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Chapter 1

Introduction

In this report, we study three major results in the areas of natural proofs,
circuit lowerbounds and psuedorandomness, as well as expanding on many
of the smaller results used within. We aim to elucidate most of the lower
level details of the proofs that are often skipped over, and clearly outline the
higher level ideas.

1.1 Background and Recent Research

The work in circuit lowerbounds came to a halt in the late 1980s to early
1990s. Progress was made after many years due to Ryan Williams ground-
breaking result showing that NEXP 6⊂ ACC0 [2]. There has also been a
very recent result that derives randomized learning algorithms from natural
proofs. We look at these interesting results and many of their working parts.

1.2 Motivation

The motivation is to understand and analyze the core of why these results
work, that is the fundamental ideas as well as the reasons behind certain
approaches followed by the authors of the results. We also try to find other
interesting problems that are closely related to these.
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Chapter 2

Natural Proofs

2.1 What is a natural proof?

Natural proofs refer to a paradigm of proving lowerbounds in complexity
theory, which are explicit in nature i.e. we show a property that is present
in a large fraction of all circuits, but not in some circuit class of a given size,
which is used to prove a lowerbound on the size of the circuits of that class
to compute a circuit which has this property. Hence, at the core of a natural
proof lies a natural property. Let us define a natural property in a more
formal way:

Definition 2.1.1. A combinatorial property (envisioned as a set of functions,
Cn) is a Γ natural property with density δ if it satisfies the following three
conditions:

• Largeness - |Cn|
|Fn| ≥ δ, where Fn is the set of all functions on inputs of

size n, that is |Fn| = 22n .

• Constructivity - Membership queries to Cn is computable in Γ.

• Usefulness - For any sequence of functions fn, if fn has circuits of size
s(n) in Λ, then fn /∈ Cn almost everywhere.

We can give a very simple example of the following by defining the
property as follows :

fn ∈ Cn, if fn cannot be computed by a symmetric gate, that is a
function which depends on the number of 1’s in the input.

We see that it satisfies the following properties :
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• Largeness - Consider Cn. These are the functions that can be com-
puted by a symmetric gate. It can take only n + 1 distinct values,
depending on the number of 1’s. Hence, there are only 2n+1 such cir-
cuits. Hence, |Cn|

|Fn| ≈ 1

• Constructivity - We can manually generate all the functions that are
computed by a symmetric gate, match them with the given truth table,
and reject if they are the same for any of the 2n+1 functions. Otherwise,
we accept. Since the size of the input is 2n, this is a polynomial time
algorithm with respect to it.

• Usefulness - By definition of the property, it is useful against the class
of symmetric gates with size 1.

2.2 Limitations of a natural proof

We believe that 2n
ε
-hard psuedorandom generators exist. We show that if

that assumption is true, we cannot use natural proofs to show the following
theorem, a stronger analogue of P 6= NP . This uses the idea that a natural
proof contains an algorithm that can be used to solve a ”hard” problem.
Hence, they are, in some sense, self-defeating.

Theorem 1. If there is a P/poly-natural proof against P/poly, H(Gk) ≤
2k

o(1)
, for every psuedorandom function Gk such that Gk : {0, 1}k → {0, 1}2k

in P/poly.

Proof. Let Cn be the property that is P/poly-natural against P/poly. Let
Gk : {0, 1}k → {0, 1}2k be a psuedorandom generator in P and n = dkεe.
We can split this in two parts G0 and G1 which output the first and second
halves of the psuedorandom output respectively. The idea is to define a
set of functions f(x)‖x ∈ {0, 1}k in Fn, which do not satisfy the natural
property using G0 and G1 and then, use that fact to show that the generator
does not remain psuedorandom. Define Gy : {0, 1}k → {0, 1}k, where Gy =
Gyn ◦ . . . ◦ Gy1 . We define f(x)(y) as the first bit of Gy(x). We see that
f(x) is computable by a polynomial size circuit with depth n. By definition,
f(x) /∈ Cn, for any x. This means that Prx∈{0,1}k [Cn(f(x)) = 1] = 0. By

largeness, Prf∈Fn [Cn(f(x)) = 1] ≥ 2−O(n). We use a hybrid argument to
show that this difference in probability can be used to break the generator.

We define a balanced binary tree of depth n + 1. It has 2n leaves,
where the ith leaf represents the binary representation of i as an n-bit string
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(0 ≤ i ≤ 2n− 1). The value stored at the leaves represents the truth table of
some function. We order the internal nodes with the root being numbered
2n− 1, it’s left and right children 2n− 3 and 2n− 2, and so on. Each internal
node has a random string, deonted by xi. We define Ti as the version of the
tree which has it’s first i internal nodes activated. Note that a node can only
be activated if all it’s children are activated. For a leaf node, we consider
it’s value to be a random bit if it’s parent is not activated, otherwise, if the
leaf node is indexed by y, let vi(y) be the node that is it’s deepest activated
ancestor. We define Gi,y = Gyn ◦ . . . ◦Gyheight(vi(y))

and fi,n(y) as the first bit
of Gi,y(xvi). This is the complete definition of the class of hybrid functions,
which are indexed from 0 (f0,n is distributed as any random function) and
2n−1 (f2n−1,n is distributed as f(x), where x is randomly distributed). Using
the probability difference between these two extremes, we get that

∃i, |Pr[Cn(fi+1,n)]−Pr[Cn(fi,n)]| ≥ 2−O(n)

Consider Ti and Ti+1. Fixing all the deepest roots in Ti+1, that is vi(y)
for all y except the node vi+1. Since the children of vi+1(y) are not fixed, we
have a statistical test that distinguishes G(xvi+1

) from the concatenation of
randomly distributed strings x1 and x2 stored in it’s children. This implies
that H(G) ≤ 2O(n) ≤ 2O(kε ≤ 2k

o(1)
, using the fact that ε can be any positive

number. Hence, proved.

Note that we crucially exploited the constructivity algorithm to distin-
guish a random function from one that was not to show this result. This
means that any proof technique that can be naturalized cannot be used to
show proofs along the lines of P 6= NP , which is a much stronger statement
than the one used in the theorem above. There are many newer results which
use diagonalization or combinatorial arguments to show lower bounds and
other results. Since those usually do not satisfy constructivity, they are not
hampered by this ”barrier”. We see an example of such a result in the one
of the following sections and see how it works. Natural proofs have also been
used to derive efficient randomized learning algorithms for certain classes.
We expand upon that in the last section. For other examples and results on
natural proofs, please see [1].
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Chapter 3

Fast algorithm for ACC0-SAT

3.1 Beigel and Zeta Transforms

The crucial component for proving that NEXP 6⊂ ACC0, is a fast satisfia-
bility algorithm of ACC0− SAT , which is formally defined as follows :

Definition 3.1.1. Given an ACC0 circuit, does it output 1 on any input?

The trivial time taken is 2n. We use two transforms to reduce this to
2n−n

ε
, for any circuit of subexponential size.

Beigel’s transform is an algorithm that takes an ACC0 circuit, and
outputs a SYM+ circuit, which is made up of AND gates of fan-in at most
O(logO(1)n) and the outputs of all these gates are fed into a symmetric gate at
the top. The intuition behind the transform can be explained by the fact that
we can replace MOD, AND and NOT gates by probabilistic polynomials of
sample space 2O(log3n). We then make a new circuit which takes majority vote
over this circuit. Then, we use a polynomial that preserves a boolean value
over powers of the modulus, which leads us tor reduce the depth, in essence
pushing some computation ”into” the symmetric gate allows us to reduce the
depth to one, making the overall depth 2 in the end. The algorithm takes
time O(size ∗ log(log(n))). For details, please see [3].

The first level represents a polynomial of degree at most O(logO(1)n)
and the norm, which is the sum of the absolute values of the coeffiecients,
to be at most 2O(logO(1)n), and the symmetric gate is a function on the value
taken by this polynomial on any input to 0 or 1. This was a very fundamental
result discovered in the late 1980’s. The idea is to compute this transform,
evaluate the symmetric function on all possible functions and then efficiently
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computing the integers that are valid inputs to the symmetric gate. The only
step we do not know how to do efficiently is the final step. To do this, we use
a standard dynamic programming technique to compute the zeta transform
of a function. The idea is that if we could figure out the number of AND
gates which output 1 on any input quickly, we could calculate the input to
the symmetric gate (which is just the sum of the values on the wires), which
gives us the output. Hence, we note the value of the symmetric gate on all
it’s 2log

O(1)n possible sums. To calculate the sum generated by any input, we
will have to calculate g(z), the sum on any binary string of length n, for all
such strings. We can consider z as a set, which contains i if zi is 1. From
this point onwards in this section, we think of strings in this dual fashion.
Let f(z) define the number of AND gates that have exactly all the 1’s in z
as input. Then, g(z) is simply the sum of f(z) over the number of all subsets
of z.

g(z) =
∑
u⊆z

f(u)

Zeta transform states that we can do this in n2n time, by defining f as
g0, and defining the following recurrence:

gi(z) =

{
gi−1(z), if zi 6= 1
gi−1(z) + gi−1(z/i), otherwise

Observe that if the input is z, then, looking at in as a subset gives us
the idea of seeing z as {x1, ...., xj}. Let it be partitioned into two sets A and
B, such that every xk ≤ i if xk ∈ A. Then,

gi(z) =
∑
u⊆A

f(u ∪B)

From this, it follows that gn = g and we can solve the satisfiability
problem on n inputs in n2n time.

3.2 The Algorithm

Consider an ACC0 circuit of subexponential size, 2n
ε
. Let us take l of it’s

inputs, and hardcode them to cover all possibilities. The new circuit, let us
call it C ′, size is 2n

ε+l, and this process takes 2n
ε+l time. Now, we convert
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C ′ into a SYM+ circuit, which takes (nε + l) ∗ 2n
ε+l time. This circuit takes

n−l inputs, and hence, can be solved using the above evaluation algorithm in
(n−l)2n−l time. Hence, the total time taken is (nε+l+1)∗2nε+l+(n−l)2n−l.
We choose l to be nε, making the time of this algorithm be 2n−n

ε
, which is

strictly greater than 2n

nc
, for any c. We use this algorithm as a blackbox to

show that NEXP ⊆ ACC0 leads to a contradiction of the non-deterministic
space time hierarchy.
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Chapter 4

Williams’ Proof

4.1 Overview

The idea behind the proof is to construct a ”printer” circuit, that encodes
a hard, exponential length SAT problem. We can construct an ACC0 cir-
cuit equivalent to this circuit, and solve it in sub-exponential time, using
the power afforded to us by our assumption that NEXP ⊆ ACC0. This
contradicts the non-deterministic space time hierarchy.

4.2 Constructing the ”printer” circuit

We focus only on problems in NTIME[2n] in the proof. For any problem in
NEXP , it can be reduced to NTIME[2n] through the universal problem of
the class, SUCCINCTBOUNDEDHALTING, which asks the logarithm
of the time taken and the description of the machine as input and simulates
the machine for that many steps. It outputs yes if the machine halts and
says yes on any computation path in the given amount of time. This is
clearly in NTIME[2n]. Hence, we have to generate a circuit that encodes
an exponential length SAT problem in a circuit.

We can think of a a non-deterministic circuit that takes OR over a
deterministic verifier which takes two inputs, the actual input x and the
certificate I. A Cook reduction gives us a SAT problem for every circuit.
What we need here is a circuit that encodes an exponential length SAT
problem. We do this for the deterministic verifier, and fix the first the input
x. To be able to print an exponential length SAT problem from a polynomial
circuit, we need to automate the circuit in some sense. We need much more
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information about the lower-level details of the circuit, such as where the
head will be and so on. To do this in an easy, we turn to oblivious Turing
machines, where position of head is independent of the input, but is instead
a function of time. Since we have fixed the language, we have can emulate
taking a step by reading the state and the value of the head, then making
the transition. We give a brief description of all the processes. For even more
detailed descriptions, please refer [7].

The idea behind the following emulation algorithm is the same as that
of the Universal Turing machine, ”If the head can’t go to the tape, the
tape will come to the head”. Trivial simulation on an oblivious Turing ma-
chine takes O(T (n)2) time. We use the equivalence of two-tape and one-tape
machines to describe a two-tape oblivious machine that simulates another
machine in T (n)log(T (n)) time. We define the phases, parametrized on a
number j. Before the start of a call to phase j, the head is always at the
center position, and there are two markers at 2j−1, and −2j−1, defining that
these are the maximal points till which we the head of the machine we are
simulating may be. We can make a note of that by doubling the size of the
symbols of the Turing Machine, the newer symbol corresponding to an older
symbol denotes that the head of the machine being simulated is at that posi-
tion. We maintain the invariant that at the end of the jth phase, there would
be two markers at 2j, and −2j. Whenever the call to phase with parameter
j starts, we firstly call Compress with parameter j − 1. Compress figures
out on which side of the tape the simulated head is, and cyclically moves the
2j length strip by 2j−2 such that the simulated head is moved towards the
center. At this point, to remember which direction was chosen, we use the
second tape as a stack. To maintain obliviousity, we move in both directions,
but actually write on the TM to perfrom a cyclic shift only in the required
direction. At the end of a phase, we run EXTEND to pop the stacks and
return the configurations at their correct postions and extend the positions
of the end markers as required. Correctness is ensured because taking the
steps on the simulated TM is trivial and we do not do anymore than that.
We formally describe the algorithm PHASE on input j formally as follows :

• If j = 0, simulate a step and return.

• COMPRESS(j − 1)

• PHASE(j − 1)

• COMPRESS(j − 1)

• PHASE(j − 1)

9



• EXTEND(j)

The time complexity is the number of time we simulate a step, plus the
number of time taken to perform the cyclic shifts. The latter can be upper
bounded by O(2j), as compress takes 2j time in performing the cyclic shifts.
We can write the recurrence of the number of steps simulated in PHASE(j)
and the time taken to evaluate PHASE(j) as follows :

TIME[j] = 2TIME[j − 1] +O(2j)

STEPS[j] = 2STEPS[j − 1]

We can see that to make T (n) steps, we need T (n)log(T (n)) time. We
can easily see that all of this can be encoded into a circuit as the size of each
phase can be very strictly defined, in a fixed order. On an input, which can
be thought of as the indexing of a bit of a large 2size string representing the
SAT instance. Then, we simply figure out which step are we taking, and
output the appropriate bit from that. This can be constructed in polynomial
time from x. Let’s call this ”printer” circuit Cx. The encoded satisfiability
instance is satisfiable if and only if there exists some certificate for an accept-
ing computation path. The recurrence of depth of this circuit is as follows
:

DEPTH[j] = 2DEPTH[j − 1] +O(1)

Hence, we see that the depth is O(n) and it is not an ACC0 circuit.

4.3 Generating an equivalent ACC0 circuit

Since the ”printer” circuit is not constant-depth, we give a NEXP algorithm
to generate a new circuit C ′x that is equivalent to the former and is in ACC0.
We define the steps of the algorithm as follows :

• Guess a circuit D that encodes the structure of the circuit Cx and takes
log(knd + k) inputs, where knd + k represents the number of gates in
Cx. Verify that this circuit computes the type of the gate (can be
encoded as a constant length string), the two gates input to it (we can
assume fan-in to be at most two) by producing Cx in polynomial time.
If verification fails, reject.
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• Guess a circuit E which encodes the evaluation of Cx on input i. It
takes two inputs i, the input to Cx and the gate index j. E is verified
by using the fact that D is correct. We use D to find the number of
gates that are input to j, we calculate the value of all these gates at i,
and verify that they satisfy the corresponding relation, for example, if
the output of the gate is NOT and j1, we verify that E(i, j) 6= E(i, j1)
and similarly construct the verifier circuit. We want to check this for
all inputs, and this can be done running the ACC0 − SAT algorithm
on the negation of this verifier circuit. If the verifier finds E to be
correct on all the inputs, then the ACC0− SAT algorithm will return
unsatisfiable. We return E(., j?) as C ′x, where j? denotes the output
gate.

The algorithm takes O(2
n

nc
) time overall. The final ingredient we need

to show the result is that if NEXP lies in P/poly, then every language in
NEXP has witness circuits of polynomial size ([8]). Here, witness circuits
refer to circuits encoding compact assignments to exponential number of
variables (since the number of variables may well be exponential in number,
especially in our case where the number of variables equals the size of the
certificate, which is exponential) of the exponential size satisfiability problem.

4.4 The Proof

Let L be a language in NTIME[2n]. Let x be any string of length n. We
solve L in O(2

n

nc
) time for any x. We use the above algorithm to generate

an C ′x an ACC0 ”printer” for this problem. Since we know that there exist
witness circuits to this problem, we guess a witness circuit for it, whose truth
table should encode the satisfying assignment to the SAT problem encoded
by C ′x. We construct an ACC0− SAT instance similarly to the second step
of the above algorithm. Let the cicuit F take b length strings as input and
2b be the number of clauses of the SAT instance. We connect O(n) copies
of the circuit C ′x which prints O(n) bits of output as a clause. We plug in
the values of the variables. If the clause is satisfied, we ouput 0, else 1. If
W exists (that is, x ∈ L), then at least one computation path will exist in
which we coorectly guess it. It will satisfy all the clauses, hence, we will
get 0 as the output of F on all inputs. Hence, F will be unsatisfiable. This
algorithm solves the problem in O(2

n

nc
) time. This leads to a contradiction in

the non-deterministic time space hierarchy. Hence, NEXP 6⊂ ACC0.
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Chapter 5

Learning Algorithms from
Natural Proofs

This refers to the very recent result [4] which gives a very efficient algorithm
to produces an approximate circuit which given a truth table of a function
in a class Λ which contains AC0[p] and has a natural proof against it. The
number of inputs for which the produced circuit generates correct values on
as large a fraction as we want, however, there is an expected tradeoff between
the running time of the algorithm and the accuracy of the circuit. The class
on which we work on should contain AC0[p] as it is the smallest class which
can construct the NW generator. This result has many working parts, such
as in the areas of psuedorandomn generators, learning algorithms for linear
polynomials, natural proofs, error-correcting codes etc. We try to cover as
much ground as possible, trying to simplify the notation, and focus on the
core ideas. All the algorithms mentioned below are polynomial in the input
sizes n and the inverses of the error probabilities, that is 1

δ
and 1

ε
.

5.1 The NW Generator

We start this proof by recalling the standard properties of a Nisan Wigderson
(NW) generator. It is a secure psuedorandom generator, provided that the
black-box function is hard. We know that if the black-box function is not
hard, then, given oracle access to it on a small number of inputs, we can
construct a circuit that can predict the value of the function with probability
1
2

+ ε. This is true because if the function is not pseudorandom, we know
that it is next-bit predictable. That is, there exists an algorithm P for
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such that for some i (which we can guess) such that for the psuedorandom
variable X, Xi = P (X1, ..., Xi−1), with advantage ε. This follows from the
very definitions. The key ideas behind this result is that the advantage
is actually very small, and we want to amplify it to be arbitrarily large.
We use an ”amplified” version of the function f and certain reconstruction
algorithms for reconstructing a circuit for the original value using the circuit
for it. We define the Nisan-Wigderson generator’s parameters, show why it
is constructable in AC0[p] and outline the reconstruction algorithm for it.

Definition 5.1.1. For integer parameters n,m and L < 2n, a sequence of
sets S1, . . . , SL ⊂ [m], construct an NW design if for all i and j( 6= i), |Si| = n
and Si ∩ Sj ≤ log L, then on input z, the NW generator G is defined as:

G(z) = f(z|S1)...f(z|SL)

where, f is a black-box function and z|Si is the string produced by only
considering the values of z at the indices in Si.

We define the above in such a way that it can be computed in AC0[p].
Let F be an extension field of Fp such that |F | = O(n). Let the canonical
enumeration of the elements be r1, ...., r|F | and L = 2l for some l < n.
Consider the following polynomials over this field:

Ai(x) =
∑

j=1 to l

ijx
j−1

Then, consider the following definition of the sets, Si = {(rj, Ai(rj)|1 ≤
j ≤ n}. We see that all the properties are satisfied by this definition:

• The universe is of the size F × F = O(n2).

• The intersection of any two sets is at most l = log L since two distinct
polynomials can agree at most at l points.

• We can also compute z|Si in AC0[p], as all the arithmetic is done in a
vector space over Fp.

Since we can compute z|Si, f is in a class Λ that contains AC0[p],
hence, the NW generator is computable in Λ. Now, we use the fact that if f is
weak, then the NW generator is not a psuedorandom generator. Hence, there
exists a distinguisher circuit for it. We define the following reconstruction
algorithm, that produces, with very high probability, a circuit C that agrees

13



with f with an advantage of O( 1
L

), using the distinguisher (this distinguisher
circuit comes from the constructivity property of the natural proof, as we
can envision an output of the psuedorandom generator as the truth table of
a function, in the class that the natural property is useful against, that takes
l bits as input) circuit :

• We pick an i randomly from [L]. For all i ≤ j ≤ L, fix the input to the
distinguisher to be a random bit, wj.

• For each index not in Si, we fix it’s value with a random bit.

• We build a lookup table for all the partial assignments that are gen-
erated for indices in Sj that are also in Si and note the values taken
by f(z|Sj), running over all the 2x valus of the x intersecting indices
(since the intersection is guaranteed to be be small, this value is subex-
ponential).

• The circuit made by fixing all these inputs and hardcoding the lookup
table, on input x, fixes it in the place of Si, and sends the values wj for
the first i− 1 bits, obtained by looking up into the lookup table. If the
distinguisher passes it up as random, then the circuit returns 1 − wi,
otherwise it returns wi.

To boost the probability, this is done multiple times, the circuits are
checked by repeating this polynomial number of times, and checking the
agreement of the produced circuits with f using random sampling. The
best circuit is finally returned by the algorithm. This works as the random
choices we make while fixing the bits tries to approximate the advantage that
non-uniformity gives us.

This algorithm, gives us a circuit that has a very small advantage over
simply outputting random bits. However, we would like to have a much
greater advantage than this, in fact we would want no upper bound on it.
To do this, we use the ”amplified” version of the function f . We construct a
circuit for Amp(f) using the techniques above. However, we need to simulate
oracle access to it for the reconstruction to work. For that, we get the
constraint that Amp(f) ∈ P f , along with the other constraint that using a
circuit that approximates Amp(f) with probability 1 − δ, we get a circuit
that approximates f to any extent, the tradeoff being in the running time.

14



5.2 Amplifying the function

Consider the direct product version of the function f , for some constant k,
and n-bit inputs x1, . . . , xk :

fk(x1, . . . , xk) = f(x1) . . . f(xk)

It has a k-bit output, which is not boolean. However, we can use a
circuit for it as a middle layer in a two-step process to get us from f to
Amp(f).

Theorem 2. There exists a constant c and an algorithm A such that, for
constants ε,δ satisfying δ > e−kε/c, for k ∈ N, if we have a circuit C ′ com-
puting fk with accuracy 1 − δ, A outputs a circuit with probability Ω(δ), a
circuit C that agrees with f on all but an ε fraction of inputs.

We now give a description of this circuit construction algorithm. As
usual, we do this polnomially many times to get a good circuit, verifying the
circuit’s agreement with f by cross-checking on randomly sampled inputs.

• It picks a subset of k random strings, and concatenates them to get an
input for fk.

• A random subset S of k/2 strings from these is chosen, and the values
these strings take are fixed by taking a majority voting over the sets of
values we obtain from C ′ for them.

• These values are hardcoded into the circuit that is being constructed.

The circuit’s working can be described on an input x as follows :

• Generate a subset T of k/2 − 1 random strings, generate a random
permutation of the set S ∪ T ∪ {x} and evaluate C ′ on it. If the values
of the strings in S agree with the values that are hardcoded in it, we
output the value taken by x, otherwise we proceed.

• If the above step has been repeated O(log(1/ε)/δ times, output a ran-
dom bit, otherwise repeat the above step.

The idea behind the working of the above circuit is that we inject
randomness in almost half of the input, believing that we know the answer
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already for all but one string in the rest of the input, and hence, with high
probability, one of the polynomially many random permutations generated
will have an agreement on that half, and hence, with high probability, we
would be able to find the value that f takes on x.

We now need to convert this non-Boolean function into a boolean func-
tion that can be used to efficiently get back this circuit for fk. If we are
working in field F , with a characteristic prime p, we map this string of k bits
to an element of F . We define (fk)GL : {0, 1}nk × F k → F as follows :

(fk)GL(x1, . . . , xk, r1, . . . , rk) =
k∑
i=1

ri(f
k(x1, . . . , xk)i) = 〈~r, fk(x1, . . . , xk)〉

Theorem 3. There exists a probabilistic algorithm A, given B : F k → F
and h ∈ F k be any tuple such that

Prx∈Fk [B(x) = 〈h, x〉] ≥ 1

p
+ γ

for some positive γ, then, A returns a list of size O( 1
γ2

) such that h is

on the list with probability 1
2
, given oracle access to B.

We use the above defined Goldrecih-Levin reconstruction, to recover ~r
with O( 1

2γ2
) probability. This algorithm is much more complicated than the

direct product reconstruction one, hence, we simply use the above theorem,
without going into the lower-level details. For more details, refer to [5].

We note that the field F is non-boolean for p 6= 2, hence, we have to
deal with two cases.

5.2.1 When the field has characteristic 2

Since the field is Boolean, the function (fk)GL is a Boolean function. We
define Amp(f) to be (fk)GL, setting k to be d3c

ε
ln 1

γ
e, where c is the constant

in the DP reconstruction. Using the natural property against AC0[2] and
the NW reconstruction algorithm, we can get a circuit H that approximates
(fk)GL on 1/2+γ fraction of inputs. We show that we can construct a circuit
D approximating fk using this circuit and the GL reconstruction algorithm
defined above as subroutines. On input x ∈ {0, 1}nk, D does the following :

16



• Construct B as H(x, r), for some r, which we try to recover using the
GL reconstruction algorithm, using the parameter γ

2
.

• Output a random string from the list.

Theorem 4. The above algorithm constructs a circuit for fk which correctly
computes it for Ω(γ3) fraction of inputs.

Proof. We know that Prx,r[H(x, r) = (fk)GL] ≥ 1
2

+ γ. We claim that at

least fracγ2 fraction of all x agree with (fk)GL on 1+γ
2

fraction of all r. Let
us assume this is wrong. Then,

Prx[Prr[H(x, r) = C(x, r)] ≥ 1 + γ

2
] <

γ

2

Let A denote the event above. Consider Prx,r[H(x, r) = (fk)GL] =
Prx[Prr[H(x, r) = C(x, r)]|A] ∗ Pr[A] + Prx[Prr[H(x, r) = C(x, r)]|A] ∗
Pr[A] < γ

2
+ 1+γ

2
< 1

2
+ γ. But, Prx,r[H(x, r) = (fk)GL] ≥ 1

2
+ γ. Hence,

our assumption was wrong, and Prx[Prr[H(x, r) = C(x, r)] ≥ 1+γ
2

] ≥ γ
2
.

For these strings, the probability of selecting a correct string from the list
is Ω(γ2). This shows that the overall probability of being correct is greater
than equal to Ω(γ3).

Using DP reconstruction on the circuit for fk, we get a circuit that
approximates f for any arbitrary error value ε.

5.2.2 When the field has an odd prime characteristic

In this case, the field is non-Boolean, hence, we first have to reduce (fk)GL

to a Boolean function h first. We put h into the black-box generator to get
a circuit for it, and then, transform it into a circuit for (fk)GL. Then, we
follow steps analoguous to that of the previous case. To get a Boolean circuit,
while still preserving information about (fk)GL in it uses a few theorems from
psuedorandomness theory and the Von Neumann trick. For the former, as we
do not go into the lower-level details as far as the constants are concerned,
please refresh your memory using [6] if needed.

The Von Neumann trick is a standard trick, used to convert a bi-
ased coin to an unbiased one. We define EvN : (F 2)t → {0, 1} as follows
: EvN((a1, b1) . . . (at, bt)) is 0 if the smallest unequal pair has ai < bi, other-
wise it is 1. We see that for every r ∈ (F 2)t for which it is 0, there exists a
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symmetric r1 for which it is 1, simply by swapping the coordinates of ai and
bi for all i. The only inputs that are invariant under this are those which
have all their coordinates equal. Those are p−t in number. Hence, we get the
following:

Prr∈(F 2)t [E
vN(r) = 1]− Prr∈(F 2)t [E

vN(r) = 0] = p−t

Hence, EvN is very close to a random distribution. We define h :
(F 2)t → {0, 1} as follows:

h((a1, b1) . . . (at, bt)) = EvN(((fk)GL(a1), (f
k)GL(b1)) . . .)

We claim that from a circuit that computes h approximately on 1/2+µ
fraction of inputs, we can generate a circuit that generates (fk)GL on 1

p
+ γ

fraction of inputs, where γ ≥ Ω( −µ
log(µ)

). To show this, we use results from
psuedorandomness. We have a circuit that computes h with some advantage.
Hence, we have a predictor for h that is better than random. We have to
show that this implies a predictor for g. To show this, we instead prove the
contrapositive. We say that two distributions S and T are computationally
(t, s)-indistinguishable if no circuit of size lesser than s can differentiate be-
tween them with probability greater than t. Let us suppose that we cannot
build a predictor for (fk)GL with advantage greater than γ. Then, it’s out-
put would be indistinguishable from a random element of the field F , for
any circuit of size lesser than s, with a probability difference greater than
2γ. Using a hybrid argument and then applying EvN gives us that h is
(4tγ + p−t,Ω(s/t) − poly(t))-indistinguishable from random functions. But,
we have a predictor for h. This implies that using the appropriate recon-
structions for each step, we can get a circuit for (fk)GL and then proceed
as in the above case. To do so, we have to ensure that the advantage µ is
greater than 4tγ + p−t. Putting t = O(log 1

µ
) gives us that γ ≥ O( −µ

log(µ)
).
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Chapter 6

Conclusion and Future Work

We see that these proofs assimilate and build over a decade of ideas in com-
plexity theory. Future work to push the frontier can be to show natural lower
bounds for other classes like SYM+ and ACC0. We know that there are
TC0 circuits of depth-4 which compute a psuedo-random generator based
on the decisional Diffie-Helmann assumption, which we believe to be secure,
hence, for classes equally powerful or stronger than it, we do not believe a
natural proof exists, as it would violate the assumption. We know that no
PRG exists in depth-2 TC0, and it is unknown whether one exists in depth-3
TC0. That could be another line of attack.
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