ring ℛ1(𝑥, 𝜖). Rewriting
the same, we have

𝑓0 + 𝜖 ⋅ 𝑆0 = ∑
𝑖∈[𝑘]

𝑇𝑖,0 , inℛ0(𝑥, 𝜖) (7.1)

⟹ 𝑓1 + 𝜖 ⋅ 𝑆1 = ∑
𝑖∈[𝑘−1]

𝑇𝑖,1 , in ℛ1(𝑥, 𝜖) . (7.2)

Here, define 𝑇𝑖,1 ∶= (Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0) ⋅ dlog(Φ(𝑇𝑖,0)/ ̃𝑇𝑘,0), for 𝑖 ∈
[𝑘 − 1] and 𝑓1 ∶= 𝜕𝑧 (Φ(𝑓0)/𝑡𝑘,0), same as before. Also, we
will consider 𝑇𝑖,1 as an element of 𝔽(𝑥, 𝑧, 𝜖) and keep track of
deg(𝑧).

The “iff” condition. Note that the equality in Equation 7.1
in ℛ1(𝜖, 𝑥) is only “one-sided”. Whereas, to reduce identity
testing, we need a necessary and sufficient condition: If 𝑓0 ≠ 0,
we would like to claim that 𝑓1 ≠ 0 (over ℛ1(𝑥)). However, it
may not be directly true because of the loss of 𝑧-free terms of
𝑓0, due to differentiation. Note that 𝑓1 ≠ 0 implies val𝑧(𝑓1) <
𝑑 =∶ 𝑑1. Further, 𝑓1 = 0, in 𝑅1(𝑥), implies–

either, (1) Φ(𝑓0)/𝑡𝑘,0 is 𝑧-free. This implies Φ(𝑓0)/𝑡𝑘,0 ∈ 𝔽(𝑥),
which further implies it is in 𝔽, because 𝑧-free implies 𝑥-free,
by substituting 𝑧 = 0, by the definition of Φ. Also, note that
𝑓0, 𝑡𝑘,0 ≠ 0 implies Φ(𝑓0)/𝑡𝑘,0 is a nonzero element in 𝔽. Thus,
it suffices to check whether Φ(𝑓0)|𝑧=0 = 𝑓0(𝑎), is nonzero or
not.

or, (2) 𝜕𝑧(Φ(𝑓0)/𝑡𝑘,0) = 𝑧𝑑1 ⋅𝑝, where 𝑝 ∈ 𝔽(𝑧, 𝑥) such that val𝑧(𝑝) ≥
0. By simple power series expansion, one can conclude that
𝑝 ∈ 𝔽(𝑥)[[𝑧]] (Lemma 2.2.2). Hence,

Φ(𝑓0)/𝑡𝑘,0 = 𝑧𝑑1+1⋅ ̃𝑝,where ̃𝑝 ∈ 𝔽(𝑥)[[𝑧]] ⟹ val𝑧(Φ(𝑓0)) ≥ 𝑑 ,

a contradiction. Here we used the simple fact that differenti-
ation decreases the valuation by 1.

Conversely, it is obvious that 𝑓0 = 0 implies 𝑓1 = 0. Thus, we
have proved the following:

𝑓0 ≠ 0 in 𝔽[𝑥] ⟺ 𝑓1 ≠ 0 in ℛ1(𝑥), or 0 ≠ Φ(𝑓0)|𝑧=0 ∈ 𝔽.
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Recall, Claim 6.5.4 shows that 𝑇𝑖,1 ∈ (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) with
a polynomial blowup. Therefore, subject to 𝑧 = 0 test, we
have reduced the identity testing problem to 𝑘 − 1. We will
recurse over this until we reach 𝑘 = 1.

q Induction step

Assume that we are at the end of 𝑗-th step (𝑗 ≥ 1). Our
inductive hypothesis assumes the following invariants:

1. ∑𝑖∈[𝑘−𝑗] 𝑇𝑖,𝑗 = 𝑓𝑗 + 𝜖 ⋅ 𝑆𝑗 in ℛ𝑗(𝜖, 𝑥), where 𝑇𝑖,𝑗 ≠ 0 and
ℛ𝑗 ∶= 𝔽[𝑧]/⟨𝑧𝑑𝑗⟩.

2. Each 𝑇𝑖,𝑗 = (𝑈𝑖,𝑗/𝑉𝑖,𝑗) ⋅ (𝑃𝑖,𝑗/𝑄𝑖,𝑗) where 𝑈𝑖,𝑗, 𝑉𝑖,𝑗 ∈ ΠΣ and
𝑃𝑖,𝑗, 𝑄𝑖,𝑗 ∈ Σ∧Σ.

3. val𝑧(𝑇𝑖,𝑗) ≥ 0, for all 𝑖 ∈ [𝑘 − 𝑗]. Moreover, 𝑈𝑖,𝑗|𝑧=0 ∈
𝔽(𝜖)\{0} (similarly 𝑉𝑖,𝑗).

4. 𝑓0 ≠ 0 iff: 𝑓𝑗 ≠ 0 inℛ𝑗(𝑥), or⋁
𝑗−1
𝑖=1 (𝑓𝑖/𝑡𝑘−𝑖,𝑖|𝑧=0 ≠ 0, in𝔽(𝑥)).

Reducing the problem to 𝑘 − 𝑗 −1. We will follow the 𝑗 = 0 case,
without applying any homomorphism. Again, this reduction
step is exactly the same as before, which yields: 𝑓𝑗 + 𝜖 ⋅ 𝑆𝑗 =
∑𝑖∈[𝑘−𝑗] 𝑇𝑖,𝑗, in ℛ𝑗(𝑥, 𝜖) ⟹

𝑓𝑗+1 + 𝜖 ⋅ 𝑆𝑗+1 = ∑
𝑖∈[𝑘−𝑗−1]

𝑇𝑖,𝑗+1, in ℛ𝑗+1(𝑥, 𝜖). (7.3)

Here, 𝑇𝑖,𝑗+1 ∶= (𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗)⋅dlog(𝑇𝑖,𝑗/ ̃𝑇𝑘−𝑗,𝑗), and 𝑓𝑗+1 ∶= 𝜕𝑧(𝑓𝑗/𝑡𝑘−𝑗,𝑗),
as before.

It remains to show that, all the invariants assumed are still
satisfied for 𝑗 + 1. The first 3 invariants are already shown
in section 6.5. The 4-th invariant is the iff condition to be
shown below.

The “iff” condition in the induction. The above Equation 7.3
pioneers to reduce from 𝑘 − 𝑗-summands to 𝑘 − 𝑗 − 1. But
we want an ‘iff’ condition to efficiently reduce the identity
testing. If 𝑓𝑗+1 ≠ 0, then val𝑧(𝑓𝑗+1) < 𝑑𝑗+1. Further, 𝑓𝑗+1 = 0,
in 𝑅𝑗+1(𝑥) implies–

either, (1) 𝑓𝑗/𝑡𝑘−𝑗,𝑗 is 𝑧-free, i.e. 𝑓𝑗/𝑡𝑘−𝑗,𝑗 ∈ 𝔽(𝑥). Now, if indeed
𝑓0 ≠ 0, then 𝑡𝑘−𝑗,𝑗 as well as 𝑓𝑗 must be nonzero in 𝔽(𝑧, 𝑥), by in-
duction hypothesis (assuming they are nonzero inℛ𝑗(𝑥)). We
will eventually show that 𝑓𝑗/𝑡𝑘−𝑗,𝑗|𝑧=0, has a small (ARO/ARO)
circuit; which helps us to construct a quasi-polynomial size
hitting set using Theorem 2.7.7.
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or, (2) 𝜕𝑧(𝑓𝑗/𝑡𝑘−𝑗,𝑗) = 𝑧𝑑𝑗+1 ⋅ 𝑝, where 𝑝 ∈ 𝔽(𝑧, 𝑥) s.t. val𝑧(𝑝) ≥ 0.
By simple power series expansion, one concludes that 𝑝 ∈
𝔽(𝑥)[[𝑧]] (Lemma 2.2.2). Hence,

𝑓𝑗
𝑡𝑘−𝑗,𝑗

∈ 𝑧𝑑𝑗+1+1 ⋅ ̃𝑝, where ̃𝑝 ∈ 𝔽(𝑥)[[𝑧]] ,

⟹ val𝑧(𝑓𝑗) ≥ 𝑑𝑗 ,
⟹ 𝑓𝑗 = 0 , in ℛ𝑗(𝑥) .

Conversely,

𝑓𝑗 = 0, in ℛ𝑗(𝑥) ⟹ val𝑧(𝑓𝑗/ ̃𝑇𝑘−𝑗,𝑗) ≥ 𝑑𝑗 − 𝑣𝑘−𝑗,𝑗
⟹ val𝑧(𝜕𝑧(𝑓𝑗/ ̃𝑇𝑘−𝑗,𝑗)) ≥ 𝑑𝑗 − 𝑣𝑘−𝑗,𝑗 − 1 = 𝑑𝑗+1
⟹ 𝜕𝑧(𝑓𝑗/ ̃𝑇𝑘−𝑗,𝑗) = 0, in ℛ𝑗+1(𝜖, 𝑥) .

Fixing 𝜖 = 0, we deduce that

𝑓𝑗+1 = 𝜕𝑧(𝑓𝑗/𝑡𝑘−𝑗,𝑗) = 0 .

Thus, we have proved that 𝑓𝑗 ≠ 0 in ℛ𝑗(𝑥) iff

𝑓𝑗+1 ≠ 0 in 𝑅𝑗+1(𝑥) , or , 0 ≠ (𝑓𝑗/𝑡𝑘−𝑗,𝑗)|𝑧=0 ∈ 𝔽(𝑥) .

This concludes the proof of the 4-th invariant.

Note: In the above substitution (𝑧 = 0), (Σ∧Σ/Σ∧Σ) maybe
undefined by directly evaluating at numerator and denom-
inator, i.e. = 0/0. But we can keep track of the 𝑧 degree
of numerator and denominator, which will be polynomially
bounded as seen in Claim 6.5.4. We can interpolate and cancel
the 𝑧-powers to get the ratio.

q Constructing the hitting set

The above discussion has reduced the problem of testing Φ(𝑓 ),
to testing 𝑓𝑘−1, or 𝑓𝑗/𝑡𝑘−𝑗,𝑗|𝑧=0, for 𝑗 ∈ [𝑘 − 2]. We know that

𝑓𝑘−1 ∈ (ΠΣ/ΠΣ)⋅(ARO/ARO), of size 𝑠𝑂(𝑘7𝑘), from Claim 6.5.4.
We obtain the hitting set ofΠΣ circuit fromTheorem 2.7.5, and
for Σ∧Σ circuit, we obtain the hitting set from Theorem 2.7.7
(due to Lemma 2.6.11). Finally, we combine the two hitting
sets using Lemma 2.7.3, and use the fact that the syntactic
degree is bounded by 𝑠𝑂(𝑘), to obtain a hitting set ℋ𝑘−1, of
size 𝑠𝑂(𝑘7𝑘 log log 𝑠).

However, it remains to show the following –
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1. efficient hitting set for 𝑓𝑗/𝑡𝑘−𝑗,𝑗|𝑧=0, for 𝑗 ∈ [𝑘 − 2], and
most importantly,

2. how to translate these hitting sets to that of Φ(𝑓 ).

Recall: Claim 6.5.6 shows that 𝑓𝑘/𝑡𝑘−𝑗,𝑗|𝑧=0 ∈ ARO/ARO, of

size 𝑠𝑂(𝑘7𝑘) (over 𝔽(𝑥)). Thus, it has a hitting set ℋ𝑗 of size

𝑠𝑂(𝑘7𝑘 log log 𝑠) (Theorem 2.7.7).

To translate the hitting set, we need a small property which
will bridge the gap of lifting the hitting set to 𝑓0.

Claim 7.3.1 (Fix 𝑥) For 𝑏 ∈ 𝔽𝑛, if the following two things
hold:

(i) 𝑓𝑗+1|𝑥=𝑏 ≠ 0, in ℛ𝑗+1, and

(ii) val𝑧( ̃𝑇𝑘−𝑗,𝑗|𝑥=𝑏) = 𝑣𝑘−𝑗,𝑗,

then, over the ring ℛ𝑗,

𝑓𝑗|𝑥=𝑏 ≠ 0 .

Proof. Suppose the hypothesis holds, and 𝑓𝑗|𝑥=𝑏 = 0, over ℛ𝑗.
Then,

val𝑧 ((
𝑓𝑗
̃𝑇𝑘−𝑗,𝑗

) |
𝑥=𝑏

) ≥ 𝑑𝑗−𝑣𝑘−𝑗,𝑗 ⟹ val𝑧(𝜕𝑧 ((
𝑓𝑗
̃𝑇𝑘−𝑗,𝑗

) |
𝑥=𝑏

) ≥ 𝑑𝑗+1.

The last condition implies that 𝜕𝑧(𝑓𝑗/ ̃𝑇𝑘−𝑗,𝑗)|𝑥=𝑏 = 0, inℛ𝑗+1(𝑥).
Fixing 𝜖 = 0 we deduce 𝑓𝑗+1|𝑥=𝑏 = 0. This is a contradiction!

Finally, we have already shown in section 6.5 that ̃𝑇𝑘−𝑗,𝑗 ∈
(ΠΣ/ΠΣ) ⋅ (Σ∧Σ/Σ∧Σ), and 𝑡𝑘−𝑗,𝑗 ∈ (ΠΣ/ΠΣ) ⋅ (ARO/ARO), of
size 𝑠𝑂(𝑘7𝑘), which is similar to 𝑓𝑘−1. Note: val𝑧 of a Σ∧Σ again
reduces to a Σ∧Σ PIT question.

Joining the dots: The final hitting set. We now have all
the ingredients to construct the hitting set forΦ(𝑓0). We know
ℋ𝑘−1 works for 𝑓𝑘−1 (as well as 𝑡2,𝑘−2, because they both are of
the same size and belong to (ΠΣ/ΠΣ)⋅(ARO/ARO)). This lifts
to 𝑓𝑘−2. But from the 4-th invariant, we know thatℋ𝑘−2 works
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for the 𝑧 = 0 part. Eventually, lifting this using Claim 7.3.1,
the final hitting set (in 𝑥) will be

ℋ ∶= ⋃
𝑗∈[𝑘−1]

ℋ𝑗 .

We remark that we do not need extra hitting set for each 𝑡𝑘−𝑗,𝑗,
because it is already covered by ℋ𝑘−1. We have also kept
track of deg(𝑧) which is bounded by 𝑠𝑂(𝑘). We use a trivial
hitting set for 𝑧 which does not change the size. Thus, we
have successfully constructed a 𝑠𝑂(𝑘7𝑘 log log 𝑠)-time hitting set
for Σ[𝑘]ΠΣ.

Remark. This is a PIT for Gen(𝑘, 𝑠), and that too for any field
of characteristic = 0 or ≥ 𝑑.

7.4 Border PIT for log-variate Depth-3
Circuits

In this section, we prove Theorem 7.2.2. This proof is depen-
dent on adapting and extending [FGS18] proof, by showing
that there is a poly(𝑠)-time hitting set for log-variate Σ∧Σ-
circuits.

Theorem 7.4.1 (Derandomizing log-variate Σ∧Σ) There is a
poly(𝑠)-time hitting set for 𝑛 = 𝑂(log 𝑠) variate Σ∧Σ-circuits
of size 𝑠.

Proof sketch. Let 𝑔 = 𝑓 + 𝜖 ⋅ 𝑄, such that 𝑔 ∈ Σ∧Σ, over 𝔽(𝜖),
approximates 𝑓 ∈ Σ∧Σ. The idea is the same as [FGS18]—

1. show that 𝑓 has poly(𝑠, 𝑑) partial derivative space, and,

2. low partial derivative space implies low cone-sizemono-
mials,

3. One can extract low cone-size monomials efficiently,

4. number of low cone-size monomials is poly(𝑠𝑑)-many.

We remark that (2) is direct from [For14, Corollary 4.14] (with
origins in [FS13b]); see Theorem 2.6.1. (4) is also directly
taken from [FGS18, Lemma 5] once we assume (1); for the
full statement we refer to Lemma 2.6.2.
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To show (1), we know that 𝑔 has poly(𝑠, 𝑑) partial-derivative
space over 𝔽(𝜖). Denote

𝑉𝜖 ∶= ⟨
𝜕 𝑔
𝜕𝑥𝑎

∣ 𝑎 < ∞ ⟩
𝔽(𝜖)

, and 𝑉 ∶= ⟨
𝜕 𝑓
𝜕𝑥𝑎

∣ 𝑎 < ∞ ⟩
𝔽
.

Consider the matrix 𝑀𝜖, where we index the rows by 𝜕𝑥𝑎 ,
while columns are indexed by monomials (say supporting 𝑔),
and the entries are the operator-values. Suppose, dim(𝑉𝜖) =∶
𝑟 ≤ poly(𝑠, 𝑑) (because of Σ∧Σ). That means, any (𝑟 + 1)-
many polynomials 𝜕 𝑔

𝜕𝑥𝑎 are linearly dependent. In other words,
determinant of any (𝑟 + 1) × (𝑟 + 1) minor of 𝑀𝜖 is 0. Note
that lim𝜖→0𝑀𝜖 = 𝑀, the corresponding partial-derivative
matrix for 𝑓. Crucially, the zeroness of the determinant of
any (𝑟 +1)×(𝑟 +1)minor of𝑀𝜖 translates to the corresponding
(𝑟 + 1) × (𝑟 + 1) submatrix of 𝑀 as well [one can also think
of det as a “continuous” function, yielding this property]. In
particular, dim(𝑉 ) ≤ 𝑟 ≤ poly(𝑠, 𝑑).

Finally, to show (3), we note that the coefficient extraction
lemma [FGS18, Lemma 4] also holds over 𝔽(𝜖). Thus, given
the circuit of 𝑔, we can decide whether the coefficient of 𝑚 =∶
𝑥𝑎 is zero or not, in poly(cs(𝑚), 𝑠, 𝑑)-time; see Lemma 2.6.3.
Note: the coefficient is an arbitrary element in 𝔽(𝜖); however
we are only interested in its nonzeroness, which is merely
‘unit-cost’ for us.

We only extract monomials with cone-size poly(𝑠, 𝑑) (prop-
erty (2)), and there are only poly(𝑠, 𝑑) many such monomials.
Therefore, we have a poly(𝑠)-time hitting set for Σ∧Σ.

Once we have Theorem 7.4.1, we argue that this polynomial-
time hitting set can be used to give a polynomial-time hitting
set for Σ[𝑘]ΠΣ. We restate Theorem 7.2.2 with proper com-
plexity below.

Theorem 7.4.2 (Efficient hitting set for log-variate Σ[𝑘]ΠΣ)
There exists an explicit 𝑠𝑂(𝑘7𝑘)-time hitting set for 𝑛 = 𝑂(log 𝑠)
variate, size-𝑠, Σ[𝑘]ΠΣ circuits.

Proof sketch. We proceed similarly as in section 7.3, with
same notations. The reduction and branching out remains
exactly the same; in the end, we get that 𝑓𝑘−1 ∈ (ΠΣ/ΠΣ) ⋅
(ARO/ARO). Crucially, observe that thisARO is not a generic
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polynomial-sizedARO; theseAROs are de-bordered log-variate
Σ∧Σ circuits.

From Theorem 7.4.1, we know that there is a 𝑠𝑂(𝑘7𝑘)-time
hitting set (because of the size blowup, as seen in section 6.5).
Using Lemma 2.7.3, it is easy to combine this hitting set with
ΠΣ-hitting.

Moreover, 𝑡𝑘−𝑗,𝑗 are also of the form (ΠΣ/ΠΣ) ⋅ (ARO/ARO),
where again these AROs are de-bordered log-variate Σ∧Σ
circuits, and 𝑠𝑂(𝑘7𝑘)-time hitting set exists. Therefore, take
the union of the hitting sets (as before), each of size 𝑠𝑂(𝑘7𝑘).
This gives the final hitting set, which is again 𝑠𝑂(𝑘7𝑘)-time
constructible!

7.5 Discussion

As mentioned before, [Agr+16] came up with faithful map
by using Jacobian + certifying path technique, which is more
about algebraic rank rather than linear-rank. This unified
all the derandomization results for bounded depth-3 circuits.
However, it is not at all clear how it behaves wrt lim𝜖→0,
mainly because the Jacobian might just be a nonzero poly-
nomial in the ideal ⟨𝜖⟩𝔽[𝜖,𝑥], but clearly, it flips to zero in the
limit. This makes the whole Jacobian machinery collapse in
the approximative setting.

However, the bigger question might be whether there is an
‘approximate’ version of the Jacobian criterion, which pre-
serves the independence, even in the limit. For now, it is
not at all clear if such a criterion exists, and if so, whether it
could be of any computational help, to expedite the state-of-
the-art PIT algorithms. Nevertheless, we finish by asking the
following meta-question.

Meta-question on algebraic independence

Can we define approximative algebraic dependence, which
is coherent with the Jacobian polynomial, or, some version
of it?
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“Thoreau wrote, “Simplify! Simplify!” And, indeed,
simplification is one mark of real genius.”

— Dan Ariely, Predictably Irrational.

Abstract. In this chapter, we study the SOS-𝜏-conjecture,
respectively, the SOC-𝜏-conjecture, in the border or approxi-
mative sense. The SOS- and SOC-hardness, defined in Chap-
ter 3, can also be extended in the border or approximative
complexity-theoretic sense, whichwould eventually strengthen
the lower bound and PIT consequences. Furthermore, one
can also conjecture similar 𝜏-conjectures, and show similar
big-ticket consequences, in GCT.

8.1 Border-SOS-𝜏-conjecture and
VNP ⊈ VP

Definition 8.1.1 (Approximative SOS and border-support-
sum size 𝑆𝑅(𝑓 )) Let 𝑅 be a ring. An 𝑛-variate polynomial
𝑓 (𝑥) ∈ 𝑅[𝑥] is approximated as a (weighted) SOS, if there
exists an integer 𝑀 ≥ 0 such that

𝑓 (𝑥) = lim
𝜖→0

1
𝜖𝑀

𝑠
∑
𝑖=1

𝑐𝑖𝑓 2
𝑖 (𝑥, 𝜖) , (8.1)

for some top-fanin 𝑠, where 𝑓𝑖 ∈ 𝑅[𝑥, 𝜖] and 𝑐𝑖 ∈ 𝑅[𝜖].

The size in the representation of 𝑓 in (Equation 8.1) is the
border support-sum, the sum of the support size (or sparsity)
of the polynomials 𝑓𝑖 over 𝑅[𝜖]. The border-support-sum
size of 𝑓, is defined as the minimum border-support-sum of 𝑓,
denoted by 𝑆𝑅(𝑓 ), or simply 𝑆(𝑓 ), when the ring 𝑅 is clear
from the context.
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Note that, by definition, 𝑆𝑅(𝑓 ) ≤ 𝑆𝑅(𝑓 ). In particular, when
𝑓 is univariate and has sparsity, ‖𝑓 ‖0 = 𝑑 + 1, over any field
𝑅 = 𝔽, of characteristic ≠ 2, similar bounds hold:

√𝑑 + 1 ≤ 𝑆(𝑓 ) ≤ 𝑆(𝑓 ) ≤ 2𝑑 + 2 . (8.2)

We can now conjecture the following, which is stronger thanCon-
jecture 3.1.2. Further, we show that proving a 𝜏-conjecture
in the border-SOS setting, is enough to separate VP from
VNP!

Conjecture 8.1.1 (Border-SOS-𝜏-conjecture) Consider any
non-zero polynomial 𝑓 (𝑥) ∈ ℝ[𝑥]. Then, there exists a
positive constant 𝑐 > 0 such that the number of distinct real
roots of 𝑓 is at most 𝑐 ⋅ 𝑆ℝ(𝑓 ).

Trivially, Border-SOS-𝜏-conjecture implies SOS-𝜏-conjecture.
We point out that the decomposition lemma (Lemma 3.3.4)
works for approximative circuits as well. This lemma plays
the pivotal role to establish a connection between approxi-
mative SOS-𝜏-conjecture and the general circuit hardness, in
the border sense.

Lemma 8.1.1 (Border Sum-of-product-of-2) Let 𝑓 (𝑥) be an
𝑛-variate, homogeneous, degree 𝑑 polynomial approximated
by a circuit 𝐶 of size 𝑠, over 𝔽(𝜖). Then, there exist polynomials
𝑓𝑖𝑗 ∈ 𝔽[𝑥, 𝜖] s.t.

𝐶(𝑥, 𝜖) =
𝑠
∑
𝑖=1

𝑓𝑖1 ⋅ 𝑓𝑖2 , with the following properties:

(8.3)
(1) 𝑑/3 ≤ deg𝑥(𝑓𝑖1), deg(𝑓𝑖2) ≤ 2𝑑/3, ∀ 𝑖 ∈ [𝑠], and (2)
deg𝑥(𝑓𝑖1) + deg𝑥(𝑓𝑖2) = 𝑑, ∀ 𝑖 ∈ [𝑠].

The proof is essentially the same proof with frontier 𝑚 =
𝑑/3 [Sap21], except that the working field is 𝔽(𝜖).

Main result. We come to our main result in this section.
We show how to connect the number of roots of a univariate
polynomial of degree-𝑑, approximated by an SOS-model to
a multivariate polynomial that has approximative circuits
of exponential size, trivially implying it is not in VP, but its
explicitness ensures it to be in VNP.
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Theorem 8.1.2 Conjecture 8.1.1 implies that VNPℂ is expo-
nentially harder than VPℂ.

Proof sketch. The proof is similar to the proof of Theorem 3.3.9.
We define 𝑃𝑛,𝑘 with the similar parameters as in that proof.
As 𝑓𝑑 is explicit, so is 𝑃𝑛,𝑘. Therefore (𝑃𝑛,𝑘)𝑛 ∈ VNP.

To show that (𝑃𝑛,𝑘)𝑛 ∉ VP, We will argue that size(𝑃𝑛,𝑘) ≥
𝑑1/7 = 2Ω(𝑘𝑛), which trivially implies that (𝑃𝑛,𝑘)𝑛 ∉ VP.

The proof is again via contradiction. If size(𝑃𝑛,𝑘) ≤ 𝑑1/7, then
there is a circuit 𝐶(𝑦, 𝜖) ∈ 𝔽(𝜖)[𝑥] of size 𝑑1/7, and a 𝑀 ≥ 0,
such that

𝐶(𝑦, 𝜖) = 𝜖𝑀 𝑃𝑛,𝑘 + 𝜖𝑀+1 𝑄(𝑦, 𝜖) .

By Lemma 8.1.1, there exist polynomials 𝑄𝑖(𝑦, 𝜖) such that

𝐶(𝑦, 𝜖) =
𝑠
∑
𝑖=1

𝑐𝑖𝑄𝑖(𝑦, 𝜖)2 ,

where 𝑠 = 𝑂(𝑑1/7 ⋅ 𝑛2), and deg𝑦(𝑄𝑖) ≤ 2𝑛/3.

If we apply the inverse multilinear Kronecker map 𝜓𝑛,𝑘 to the
polynomials 𝑄𝑖, we get

𝜖𝑀 𝑓𝑑 + 𝜖𝑀+1 𝜓𝑛,𝑘(𝑄) =
𝑠
∑
𝑖=1

𝑐𝑖 𝑔2𝑖 ,

where 𝑔𝑖(𝑥) = 𝜓𝑛,𝑘(𝑄𝑖(𝑦)). Note that, sp(𝑔𝑖) ≤ sp(𝑄𝑖), over 𝔽(𝜖).
For the sparsity of 𝑄𝑖, we use the general bound (Equation 2.1).
That is, sp(𝑄𝑖) ≤ (𝑘𝑛+2𝑛/32𝑛/3 ), for all 𝑖 ∈ [𝑠]. Thus, by definition,

𝑆(𝑓𝑑) ≤ 𝑠 ⋅ (
𝑘𝑛 + 2𝑛/3

2𝑛/3
) .

The same calculation as in the proof of Theorem 3.3.9 shows
that 𝑆(𝑓𝑑) = 𝑜(𝑑). This is a contradiction; this is because the
coefficients of 𝑓𝑑 satisfies the Kurtz condition implying 𝑓𝑑 has
all distinct real roots, then Conjecture 8.1.1 and Lemma 8.3.2
imply that

𝑆ℝ(𝑓𝑑) ≥ Ω(𝑑) ⟹ 𝑆ℂ(𝑓𝑑) ≥ Ω(𝑑) .
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Similarly, one can lift the approximative hardness of a uni-
variate polynomial of degree 𝑑 in the SOS-model (with 𝜖 pa-
rameter) to a multivariate polynomial that has approximative
circuits of super-polynomial size, implying it is not in VP, but
its explicitness ensures it to be in VNP. We state the theorem
without proving it.

Theorem 8.1.3 If there exists an approximative SOS-hard
explicit family (𝑓𝑑) with hardness parameter 𝜀 = 𝜀(𝑑) =

𝜔 (
√

log log 𝑑
log 𝑑 ), then VNP ⊈ VP.

8.2 Border-SOC-hardness and
Efficient Hitting Set for VP

In this section, we introduce Border-SOC-𝜏-conjecture and
show its intrinsic connection to construct efficient hitting sets
for VP. Though the existence of a polynomial size hitting set
is known due to [HS80a], the best complexity bound known
for constructing a hitting set forVP is PSPACE [FS18; Guo+19].
The main difficulty comes from certifying that the set that has
been constructed is indeed a hitting set. Very recently, Kumar,
Saptharishi, and Solomon [KSS19] showed that the hardness
of constant-variate polynomials in the approximative sense
suffices to construct an HSG for VP.

Theorem 8.2.1 [KSS19, Theorem 1.6] Let 𝑃 be a 𝑘-variate
polynomial in 𝔽[𝑥] of degree 𝑑 such that coef(𝑃) can be com-
puted in time poly(𝑑). Further, suppose size(𝑃) > 𝑠10𝑘+2 𝑑,
for some parameter 𝑠. Then there is a poly(𝑠) size hitting set
for 𝒞(𝑠, 𝑠, 𝑠).

Next, we define the approximative SOC-model and its com-
plexity measure.

Definition 8.2.1 (Approximative SOC and border-support-
union size 𝑈𝑅(𝑓 , 𝑠)) Let 𝑅 be a ring. An 𝑛-variate polynomial
𝑓 (𝑥) ∈ 𝑅[𝑥] is approximated as a SOC, if there exists an
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integer 𝑀 ≥ 0, such that

𝑓 (𝑥) = lim
𝜖→0

1
𝜖𝑀

𝑠
∑
𝑖=1

𝑐𝑖𝑓 3
𝑖 (𝑥, 𝜖) , (8.4)

for some top-fanin 𝑠, where 𝑓𝑖 ∈ 𝑅[𝑥, 𝜖] and 𝑐𝑖 ∈ 𝑅[𝜖].

The size of the representation of 𝑓 in (Equation 8.4) is the size
of the support-union over 𝑅[𝜖], i.e. ∣ ⋃𝑠

𝑖=1 supp(𝑓𝑖) ∣, where
supp(𝑓𝑖) denotes the set of monomials with a nonzero coef-
ficient in 𝑓𝑖. The border support-union size of 𝑓 with re-
spect to 𝑠, denoted 𝑈𝑅(𝑓 , 𝑠), is defined as the minimum border
support-union size when 𝑓 is written as in (Equation 8.4).

Note that, by definition, 𝑈𝑅(𝑓 , 𝑠) ≤ 𝑈𝑅(𝑓 , 𝑠). In particular,
when 𝑓 is a univariate polynomial, and has sparsity sp(𝑓 ) = 𝑑+
1, similar bounds hold over any field 𝑅 = 𝔽, of characteristic
≠ 2, 3:

(𝑑 + 1)1/3 ≤ 𝑈(𝑓 , 𝑠) ≤ 𝑈 (𝑓 , 𝑠) ≤ 𝑑 + 1 . (8.5)

Thus, it follows that for 𝑠 large enough, 𝑈(𝑓 , 𝑠) is small. How-
ever, it is unclear whether this is true when 𝑠 = 𝑜(√𝑑). We call
a polynomial family approximative SOS-hard, if its border
support-union size attains the trivial upper bound.

Definition 8.2.2 (Approximative SOC-hardness) A poly-
nomial family (𝑓𝑑(𝑥))𝑑 is approximative SOC-hard, if there
is a constant 0 < 𝜀 < 1/2 such that 𝑈𝔽 (𝑓𝑑, 𝑑 𝜀) = Ω(𝑑).

Once we have defined approximative SOC-hardness, we con-
jecture a stronger postulate.

Conjecture 8.2.1 (Border-SOC-𝜏-conjecture) Consider any
non-zero polynomial 𝑓 ∈ ℝ[𝑥]. Then, there exist positive
constants 𝜀 < 1/2, and 𝑐 such that the number of distinct
real roots of 𝑓 is at most 𝑐 ⋅ 𝑈ℝ(𝑓 , 𝑑 𝜀).

The main ingredient is a SOC decomposition in the approxi-
mative sense. This decomposition is very similar to [DST21,
Lemma 16], except that theworking field is 𝔽(𝜖).

Lemma 8.2.2 (Approximative SOC decomposition) There
exists a constant 𝑐, such that for any 𝑛-variate polynomial
𝑝 ∈ 𝔽[𝑥] of degree 𝑑 that can be approximated by a circuit of
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size 𝑠, we have a representation

𝜖𝑀 𝑝 + 𝜖𝑀+1 𝑞(𝑥, 𝜖) =
(𝑠𝑑)𝑐

∑
𝑖=1

𝑞3𝑖 , (8.6)

where 𝑞𝑖 ∈ 𝔽[𝜖][𝑥], for all 𝑖 ∈ [(𝑠𝑑)𝑐], such that

1. deg(𝑞𝑖) <
4
11 𝑑,

2. 𝑞𝑖 has a circuit of size poly(𝑠, 𝑑) over 𝔽(𝜖).

Assuming the above conjecture, it is not hard to construct an
explicit and efficient hitting set for VP. It essentially uses the
above lemma and Theorem 8.2.1. The proof goes along the
lines of [DST21, Theorem 11].

Theorem 8.2.3 (Hitting set for VP) Border-SOC-𝜏-conjecture
implies a polynomial-time hitting set for VP.

8.3 Border-SOS Structures

In this section, we prove Lemma 3.9.2 in the border setting.
The proof is slightly more subtle, because we would not be
able to take √𝑐𝑖, the weights, inside the square-root that easily.
However, the following lemma allows us to do so.

Lemma 8.3.1 Let 𝑓 ∈ ℂ[𝑥], such that 𝑆ℂ(𝑓 ) = 𝑠. Then,
∃𝑚1, … , 𝑚𝑠, 𝑀 ∈ ℤ≥0 and polynomials 𝑆, 𝑓𝑖 ∈ ℂ[𝑥, 𝜖], for 𝑖 ∈
[𝑠], such that

𝜖𝑀 ⋅ 𝑓 + 𝜖𝑀+1 ⋅ 𝑆 = ∑
𝑖∈[𝑠]

𝜖𝑚𝑖 ⋅ 𝑓 2
𝑖 ,

where ∑𝑖∈[𝑠] spℂ(𝜖)(𝑓𝑖) = 𝑠.

Proof. 𝑆ℂ(𝑓 ) = 𝑠 ⟹ ∃𝑐𝑖 ∈ 𝔽[𝜖] ∗, and 𝑓𝑖, 𝑆 ∈ ℂ[𝑥, 𝜖], for 𝑖 ∈ [𝑠],
such that

𝜖𝑀 ⋅ 𝑓 + 𝜖𝑀+1 ⋅ 𝑆 = ∑
𝑖∈[𝑠]

𝑐𝑖 ⋅ 𝑓 2
𝑖 .

If, for some 𝑖, 𝑐𝑖 is a perfect square of a polynomial in 𝔽[𝜖], we
will replace 𝑓 2

𝑖 with 𝜖0 ⋅ (√𝑐𝑖 ⋅ 𝑓𝑖)2. Note that, sp(√𝑐𝑖 ⋅ 𝑓𝑖) = sp(𝑓𝑖),
over 𝔽(𝜖).
∗ Remember: the underlying field is 𝔽(𝜖), but we can always clear out the
denominators such that the minimum 𝜖-power does not change.
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If 𝑐𝑖 is not a square, let 𝑐𝑖 = 𝜖𝑚𝑖 ⋅ 𝑝𝑖, where 𝑝𝑖 ∈ 𝔽[𝜖], such
that 𝜖 ∤ 𝑝𝑖. It is not hard to show that √𝑝𝑖 ∈ 𝔽[[𝜖]], by simple
binomial expansion. Moreover, let 𝑞𝑖 ∶= √𝑝𝑖 mod 𝜖𝑀+1. It
suffices to look at mod 𝜖𝑀+1, since we are interested in the
coefficient of 𝜖𝑀. Therefore, by using the above trick, one
could replace 𝑐𝑖 ⋅ 𝑓 2

𝑖 , by 𝜖𝑚𝑖 ⋅ (𝑞𝑖 ⋅ 𝑓𝑖)2. Note that, in this process
the 𝑆 polynomial would change, but the coefficient of 𝜖𝑀

remains 𝑓. Furthermore, sp(𝑓𝑖) = sp(𝑞𝑖 ⋅ 𝑓𝑖). This finishes the
proof.

Using the above lemma, one could prove the border version
of Lemma 3.9.2.

Lemma 8.3.2 𝑆ℝ(ℜ(𝑓 )) ≤ 2 ⋅ 𝑆ℂ(𝑓 ), for any 𝑓 ∈ ℂ[𝑥].

Proof. The proof is almost similar to Lemma 3.9.2, once we
have proved Lemma 8.3.1. However, we still present the
whole proof for brevity.

Suppose, 𝑆ℂ(𝑓 ) = 𝑠. Then, ∃𝑚1, … , 𝑚𝑠, 𝑀 ∈ ℤ≥0 and polynomi-
als 𝑆, 𝑓𝑖 ∈ ℂ[𝑥, 𝜖], for 𝑖 ∈ [𝑠], such that

𝜖𝑀 ⋅ 𝑓 + 𝜖𝑀+1 ⋅ 𝑆 = ∑
𝑖∈[𝑠]

𝜖𝑚𝑖 ⋅ 𝑓 2
𝑖 ,

where ∑𝑖∈[𝑠] sp𝔽(𝜖)(𝑓𝑖) = 𝑠. Therefore,

𝜖𝑀 ⋅ ℜ(𝑓 ) + 𝜖𝑀+1 ⋅ ℜ(𝑆) =
𝑠
∑
𝑖=1

𝜖𝑚𝑖ℜ(𝑓 2
𝑖 )

=
𝑠
∑
𝑖=1

𝜖𝑚𝑖 ⋅ ℜ(ℜ(𝑓𝑖) + 𝜄 ⋅ ℑ(𝑓𝑖))2

=
𝑠
∑
𝑖=1

𝜖𝑚𝑖 ⋅ (ℜ(𝑓𝑖)2 − ℑ(𝑓𝑖)2) .

In the above, by ℜ(𝑆), for an ∑𝑠𝑖𝑥 𝑖 = 𝑆 ∈ ℂ[𝑥, 𝜖], we mean
that ∑ℜ(𝑠𝑖)𝑥 𝑖, i.e., ℜ(𝑠𝑖) ∈ ℝ[𝜖]. The last expression implies
that

𝑆ℝ(ℜ(𝑓 )) ≤
𝑠
∑
𝑖=1

spℝ(𝜖)(ℜ(𝑓𝑖)) +
𝑠
∑
𝑖=1

spℝ(𝜖)(ℑ(𝑓𝑖))

≤
𝑠
∑
𝑖=1

2 ⋅ spℂ(𝜖)(𝑓𝑖)

= 2 ⋅ 𝑆ℂ(𝑓 ) .
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8.4 Discussion

This work effectively establishes that studying the number of
real roots of univariate polynomials for approximative sum-
of-squares representation (respectively cubes) is fecund. In
fact, proving a strong upper bound suffices to solve major
open problems in GCT.

Here are some immediate questions of interest which require
rigorous investigation.

1. Does Border-SOS-𝜏-conjecture solve PIT completely?
The current proof technique fails to reduce from cubes
to squares.

2. Prove the upper bound on the number of real roots for
the polynomials, approximated by sum of constantly
many squares. Currently, we only know it for 𝑠 = 2,
since Theorem 3.8.1 can be extended in the border set-
ting as well, due to the closure property, which follows
from factoring, and using the fact that ΣΠ = ΣΠ.
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“The power of mathematics is often to change one thing into
another, to change geometry into language.”

— Marcus du Sautoy, FRS, University of Oxford.

In this thesis, we study and solve some interesting GCT ques-
tions, using non-geometric tools. Essentially, we investigate
the significance of roots (𝜏-conjecture) and non-roots (PIT)
in the approximative setting. More concretely, Chapter 6
studies qualitative power of approximations in the restricted
setting (Q3). On the other hand, Chapter 7 studies non-roots,
and removes randomness in the restricted setting (Q4). Fi-
nally, Chapter 8 establishes that studying the number of real
roots of univariate polynomials, approximated by sum-of-
squares representation (respectively cubes), is fruitful, and
leads to strong lower bound results (Q2). Moreover, the ap-
proximative setting (GCT) brings us close to solving P ≠ NP,
answering Q1.

Of course, we are far away from understanding the magic
and super-structures that GCT has to offer. More likely, it
would be deep, compelling. A subgroup even claims it to be
“the only game in town” (not surprisingly, a claim disputed
by the fans of rival idea!). Below, we discuss some obvious
steps and questions to take towards advancing the current
state-of-the-art.

9.1 Quest for More De-bordering
Results

In Chapter 6, we talked about theDiDIL-technique introduced
in [DDS21b], and successfully de-bordered Σ[𝑘]ΠΣ. In the
same work [DDS21b], we have also extended our results to
restricted depth-4 circuits. This opens a variety of questions
which would enrich border-complexity theory.
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Open Problems 9.1

1. Does Σ[𝑘]ΠΣ ⊆ ΣΠΣ, or Σ[𝑘]ΠΣ ⊆ VF, i.e. does it have
a small formula?

2. Can we de-border Σ ∧ ΣΠ[𝛿], or Σ[𝑘]ΠΣΠ[𝛿], for con-
stant 𝑘 and 𝛿? In [DDS21b], we have already designed
a quasipolynomial-time PIT for the same.

3. Can we de-border Σ[2]ΠΣ∧[2]? i.e. the bottom-layer
has variable mixing.

Recent developments. In [DDS21b], we asked whether
the following is true: VBP ≠ Σ[𝑘]ΠΣ? After our work, the
breakthrough lower bound result by Limaye, Srinivasan &
Tavenas [LST21] showed a superpolynomial separation be-
tween depth-3 (unbounded fanin) circuits and IMM (Iterated
Matrix Multiplication), with different parameters. IMM can
be shown to have ‘small’ ABP. Since, the method is linear-
rank-based, it can be extended to the border as well, establish-
ing a superpolynomial separation between VBP and Σ[𝑘]ΠΣ.
Very recently, we showed an exponential gap between the
two classes [DS22].

9.2 Quest for Efficient Border PITs

Here are a few interesting derandomization questions in the
restricted border regime, which could lead to some involved
technical developments.

Open Problems 9.2

1. Canwe improve the current hitting set of 𝑠exp(𝑘)⋅log log 𝑠

to 𝑠𝑂(poly(𝑘)⋅log log 𝑠), or even a poly(𝑠)-time hitting
set? The current technique seems to blowup the
exponent.

2. Can we find a polynomial time hitting set for the
border class Σ[2]ΠΣ∧[2]?
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9.3 Approximative 𝜏-conjectures

As far as the literature is concerned, we are not aware of
approximative 𝜏-conjectures and their implications. In that
regard, this thesis introduces such conjectures and show in-
teresting connection with GCT. Here are some questions that
should be explored.

Open Problems 9.3

1. Does Border-SOC-𝜏-conjecture hold for a ‘generic’
polynomial 𝑓 (say, over ℚ)?

2. Are border 𝜏-conjectures strictly stronger than the
classical 𝜏-conjectures?

3. Is there an approximative version of the classical
Blum-Shub-Smale 𝜏-conjecture, that is useful in the
GCT sense?
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“I may not have gone where I intended to go, but I think I have
ended up where I needed to be.”

— Douglas Adams, The Long Dark Tea-Time of the Soul.

In this thesis, we looked at some central questions in the
field of Algebraic Complexity and Geometric Complexity
Theory. The division has been quite intentional: including
GCT results as a subpart of the Algebraic Complexity, would
not do full justice to the GCT program. We have already
mentioned the strengths and ambitions of the program in the
introduction.

In the first part, the thesis provides some important insights
of proving strong lower bounds and derandomizing PIT, by
studying possibly the simplest models of computation. It
further attempts to gain a better understanding of hitting
sets for restricted algebraic models. Proving VP ≠ VNP ⟹
PIT ∈ P, is an exciting open problem in the area of algebraic
hardness versus randomness.

In the second part, we provide a new technique for de-bordering
restricted border circuit classes and constructing hitting sets
for the same. Proving VP = VP, or separating the two, is
probably the most exciting open problem in the de-bordering
paradigm.
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I will end the thesis by writing one of my favorite poems by
Emily Dickinson. She takes an abstract feeling or idea – in
this case, hope – and likens it to something physical, visible,
and tangible – here, a singing bird. Hope, for Dickinson, sings
its wordless tune and never stops singing it: nothing can faze
it.

“Hope” is the thing with feathers -
That perches in the soul -

And sings the tune without the words -
And never stops - at all -

And sweetest – in the Gale – is heard –
And sore must be the storm –

That could abash the little Bird
That kept so many warm –

I’ve heard it in the chillest land –
And on the strangest Sea –
Yet – never – in Extremity,
It asked a crumb – of me.

— Emily Dickinson, ‘Hope’ is the thing with feathers.
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