
Multivariate polynomials modulo prime powers:
their roots, zeta-function and applications.

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of

Dual BT-MT

by

Sayak Chakrabarti
17807648

to the
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR
May, 2022

ii

CERTIFICATE

It is certified that the work contained in the thesis titled Multivariate polyno-

mials modulo prime powers: their roots, zeta-function and applications.,

by Sayak Chakrabarti, has been carried out under my supervision and that this

work has not been submitted elsewhere for a degree.

Prof. Nitin Saxena

Department of Computer Science & Engineering

IIT Kanpur

May, 2022

nitin
Pencil

iii

Declaration

This is to certify that the thesis thesis titled Multivariate polynomials mod-

ulo prime powers: their roots, zeta-function and applications., by Sayak

Chakrabarti, has been authored by me. It presents the research conducted by me

under the supervision of Prof. Nitin Saxena.

To the best of my knowledge, it is an original work, both in terms of research

content and narrative, and has not been submitted elsewhere, in part or in full,

for a degree. Further, due credit has been attributed to the relevant state-of-the-art

and collaborations (if any) with appropriate citations and acknowledgements, in line

with established norms and practices.

Signature

Name: Sayak Chakrabarti

Program: Dual BT-MT

Computer Science and Engineering,

Indian Institute of Technology Kanpur,

Kanpur- 208016

May, 2022

Place: Kanpur, India

iv

ABSTRACT

Name of student: Sayak Chakrabarti Roll no: 17807648

Degree for which submitted: Dual BT-MT

Department: Computer Science & Engineering

Thesis title: Multivariate polynomials modulo prime powers: their roots,

zeta-function and applications.

Name of Thesis Supervisor: Prof. Nitin Saxena

Month and year of thesis submission: May, 2022

Finding and counting roots of polynomials in prime power rings are two fundamental

problems that have far reaching applications in mathematics and computer science.

This problem has been solved for univariates while it was open for multivariates as

they presented challenges of their own.

These problems of polynomials modulo prime powers have been of interest among

mathematicians for a long time, and have been widely used ever since Hensel 1918

gave the famous Hensel’s lifting. We use the machinery developed in Berthomieu et

al. 2013 to reduce these problems modulo pk to Fp and solve them using some new

techniques and observations.

In this thesis, we explore these two problems of root finding and root counting

by giving different algorithms. Formally speaking, given a polynomial f(x) ∈ Z[x],

we can efficiently represent using a datastructure, and thereby find and count, all

of its roots modulo pk, for a prime p and an integer k ≥ 2. However, this algorithm

works for small primes when the degree d and number of variables n of f(x) are

constant. As an application to this, we can describe all the roots of f(x) over Zp

as well, thereby leading to an efficient computation and proof of rationality of the

Igusa’s Local Zeta Function. Following a similar technique, we find a common root

v

of the system of n-variate polynomials f1(x), f2(x), . . . , fm(x) ∈ Z[x] of degrees at

most d modulo pk where n and k are constants. This has interesting applications to

finding certain factors of an univariate polynomial f(x) mod pk.

Acknowledgements

Pursuing the degree at IITK and working on my thesis has been quite a journey,

and I greatly indebted to several people who have helped me complete it. First

and foremost, I would like to convey my sincere gratitude towards my advisor,

Prof. Nitin Saxena, for his guidance, support and patience throughout the span

of 1.5 years. Apart from introducing me to beautiful concepts in mathematics, he

has also taught me how to understand seemingly complicated mathematical theo-

ries in terms of ‘computer science definitions’. I have always been amazed at his

intuition on problems, and have learned a lot from him on how to start thinking as

a researcher. I am thankful for all the education he has imparted on me under his

watchful eyes, never losing patience even when our discussions went on for hours, be

it during office times or as late as 2-3 am in the morning, and always making sure

that I have followed the concepts. I feel fortunate to have had him as my advisor, as

well as thankful to have learned about theoretical CS from the four courses I took

under him.

I’d like to extend my heartfelt gratitude to Prof. Rajat Mittal for giving me a

chance to work under his guidance in my third year, when I really had no idea of

TCS. Looking back, I remember all the silly doubts I would ask him and at every

meeting he would always make sure that I have understood everything, however

insignificant it may seem, before moving on to newer stuff. Without his influence,

I probably would never have known the beauty of TCS and I feel lucky to have

worked with him.

I feel really fortunate to have worked with Prof. Petteri Kaski and hope to have

vii

picked up some of the wisdom he has shared with me. He has taught me how to

think independently like a researcher and have always encouraged me to explore new

things of my own. Working with him has always been entertaining and intriguing

along his poetic metaphors with mathematics. I would also like to thank him for

putting up with discussions with me remotely despite the hurdles and providing

insightful remarks at every step, to help me grow and learn more about research.

This thesis and my general interest in TCS would not have carried forward if it

were not for them. I’d also like to thank my coauthors, Ashish, for all the discussions

and advice during researchwork, and the suggestions to improve this thesis. Friends

and family have had a huge impact over the years, especially when the pandemic

(and the neverending boredom) had made concentrating much more difficult. I would

like to thank my labmates Devansh, Diptajit, Sagnik and Sanyam for the wonderful

moments as well as entertaining discussions including but not restricted to research.

Staying at home for 2.5 years had been tough, and it would not have been possible

to overcome the long period of time without the support and company of my friends

at IITK and Kolkata.. I am sorry I can not mention all of them as the list would

have been unending, but everyone has meant a lot to me.

Last but not the least, I would like to thank my parents for all the unconditional

love and support through the years, especially during the pandemic in order to make

remote working as bearable as possible, and my sister and cousins for completely

preventing that from happening. I’ve grown to enjoy research in TCS and none of it

would not have been possible without their sacrifice and their constant push, which

is why I am dedicating this thesis to them.

To my parents,

Contents

Acknowledgements vi

List of Publications x

1 Introduction 1

2 Preliminaries 4

2.1 Notations . 4

2.2 Basic algebra and algebraic geometry 5

2.3 Factorization modulo prime powers 10

2.4 Root finding of univariates modpk . 13

3 Describing the roots of multivariates modulo prime powers 16

3.1 Overview of the algorithm . 16

3.2 Degree reduction: Polynomial after lifting 23

3.3 Structure of polynomial via val-mult= d1 roots 26

3.4 Create-Walk() subroutine: Completion of the algorithm 32

3.5 Generalization to n-variates . 36

4 Computing the Igusa’s Local Zeta Function 41

4.1 Describing the roots over Zp . 41

4.2 Computing the Igusa’s local zeta function 49

5 Solvability of system of polynomial equations over Galois rings 54

5.1 Overview of the algorithm . 54

x

5.2 Mapping Fp roots to Zp roots . 61

5.3 Recovering a G-root of an ideal in L and T (of Algorithm 5) 66

5.4 Correctness of HNpk . 68

6 Constant degree roots 74

7 Conclusions 75

References 76

List of Publications

[CDS22] Factoring modular polynomials via Hilbert’s Nullstellensatz

Sayak Chakrabarti, Ashish Dwivedi and Nitin Saxena

submitted, 2022.

[CS22] Describing the roots of multivariates modpk and efficient computa-

tion of Igusa’s Local Zeta Function

Sayak Chakrabarti and Nitin Saxena

submitted, 2022.

Chapters 3 and 4 focus on [CS22], while Chapters 5 and 6 focus on [CDS22].

Chapter 1

Introduction

We address two important problems in computational algebra– describing the all

the roots of multivariates and finding a common solution to a system of polynomial

equations modulo prime powers.

Describing roots of multivariates. The first problem of describing the roots is:

given an n-variate polynomial f(x) ∈ Z[x] of degree at most d, we give an algorithm

and an efficient data-structure to return all the roots of f(x) ≡ 0 mod pk, for a prime

p and an integer k ≥ 2. The result can be formally stated as follows.

Theorem 1.1 (Describing the roots). Given a polynomial f(x1, x2) ∈ Z[x] of degree

d and n variables, we can efficiently describe all the roots of f(x) ≡ 0 mod pk in

deterministic poly(kd, pd, dd) time, where d, log p are small.

Notice that Z/pkZ is not a unique factorization domain, implying that even

univariate polynomials can have several roots. There have been some previous works

by [Pan95; BLQ13; NRS17; DMS21] where they give algorithms and data-structures,

called representative roots, to return all the roots of univariates modpk. Their main

idea is to reduce the problem to finding each p-adic coordinate by considering a

polynomial over Fp, a field where we can ‘nicely’ find roots. We will specifically

refer to Berthomieu et al. [BLQ13] and extend their method to multivariates for

lifting roots from Fp to Z/pkZ

2

However, when we move on to multivariates, several obstacles come into place.

The previous works base their analysis on finding each p-adic coordinate by finding

roots of a ‘lifted’ polynomial over Fp. However, for multivariates, even O(p)-many

roots can exist, which can lead to a large blowup in the time complexity. Further-

more, roots of multivariates do not correspond to factors, as is the case in univari-

ates. It might also be noteworthy that properties of univariates differ vastly from

bivariates, while bivariates and general multivariates have similar properties [Kal85;

KT90].

In Chapter 3, we address this problem, by first solving for bivariates and then

extending the idea to n-variates, for any constant n. The main idea is to reduce

the problem of finding roots of the n-variate polynomial to finding common roots

of a system of (n− 1)-variate polynomials. In this process, we observe several nice

properties of the structure of the polynomial and give the complete algorithm to

return all of its roots modpk.

Since we are able to describe all the roots, we can also use this technique to

finding roots of f(x) over Zp, as Z/pkZ behaves quite similar to Zp for ‘large’ k’s.

Since the behavior of roots modulo all prime powers are given by this, we are also

able to compute the Igusa’s Local Zeta Function (LZF) [Igu74; Igu77; Igu07], which

also proves the rationality of the Poincaré series, in a proof much simpler than that

of Denef [Den84]. These problems have been addressed in Chapter 4.

Finding a root of a polynomial system. Givenm polynomials f1(x), . . . , fm(x) ∈

Z[x] in n-variables of degree at most d, we find a common root of the system modulo

pk. In fact, we solve this for a slightly more general ring, of the form Z[z]/〈φ(z), pk〉,

for a polynomial φ(z) irreducible over Fp, which are known as Galois rings. As will

be seen in Chapter 4, Z/pkZ and Zp have similar properties for large k. Thus, our

main focus here are small values of k, and we also assume n to be constant. We

further solve this for a slightly more general ring Z[z]/〈φ(z)pk〉 instead of Z/pkZ.

The following theorem states the problem.

3

Theorem 1.2 (HNpk). Let f1(x), . . . , fm(x) ∈ Z[z][x] be a set of n-variate degree d

polynomials, where n is a constant. Given a prime power pk for constant k and an

Fp-irreducible polynomial φ(z), we can efficiently find a common root of the system

fi(x) ≡ 0 mod 〈φ(z), pk〉, for i ∈ [m], in randomized poly(dcnk ,m, deg(φ), log p) time.

The complete algorithm has been described in Chapter 5.

Dwivedi et al. [DMS21] reduced the problem of factoring modulo small prime

powers to finding roots of a system of multivariates over a Galois ring. We solve this

problem by using our technique of polynomial system solving, which we will refer

to as Hilbert’s Nullstellensatz modulo pk, HNpk ; and finding roots of the system–

thereby giving certain factors. We cite the techniques for this in Chapter 6.

Chapter 2

Preliminaries

2.1 Notations

We use x to denote the tuple (x1, x2, . . . , xn). Operations are similarly defined as

a + b := (a1 + b1, a2 + b2, . . . , an + bn), and c · a := (c · a1, . . . , c · an), for a scalar

c. Similarly, for i = (i1, i2, . . . , in), we have xi = xi11 x
i2
2 . . . x

in
n with degree |i|, and

i! := i1!i2! . . . in!.

Based on the Taylor’s expansion of polynomials in univariates, we define multi-

variate Taylor’s expansion.

Definition 2.1 (Taylor’s expansion/ series). Given a polynomial f(x) of degree d,

we can write it as (over any characteristic)

f(a + x) =
∞∑
ℓ=0

∑
|i|=ℓ

∂xif(a)
i! ·

n∏
j=1

x
ij
j

 , (2.1)

where ∂xif := ∂i1+···+inf

∂x
i1
1 ...∂xin

n

is an order |i| partial derivative.

For a prime p, we can write any integer a as a power series a =: a0+a1p+a2p
2+. . . ,

for ai ∈ {0, 1, . . . , p − 1}. We write ã ∈ Zp, the ring of p-adic integers, as a tuple

(a0, a1, a2, . . .). The j-th coordinate corresponds to aj, and ã mod pk is defined as

the projection upto the (k− 1)-th coordinate, i.e. a0 + a1p+ . . . ak−1p
k−1. Similarly,

we define the field of p-adic numbers as the fraction field of Zp, denoted as Qp. For

5

more literature on p-adic numbers, we direct the reader to [Gou97; Kob12].

Definition 2.2 (Valuation). For an integer n and a prime p, we define its valuation

w.r.t. p, denoted vp(n), as the largest integer v such that pv|n.

We now define Galois rings, a special kind of rings which have properties similar

to that of finite fields, but have composite characteristics.

Definition 2.3 (Galois rings [McD74]). A Galois ring G(pk, b) is the ring G :=

Z[z]/〈pk, φ(z)〉, where pk is a prime-power and φ(z) ∈ Z[z] is a polynomial of degree

b which is irreducible modulo p.

It can be directly seen that G has characteristic pk and size pkb. Further proper-

ties of symmetries, uniqueness etc. can be found in [DMS19; LN94; McD74].

2.2 Basic algebra and algebraic geometry

2.2.1 Resultants

Theorem 2.4. Let f(x), g(x) ∈ Z[x]. f and g have a common factor of degree

greater than or equal to 1 if and only if there exists polynomials A(x), B(x) satisfying

the conditions:

1. A,B 6= 0

2. deg(A) < deg(g) and deg(B) < deg(f)

3. A.f +B.g = 0

Proof. Suppose f, g have a common factor h, deg(h) ≥ 1 and f = f1h, g = g1h.

Consider the polynomials A,B as A = g1, B = −f1. It can be verified that all the

three conditions are satisfied.

For the converse direction, we are given with polynomials A,B such that the

three conditions are satisfied. Let us assume that the gcd of f, g is 1. By Extended

Euclidean Algorithm we can compute polynomials A′, B′ with deg(B′) < deg(f),

6

deg(B′) < deg(g) such that A′f + B′g = 1. Since Af + Bg = 0, multiplying the

previous equation by B we get

B = B(A′f +B′g) = A′Bf +B′(Bg) = (A′B − AB′)f,

which violates the condition that B 6= 0 and deg(B) < f .

Based on this result, we give an algorithm to check if f and g have common

roots by reducing the problem to that of finding a solution to a set of simultaneous

equations. Let A = c0+ c1x+ . . . cm−1x
m−1 and B = d0+d1x+ . . . dl−1x

l−1. We also

write f = a0 + a1x + . . . alx
l and g = b0 + b1 + . . . bmx

m. Substituting accordingly

we get the set of simultaneous equations:

a0c0 + b0d0 = 0 Coefficient of xl+m−1

a1c0 + a0c1 + b1d0 + b0d1 = 0 Coefficient of xl+m−2

...
...

...
...

alcm−1 + bmdl−1 = 0 Coefficient of x0

Definition 2.5 (Sylvester matrix). Given polynomials f, g, notation as above, the

Sylvester matrix of f and g is the coefficient matrix of the set of the above system

of equations. Let us denote Sylvester matrix of f, g as S(f, g) by the following

(l +m)× (l +m) matrix:

al bm

al−1

. . . bm−1

. . .

...
. . .

... bm
. . . al−1 b0

...

. . .
...

. . .
...

a0 b0

7

Definition 2.6 (Resultant). The resultant of polynomials f, g denoted by Res(f, g)

is the determinant of their Sylvester matrix, i.e. Res(f, g) = det(S(f, g)).

Lemma 2.7. Given two polynomials f, g ∈ Z[x], f and g have a common factor of

degree greater than or equal to 1 if and only if Res(f, g) = 0.

Theorem 2.8. Given f, g ∈ Z[x], ∃A,B ∈ Z[x] with degrees less than those of g

and f respectively, such that Af +Bg = Res(f, g).

Proof. If f, g have a common factor, then resultant is 0. Suppose they do not have a

common factor, we have A′, B′ with same degree constraints such that A′f+B′g = 1.

Now from the equations:

a0c0 + b0d0 = 0 Coefficient of xl+m−1

a1c0 + a0c1 + b1d0 + b0d1 = 0 Coefficient of xl+m−2

. . .
. . .

...
...

alcm−1 + bmdl−1 = 1 Coefficient of x0

We can solve these equations by Cramer’s rule to give the determinant with some

coefficients in the numerator and the determinant of the Sylvester matrix in denom-

inator to give:

A′ =
A

Res(f, g)

B′ =
B

Res(f, g)

for some polynomials A and B, which we can find as we know A′, B′ from Extended

Euclidean Algorithm. Now from A′f + B′g = 1 it follows that for such A,B, we

have Af +Bg = Res(f, g) where deg(A) = deg(A′), deg(B) = deg(B′).

Definition 2.9 (Discriminant). We define the discriminant of a polynomial f(x) =

a0 + a1x+ . . . alx
l as

disc(f) =
(−1)

l(l−1)
2

al
Res(f, f ′)

8

where f ′ is the derivative of f(x) wrt x.

Notice that discriminant of a polynomial f(x) being zero would imply that it

is square full since f and f ′ have a common factor. We can extend this notion to

multivariates as well.

Given two polynomials f(x1, x2) and g(x1, x2), we can compute Resx2(f, g), the

resultant w.r.t. x2, in a similar fashion by considering x1 as a constant. The resulting

polynomial will be a polynomial in x1, and the roots r of that polynomial would

give the values of x1 for which f(r, x2), g(r, x2) have common factors.

Let f ′(x1, x2) be some first-order derivative of f(x1, x2). Let the resultant of

f and f ′ w.r.t. x2 be R(x1) := Resx2(f(x1, x2), f
′(x1, x2)), which is also one of the

discriminant of f . R(x1) being identically zero would imply: f and its derivative

have a common factor.

More literature on resultants and elimination theory can be found in [CLO13,

Chap.3].

2.2.2 Basic algebraic geometry

We are now going to describe some algebraic geometry terminologies and definitions

that will be used later in the thesis. For a field k, we define affine space as follows:

An
k = {(c1, c2, . . . cn)|ci ∈ k} (2.2)

Now if S ⊂ k[x1, x2, . . . xn] be a collection of polynomials, the ideal generated by

elements of S is called IS. We define the affine variety as:

V(S) = {(v1, v2, . . . vn) ∈ An
k |p(v1, v2, . . . vn) = 0 ∀p ∈ S} (2.3)

It directly follows that V(S) = V(IS).

We also define an ideal I over a zero set Z ⊆ kn as

I(Z) = {f ∈ k[x1, x2, . . . xn]|f(a) = 0 ∀a ∈ Z} (2.4)

9

We also define radical of an ideal I, denoted as
√
I given by:

√
I = {f ∈ k[x1, x2, . . . xn]|∃m ∈ N; fm ∈ I} (2.5)

It can be shown that radical of an ideal is also an ideal.

Now, for any two ideals a, b ∈ k[x1, x2, . . . xn], Zariski Topology states that a ⊆

b =⇒ V (a) ⊇ V (b).

Lemma 2.10. The following relations hold true:

1. V (ϕ) = kn, V (k[x1, . . . xn]) = ϕ

2. V (ab) = V (a ∩ b) = V (a) ∪ V (b)

3. V (
∑

i∈I ai) =
⋂

i∈I V (ai) for a family of ideals (ai)i∈I

Proofs of these statements can be found in [Mil17].

Another important problem in mathematics is Hilbert’s Nullstellensatz (HN),

translated as ‘the theorem of zeroes’, which establishes a connection between the

existence of zeroes of a system of polynomials with the ideal formed by those poly-

nomials over an algebraically closed field.

Theorem 2.11 (Weak HN). For an ideal I ⊆ K[x1, x2, . . . xn], V (I) = ϕ ⇐⇒ 1 ∈

I.

Theorem 2.12 (Strong HN). For every ideal I ∈ K[x1, x2, . . . xn],
√
I = I(V (I)).

It can be shown that Weak HN implies Strong HN and vice versa. More explo-

rations into Hilbert’s Nullstellensatz can be found in [Dwi17].

2.2.3 Commutative algebra preliminaries

The following lemma gives an estimate on the number of roots of an absolutely

irreducible polynomial, which has been used in [HW99] to find a root of a system

of polynomial equations over Fq. This is the reason why absolute irreducibility is

crucial in this paper.

10

Theorem 2.13 (Number of roots [Sch74]). An absolutely irreducible polynomial

f(x) (d-degree n-variate) has number of roots in the range, qn−1 ± ((d − 1)(d −

2)qn−1.5 + 6d2qn−2), over a ‘large’ finite field Fq (namely, q > ω(n3d5)).

Gröbner basis. We require some concepts of Gröbner basis in our algorithm to

find ‘special’ lifts to Ĝ (in Lemma 5.3). Modulo multivariate polynomial ideals, the

remainder on division is not always unique. Thus, we modify the ideal by adding

some more generators, depending on a given ordering of variables, such that the

remainder modulo the ideal is unique.

For a given ideal I, the S-polynomial of two polynomials g1, g2 in I is defined as

S(g1, g2) =
lcm(LM(g1),LM(g2))

LT(g1)
· g1 −

lcm(LM(g1),LM(g2))

LT(g2)
· g2 , (2.6)

where LM denotes the leading monomial and LT denotes the leading term.

Buchberger [Buc65] gave the famous algorithm to compute the (reduced) Gröb-

ner basis; by considering every pair of current generators of the ideal and iteratively

adding their S-polynomials; until the S-polynomials are zero. More properties of

Gröbner basis, and their complexity, can be found in [CLO13].

2.3 Factorization modulo prime powers

Hensel’s lifting was given by Kurt Hensel [Hen18] to ‘lift’ a factorization given mod-

ulo a prime ideal to modulo higher powers of that ideal. In our case we will only

deal with the ideal being 〈p〉Z and lifting to modulo pk for integers k ≥ 1. We will

describe a few properties related to polynomials in rings of the form Z/pkZ. For

further reading, we refer the reader to [BS96].

Lemma 2.14. A polynomial f(x) ∈ Z[x] can be uniquely written in the form f(x) =

a(x) + p · g(x) for a prime p, where a(x) ∈ Z/pZ.

Proof. The proof directly follows from the fact that f(x) =
∑

i cix
i =

∑
i((ci mod

11

p)xi) +
∑

i(ci − (ci mod p))xi and Z/pZ being an integral domain, implying unique-

ness.

Lemma 2.15. A polynomial f(x) ∈ Z/pkZ[x] is an unit if and only if f(x) can be

written as f(x) = a+ p · g(x) where a ∈ F×
p .

Proof. If f(x) is an unit, it can be written as f(x) = a(x) + p · g(x) by Lemma

2.14. Now since this is an unit, there must be an inverse f(x)−1 written in the form

a′(x)+pg′(x), product of which is one. By taking the product modulo p, we get that

a(x)a′(x) = 1. Now since both a, a′ are polynomials, there degree can not decrease

after multiplication, and hence must be constants. So we get a(x) ∈ F×
p .

For the converse, we find an inverse of f(x) = a + p · g(x) for a ∈ F×
p . Applying

binomial theorem, we write (a + p · g(x))−1 = a−1(1 + p(a−1g(x))). Now using the

expansion (1 + x)−1 = 1 − x + x2 − . . . , we get f(x)−1 = a−1(1 − p(a−1g(x)) +

p2(a−1g(x))2 − · · · + (−1)k−1(a−1g(x))k−1). It can be checked that f(x)−1f(x) is

indeed 1 over Z/pkZ[x].

Based on these we present Hensel’s lemma, which gives us a technique to lift

factorizations of certain kinds of polynomials from modulo p to modulo pk.

Theorem 2.16. Let f, g, h ∈ Z[x] be polynomials such that f(x) ≡ g(x)h(x) mod

p, and gcd(g(x) mod p, h(x) mod p) = 1 in Z/pZ[x], then there exists polynomials

(referred to as ‘lifts’) g̃, h̃ ∈ Z[x] such that f(x) ≡ g̃(x)h̃(x) mod pk ∀k ∈ N, and

g̃ ≡ g mod p, h̃ ≡ h mod p.

Proof. We give an algorithm to prove this, which has also been explained in [BS96].

Since gcd of g, h over Fp is one, ∃λ, µ ∈ Fp[x] such that λg+µh ≡ 1 mod p. From this

we iteratively construct a factorization of f modulo higher powers of p as follows.

The proof of correctness is by induction on i. At every step, each of the factors are

congruent to the previous factor modulo p. Suppose after update at ith step, g, h

were gi−1, hi−1, and become updated to g̃, h̃ respectively. Then we have f − g̃g̃ ≡

f − (gi−1+p
i−1u)(hi−1+p

i−1v) mod pi. From this, if we substitute the values of u, v

and consider the fact that gi−1, hi−1 are coprime modulo p (since λg+µh ≡ 1 mod p),

12

Algorithm 1 Hensel’s Lifting
1: for i ∈ 2, 3, . . . k do
2: q := f−gh

pi−1 mod p
3: u := qµ
4: v := qλ
5: g := g + pi−1u
6: h := h+ pi−1v

7: return g̃ = g, h̃ = h

we can show that this expression is zero modulo pi. It can also be shown that g̃, h̃

are coprime over p, and the corresponding λ and µ can be found. For the complete

proof, we refer the reader to [BS96].

Corollary 2.17. Hensel’s lifting is unique upto multiplication by units.

However note that Hensel’s lifting can not proceed if g, h has some non-trivial

gcd modulo p. This basically means that f(x) mod p is a perfect power of some

irreducible. [GH96] gives an analysis of the difficulties we face in this case. We now

show a method from [GH98] which shows some of the conditions that need to be

satisfied in order to lift.

Theorem 2.18 ([GH98]). Let f ≡ gh mod pk such that f ≡ ϕℓ mod p, where ϕ

is an irreducible polynomial modulo p, and e ≤ ℓ/2 such that g ≡ ϕe mod p, h ≡

ϕℓ−e mod p. Then the following are equivalent:

1. f−gh
pk
∈ Z[x] and divisible by ge over modulo p

2. For every ψ ∈ Z[x] with deg(ψ) < deg(g), there is a polynomial θ ∈ Z[x] with

deg(θ) < deg(h) such that f ≡ (g + pkψ)(h+ pkθ) mod pk+1

3. There exist polynomials ψ, θ ∈ Z[x], with deg(ψ) < deg(g), deg(θ) < deg(h)

such that f ≡ (g + pkψ)(h+ pkθ) mod pk+1

4. There exist polynomials ψ, θ ∈ Z[x] with f ≡ (g + pkψ)(h+ pkθ) mod pk+1

Proof. (i) =⇒ (ii) Let f−gh
pk
≡ ϕeα mod p for some α ∈ Z[x], and ψ, θ ∈ Z[x], with

deg(ψ) < deg(g). Let θ ≡ α− gℓ−2eψ mod p. Then, using the fact that e ≤ ℓ/2, we

13

can show that f − (g + pkψ)(h+ pkθ) ≡ 0 mod pk+1.

(ii) =⇒ (iii) =⇒ (iv) is directly follows. Now, we are required to show (iv) =⇒

(i). Let ψ, θ ∈ Z[x] with f ≡ (g + pkψ)(h+ pkθ) mod pk+1. Then we have

f − gh
pk

≡ ψg + θh ≡ ψgℓ−e + θge ≡ g2(ψgℓ−2e + θ) mod p

This proves the theorem.

From these we see that if the polynomial to be factored is not a power of some

irreducible modulo p, then we can lift it to modulo any pk. There will be unique

factors (unique upto multiplication by units) and there is an one-one correspondence

of roots modulo p with roots modulo pk. However the more difficult case is left, when

we have f ≡ ϕℓ mod p for some polynomial ϕ(x) irreducible modulo p. There have

been some attempts to factorize polynomials of this form [Sir17; DMS19], the best

being [DMS19], which achieved factorization up to modulo p4.

2.4 Root finding of univariates modpk

Definition 2.19. A representative of a ring R, denoted by the symbol ∗, takes all

values in the ring R. Formally, it is the set ∗ := {a|a ∈ R}.

We further define the operations:

• b+ ∗ = {b+ a|a ∈ ∗} for b ∈ R,

• b∗ = {ba|a ∈ ∗} for b ∈ R.

Using this definition, for β + pℓ∗ ⊆ Z/pkZ for β ∈ Z/pℓZ, ℓ ≤ k, we have

β + pℓ∗ = {β + pℓa|a ∈ Z/pk−ℓZ} (2.7)

In a similar fashion, a representative root of a polynomial f(x) ∈ Z/pkZ is

denoted by a set β + pℓ∗ for β ∈ Z/pℓZ, ℓ ≤ k such that for any A ∈ β + pℓ∗,

14

we have f(A) ≡ 0 mod pk. The length of this representative root is the number of

precision coordinates of the fixed part β, which is ℓ.

For more properties of representative roots, we direct the reader to [Pan95;

BLQ13; DMS21; GCM21].

Solving univariates simultaneously. Using this compact notation, we present

the standard Algorithm 2 to find all the roots of a univariate polynomial f(x) ∈

Z/pkZ; which is due to [Pan95; BLQ13; DMS21]. However, as required in this pa-

per, we give a slight modification where we solve a system of univariates modulo pk.

The algorithm starts with the input array (f1, . . . , fr, p, k, . . . , k). This can be seen

as a slight modification of the Root-Find algorithm ([DMS21, Algorithm 1]) where

instead of looping only over the roots of the polynomial, we loop over the common

roots in order to find a root of all the polynomials in the system.

Algorithm 2 Root finding of f1(x), . . . , fr(x) mod pk

1: procedure Root-Find-BLQ(f1, . . . , fr, p, k1, . . . , kr)

2: if r = 0 then return ∗

3: if ∃i such that fi(x) ≡ 0 mod pki or ki = 0 then

4: return Root-Find-BLQ(f1, . . . , fi−1, fi+1, . . . , fr, p, k1, . . . , ki−1, ki+1, . . . , kr)

5: R := roots of gcd{fi(x) mod p | i ∈ [r]} [Eg. use Cantor-Zassenhaus’ algo-

rithm [CZ81]].
6: if R == ϕ then return ϕ

7: S := ϕ

8: for a ∈ R do

9: f̃i(x) := pvifi(a+ px) ∀i ∈ [r], where vi = vp(fi(a+ px)).

10: Ra := Root-Find-BLQ(f1, . . . , fr, p, k − v1, . . . , k − vr)

11: S := S ∪ (a+ pRa)

12: return S

The correctness of Algorithm 2 directly follows from [BLQ13, Corollary 4], where

they prove the correctness for a single polynomial. [BLQ13, Corollary 4] also states

15

that the number of representative roots is at most d many when only a single polyno-

mial is considered. Another exploration into this algorithm can be found in [Dwi22].

Theorem 2.20. Algorithm 2 runs in randomized poly(maxi deg(fi), log p, k) time

and returns at most d-many representative roots.

Chapter 3

Describing the roots of

multivariates modulo prime

powers

In this chapter, we prove Theorem 1.1 by giving an algorithm that returns all the

roots of f(x1, x2) modulo pk.

Theorem 1.1 (Describing the roots). Given a polynomial f(x1, x2) ∈ Z[x] of degree

d and n variables, we can efficiently describe all the roots of f(x) ≡ 0 mod pk in

deterministic poly(kd, pd, dd) time, where d, log p are small.

3.1 Overview of the algorithm

We prove Theorem 1.1 by giving an algorithm that returns all the possible roots

modulo pk, of a given degree-d polynomial f(x1, x2) ∈ Z[x1, x2]. It designs a compact

data structure for this, and outputs what we call representatives.

The root-finding is done iteratively: find each p-adic coordinate which is a root

at each step, and perform lifting to higher coordinates; as is done in the case of

univariates [BLQ13; DMS19; DMS21; NRS17]. If (a1, a2) is a root of f(x1, x2) mod p,

then we transform the polynomial to another polynomial given by f(a1 + px1, a2 +

px2). In order to find Fp-roots of this polynomial in the next step, we remove

17

the ‘extra’ p-powers by dividing by pv; where v := vp(f(a1 + px1, a2 + px2)) is

the ‘val-multiplicity’ and vp(·) is the p-valuation (Definition 2.2). We define this

step, of transforming the coordinates and subsequent division by the p-power, as

the lifting step or lifting of roots. The polynomial will be modified at each step

such that its Fp-root returns a coordinate of the final (p-adic resp. Z/pkZ) root.

Notice that if (a1, a2) is an Fp-root of f(x1, x2), and after lifting, the polynomial

becomes f̃(x1, x2) := p−vf(a1 + px1, a2 + px2) which has an Fp-root (b1, b2), then

(a1+ pb1, a2+ pb2) is a root of f(x1, x2) mod pv+1. The univariate case of this lifting

technique, as developed in [BLQ13; DMS21], is explained in Section 2.4.

However, it might so happen that root (a1, a2) in the lifting process does not lift

to higher powers of p; but some other root does lift, as illustrated by the following

example.

Example 3.1. Consider f(x1, x2) := x31− x32 +3x2− 3x1 +5 and p := 5. (1, 1) and

(2, 2) are its Fp-roots. Starting with the root (1, 1), the process of lifting given by the

transformation (x1, x2) 7→ (1+ 5x1, 1+ 5x2) and division by 5, yields the polynomial

25x31 − 25x32 + 15x21 − 15x22 + 1 which does not have F5-roots. Although, restarting

with the root as (2, 2) yields the polynomial 25x31−25x32+30x21−30x22+9x1−9x2+1

after lifting. (1, 0) is now its F5-root! This anomaly is explained by a curious fact:

(1, 1) is a singular root while (2, 2) is non-singular.

Thus, we iteratively loop over all the possible roots at each step, by fixing one

variable, say x1, with p-many possibilities, and finding the possible d-many (or p-

many) values of x2.

3.1.1 Val-multiplicity vs valuation

For a polynomial f(x), we define the effective polynomial as f(x) mod p, where the

coefficients are in Fp (w.l.o.g. f(x) mod p is non-constant). Similarly, the effective

degree of f(x) is the degree of f(x) mod p. Unless specified otherwise, we will denote

d1 ≥ 1 as the effective degree of the polynomial at that step of lifting, while d ≥ d1

will be the total degree. (d1 = 0 is trivial to handle.)

18

We define a local root of f(x) as a root of the effective polynomial f(x) mod p. For

a local root a ∈ F2
p, local valuation is defined as vp(f(a)). Similarly, val-multiplicity

of local root is defined as vp(f(a+px)), i.e., the minimum valuation of the coefficients

of the polynomial thus formed; we sometimes shorten it to val-mult(a). Obviously,

val-multiplicity is at most the local valuation.

3.1.2 Branching w.r.t. val-multiplicities

As we have seen in Example 3.1, different Fp roots in steps of lifting can give rise

to different val-multiplicities. Thus, we create a tree (Fig.3.1), having nodes as

polynomials, say fj(x) in the j-th step of lifting, and branches arising from it cor-

responding to each local root a ∈ F2
p. The children of this node will be the poly-

nomials obtained from lifting by the root corresponding to the branch, given by

fj+1(x) := p−vfj(a + px); where v := val-mult(a).

Theorem 3.2-(1) shows that val-multiplicity is at most the effective degree (de-

noted d1). Since each local root corresponds to some val-multiplicity in [d1], we

associate these roots with their val-multiplicities. The branches of roots with the

same val-multiplicity v, yield similar properties on the structure of the polynomial

after lifting. So, we denote them as a single ‘thick’ val-multiplicity v branch (but

they are in fact computed in several parallel val-multiplicity v branches and their

corresponding polynomials as nodes). Note: There are at most p2 local roots in F2
p.

The recursive steps of finding each precision coordinate can thus be seen as

a tree, with each branch/child seen as a root a ∈ F2
p of val-multiplicity in [d1]. If

fj(x1, x2) mod p is a d1-form at a, then it is in the ideal 〈x1−a1, x2−a2〉d1Fp[x] (Lemma

3.7). This is our algorithm’s hard case of a root with the maximum val-multiplicity,

namely d1; so we need to branch into a special val-multiplicity = d1 branch/node

in the tree. We ‘stay’ here till all the chains of val-mult=d1 roots are explored and

stored in an array (D in Algo.3). This is done in the red subpart of the tree in

Fig.3.1. Next, it branches into the easier degree-reduction cases; which is denoted

by the green nodes (enclosed by the left rectangle in Fig.3.1).

19

.

Figure 3.1: Branching along the tree

As we go down the tree, we perform lifting computationally; in a way, depth h

implies that the polynomial has been lifted h times. This has been schematically

portrayed in Figure 3.1, where the red node is a more complicated transformation

than the simple lifting (done in green node).

To summarize, the degree reduction case of local root is where effective degree

reduces (v < d1 suffices, due to Theorem 3.2); while val-multiplicity d1 case is that

when val-mult v = d1.

3.1.3 Degree reduction

The crux of Algorithm 3 lies in our Theorem 3.2 which states that optimistically

the effective degree reduces “most of the time”. The algorithm ends when we either

have exhausted the power of p, denoted by k, or when the effective degree becomes

1. The latter case has been explained in more details in Theorem 3.2, and the result

implies that a root always exists once the effective degree has fallen down to 1; which

is essentially (p-adic) Hensel’s lifting on a linear polynomial [Hen18].

Since we have degree reduction, we expect the number of steps (or the tree-

depth) to be O(d1). However, the difficulty arises when the effective degree remains

unchanged. Here, in the worst-case, factors of pd1 are divided out of the polynomial

in lifting steps, and the depth of the branching tree (Figure 3.1) can extend to

Ω(k/d1), which we can not afford as it would lead to iteratively going over pΩ(k/d1)-

many local roots; which is like the complexity of the brute-force algorithm.

3.1.4 Hensel’s lifting

Given a non-singular root a of polynomial h(x), we can lift it to modulo any p-power

(like in Theorem 3.2-(2)), using a variant of p-adic Hensel’s lifting [Hen18]. Since

20

a is a non-singular root, at least one of the first-order derivatives of h(x) will not

vanish. Corollary 3.5 implies that the val-multiplicity is then exactly 1, and in the

next step of lifting, the effective polynomial will be linear. If this linear polynomial

is of the form m1x1 +m2x2 +m0, then (say) we can fix x2 to any value in [p] and

find the corresponding unique value of x1 to yield a root by simple lifting. For the

next p-adic coordinate, after lifting, these m1,m2 (coefficients of x1 resp. x2) will not

change; whilem0 might change (due to the lifting performed in the non-effective part

of the polynomial). Thus, from Theorem 3.2-(2), we have the fact that the effective

polynomial continues to stay as linear, and we can fix the current-coordinate x2 to

find the corresponding x1 every time; enabling us to lift to modulo any p-power (for

arbitrary fixing of x2 in this example).

3.1.5 Avoiding Ω(k) lifting steps

In Theorem 3.2, we show that the effective degree does not reduce only if the val-

multiplicity of the local root is d1. So, we consider the branches of degree reduction

as discussed in previous paragraphs, but tweak our algorithm carefully in val-mult

= d1 case to prevent the depth of the tree (and the number of lifting steps) from

blowing-up to Ω(k/d1).

We want branches of lesser val-multiplicity (< d1) originating from the branches

of val-multiplicity = d1 roots, where the effective degree reduces in each of them.

So, we create a process of ‘removing’ these contiguous val-multiplicity d1 nodes,

instead of looping over all of them; and recursively call the root-finding function

on each of the degree-reducing branches arising from this single node/polynomial.

This removal-process is guided by something called d1-forms (Lemma 3.7), and will

be subdivided into single and multiple val-multiplicity d1 roots. (1) When multiple

val-multiplicity roots exist, we show in Lemma 3.8 that the polynomial has a special

form (namely d1-power). We traverse these cases in a contiguous way. (2) Next we

traverse over cases where val-multiplicity d1 root is unique. At the end, when we

encounter lesser val-multiplicity roots, we recursively call the root-finding algorithm.

21

Overall, we find the lengths of these contiguous traversals, as well as the possibilities

of the underlying d1-powers resp. unique-roots. This is discussed in the latter-half

of Section 3.3, by considering a dynamic basis-change on the variable set x, so that

we do not have to iterate over ‘too many’ local roots. This is done by employing

the idea of [BLQ13] to find representative-roots of a univariate polynomial system.

Summarizing this case of val-mult=d1 roots, we showed that the possibilities of

contiguous chains is small (i.e. polynomial in k, d), and every lesser val-multiplicity

branch appearing from these chains is in a degree reduction case. So, in the tree

(Fig.3.1) an intermediate red node is created that ‘jumps’ over all the val-mult=d1

cases (Sections 3.3–3.4). This bounds the depth of our tree to 2d.

3.1.6 Stopping condition and representative roots

The algorithm terminates when either a root gets completely specified mod pk, or

when effective degree ≤ 1 (any of its roots can be Hensel lifted all the way to our

required power of p), or when no root exists. In the third case, the root-set returned

is just the emptyset ϕ, while in the first case it is a singleton.

For the second case, roots will be returned in terms of representative roots (Def-

inition 2.19). Eg. when the lifted polynomial is zero modulo pℓ, any value in Z/pℓZ

is a root, and thus we return ∗1 resp. ∗2 for the coordinates x1 resp. x2, which rep-

resent the entire Z/pℓZ. The roots returned will be (∗1, ∗2), with the number of

possibilities being p2ℓ. This will be termed as our usual representative root.

When the effective degree is 1: as we sketched before, we can fix one variable

as a local root and find the value of the other variable. In such a fashion, given

any value of one coordinate, say x1, we can find each p-adic coordinate of x2 one

by one. Even if only one variable is present in the linear form, say x2, the other

variable x1 will still be free, and for any given value of x1, denoted by ∗, we can find

the corresponding values of the local roots of x2, and thus a root of the polynomial

modulo pℓ. Let us denote this function for determining x2 from any value of x1

by c(·), which simply finds each coordinate of x2 using Hensel’s lifting. Thus, the

22

output can be denoted as (∗, c(∗)). The number of roots in this expression is pℓ.

(Note: This can contribute more roots to the original f mod pk, so a more careful

calculation is done in Section 4.2.) This type of representative root will be termed

as linear-representative.

3.1.7 Main algorithm

Based on these ideas, we sketch our Algorithm. Its main procedure is the Root-Find()

function in Algorithm 3. It takes as input: the polynomial fj(x1, x2) and the number

pkj (k =: k0 initially). The algorithm starts with calling Root-Find(f(x1, x2), pk).

If there are valid roots, it outputs the set of roots R ⊆ (Z/pkZ)2, otherwise returns

ϕ.

The submodule of Create-Walk() in Algorithm 4 is a procedure to eliminate

intermediate computations where effective degree does not decrease. In a way, it

speeds-up the search for roots to higher precision coordinates, by jumping over

contiguous cases of roots of val-multiplicity d1. Create-Walk() outputs an array

of: linear transformation which can be used to jump over the val-multiplicity d1

roots, or linear-representative root which directly becomes part of the output.

Algorithm 3 Root Finding of fj(x1, x2) mod pkj

1: procedure Root-Find(fj(x1, x2), pkj)

2: if kj ≤ 0 OR fj(x1, x2) ≡ 0 mod pkj then return (∗1, ∗2)

3: Define d1 := deg(fj mod p), R := ϕ.

4: if d1 = 1 then

5: return linear-representative (∗, c(∗)) or (c(∗), ∗), where c(·) is given by

Hensel’s Lifting.

6: for a1 ∈ {0, p− 1} do

7: for a2 such that fj(a1, a2) ≡ 0 mod p and val-mult(a)< d1 do

8: fj+1(x1, x2) := p−vfj(a1+px1, a2+px2), where v := vp(fj(a1+px1, a2+

px2)).

9: S := Root-Find(fj+1, p
kj−v)

23

10: R := R ∪ (a + pS)

11: if val-multiplicity= d1 root exists then

12: D := Create-Walk(fj, pkj)

13: for (r1 + pi1L1, r2 + pi2L2, i3) ∈ D do

14: Write fj in basis {L1, L2} to get f̃j(L1, L2) := fj(x1, x2).

15: Lift it to f̃j(L1, L2) := p−i3d1 · f̃j(r1 + pi1L1, r2 + pi2L2).

16: if kj − i3d1 ≤ 0 then

17: The roots will be (r1 + pi1 · ∗1, r2 + pi2 · ∗2) in (L1, L2) basis.

18: Consider the tuple (r1+pi1 ·∗1, r2+pi2 ·∗2) and perform the inverse

linear transformation from (L1, L2) to (x1, x2) on this tuple as a

whole. Store this representative root (with two independent ∗’s)

in a set S

19: R := R ∪ S

20: else

21: For f̃j mod pkj−i3d1 , find the val-mult < d1 local roots and then

recursively find all the roots; as done in Steps 6-10. Let this be

given by the set R̃.

22: For each root (r̃1, r̃2) ∈ R̃ of f̃j mod pkj−i3d1 : consider (r1 +

pi1 r̃1, r2 + pi2 r̃2) and perform inverse linear transformation from

(L1, L2) to (x1, x2) on them. Store these final roots (mod pkj) in

a set S.

23: R := R ∪ S

24: return R

3.2 Degree reduction: Polynomial after lifting

In this section, we analyze the effective degree at each step and look more closely

as to when this decreases, or remains the same, by looking at the val-multiplicity

of the local root during lifting. The proof idea is to analyze the monomials in

24

terms of x1 and x2, and see how they behave after the transformation (x1, x2) 7→

(a1 + px1, a2 + px2) followed by division by appropriate power of p. This can be

summed up by the following theorem.

Theorem 3.2 (Degree reduction). For a polynomial f(x1, x2) ∈ (Z/pkZ)[x1, x2],

given an F2
p-root (a1, a2) of f(x1, x2), let us denote g(x1, x2) := p−vf(a1 + px1, a2 +

px2), where v := vp(f(a1 + px1, a2 + px2)). Let the previous effective degree be

d1 := deg(f(x1, x2) mod p) and current effective degree be d2 := deg(g(x1, x2) mod p).

Then the following holds:

1. If d1 > 1, then d2 ≤ v ≤ d1. (So, d2 = d1 only if v = d1.)

2. If d1 = 1, then d2 = 1.

Before proving this, let us first see the degree evolution in some concrete exam-

ples.

Example 3.3. Let us see how the effective degree could reduce. Consider f(x1, x2) =

x21+x
3
2 mod p. This has degree d1 = 3. Clearly, (0, 0) is its root modulo p. So, apply

the transformation (x1, x2) 7→ (0+px1, 0+px2), to get g(x1, x2) := p−2f(px1, px2) =

x21 + px32, which has effective degree d2 = 2 = v < d1.

Example 3.4. Let us see why the effective degree might remain unchanged in ‘many’

steps (which is bad for us). Consider f(x1, x2) = x31 + x32 + p9(x1 + x2 − 1) mod p10.

Then, around its root (0, 0), use the translation (x1, x2) 7→ (0 + px1, 0 + px2) and

division by p3, to reduce to a simpler g(x1, x2) := x31 + x32 + p6(−1) mod p7. We do

this two more times to reduce to a simpler g(x1, x2) := x31 + x32 − 1 mod p. In these

three steps, the degree = 3 = v did not reduce. However, if p 6= 3, then the degree

will finally reduce in the fourth step. [If p = 3 then proceed with g := x1 + x2 − 1.]

Proof of Theorem 3.2. We have two cases.

Case 1: d1 > 1. We have a local root (a1, a2) such that v = vp(f(a1 + px1, a2 +

px2)). Using Taylor’s expansion (Definition 2.1), we can write the polynomial in the

25

form (say over Zp)

f(a1 + px1, a2 + px2) =
d∑

ℓ=0

∑
|i|=ℓ

∂xif(a)
i! · (px1)i1(px2)i2

 , (3.1)

where d := deg(f). The terms in Equation 3.1 need to vanish modulo pv for all

ℓ ≤ v. In particular, pv−|i| | ∂xif(a)
i! . Suppose v > d1, then by the above equation

f(a1 + x1, a2 + x2) ≡ 0 mod p, implying f(x) ≡ 0 mod p, which contradicts with

d1 > 1. Thus, v ≤ d1.

However, we do have a term which has valuation exactly v (= val-multiplicity

of the local root), and this can be obtained only from monomials where i1 + i2 ≤ v

(that too in the effective polynomial part). So, the highest degree term surviving

among these (in g mod p) has degree d2 ≤ v ≤ d1.

Remark: The case of d2 = d1 implies that v = d1. Thus, pv−|i| | ∂xif(a)
i! for all

orders |i| < d1; while, some order-d1 partial-derivative at a has p-valuation exactly

0.

Case 2: d1 = 1 (Hensel’s Lifting). Write f(x1, x2) =: f1(x1, x2) + p · f2(x1, x2).

We have the effective polynomial deg(f1(x)) = 1, and hence it can be written as a

linear polynomial m1x1+m2x2+m0. Since (a1, a2) is a local root, we transform f to

get m1(a1+ px1)+m2(a2+ px2)+m0+ p · f2(a1+ px1, a2+ px2). Dividing by p, and

going mod p, we get in the next step to another linear polynomial: m1x1+m2x2+m
′
0.

So we end up with d2 = 1.

Using the proof of Theorem 3.2, we get a corollary on partial derivatives of

f(x), which motivates the inclusion of the term ‘multiplicity’ in our new concept of

‘val-multiplicity’.

Corollary 3.5. Local root a of f(x) has val-multiplicity ≥ v, if and only if pv−|i| | ∂xif(a)
i! ,

for all orders |i| < v.

Remark 3.6. Implicitly, the above proofs of Theorem 3.2 and Corollary 3.5 needed

d < p so that the factorials could appear in the denominators (in Equation 3.1).

26

For smaller p, the same proof works ‘syntactically’. Formally, consider the Hasse

derivatives instead of partial-derivatives.

Using this theorem, we can get an idea of how the effective degree reduces. If

a root (a1, a2) ∈ F2
p is such that f(a1 + px1, a2 + px2) 6≡ 0 mod pd1 , then we can

keep applying the appropriate transformation (x1, x2) 7→ (a1 + px1, a2 + px2), until

the effective degree reduces to 1. Once this effective degree has reduced to 1, we

have a compact description of all its roots: as we can arbitrarily fix one variable and

uniquely find the p-adic value of the other variable.

However, the problem arises when the root (a1, a2) is such that f(a1 + px1, a2 +

px2) ≡ 0 mod pd1 . In this case, the degree may not reduce, and we might need

to keep lifting to k/d1 steps. This is computationally infeasible, the search-tree

becomes very large, and takes time exponential in k/d1. We tackle this case in the

next section.

3.3 Structure of polynomial via val-mult= d1 roots

We need to handle the challenge of our local root a of f having val-multiplicity

v = d1. Here, the effective degree does not reduce in the next step. We first show

the structure of such f(x1, x2).

Lemma 3.7 (d1-form at a). If a ∈ F2
p is a root of f(x) mod p such that f(a1 +

px1, a2 + px2) ≡ 0 mod pd1, where d1 is the effective degree of f , then f(x) ∈

〈x1 − a1, x2 − a2〉d1Fp[x].

Proof. Recall Taylor’s expansion (Definition 2.1) and Corollary 3.5. Write f(x) as

f((x1 − a1) + a1, (x2 − a2) + a2) =
∑∞

ℓ=0Aℓ, where,

Aℓ :=
∑
|i|=ℓ

∂xif(a)
i! · (x1 − a1)i1(x2 − a2)i2 .

By Corollary 3.5, we know that the At’s, for t < d1, vanish modulo p as the root

has val-multiplicity v = d1. Furthermore, for t > d1, At’s vanish modulo p; as f

27

has effective degree d1 and this At has derivatives of order > d1. Thus, all At’s,

apart from Ad1 , vanish modulo p. So, the polynomial f is of the form
∑

i ci · (x1 −

a1)
d1−i(x2 − a2)i, which is the required d1-form in x− a.

In Lemma 3.7’s situation, if a is unique, then using the structure of f we can

easily find the root (eg. a simple search in F2
p), and lift without getting into multiple

val-mult=d1 branching. A serious obstruction arises when there are several local

roots a of val-multiplicity = d1. We will now show the extra special structure of

such an f(x1, x2).

W.l.o.g let 0 be a local root of val-multiplicity = d1. This means that f ∈

〈x1, x2〉d1Fp[x]. If another local root a 6= 0 exists with val-multiplicity = d1, then we

also have f(x) ∈ 〈x1 − a1, x2 − a2〉d1Fp[x]. So, f ∈ 〈x1, x2〉
d1 ∩ 〈x1 − a1, x2 − a2〉d1 , over

Fp[x]. Then, we show f to be a perfect-power!

Lemma 3.8 (Two val-mult=d1 roots). For a polynomial f ∈ Fp[x1, x2] of degree

d1, if f ∈ 〈x1, x2〉d1Fp[x] ∩ 〈x1 − a1, x2 − a2〉
d1
Fp[x], for some a 6= 0 ∈ F2

p, then we have

f ≡ c(a2x1 − a1x2)d1 mod p, where c ∈ F∗
p.

Proof. W.l.o.g., assume that a1 ∈ F∗
p. Thus, we have

〈x1 − a1, x2 − a2〉d1 = 〈x1 − a1, a1x2 − a1a2〉d1

= 〈x1 − a1, a1x2 − a1a2 − a2(x1 − a1)〉d1

= 〈x1 − a1, a1x2 − a2x1〉d1 .

(3.2)

Also, 〈x1, x2〉d1 = 〈x1, a1x2 − a2x1〉d1 (as a1 6= 0). The intersection of these two

ideals modulo the ideal 〈a1x2 − a2x1〉 is: 〈a1x2 − a2x1〉+ 〈x1(x1 − a1)〉d1 (as x1 and

x1− a1 are coprime mod a1x2− a2x1). Since f has effective degree less than 2d1, we

deduce: (a2x1 − a1x2) | f .

The quotient f/(a2x1− a1x2) ∈ 〈x1, a2x1− a1x2〉d1−1 ∩ 〈x1− a1, a2x1− a1x2〉d1−1.

Clearly, degree of this quotient polynomial is d1−1. So, we can repeat this process to

show that (a2x1−a1x2)d1 |f ; which makes the two equal up to a constant multiple.

28

Hence, we see that if a polynomial f has two val-mult=d1 roots with one of them

being zero and the other being a 6= 0, then the effective polynomial f mod p is of

the form (a2x1 − a1x2)d1 . This means that f is d1-th power of a linear polynomial

iff rank of the val-mult=d1 roots is two (i.e. multiple such roots). In the case of

unique val-mult=d1 root we will call the polynomial d1-nonpower-form, while that

for multiple val-mult=d1 roots, we call the polynomial d1-power.

Branching in d1-nonpower-form. In this case, find the unique val-multiplicity

d1 root, and do the lifting step. There is no branching required.

Branching in d1-power. W.l.o.g. the effective polynomial will be of the form

(a2x1 − a1x2)
d1 . So, there are p roots (of val-mult=d1): (a1t, a2t) for any t ∈ Fp.

This leads to branching, which we will avoid, by taking a different route.

The first observation (Lemma 3.9) is that d1-nonpower-form can not lead to a d1-

power. Thus, we deduce that whenever a contiguous chain of d1-power lifting ends,

then every d1-form in the subsequent contiguous lifting steps is a d1-nonpower-form.

Lemma 3.9 (Nonpower to power?). If f is a d1-nonpower-form having a single

val-mult=d1 root a, then its lift p−d1f(a + px) is not a d1-power.

Proof. W.l.o.g. we can assume a = 0. Since the effective polynomial is a d1-form

having (0, 0) as the root, it is of the form

f(x1, x2) ≡
d1∑
i=0

cix
i
1x

d1−i
2 mod p . (3.3)

After lifting given by (x1, x2) 7→ (px1, px2), followed by division by pd1 , this polyno-

mial will become
d1∑
i=0

cix
i
1x

d1−i
2 + g(x1, x2) ,

for some polynomial g of degree ≤ d1 − 1. Suppose this lift is a d1-power, say

(L+m0)
d1 mod p, wherem0 ∈ Fp and L is a linear form in x1, x2. Now comparing the

degree d1 homogeneous parts in all these equations, we conclude that f ≡ Ld1 mod p.

This contradicts the fact that it was a d1-nonpower-form. Therefore, d1-nonpower-

forms can not become d1-powers in one lifting step.

29

So we mainly need to study the case where: a d1-power, say Ld1 is followed

by another d1-power, say L′d1 , in the next lifting step. In the next subsection we

unearth the structure that goes in the formation of L′ after lifting the polynomial

Ld1 + 〈p〉. This will give us the optimized bound on the branching of the red-nodes

of the tree.

3.3.1 Structure of consecutive d1-powers.

For a d1-form, the effective polynomial f(x1, x2) mod p will be of the form Ld1 , for

some linear polynomial L (eg. x1 + x2 + 1). W.l.o.g. assume {L, x2, 1} to be of

rank=3 (over Fp). Let us rewrite f in the basis {L, x2}, instead of {x1, x2}, denoted

by f̃(L, x2) (= f(x)). Since it is an invertible linear transformation, it now suffices

to find roots of

f̃ =: Ld1 + p · Ld1−1 · u1(x2) + p · Ld1−2 · u2(x2) + · · ·+ p · ud1(x2) . (3.4)

Lift d1-power to d1-power. Suppose after lifting by p−d1 f̃(pL, x2), the effective

polynomial is again a d1-power; then it has to be the case that

Ld1+Ld1−1·u1(x2)+Ld1−2·u2(x2)/p+· · ·+ud1(x2)/pd1−1 ≡ (L+ u1(x2)/d1)
d1 mod p ,

(3.5)

for some univariate polynomials uj’s, such that Equation 3.5 is a perfect power of

the linear polynomial L+u1(x2)/d1. Consequently, those local roots a2 for which the

above system is satisfied, transform previous L to p (L+ u1(a2)/d1) in this lifting

step.

Considering RHS expansion, we also obtain equations, for j ∈ [d1], as

uj(x2) ≡ pj−1

(
d1
j

)
· (u1(x2)/d1)j mod pj . (3.6)

Note: In case p|d1, the above modulus can be further increased to clear away p-

multiples from the denominator. In this fashion, we create a system of modular

30

equations (in x2) for the first step of lifting. Moving on, we consider the next lift.

Two consecutive d1-power liftings. The effective polynomial after the first

step was (L + c(x2))
d1 . Let us look at the polynomials obtained before division by

pd1 . It was (pL+ pc(x2))
d1 + 〈pd1+1〉. Composing this with another lift of the same

kind, the polynomial has to be of the form (p(pL + pc(x2)) + p2c̃(x2))
d1 + 〈p2d1+1〉.

This implies that we can as well directly lift L 7→ p2L, divide by p2d1 , and find

the value of c(x2) + c̃(x2). So, Eqn.3.5 can be replaced by the lift p−2d1 f̃(p2L, x2)

equalling a d1-power:

Ld1+Ld1−1·u1(x2)/p+Ld1−2·u2(x2)/p3+· · ·+ud1(x2)/p2d1−1 ≡ (L+ u1(x2)/pd1)
d1 mod p ,

(3.7)

Furthermore, we can write down the univariate modular equations like Eqn.3.6.

In this way any i-length contiguous chain of d1-power liftings, can be directly

written as a system of univariate modular equations like Eqn.3.6. It comes from the

constraint that the lift p−id1 f̃(piL, x2) has to equal a d1-power mod p. Next, this

system can be solved by adapting [BLQ13] (see Algorithm 2) to get the representa-

tive roots for x2 variable. Of course, on substituting this in x2, we will know the

final d1-power L′d1 that the i many lifts yield.

How many consecutive d1-powers? The length of this chain can be at most

k/d1. So, we go over all i ≤ bk/d1c. Iterating over them in decreasing order, we

find all the possible ways of getting d1-powers (before moving to other cases). This

ensures that we do not miss any (Z/pkZ)-root of f in the search-tree.

This can be illustrated through the following examples.

Example 3.10. Consider the polynomial f(x1, x2) = x21 mod pk. The d1-power

contiguous chain will be of length k/2; and each time L = x1. The corresponding

root will be (pk/2 · ∗1, ∗2).

Example 3.11. We use a slightly more complicated polynomial this time, with

f(x1, x2) = (x1 + x2)
2 + p(2(x1 + x2)x2 + px22) + p6h(x1, x2). Here the contiguous

chain of d1-power liftings has length 3. The first linear polynomial is L := x1 + x2

31

and the base-change gives f̃(L, x2) = L2 + p(2Lx2 + px22) + p6h̃(L, x2).

The polynomial after another lifting will be (L+x2)
2+p4h̃(pL, x2). Now, the new

linear form will be L′ := L+x2. This we can continue lifting, keeping L′ unchanged,

for 2 more steps.

Notation for x2 representatives. A problem arises when the representative

for x2 is ∗2, i.e. x2 can take any p-adic value. Eg. if we lift f = Ld1 + pd1xd1+1
2

(with free x2 = ∗2) then we get g := Ld1 + xd1+1
2 . The degree of the new polynomial

has now increased, which we never want to happen in our tree branchings. In order

to prevent this, we preprocess the representative root x2 = ∗2 by increasing the

precision by one coordinate, and thus increasing the number of representative roots

by a factor of p (hence, more branchings in the tree). In other words, we consider

the representative as a+ p · ∗2, for a ∈ {0, . . . , p− 1}.

The following lemma shows that the effective degree never grows in lifting steps,

in our algorithm.

Lemma 3.12 (Degree invariant). The effective degree in each transformation de-

scribed for d1-forms is always d1.

Proof. Let us follow the above notation in the basis {L, x2} and start with effective

degree d1. We now know that every lifting step looks like the map: L 7→ pL and

x2 7→ a2 + pi2x2 (for some i2 ≥ 1 and integer a2), followed by division by pd1 . As we

calculated in Theorem 3.2, such a lifting step yields effective degree ≤ d1. Since we

are in the d1-form case, this implies that the effective degree remains d1 always.

Summing up. The structure discovered above gives a natural pseudocode that

we describe in Algorithm 4. The contiguous val-mult=d1 chain will have some d1-

powers, say i1 many, followed by i3 many d1-nonpower forms, from which we have

i1 + i3 ≤ k/d1. The d1-nonpower forms can not lead to d1-powers again, due to

Lemma 3.9. Also, to get the i1 many d1-powers, we need to use Algorithm 2 and

get representatives R1 for x2 (in general L2, independent of L1). Going over each

i1, i3 ≤ bk/d1c, and each of the representatives R1, we compute the intermediate

32

representative-roots R (and could continue with our recursion on the local roots with

subsequent degree-reduction). This algorithm makes sure that we ‘jump’ the cases

of val-mult=d1= effective-degree quickly and reach the degree-reduction branchings

of the tree.

3.4 Create-Walk() subroutine: Completion of the

algorithm

In Algorithm 3, since we are iterating over all the possible roots (O(p2d)-many),

we do not want the lifting to go on for several steps, since the time complexity is

exponential in the number of steps (=tree-depth). The favorable case is when the

effective-degree reduces, e.g., when the val-multiplicity of local root is < d1 (from

Theorem 3.2). As we will see, once we organize all the possible branches in the

tree as portrayed in Figure 3.1, which is a modified branching w.r.t. all possible

val-multiplicities, the effective degree will reduce at each level when we go down the

tree. This is what the Create-Walk() subroutine will achieve inside the red nodes.

In this section we sketch the pseudocode based on the ideas developed in Section

3.3.1.

3.4.1 Data-structure returned

In order to lift in such a way, we return an array of tuples of the form (a1+p
u1L1, a2+

pu2L2, u3). This gives us information on jumping over the val-multiplicity d1 roots

by first covering the d1-powers followed by d1-nonpowers. This is done in a basis

(L1, L2) of variables possibly different from (x1, x2). As in Equation 3.7, we form

equations in terms of L2 and find the roots, such that after lifting according to

these (representative) roots, the effective polynomial will be Ld1
1 . Note that in each

lifting according to the fixed part of the representative root, the linear polynomial

will change by only a constant. Therefore, {1, L1, L2} will also span the same space

as that of {1, x1, x2}. So, given a root in (L1, L2) basis, we can recover the root in

33

(x1, x2) basis uniquely.

With information from this tuple, we can do the following sequence of liftings in

‘one-shot’: i1-steps of d1-powers, followed by i3-steps of d1-nonpower-forms.

3.4.2 The algorithm

Summing up, Create-Walk() in Algorithm 4 is a subroutine used in Root-Find(

) in order to jump over the intermediate local roots of val-multiplicity d1 without

invoking recursive-branching. After this, we find the local roots of val-multiplicity

< d1 and continue recursively to degree reducing cases in Root-Find() (Steps 6-10

of Algorithm 3).

The input is the polynomial with and the prime-power, while the output is a tuple

of linear polynomials, denoting intermediate representative-roots (over (Z/pkZ)2),

and length of the d1-forms chain covered.

Algorithm 4 Finding consecutive intermediate val-mult=d1 roots in one-shot
1: procedure Create-Walk(f(x1, x2), pk)

2: Define d1 := deg(f mod p), R := ϕ.

3: for i1 ∈ {dk/d1e, . . . , 0} do

4: R1 := ϕ

5: Find the linear polynomial L such that f ≡ Ld1 mod p. If L is x2-multiple,

then set L2 := x1, otherwise set L2 := x2.

6: Compute the (basis-change) polynomial f̃ such that f̃(L,L2) = f(x1, x2).

7: Write f̃ as in Equation 3.7 and form (univariate, modular) equations like

Equation 3.6 in terms of polynomials in L2 such that i1-many contiguous

d1-powers exist (Section 3.3.1).

8: Find the representative-roots, in Z/pi1d1Z, of the system of equations

formed in terms of L2 (as in the previous step) using Algorithm 2 and

store them into R1.
9: for each representative-root r2 + pi2∗ ∈ R1 do

34

10: Find linear polynomial L1 obtained in the end, by substituting the

representative in L2, using the method of Section 3.3.1. Note: i2 ≥ 1

and L1 has to be of the form L+ c for some integer c.

11: Write f̃(L,L2) in basis L1, L2 given by g(L1, L2) := f̃(L,L2).

12: Lift g(L1, L2) := p−i1d1 · g(pi1L1 , r2 + pi2L2)

13: for i3 ∈ { dk/d1e − i1, . . . , 0} do

14: if ∃r′ ∈ (Z/pi3Z)2 s.t. g is a d1-nonpower-form consecutively i3-

times then

15: In each precision r′ is unique; so it can be searched easily in

the space F2
p.

16: R0 := (pi1r′1 + pi1+i3L1 , r2 + pi2r′2 + pi2+i3L2 , i1 + i3)

17: if R0 6∈ R then

18: R := R ∪ {R0}

19: else

20: break

21: return R

3.4.3 Proof of correctness of Algorithm 3

We prove the correctness of our root finding algorithm (Algorithms 3 and 4) in the

following theorem.

Theorem 3.13 (Correctness of Algorithm 3). Given a polynomial f(x1, x2) ∈

Z[x1, x2] of degree d, a prime p and an integer k. Algorithm 3 using Algorithm 4 as

a subroutine, correctly returns all the roots (a1, a2) ∈ (Z/pkZ)2 of f(x1, x2) mod pk,

in deterministic poly((k + d+ p)d) time.

Proof. In this proof, we will analyze the structure of the roots-tree given by Figure

3.1. As described in Sections 3.1 and 3.4, all the green nodes in this tree are in degree-

reducing cases since we are calling the recursion to the next step using Root-Find(

) only on val-multiplicity < d1 roots (Steps 9 & 21 of Algorithm 3).

35

Thus, whenever we go down this tree by iterating over all the roots of val-

multiplicity < d1, effective degree d1 decreases by at least 1. Here, we fix one

variable to any value in {0, . . . , p− 1}, and find the p-many possibilities of the other

variable. The red node of Figure 3.1 also gives val-multiplicity < d1 roots after two

levels in the tree. Thus, the depth of this tree is at most 2d, after which we reach

the leaves. At a leaf, either the precision of pk has been reached fixing a root, or the

effective polynomial has become linear, or no root exists.

For the width/fanin of the tree, the number of possible lengths of d1-powers is

dk/d1e = O(k), while that of d1-nonpower-forms is also O(k). Therefore, the number

of possibilities of lengths of val-mult=d1 branches is O(k2). In Algorithm 4, all the

val-mult=d1 branches of length i1 + i3 for i1-length contiguous d1-powers and i3-

length contiguous d1-nonpower-forms are returned. As we have seen in Section 3.3.1,

we can solve for the intermediate values of L2, from which we find the appropriate

L1 too, such that d1-powers are possible. After this, we come straight down to the

d1-nonpower-forms. Furthermore, from Theorem 2.20 and Equation 3.6, the number

of representatives for L2 is O(d), which may become O(pd) after preprocessing to

handle ∗.

This bounds the number of roots returned by Create-Walk(f, pk) by O(k2dp).

In a deterministic version of Algorithm 2, we exhaustively search for every L2 root

at each step, so its complexity is poly(kdp)-time. Therefore, all the operations inside

Create-Walk() can be performed in poly(kdp)-time.

Since the depth of the tree is 2d (in Fig.3.1), the total size of the tree gets bounded

by poly((k+d+p)d). Since all other operators are usual field operations and search in

Fp, the net time complexity of our algorithms is just a polynomial overhead of going

over all these nodes. This proves the complexity to be deterministic poly((k+d+p)d)-

time.

Proof of Theorem 1.1. Algorithm 3, using Algorithm 4 as a subroutine, correctly

returns all the roots of f(x1, x2) mod pk, in a representatives form, in deterministic

poly((k + d+ p)d) time (due to Theorem 3.13)

36

By the time the algorithm terminates, we will have O((k2dp)d) leaves of the tree,

where we have either found roots or encountered a dead-end. If roots exist, then

each such leaf signifies that either

1. we reached pk and a fixed root (a1, a2) is returned,

2. or, we reached pk and (some invertible linear transformation of) the represen-

tative (pi1 · ∗1, pi2 · ∗2) is returned. The total number of roots in this case is

p2k−i1−i2 ,

3. or, when the effective polynomial becomes linear and (∗, c(∗)) is returned (or

some invertible linear transformation of it); where ∗ represents all values in

Z/pk−iZ. Here, we fix only one variable to find the value of the other at each

step for k − i Hensel lifts, implying that the number of roots is pk−i.

Using this technique to sum over all the leaves which do not lead to dead-ends, we

can count the total number of roots in deterministic poly((k + d+ p)d) time.

3.5 Generalization to n-variates

In this subsection, we generalize our approach to root-finding and counting to n-

variate polynomial f(x) using similar techniques as used in bivariates, and reducing

the problem to finding roots of (n − 1)-variate polynomial systems. In order to

do so, we first show a modification to Algorithm 3 in order to solve a system of

polynomial equations mod pk. This subsection gives an overview of how to extend

the single bivariate root-finding algorithm to that for solving a system of bivariates.

Then, using that how to solve 3-variate systems. The proof can be straightforwardly

generalized to n-variates, for any n ≥ 3.

Solving bivariates simultaneously. Suppose we have m polynomials

f1(x1, x2), . . . , fm(x1, x2), each of degree ≤ d. At each step of lifting, we iterate over

all the roots of each polynomial separately, but in parallel, such that the local roots

of each iteration are common to every polynomial. This can be intuitively thought

37

of as creating trees like Figure 3.1 corresponding to each polynomial, whose nodes

are ‘isomorphic’, i.e. we branch corresponding to a root if and only if the root is

present in the trees of all the polynomials. Also, whatever linear transformation

we apply on x acts on all the fi’s simultaneously. Thus, we refer to this process as

parallel search-tree.

We continue growing these trees (and considering only those branches which

correspond to a common root); with effective degree decreasing as we go down, until

the stopping conditions are obtained. When some polynomial has a representative

root (∗1, ∗2), then we can proceed to finding roots of the remaining set of polynomial.

However, when linear-representative roots are obtained for some polynomial, the

analysis can be divided into two cases by their rank. When the linear forms (i.e. given

by coefficients of x1 and x2) are of rank 1 or 2. For rank 2, we can check for a unique

root by solving simple linear equations; so, they either have one common root, or

none.

The difficulty arises when these linear forms are of rank 1. Again, the isomor-

phism of the trees corresponding to each polynomial will be used, but after reducing

this problem to solving simultaneous equations over lesser number of polynomials.

Solving bivariates– rank= 1 linear forms. Suppose we have the polynomials

in the form ax1+bx2+ci+phi(x1, x2), where a, b, ci ∈ {0, . . . , p−1}, for all i ∈ [m]. If

all the ci’s are not the same, we obviously do not have a solution; so we terminate this

branch. Assume ci = c and write the polynomials in the basis of L := (ax1+bx2+c)

and x2, w.l.o.g assuming a 6= 0. (Otherwise, we can use the basis L, x1). We have

the system as

L ≡ pg1(L, x2) mod pk ; L ≡ pg2(L, x2) mod pk ; . . . ; L ≡ pgm(L, x2) mod pk ,

(3.8)

where gi’s can be obtained from hi’s by using the change of basis. So, we get the local-

root here, namely L must be 0 mod p in the current step (based on any value of x2).

38

Hence we lift L to pL. This grows the tree further. Performing this transformation

and subtracting the first equation from each of the other equations, we have :

L ≡ g1(pL, x2) mod pk−1 ; 0 ≡ g̃2(pL, x2) mod pk−1 ; . . . ; 0 ≡ g̃m(pL, x2) mod pk−1 ,

(3.9)

where g̃i = gi(L, x2)− g1(L, x2), for i ∈ {2, . . . ,m}.

Now, on the (m− 1) g̃i, we apply another instance of Algorithm 3, in a parallel

way. For a fixing of x2 from the latter m− 1 equations in Equation 3.9, we uniquely

get the value of L from the first equation (where the effective polynomial is linear in

L). Using these values, we lift both L and x2, creating a Figure 3.1-like tree where

the branches are such that they satisfy all the m equations. Finally, at the leaf we

get the representatives for x2 too, and halt the algorithm.

Thus, we create the m isomorphic trees for O(d) many lifting steps as before

(Figure 3.1), then restrict the linear condition on the first polynomial and simulta-

neously solve the next m− 1 polynomials modulo a smaller power of p and continue

with our construction of m− 1 isomorphic trees. Using this subroutine, we can find

all the roots of the system of bivariate equations in time complexity same as that

of Theorem 1.1, along with a multiplicative overhead of m for storing this array of

polynomials in each node.

Solving 3-variate— Lifting Step. Given a root a ∈ F3
p and polynomial fj(x)

in the j-th step, we find the polynomial after lifting as fj+1(x) = p−vfj(a + px),

where v = vp(fj(a + px)) is the val-multiplicity of the root a. Theorem 3.2 can be

similarly proved to show that effective degree reduces in all cases other than when

d1 = 1 or v = d1. We again form a tree similar to Figure 3.1 with the invariant that

effective degree must reduce along depth.

Solving 3-variate— Val-multiplicity d1 case. As in Algorithm 4, we again

‘jump’ over the val-multiplicity d1 cases directly so that the recursion can continue

to degree reduction cases. Again, Lemma 3.7 can be proved for 3-variates to show

that the polynomial must have the d1-form 〈x1 − a1, x2 − a2, x3 − a3〉d1 , where a is

39

a val-multiplicity d1 root. However, when multiple val-multiplicity d1 roots exist,

w.l.o.g. given by 0 and a, where a1 6= 0, we can modify the proof of Lemma 3.8 to

show that the effective polynomial is zero modulo 〈a1x2− a2x1, a1x3− a3x1〉d1 . The

rank of the nonzero roots, given by 〈x− a〉, can be 1 or 2 (in general, 1, 2, . . . , n− 1

for n-variates).

In the case of rank=2 val-mult=d1 roots, there will be only one linear polynomial,

say f ∈ 〈a1x2−a2x1〉d1 + 〈p〉. So, the equations will be like Eqn.3.5, except that the

polynomials uj’s will be in two variables, say x2 and x3. We will form a bivariate

system, and solve it using the simultaneous bivariate root-finding as discussed above;

to find all the representative-roots for x2, x3. This new version of Algorithm 4 will

take poly((k + d+ p)d)-time; and make the tree this much wider.

In the case of rank=1 val-mult=d1 roots, we will have a multinomial expansion

having two linear forms {a1x2 − a2x1, a1x3 − a3x1} instead of a single binomial

expansion as done in Equation 3.7. So, now, we have two linear forms L,L′ instead

of a single L1. We need to find the values of the third variable, say x3, such that the

resulting effective polynomial after lifting is again in 〈L,L′〉d1 . This gives constraints

similar to Equation 3.6. From these, we can use the univariate Algorithm 2 to solve

them.

Finally, the techniques of Section 3.3.1 can be smoothly generalized to search

for the contiguous d1-forms in poly((k + d+ p)d)-time. In particular, we will search

them in the decreasing order of the rank of underlying val-mult=d1 roots: rank=2,

rank=1 and then rank=0 in the last.

Conclusion. Using these techniques, we can find the roots of f(x) mod pk, for

3-variates where the only difference from bivariates is the handling of contiguous val-

multiplicity d1 roots (due to the more possibilities of d1-forms). The same extension

can be performed for n-variate m polynomials, for any constant n. Thus, Algorithm

3 fits well in the general framework, and finds all the roots.

Time complexity. For a 3-variate polynomial f , at each step of the tree

(Fig.3.1), there are O(dp3) branches corresponding to val-mult< d1 roots. For val-

40

mult=d1 roots, there are three ordered possibilities in the chain: rank=2 val-mult=d1

root, rank=1 val-mult=d1 roots, and rank=0 (unique) val-mult=d1 roots. Similar

to Lemma 3.9, we can show that rank can not increase after lifting by a val-mult=d1

root.

For rank=2, we solve a system of bivariate equations. The number of possible

branches of bivariates is O((k2d + p2)2d). Furthermore, the number of possibilities

of these special contiguous chains is O(k3). Therefore, the total number of leaves

of the tree for 3-variates will be O(((k2d + p2)2d · k3 + p3)d), which is bounded by

O((k+ d+ p)(4d)
2
). Assume, for induction hypothesis, that the time complexity, for

any n, is bounded by O((k + d+ p)(2d(n−1))n−1
).

For n-variates (n ≥ 3), the val-multiplicity d1 roots will have ranks from n − 1

to 0. For rank=(n − 1), we get the maximum upper bound. We will be solving

a system of (n − 1)-variate equations, which will lead to O((k + d + p)(2d(n−2))n−2
)

possibilities and representative-roots. Furthermore, there are kn−1 possibilities for

the chain. Thus, one tree size is s1 := O((kn−1(k + d + p)(2d(n−2))n−2
+ pn)2d). But

we may need to repeat this n − 1 times on each leaf, when we have a system of

n-variates to solve. Thus, the time becomes sn−1
1 = O((k + d+ p)(2d(n−1))n−1

).

Using this technique for finding all the roots modulo pk for n-variates, we can

generalize the algorithms for finding Zp-roots and computing the Igusa local zeta

function for a system of m polynomials in n-variables as well. For finding roots in

Zp, we consider the resultant w.r.t. one variable at a time, find a bound similar to

Lemma 4.4, and proceed with the analysis of roots which are in Zp or are not roots

of the discriminant. At each step, the bounds according to one variable at a time

will be obtained, which get multiplied to give a bound k0 for f(x) such that roots

of f(x) mod pk0 gives us roots which correspond to Zp roots as well. This will be a

generalization of Theorem 4.10 to n-variates.

Chapter 4

Computing the Igusa’s Local Zeta

Function

We use the results of Chapter 3 to first show give a bound k0 depending on the

polynomial f(x1, x2) such that roots of f(x1, x2) over Z/pk0Z correspond exactly to

the roots of f(x1, x2) over Zp. Namely, we prove the following two Corollaries as

consequences of Theorem 1.1.

Corollary 4.1 (p-adic). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d and

the absolute value of its coefficients bounded above by M > 0, we can find all the

p-adic-roots of f (in Zp) in deterministic poly((logM + d + p)d) time (i.e. output

their k digits in a compact data structure).

Corollary 4.2 (Local-zeta fn.). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d

and the absolute value of its coefficients bounded above by M > 0, we can compute the

Poincaré series P (t) =: A(t)/B(t) associated with f and a prime p, in deterministic

poly((logM + d+ p)d) time.

4.1 Describing the roots over Zp

In this subsection, we give a bound for k0 in terms of the degree d and the maximum

absolute valueM of the coefficients, such that finding a root modulo pk0 would imply

42

finding all representative Zp-roots of f .

4.1.1 Preprocessing: Reduce to radical case

We are concerned with the roots of f(x1, x2) in Zp, which is an integral domain (with

fraction field Qp). The polynomial will have a unique factorization in Zp, which will

be of the form

f(x1, x2) =
r∏

i=0

gi(x1, x2)
ei , (4.1)

where gi(x1, x2)’s are coprime over Zp. Even if f has some square-full factors (some

ei’s are ≥ 2), we can eliminate them efficiently, by computing its gcd with the

first-order derivatives. This will result in the new polynomial being of the form∏r
i=0 gi(x1, x2) , which we will call the radical polynomial rad(f). The polynomial f

and its radical rad(f) have the same set of roots in Zp. In the following lemma, we

bound the absolute-value of the coefficients of the radical, by Md.

Lemma 4.3 (Bound for p-adic radical). If a polynomial f of degree d has the

absolute-value of its coefficients bounded by M , then its radical has its coefficients

bounded by MO(d).

Proof. We prove this using Euclid’s algorithm for finding gcd, when we consider the

gcd of f and any one of its first-order derivative f ′.

At each step of Euclid’s gcd algorithm, we have two polynomials qi and qi+1,

where deg(qi) ≥ deg(qi+1). We compute the remainder of qi when divided by qi+1,

assume it to be qi+2, and then proceed to do the same with qi+1 and qi+2.

Now, it can be inductively shown that the coefficients of qi is bounded by MFi ,

where Fi is the i-th Fibonacci number. This is true as while dividing qi−2 by qi−1, the

quotient will have its coefficients bounded by that of qi−2. This quotient multiplied

by qi−1 will give the bound for the remainder, which thus is bounded by the product

of bounds of coefficients of qi−1 and qi−2. Now, this procedure continues for log d

steps, implying that the coefficients of the gcd of f and its derivative is bounded by

MFlog d = MO(d). Dividing f by this gcd will give the bounds on the coefficient of

43

rad(f), which is also MO(d).

Therefore, w.l.o.g. we consider f(x1, x2) to be square-free having absolute value

of coefficients ≤MO(d), and continue with our algorithm of finding roots in Zp.

4.1.2 Representative roots in Z/pkZ vs roots in Zp.

The return value of the algorithm, in the base-case, is either the representative root

(∗1, ∗2) when the exponent of p required gets achieved (Step 2 of Algorithm 3), or

linear-representative root (∗, c(∗)) (Steps 4-5 of Algorithm 3).

For large enough k, i.e. k > k0, we want to show that if a representative root

(∗1, ∗2) is returned, then the fixed part of the root is already a Zp-root. In the

other case, for linear-representative roots, we can simply use Hensel lifting to lift to

Zp-roots (or, to as much precision as we wish).

4.1.3 Bound to distinguish Zp roots

Consider R(x1) = Resx2(f(x1, x2), f
′(x1, x2)), the discriminant w.r.t. x2. The roots

of R(x1) given by x̂1 satisfy the condition that the univariate f(x̂1, x2) is square-full.

Furthermore, given x̂1, we can easily find the values of x2 (d-many), as it becomes the

univariate root-finding problem over Zp which has a famous solution (see Algorithm

2).

The main idea is to find a bound for the exponent of p such that each root

returned using root-finding is either a linear-representative root, or a unique lift of

this root is a Zp root. A similar bound was achieved for univariate polynomials by

[DS20]. However, the complications of lifting multivariate roots did not arise there,

as every p-adic root corresponded to a p-adic factor.

Lemma 4.4 (Discriminant of radical). Let f(x1, x2) ∈ Z[x1, x2] be a polynomial of

degree d whose coefficients have absolute value bounded above by M . Let its radical

polynomial be g := rad(f). The roots of R(x1) = Resx2(g, g
′) in Zp are in one-

one correspondence to the representative roots of R(x1) mod pk, for any k ≥ k1 :=

44

Θ(d6 logM).

Proof. We have the polynomial f(x1, x2) of degree d. Its radical polynomial g :=

rad(f), has degree ≤ d and coefficients bounded by MO(d) (Lemma 4.3).

The resultant polynomial R(x1) = Resx2(g, g
′) is the determinant of a (2d+1)×

(2d + 1) matrix consisting of elements formed from the coefficients of g. Thus, the

degree of R(x1) is < 2d2+d, and the absolute-value of the coefficients is < (dMd)2d+1.

Now, we need to find a bound on k1 such that the roots of R(x1) are in one-one

correspondence to those of g(x1, x2) mod pk1 . [DS20, Theorem 20] showed that the

representative roots of a univariate polynomial modulo pk, for k > d′(∆+ 1), are in

one-one correspondence to the roots of that polynomial in Zp, where d′ is the degree

and ∆ is the p-valuation of its discriminant. In our case of finding Zp-roots of R(x1),

the degree is 2d2 + d, while the discriminant is at most ((dMd)2d+1)2(2d
2+d)+1. Thus,

the valuation of discriminant of R is bounded by O(d4 logpM). Substituting the

values of d′ and ∆, we have k1 := Θ(d6 logpM).

4.1.4 Zp-roots

Consider g = rad(f) and k1 = Θ(d6 logM). Define g2(x2) := Resx1(g(x1, x2) , R(x1)).

Intuitively, roots x2 of g2 come from the roots x1 of R. So, again applying [DS20,

Theorem 20] on this univariate polynomial g2, it suffices to compute its roots mod

pk2 , to compute its distinct p-adic roots; where k2 is asymptotically logp(pk1·2d
2·d)

= O(d9 logM).

Using the value of k2 as above, we find roots of g(x1, x2) from Root-Find(g, pk2).

Let (ã1, ã2) be the fixed-part of a root thus obtained. If R(ã1) ≡ 0 mod pk2 , then

the above argument, that defined k2, ensures that (ã1, ã2) does lift to a Zp-root of

R, g2, g and f (in this case uniquely).

4.1.5 Non-root of discriminant.

Thus, the case left is: R(ã1) 6= 0 mod pk2 . Consider the univariate g(ã1, x2). We

know that its Zp-roots are different mod pk2 and at most d many; one of which is ã2.

45

Consider g1(x2) := p−v ·g(ã1 , ã2+x2), where v ≥ 0 is the p-valuation of g(ã1 , ã2+x2)

as a polynomial over Zp. Note that x2 divides g1, but x22 does not divide g1 (mod

p). Thus, 0 is a simple-root of g1 and we can potentially Hensel lift it to p-adics.

To implement this formally, we need to increase the precision so that the extra

p-factors can be removed from g. Note that if we assume p ∤ g(ã1, x2) then v ≤

k2 + (k2 − 1)(d − 1) < d · k2. Fix k0 := d · k2 = Θ(d10 logM). Now consider

g̃(x) := p−v · g(ã1 + pk2x1 , ã2 + pk2x2) mod pk0 . By the argument above, g̃ mod p

is linear in x2 (it is easier to see by substituting x1 = 0). Thus, an extension of

this root has to end up in some leaf of Root-Find(g, pk0) algorithm as say (ã′1, ã
′
2);

which will Hensel lift to p-adic integral root(s) due to the linear x2 term in the lift.

Since the set of p-adic roots for f and g is the same, we could as well run

Root-Find(f, pk0). This proves the following lemma.

Lemma 4.5 (pk0 is p-adic). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d

and having absolute-value of coefficients bounded by M . Each root represented in the

leaves of the tree of Root-Find(f, pk0), for k0 := Θ(d10 logM), lifts to a Zp-root of

f(x1, x2).

We further need the condition that the structure of this tree does not change

with k for k ≥ k0. In order to show that, we prove the following lemma. Denote

R1(x1) := Resx2(g, ∂x2(g)) and R2(x2) := Resx1(g, ∂x1(g))

Lemma 4.6 (Fix p-adic tree). If a leaf of the tree given by Lemma 4.5 returns a

representative root with the fixed part (a1, a2), that is not linear-representative, then

R1(a1) = R2(a2) = 0 mod pk. Moreover, (a1, a2) lifts to a unique root of f over Zp;

and their number does not change as k grows beyond k0.

Also, the tree (Fig.3.1) in our algorithm does not change, and remains isomorphic,

for k ≥ k0; except the leaf with the root 0.

Proof. As argued above, the representative roots which are not linear-representatives,

must satisfy the condition R1(a1) ≡ 0 mod pk0 . Using a similar technique we can

show that R2(a2) ≡ 0 mod pk0 as well.

46

Assume that for some large enough k, k ≥ k0, a new leaf in the tree of Figure 3.1

appears, with the root (r1, r2) such that R1(r1) ≡ R2(r2) ≡ 0 mod pk. However, this

leads to a contradiction as the branch corresponding to (r1, r2) should have already

been present in the tree at precision k0 in the representative root.

As argued before, this root rj of Rj mod pk0 always lead to Zp roots of Rj for

j = 1, 2 (due to [DS20, Theorem 20]), and that of g2, g, f . Thus, the number

of representative roots can not decrease. Therefore, the number of representative

roots which are not linear is fixed once we reach k0, and hence (a1, a2) has a unique

lift to Zp.

Together with Hensel lifting, it is then clear that, the linear-representative roots

can neither increase in number, nor reduce, as k ≥ k0 grows.

The only change that could happen is, for k ≥ k0, if the leaf with fixed root 0

is used to lift to f(pvx1, pvx2) mod pk, with k > v ≥ k0. This may create a new

subtree under the old leaf 0; as this type of branches are the only ones that were

not explored in Algorithm 3 mod pk0 .

The following examples should help illustrate the p-adic machinery more clearly.

Example 4.7. Consider the polynomial f = (x1− 1)(x2− 2) mod pk. The first step

of our algorithm has to be x1 = 1 or x2 = 2. Considering the root a := (1, 3), the

polynomial after lifting becomes x1(1+px2), which is an (effective) linear form; thus,

a linear-representative root will be returned, which has x2 as the free variable while

x1 will stay fixed to 1. This gives the leaf r := (1+ pµ(∗), 3+ p∗), and a computable

Zp-function µ(·), which allows the p-adic lift of a. In this case, µ = 0.

Example 4.8. Now, consider f(x1, x2) = (x1− px2)(x1− 2px2) mod pk. Lifting the

root a := (0, 1) gives us (x1−1−px2)(x1−2−2px2), which is not yet effective linear.

Choosing the next lifting-step around the root (1, 0), the polynomial after lifting

becomes (x1−px2)(−1+px1−2p2x2), which is an (effective) linear polynomial; thus,

a linear-representative root will be returned, corresponding to (x1−px2), which has x2

as the free variable while x1 depends on it. This gives the leaf r := (p+p3µ(∗), 1+p2∗),

47

and a computable Zp-function µ(·), which allows the p-adic lift of a. In this case,

µ(w) := w.

However there are several roots in Zp, which can not be noticed modulo pk0 ,

because they are indistinguishable from 0. This is seen in the following example.

Example 4.9. Consider the polynomial x31 + x32 mod pk, for p > 3 and 3|k. Some

of its linear-representative roots are (pj + pj+1∗ ,−pj + pj+1µ(∗)), for any j < k/3

and µ(w) := −w. Also, (pk/3∗1 , pk/3∗2) is a non linear-representative root. It can

lift to the p-adic root 0, but it can also lift to (pk,−pk); which our algorithm could

not explore due to the precision being only pk.

The following theorem completes the connection, of Algorithm 3, with all p-adic

roots of f . Basically, it scales up the roots by pv-multiple, whenever possible, and

creates a new data-structure for representatives in the leaves of the fixed tree modulo

mod pk0 , in Fig.3.1. It can also be seen as a way of further blowing-up the leaf of

the fixed tree that gives the 0 root.

Theorem 4.10 (High val p-adic roots). We can efficiently ‘expand’ our leaves as

follows:

(1) Define a set of representative-roots Hv, for v ≥ k0, s.t. for each root a ∈ Hv ,

pva lifts to a p-adic root of f .

(2) We can compute the fixed tree for Hk0 efficiently by Algorithm 3. The other

sets Hv, for v > k0, lift from the same representatives as in the leaves of Hk0; so we

do not recompute them.

Let (r′1, r′2) be a p-adic root of f . Then, ∃v ≥ 0 , ∃ root a ∈ Hv lifting to a′ , for

which (r′1, r
′
2) = pva′. In this sense, our fixed tree covers all p-adic roots of f .

Proof. Let u be the p-valuation of r′, i.e. pu||(r′1, r′2). If u = ∞, i.e. (r′1, r
′
2) = 0,

then clearly some leaf in the set Hk0 will satisfy the required statement.

If u < k0, then r′ 6= 0 mod pk0 ; so it will be covered in some nonzero leaf of the

tree of Lemma 4.6.

48

Assume ∞ > u ≥ k0. Now consider the system f(pu · x) = 0, say over Zp.

Write f =:
∑

m≤i≤d fi into homogeneous-parts, with m being the least-degree part

(fm 6= 0). Thus, by homogeneity, the system becomes

0 = f(pu · x)/pum =
∑

m≤i≤d

pu(i−m) · fi(x1, x2) . (4.2)

If f = fm (i.e. f is homogeneous), then f(pu · x) = 0 iff f(x) = 0. Thus, Hv, for all

v ≥ 0, is given by the fixed tree in Lemma 4.6 and we are done.

Assume f 6= fm (i.e. f is inhomogeneous). Then, the above system implies:

fm(x1, x2) ≡ 0 mod pu. Since fm has bounded coefficients and u ≥ k0, we compute

the fixed tree (Lemma 4.6 for fm mod pk0) efficiently; and all its leaves (except 0) lift

to p-adic roots. Each leaf, in our Algorithm 3 can be viewed as defining a nontrivial

p-adic map µ : Zp → Zp s.t. w.l.o.g., fm(w, µ(w)) = 0, where w is a variable. Check

whether f(puw , puµ(w)) = 0. Then, by repeating this argument (on fm+1 etc.) we

can deduce: fi(w, µ(w)) = 0 for all m ≤ i ≤ d. Since, µ is a p-adic function common

to these polynomials, that are all upper bounded by the parameters of f , we can

learn µ by working with each fi just mod pk0 .

Algorithmically, we find this common µ by first invoking Algorithm 3 on fm mod

pk0 and then verifying it for f(pk0w , pk0µ(w)) ≡ 0 mod pk0(d+1). [Or, we could

construct the tree common to the system {fm, . . . , fd} mod pk0 .]

But this shows an interesting property p-adically that f(pk0w , pk0µ(w)) = 0 iff

fi(w, µ(w)) = 0, for all m ≤ i ≤ d iff f(puw , puµ(w)) = 0, for all u ≥ 0. Essentially,

the high-valuation roots arise only from homogeneous polynomial system!

Lemmas 4.5-4.6 and Theorem 4.10 describe the p-adic nature of the tree and

the representative roots, after the threshold bound of k0. This finishes the proof of

Corollary 4.1.

49

4.2 Computing the Igusa’s local zeta function

We will show how to compute the Poincaré series, by expressing the number of roots

of f(x1, x2) mod pk, for every k, in a special form. In this subsection, we sketch this

algorithm for bivariates using Section 4.1. With more work it can be generalized to

n-variates based on the machinery of Section 3.5; thus proving the rationality of the

Poincaré series in general.

When we consider f modulo pk, for large enough k’s, the fixed-part of the

representative-roots will correspond to p-adic roots, while the remaining-part has

‘free’ coordinates, eg. (∗1, ∗2), which get fixed as we increase k. For k = k0, denote

R as the subset of representative-roots which are not linear-representative roots,

while the set L as the set of linear-representative roots.

Recall the bound of k0 = Θ(d10 logM) (Lemma 4.5) to distinguish between

Z/pkZ and Zp-roots: For small values of k, i.e. k < k0, we can count the number of

roots in deterministic time poly((d + p + logM)d). For large k’s, however, we want

to prove a special form to sum up the infinite Poincaré series.

4.2.1 Non linear-representative roots R

Consider a root inR; its fixed-part, say r, will lift to Zp-roots of f . Its representative

part appears due to the contribution of extra p-powers by the other derivatives that

appear in the Taylor-series around r. Let e be the multiplicity of r: which can be

found as the (largest) e such that f ∈ 〈x− r〉e, but f 6∈ 〈x− r〉e+1.

Now, f can be written as

f =
e∑

i=0

ci(x1, x2) · (x1 − r1)i(x2 − r2)e−i . (4.3)

Define v := vp(gcd(ci(r) | i)). Since r is not a common root of ci’s, this value (e, v)

does not change as we increase k and make r more precise. Consider the Zp-root

r′ that r lifts to. Let us now consider the ways in which the digits of r′ may be

50

perturbed, and yet it be a root (mod pk), as we increase k arbitrarily. Let ℓ1 denote

the length up to which we want to keep r1 equal to r′1 and the rest to ∗ (similarly

define ℓ2). Consider

f(r′1+p
ℓ1x1 , r

′
2+p

ℓ2x2) =
e∑

i=0

ci(r′+plx)·(r′1−r1+pℓ1x1)i ·(r′2−r2+pℓ2x2)e−i . (4.4)

The valuation of this expression is the minimum of vp(ci(r))+ℓ1i+ℓ2(e−i), over all i.

If this is ≥ k then x can take any value in Z/pk−ℓ1Z×Z/pk−ℓ2Z, and extend, by the

above equation, to a root mod pk. This is what should happen as we are not in the

linear-representative case. We need to count these possibilities, which will give us

the number of ways the root r could lift as k increases. For this, we should consider

only those possibilities of (ℓ1, ℓ2) that are minimal, i.e. (ℓ1 − 1, ℓ2) and (ℓ1, ℓ2 − 1)

should violate the linear-inequality system. This is a system of half-spaces in the

plane, forming an open polygon P with either ≤ e vertices or just one hyperplane.

It can be checked that in all cases the counting function

∑
(ℓ1,ℓ2)∈P

p(k−ℓ1) · p(k−ℓ2) (4.5)

can be rewritten as a sum of pui(k), i ≤ e, where ui(k) is a linear function in k over

Q. Let us call this sum Nk,r(f). Importantly, the number of summands here is fixed,

and does not grow with k.

The following example illustrates the notion of this polytope.

Example 4.11. Consider the polynomial f(x1, x2) = x21x2 mod pk. Here, for the

root (0, 1), the value of e is 2, and accordingly ℓ1, the precision of x1 required, is

= k/2. However, the value of e for (1, 0) is 1 and ℓ2 = k. For the root 0, both

variables contribute powers of p, where they are zero with precision ℓ1, ℓ2 respectively.

Then, we must have 2ℓ1+ ℓ2 ≥ k, which gives the hyperplane in ℓ1, ℓ2; summing over

all these values we can calculate Eqn.4.5.

51

4.2.2 Linear-representative roots L

Consider a linear-representative root r ∈ L, with fixed part as a of length (e1, e2)

respectively. Up to linear transformations, we can claim that our algorithm defines a

computable Zp-function µ(·) s.t. for all u ∈ Zp, f(x1+a1+pe1u , x2+a2+pe2µ(u)) =

0. Using this fact, we write Equation 4.3 in the ideal form, defining (e, v) as the

largest integers s.t., in Zp[x],

f(x1 + a1 , x2 + a2 + pe2µ(0)) ∈ pv · 〈x1 , x2〉e + 〈x1 , x2〉e+1 . (4.6)

Note that we have defined (e, v) by fixing u = 0. The motivation is that if we use

some other u in Zp, we will get the same values (e, v). Otherwise, say for some

0 6= u ∈ Zp ,

f(x1 + a1 + pe1u , x2 + a2 + pe2µ(u)) ∈ pv
′ · 〈x1 , x2〉e

′
+ 〈x1 , x2〉e

′+1 .

Then, by Lemma 4.6, e′ = e, because the tree remains isomorphic, even when we

make the root more precise than k ≥ k0. In the same algorithm, lifting steps cause

division by p-powers and reach the leaf r, so v′ remains v even when we make the

root more precise than k ≥ k0.

Fix u ∈ Z/pk−e1Z, and consider the unique p-adic root r′ that the leaf r gives

above. We can now follow the counting process done after Equation 4.4. Varying

u, the polytope boundary P does not change (similar to the argument given after

Equation 4.6); on the other hand, fixing (ℓ1 − e1)-digits of u (resp. ℓ1 value), fixes

that many in µ(u) (resp. ℓ2 value). Thus, we get a partial count (slightly different

from Equation 4.5) as:

∑
(ℓ1,ℓ2)∈P ∪{(k−e2)−(ℓ1−e1)≤ (k−ℓ2)}

p(ℓ1−e1) · p(k−e1)−(ℓ1−e1) · p(k−e2)−(ℓ1−e1) . (4.7)

52

We call this sum N ′
k,r(f); and is written as a sum of pui(k), i ≤ e, where ui(k) is a

linear function in k over Q.

4.2.3 Blowing-up root 0

What is missing here are the roots with valuation in the interval [k0, k− 1], because

these are zero mod pk0 and so they get missed in L and R. To account for these, we

need to resort to the set Hk0 , constructed in Theorem 4.10 that ‘blows-up’ the leaf

node 0 in the tree of finding roots modulo pk0 .

Now, from the way Algorithm 3 works, the representatives in Hk0 generate a

disjoint set of (Z/pkZ)-roots, which are in number =
∑

r∈Hk0
Nk0,r. This sum is easy

to precompute (by Theorem 1.1), as it is independent of k. Each of these roots can

be multiplied by pe, for e ∈ [k0 . . . k − 1], to get the ‘high’-valuation roots. Thus,

the total number of such roots is = (k − k0) ·
∑

r∈Hk0
Nk0,r.

Overall, the above summands account for all the Z/pkZ-roots of f , for k ≥ k0.

4.2.4 Computation of Igusa’s LZF

The number of roots modulo pk, for k < k0, can be counted by Theorem 1.1. Fixing

k = k0, as described above, we compute the data related to the fixed tree; which has

the linear-representative roots in L, Hk0 , and the remaining representative-roots in

R.

Then, the number of roots of f modulo pk, Nk(f), is given by

Nk(f) =
∑
r∈R

Nk,r(f) +
∑
r∈L

N ′
k,r(f) + (k − k0) ·

∑
r∈Hk0

Nk0,r . (4.8)

Recall that the number of roots modulo pk due to any representative root r (or a

leaf in the fixed tree in Theorem 4.10) is Nk,r(f) resp. N ′
k,r(f); defined separately in

Equations 4.5 and 4.7.

53

Now, the Poincaré series is given by (eg. see [DS20])

P (t) = P0(t) +
∑
r∈R

Pr(t) +
∑
r∈L

Qr(t) +

 ∑
r∈Hk0

Nk0,r

 ·∑
k≥k0

(k−k0) · (t/p)k , (4.9)

where P0(t) =
∑

k<k0
Nk(f) · (t/p)k , Pr(t) :=

∑
k≥k0

Nk,r(f) · (t/p)k and Qr(t) :=∑
k≥k0

N ′
k,r(f) · (t/p)k.

The expression of Equation 4.8 is a sum of either pui(k) or ui(k) , i ≤ O(d), where

ui(k) is a linear function in k over Q. Thus, Equation 4.9 can be easily expressed in a

‘closed-form formula’ by summing the geometric progression over k’s, as was done in

[DS20, Lemma 23]. Thus, Pr(t), Qr(t) are rational functions in Q(t). Therefore, the

rational function for the Poincaré series P (t) is computable as promised in Corollary

4.2.

Using this technique for finding all the roots modulo pk for n-variates, we can

generalize the algorithms for finding Zp-roots and computing the Igusa local zeta

function for a system of m polynomials in n-variables as well. For finding roots in

Zp, we consider the resultant w.r.t. one variable at a time, find a bound similar to

Lemma 4.4, and proceed with the analysis of roots which are in Zp or are not roots

of the discriminant. At each step, the bounds according to one variable at a time

will be obtained, which get multiplied to give a bound k0 for f(x) such that roots

of f(x) mod pk0 gives us roots which correspond to Zp roots as well. This will be a

generalization of Theorem 4.10 to n-variates. Similarly, we can count roots, where

the number of possibilities due to linear-representative roots depends on the rank of

the linear forms, and the sum will again be a rational form.

The complexity of finding Zp points and that of computing Igusa local zeta

function will remain deterministic poly((m logM + p+ d)(2d(n−1))n−1
)-time.

Chapter 5

Solvability of system of polynomial

equations over Galois rings

In this chapter, we generalize the result of Huang and Wong [HW99], to give an

algorithm to solve Hilbert’s Nullstellensatz over Galois rings. We prove Theorem 1.2

by giving an algorithm to compute a common solution to the system of polynomial

equations.

Theorem 1.2 (HNpk). Let f1(x), . . . , fm(x) ∈ Z[z][x] be a set of n-variate degree d

polynomials, where n is a constant. Given a prime power pk for constant k and an

Fp-irreducible polynomial φ(z), we can efficiently find a common root of the system

fi(x) ≡ 0 mod 〈φ(z), pk〉, for i ∈ [m], in randomized poly(dcnk ,m, deg(φ), log p) time.

5.1 Overview of the algorithm

In this chapter, we describe a method to find roots of a system of polynomials over

a Galois ring.

We prove Theorem 1.2 by giving an algorithm that returns False if the given

system of n-variate polynomials f1(x), . . . , fm(x) ∈ Z[z][x] has no root in Galois

ring G := Z[z]/〈pk, φ(z)〉, otherwise outputs a possible root. This is the problem of

solving Hilbert’s Nullstellensatz over the Galois ring G. The idea, as hinted before, is

to first reduce this problem to the base field G/〈p〉 = Z[z]/〈p, φ(z)〉 ∼= Fp[z]/〈φ(z)〉.

55

Since φ(z) is irreducible over Fp of degree b, Fp[z]/〈φ(z)〉 is also a field which is

a finite extension of Fp, denoted as Fq for q := pb. Now, since finite fields of

given size are unique up to isomorphisms [Moo93, Sec.3], we restrict ourselves to

the construction of Fq given by Fp[z]/〈φ(z)〉. Throughout this algorithm, we will

use [HW99] to solve Hilbert’s Nullstellensatz over finite field Fq, which requires an

additional condition that q must be large enough, i.e. q > d(nk)
Ω((nk)2) . If q is smaller,

then anyways the brute-force search, for G-roots, can be done in time qnk.

5.1.1 Breaking into digits

The method of finding roots is performed iteratively on each p-adic coordinate (or

digit). We find (virtual) roots at each step, and using these roots, find those cor-

responding to higher coordinates. The method has been employed in univariates

[BLQ13; DMS19; DMS21; NRS17]. For a root a ∈ Fn
q (also embedded in Gn) of

the system of polynomials modulo p, we transform each of the polynomials fj(x) to

fj(a + px) for j ∈ [m], inspired by the p-adic coordinates. Since we have standard

methods to find roots in Fq, while the same is difficult in Galois rings, we divide-out

the ‘excess’ powers of p, to bring this system back to Fq. These excess powers of

p will be given by vj = v(fj(a + px)), which will be termed as val-multiplicity of

the root a. The step thus discussed, given by transforming the polynomial fj(x) to

p−1fj(a + px) will be called the lifting step. Point a will be termed as the local root

at that lifting step. We could try a ‘faster’ lift, p−vjfj(a + px); however this idea

fails, if vj ≥ 2, due to some intermediate mod p arithmetic that our Algorithm uses.

The modification to the polynomial during lifting will make sure that the Fq

coordinates at the t-th step of lifting will return the t-th p-adic coordinate. For

example, if a is an Fq-root of fj(x), and after lifting, the polynomial becomes f̃j(x) :=

p−1fj(a + px) which has an Fq-root b, then (a1 + pb1, . . . , an + pbn) is a root of

fj(x) mod p2. Note that some local roots might not have liftings while others can;

as illustrated by the following example.

Example 5.1. Consider f(x1, x2) := x31−x32+5 and p := 5. (0, 0) and (1, 1) are its

56

Fp-roots. When we start the root (0, 0), the lifting step given by the transformation

(x1, x2) 7→ (5x1, 5x2) and subsequent division by 5, yields the polynomial 25x31 −

25x32 + 1 which does not have F5-roots. Although, restarting with the root as (1, 1)

yields the polynomial 25x31 − 25x32 + 15x21 − 15x22 + 3x1 − 3x2 + 1 after lifting, which

now has (3, 0) as its F5-root! This anomaly is explained by a curious fact: (0, 0) is

a singular root of f , while (1, 1) is non-singular.

5.1.2 Virtual roots

The algorithm for univariate root finding [BLQ13] implicitly enumerates over all

possible Fq-roots, to check which one lifts. It is not possible for us to enumerate

over all roots as already for curves, Ω(p) roots might exist, and there is no standard

way of representing them ‘compactly’. To tackle this problem, we introduce ‘formal’

variables (yi,1, . . . , yi,n) for the roots corresponding to the i-th lifting step, instead of

fixing them to (a1, . . . , an) ∈ Fn
q , and lift to the next step to form a new polynomial

f̃ in terms of this yi. We will denote this tuple (yi,1, . . . , yi,n) as virtual root. At each

step, we need the property of yi that it is a root modulo p. In order to track these

properties together, we create a (p-adic) ideal Î; which can be thought of as a ‘data

structure’ that stores all possible roots, but in ‘higher’-precision p-adics. At each

step, we include the polynomials fj(yi) mod p to this ideal, for j ∈ [m]; factorize,

and lift again to p-adics. E.g. this ideal vanishing at a point a ∈ (Z[z]/〈φ(z)〉)n

implies: the virtual root yi can be realized as an ‘actual’ root a of fj(x). A similar

idea of storing roots via ideals, though in a simpler setting, has been employed for

univariate polynomials in [Che+19; DMS19; DS20].

5.1.3 Lifting mod irreducible components

As discussed before, we develop the idea of formation of p-adic ideals, which will

store the roots of each step of lifting. In the first step, we have the system of (p-adic)

polynomials fj(x), j ∈ [m]. If this system has a local root a, then we perform lifting

to get the polynomials f̃j(x) := p−1fj(a + px) and move on to find the roots of f̃j.

57

Here, we use formal variables, for local roots and then perform lifting, instead of

fixing them as field-values. We first consider the virtual local root as (y0,1, . . . , y0,n)

and add the polynomials fj(y0) mod p, j ∈ [m], to the ideal I. We will use Î for

the (Zp[z]/〈φ(z)〉)-ideal, which is a p-adic lifting of I to Zp. This lifting of the ideal

from Fq to the unramified p-adic integer ring Ĝ := Zp[z]/〈φ(z)〉 will be explained

in more details later. Due to this motivation of lifting, instead of using Î, we use

an irreducible component of Î + 〈p〉 lifted to p-adics, denoted as Ĉ, as we will see

later on. For the lifting step, we will have the polynomial after lifting, denoted by

f̃j(x) := p−1fj(y0 + px) mod Ĉ; where the ideal arithmetic is over Ĝ.

5.1.4 Growing the p-adic ideal

In this process of forming next-precision polynomials and ideals, we use Ĝ-arithmetic,

instead of Fq in the base, as it handles division by p in a clean way. Let us assume

that we have lifted the system of polynomials fj(x), j ∈ [m], for ℓ-steps, to give the

polynomials f̃j(x) ∈ Ĝ[y0, . . . , yℓ−1][x] , and the ideal Î ⊆ Ĝ[y0, . . . , yℓ−1] .

Next, we consider the virtual local root yℓ =: (yℓ,1, . . . , yℓ,n) of the system f̃j(x),

j ∈ [m], and perform lifting to the (ℓ + 1)-th precision, while we store information

about the ℓ-th step by adding the polynomials fj(yℓ) into I, for j ∈ [m], and

redefine Î; thereby growing the precision of the roots contained inside Î. However,

followed by this, we perform decomposition of this ideal into absolutely irreducible

components, on which we perform our arithmetic, to redefine f̃j. In case this gives

new constraints on previous variables, we backtrack the steps.

5.1.5 Finding a satisfying instance

After iteratively forming a chain of ideals while increasing the precision of the roots,

we check if the system has a solution. The root of the polynomial which was, say,

present at the beginning of the algorithm will be of the form

(a0,1 + a1,1p+ · · ·+ ak−1,1p
k−1 , . . . , a0,n + a1,np+ · · ·+ ak−1,np

k−1) . (5.1)

58

Here, j-th coordinate ai,j is in Ĝ. So, this expansion is not unique (eg. we can

subtract any number t from a1,1 and add p · t to a0,1). Also, it suffices, for our

application, to find values ai,j of the virtual root yi,j up to the precision of G. We

achieve this by:

5.1.6 Finding non-singular roots

After setting the virtual roots in order to achieve the required prime power k, say that

we have the ideal Î, birationally mapped to a hypersurface Ĥ, given by a polynomial

ĥ over Ĝ, of dim = r, for 0 ≤ r ≤ dim(I). While, I (= Î + 〈p〉) is birationally

mapped to a hypersurface H, given by a polynomial h over Fq. We find a random

root of H [HW99, Thm.2.6] and map it to the 0-th coordinate of roots of Ĥ; this

crucial property is proved in Lemma 5.3. After which we can lift to find a Ĝ-root

using an easy variant of Hensel’s lifting (Theorem 3.2-(2)). This procedure gives us

a Ĝ-root from the Fq-root.

Now, the density of non-singular roots on H will be much greater than singular

roots (Lemma 5.7) if it is absolutely irreducible. Picking a non-singular Fq-root, at

random, we can lift it to a G-root. If H is relatively irreducible (i.e. reduces in some

field extension), we add the first-order derivative of h to the ideal (Lemma 5.2), as

will be explained in Section 5.2. Thus, we lift a root whenever the hypersurface is

absolutely irreducible and satisfiable.

5.1.7 Branching out by absolutely irreducible components

Our objective is to obtain non-singular roots, via the birational hypersurface, as

they lift all the way to p-adics. So, we ‘replace’ the ideal I either by its absolutely

irreducible components. In the latter case, since the ideal is radical, each root lifts

to Ĝ too (Lemma 5.8).

Thus, as discussed in the above paragraph (on finding non-singular roots), we

decompose the ideal I = Î+ 〈p〉, the projection of Î to Fq, using the decomposition

algorithm [HW99, Sec.3.3], and then lift them again to Ĝ using Lemma 5.3. The

59

decomposition procedure may give ‘many’ absolutely irreducible components over

Fq, on each of which our HNpk() algorithm recurses. This procedure— of selecting

an irreducible component C each time, growing that ideal to next precision, and

again loop over its irreducible components —can be seen as a tree T .

This tree has several nodes which correspond to absolutely irreducible ideals.

The depth of the tree represents the precision of the roots formed until that point.

This is also the number of times the polynomials have been lifted, and thus the ideal

has grown. The tree gives branches which correspond to nodes containing irreducible

components of the ideal formed from growing the parent ideal to the next precision

coordinate. We will show in Theorem 5.4 that these ideals can be used to recover

a G-root of the system of polynomials, and Algorithm 5 returns the leaves L, with

the tree T , thus formed.

5.1.8 Main algorithm

Using these ideas, and some technicalities on decomposition into absolutely irre-

ducible components described in Section 5.2, we sketch our algorithm, which has

been developed in Dwivedi’s thesis [Dwi22].

Input: Given the system of polynomials, it returns all the leaves of the tree

described in the previous paragraph. The input is given as m n-variate polynomials

{f1(x), . . . , fm(x) | fj(x) ∈ Ĝ[y0, . . . yℓ−1][x] } each of degree at most d, the exponent

k, an ideal Î = Îℓ−1 ⊆ Ĝ[y0, . . . yℓ−1]. These ideals are given as a tree T datastruc-

ture, as discussed in Section 5.1.7.

Output: The algorithm outputs a list L of (absolutely irreducible) ideals, which

contains the lift of the common roots of the system fj(x) ≡ 0 mod 〈pk〉 + Î, for

j ∈ [m]. It also returns a tree data-structure which gives the path to each of these

ideals from the node.

Initialization: We initialize the ideal as Î := 〈0〉, ℓ := 0, and the required

exponent as k. A system of polynomials F := {F1(x), . . . , Fm(x)} where Fj(x) ∈

Ĝ[x]. We pass F to the algorithm so it starts with HNpk(F1, . . . , Fm, k, 〈0〉).

60

Algorithm 5 Algorithm to find roots of a system of polynomial equations over a

Galois ring [Dwi22].
1: procedure HNpk(f1, . . . , fm, k, Î)

2: if Zeroset VFq(Î+ 〈p〉) = ∅ then return {}.

3: if k ≤ 0 then return {Î}.

4: I← 〈f1(yℓ), . . . , fm(yℓ)〉+ Î+〈p〉, for (new) virtual root yℓ := (yℓ,1, . . . , yℓ,n).

5: S ← Abs_Decomp(I); absolutely irreducible ideals as computed by Algo-

rithm 6.

6: L ← {}

7: for each C ∈ S do

8: if C ∩ Fq[y0, . . . , yℓ−1] = I ∩ Fq[y0, . . . , yℓ−1] then

9: Find the special lift Ĉ of C to Ĝ by computing Gröbner basis and

lifting, using Lemma 5.3. /*Ĉ is prime; reduced Gröbner basis

w.r.t. y0 < . . . < yk−1.*/

10: For j ∈ [m], compute f̃j(x) := p−1fj(yℓ + px) mod Ĉ, over

Ĝ[y0, . . . yℓ][x].

11: L ← L ∪ HNpk(f̃1, . . . , f̃m, k − 1, Ĉ). /*Maintain the recursion-tree

T .*/
12: else /*Backtrack & repeat steps*/

13: Find min s ≤ ℓ− 1 s.t. C← C ∩ Fq[y0, . . . , ys] ⊋ I ∩ Fq[y0, . . . , ys].

14: Find special lift Ĉ of C over Ĝ using Lemma 5.3.

15: For all j ∈ [m], compute f̃j(x) := p−s−1Fj(y0+ · · ·+psys+p
s+1x) mod

Ĉ.

16: L ← L∪HNpk(f̃1, . . . , f̃m, k+ℓ−1−s, Ĉ). /*Maintain T as before.*/

17: return L. /*Also, return the recursion-tree T whose leaves are ideals in

L.*/

Simple invariant. A node in the recursion-tree T either moves from Îℓ−1 to Îℓ, or

backtracks to redefine Îs, s < ℓ. In the former case, k reduces, while in the latter

case dim(V(Îs)) reduces. Thus, in a path, Îs can be redefined at most n times; thus

61

bounding the length of any path in the tree by ≤ k + kn.

5.2 Mapping Fp roots to Zp roots

As we have seen in the previous section, we need to work with ideals over p-adics,

Ĝ, since we need to allow division by p. In this section, we establish a connection

between the ideals over Fq and those over Ĝ such that from the roots stored in I

over Fq, we can find the corresponding Ĝ-roots of Î.

In order to find this mapping, we use the decompose the ideals into absolutely

irreducible components. Since we can find non-singular roots w.h.p. when the ideal

is absolutely irreducible, the val-multiplicity will be 1 (Corollary 3.5). Now, using

Theorem 3.2 Part (2), we can lift the root to p-adics.

Now, in order to find the absolutely irreducible components of the ideal, we

modify the machinery of the decomposition algorithm developed in [HW99, Sec.3].

The crux of the algorithm is the following lemma, which will be used to give an

invariant on the decomposition algorithm.

Lemma 5.2 (Singular roots [HW99, Lem.2.1]). If a polynomial h(x) is irreducible

over Fq, but reducible over its algebraic closure Fq, then for any root a ∈ Fn
q of h, we

have

h(a) = hxj
(a) = 0

over Fq, for any first-order partial-derivative hxj
of h.

5.2.1 Decomposition via birationally equivalent hypersur-

faces

First, given the ideal C irreducible over Fq, we construct a birationally equivalent

hypersurface and lift an Fq-root to Ĝ-root using Theorem 3.2. The connection

between these Fq roots and Ĝ roots has been shown in Lemma 5.3.

We mainly follow the techniques of [HW99, Sec.3.3], by mapping each Fq ideal C

62

to a union of (finitely many) irreducible components of C. We can map each of these

irreducible ideals to a hypersurface H = V(h). If h is not absolutely irreducible, then

by Lemma 5.2, we can keep adding the pullback of a non-zero derivative h′ of h, given

by h∗, and further decomposing the ideal thus formed. This procedure reduces the

dimension of the ideal C; thus, it continues for only few steps, and reaches absolutely

irreducible components.

5.2.2 Loss of points

The map between a component ideal and its corresponding birationally equivalent

hypersurface is given as rational functions ψ2 : V(C)→ H and ψ1 : H→ V(C).

Due to this property, some C-roots might get lost due to the image of ψ2 being

zeroes of the denominator of the rational function ψ1 (since ψ2 is linear, like the

construction idea of primitive element theorem, and no roots will be lost). In order

to include these points, we consider the polynomial e, which is the product of the

denominators of ψ1. However, since e is a polynomial over the base field of H, we

bring it back to that of C by considering its pullback e∗. This avoids the loss of any

Fq-point when we decompose into absolutely irreducible hypersurfaces.

5.2.3 Special lift of ideals and roots.

We are forming the ideals by adding fj(yℓ) mod p into I and then ‘lifting’ the ideal

to the p-adic one over Ĝ. Which Fq-roots lift ‘smoothly’ to p-adics, and which don’t?

The latter ones are handled separately (as discussed above).

Lemma 5.3 (Connection of points via hypersurfaces). Given an Fq-irreducible ideal

C (resp. its birational equivalent hypersurface H), we can lift it to a prime Ĝ-ideal

Ĉ (resp. its birational equivalent hypersurface Ĥ), such that their morphism diagram

commutes (Figure 5.1).

In particular, for a non-singular Fq-root of H (thus a root of C), we can find a

Ĝ-root of Ĥ; which gives a root of Ĉ. This sets up the ‘connection’ between roots of

C and Ĉ.

63

Proof. We have a prime ideal C given by generators in Fq[y1, . . . , yN]. Let r > 0

be the dimension of the variety of C. By one of the definitions of dimension, there

is a subset B =: {ℓ1 < . . . < ℓr} of least possible variables in y, such that the

function field Fq(C) is a finite extension over the transcendental field Fq(B). So, we

consider its defining maximal ideal B−1C; and compute its reduced Gröbner basis

(using Buchberger’s algorithm [Buc65]); with the graded lexicographical ordering

y1 < . . . < yN and variables B localized. Let B′ := y \ B =: {ℓr+1 < . . . < ℓN} be

the remaining variables.

Triangular form. The localization B−1C is a zero-dimensional prime ideal (=

maximal ideal). Thus, by [GTZ88, Prop.5.9], B−1C has exactly N − r generators,

the i-th one (r < i ≤ N) corresponding to a monic minpoly (over Fq(B)) for the

variable ℓi in B′ (in particular, having the leading-monomial an ℓi-power). Thus,

the Gröbner basis GB(B−1C) is in a special form, that we call the triangular form

in B′ over B (see [DMS19, Def.4]).

p-adic lift. Compute the reduced Gröbner basis GB(C) too, and divide each

generator by its leading coefficient (in F∗
q) to make the polynomials monic; store

them in reduced form where the coefficients are in {0, . . . , p− 1}. Define the p-adic

lift Ĉ, of C to Ĝ, by considering the trivial integral embedding of each generator of C.

By Gröbner basis properties and the special generators, this special lift Ĉ is a prime

Ĝ-ideal.

Doing the same thing to GB(B−1C), it is easy to deduce: the Ĝ-ideal thus

obtained, called B−1Ĉ, is a maximal ideal with a triangular (& reduced) Gröbner

basis.

Fq-map. By construction, Fq(B)[B′]/C is a field, denoted R, of finite degree over

R0 := Fq(B). We can compute a hypersurface H that is birationally equivalent to the

variety of C [HW99, Thm.2.6]. A standard algebraic way to compute it, is to pick a

random linear form ℓ0; assume q to be ‘large’ enough fo random sampling. Let h(Y)

be the minpoly of the primitive element ℓ0 ∈ R over the subfield R0. We can store

a representation of h in Fq[B][Y] such that it gives an R0-isomorphism ψ1 between

64

the fields, R = R0[B′]/C ∼= S := R0[Y]/〈h〉 ; mapping ℓ0 7→ Y , and other ℓi (i > r)

to its implied image.

p-adic map. Take any p-adic lift ĥ of h; clearly ĥ ∈ Ĝ(B)[Y]. By definition,

ĥ(ℓ0) ∈ C = Ĉ + 〈p〉. Since ℓ0 is a separable Fq-root of ĥ, we can Hensel lift it to a

Ĝ-root ℓ′0 ∈ Ĝ(B)[B′] =: R′0[B
′] such that ĥ(ℓ′0) ∈ Ĉ. So, mapping Y 7→ ℓ′0 gives a

R′0-homomorphism ψ̂2 : S′ := R′0[Y]/〈ĥ〉 −→ R′ = R′0[B
′]/Ĉ; which is a map between

integral domains. Moreover, it remains a nontrivial homomorphism if we localize

the base ring from Zp to Qp; making it a map between fields. Thus, ψ̂2 is an injective

R′0-homomorphism.

Now we know: all the four rings in Figure 5.1 are domains (& two are fields). So,

in case ψ̂2 is not an isomorphism, it is injective and non-surjective. Let v0 ∈ R′ be an

element that is out of the image, but we know that some lift v0+pv1 is in the image

of ψ̂2 (by traversing the commutative diagram). Similarly, we have that some lift

v1 + pv2, of v1, is in the image of ψ̂2. Combining these two, we know: v0− p2v2 is in

the image of ψ̂2. Doing this ad infinitum, we get v0 in the image of ψ̂2; contradicting

its choice. We conclude: ψ̂2 is an isomorphism, with the inverse map being (say) ψ̂1.

Ĝ(ℓ1, . . . , ℓr)[ℓr+1, . . . , ℓN]/Ĉ Ĝ(ℓ1, . . . , ℓr)[Y]/〈ĥ〉

Fq(ℓ1, . . . , ℓr)[ℓr+1, . . . , ℓN]/C Fq(ℓ1, . . . , ℓr)[Y]/〈h〉

ψ̂2

ψ1

ψ2

mod pmod p

Figure 5.1: Commutative Diagram

In the above diagram let us start with a non-singular Fq-root a of H := V(h).

With high probability, it will keep the relevant polynomials in ℓ1, . . . , ℓr nonzero

mod p; thus it would be consistent with the localization. It has ‘pullback’ via ψ1,

giving a root of C. By the separability of the Fq-root, a lifts to a root â of Ĥ := V(ĥ);

from up there it has ‘pullback’ via ψ̂1, giving a Ĝ-root of Ĉ too. This connects V(C)

with V(Ĉ).

65

The proof of Lemma 5.3 however does not work for a ‘small’ set of points given

by the roots of e since they do not have maps to C. So, we separately include these

points, by including the pullback e∗; and continue with our decomposition algorithm.

Now, the root-lifting technique of Lemma 5.3 uses Hensel’s lifting to lift non-singular

points to p-adics. This fails when the root has val-multiplicity ≥ 1, for which we

again need to add the pullback of h′, say h∗, into the ideal, and continue with our

decomposition Algorithm 6.

In the end, we have absolutely irreducible ideals, which lift over Ĝ. Note that

sometimes the absolutely irreducible ideals might be single points as well, of the

form 〈y − a〉. When the ideals are absolutely irreducible, it is easy to search for a

Ĝ-root (see Section 5.3). Based on these ideas, we give Algorithm 6 to decompose

into absolutely irreducible components, without losing any G-root. It decomposes

the Fq-ideal I to absolutely irreducible ideals C ∈ Sabs in such a way that zeroset

VFq(I) remains unchanged, i.e, VFq(I) =
⋃

C∈Sabs
VFq(C). This modification from

[HW99] has been explained in [Dwi22] in more details.

Input: The algorithm takes as input, a radical ideal I ⊆ Fq[y1, . . . , yn].

Output: The algorithm outputs a set Sabs consisting of absolutely irreducible ideals

C, s.t. V(I) =
⋃

C∈Sabs
V(C).

Algorithm 6 Decomposing I into absolutely irreducible components over Fq

[Dwi22].
1: procedure Abs_Decomp(I)

2: Define Sabs := {} and Sirr := {}.

3: Decompose I into irreducible components over Fq using [HW99], and store

them in Sirr.
4: while Sirr 6= ∅ do

5: C← Pop(Sirr).

6: if dim(VFq(C)) = 0 then

7: Compute VFq(C) using [HW99] and for each a ∈ VFq(C), update

Sabs ← Sabs ∪ {〈y− a〉}.
8: else

66

9: if C is absolutely irreducible then

10: Sabs ← Sabs ∪ {C}

11: Let dim(VFq(C)) =: r. Using [HW99] compute a birationally equiv-

alent hypersurface H := VFq(h(l1, . . . , lr, Y)) and the rational maps

ψ1 : H→ V(C) and ψ2 : V(C)→ H. (l, Y are linear forms in y; also see

Figure 5.1.)

12: Compute C1 := Rad(C + 〈h∗〉), where h∗ is pullback of a first-order

partial-derivative h′ 6= 0.

13: Compute C2 := Rad(C + 〈e∗〉), where e∗ is the pullback of e, which

is a product of the denominators that appear– in rational functions

ψ1 =: (ψ1,1, . . . , ψ1,n), or in the localization done in Lemma 5.3.

14: Decompose the ideals C1, C2 into irreducible components over Fq using

[HW99], and push these components into Sirr.

15: return Sabs

5.3 Recovering a G-root of an ideal in L and T (of

Algorithm 5)

An ideal Î ∈ L has the property that modulo p, i.e. I := Î + 〈p〉, it is absolutely

irreducible.

If the ideal consists of a single point, from Lemma 5.8, each Fq-root of I lifts to

G where the trivial lifting is the required root.

If the ideal I has dim > 0 (i.e. the points are ‘dense’ by Theorem 2.13), then its

birationally equivalent hypersurface H = V(h) is utilized. Let the map ψ2 : VFq(I)→

H be defined as (ℓ1, . . . , ℓn)→ (ℓ1, . . . , ℓr, ℓ0), where r ≥ 1 is the dimension of VFq(I)

and ℓi’s are random linear forms (as in Figure 5.1). Next, consider any lift Ĥ = V(ĥ)

of H and compute the unique birational equivalence ψ̂2 : V(Î) → Ĥ and its inverse

ψ̂1.

67

In order to find a root of ĥ, we pick a random non-singular Fq-root of h, and lift

it to a root of ĥ (by Lemma 5.7). Finally, use ψ̂1 : Ĥ→ V(Î) to get the G-root of Î

(again by Lemma 5.3), which becomes the required output.

Let Î0, . . . , Îk−2, Îk−1 = Î be the eventual p-adic ideal definitions, in a path of

the recursion tree T . An important issue is: We need a G-root common to these

ideals. Lemma 5.9 shows that this condition is satisfied by randomly picking a root

of Î. The primality of these ideals togetherwith a ‘common’ triangular Gröbner

basis is key in this proof.

Input: Let I := {Î0, . . . , Îk−1 =: Î} be the eventual ideal definitions leading to

the leaf Î ∈ L. Ideal Îℓ ⊆ Ĝ[y0, . . . , yℓ] is prime, for 0 ≤ ℓ ≤ k− 1, and the required

prime-power precision is pk. Further, Iℓ := Îℓ + 〈p〉 is absolutely irreducible.

Output: A ‘generic’ common G-root (a0, . . . , ak−1) of I, if it exists; ϕ otherwise.

Algorithm 7 Recovering p-adic or G-root common to the ideals I.
1: procedure Roots(I, pk)

2: if VFq(Îk−1 + 〈p〉) = ϕ then

3: return ϕ

4: else if Îk−1 contains a single point then

5: return the single point (â0, . . . , âℓ) (Lemma 5.8).

6: else

7: Compute the birationally equivalent hypersurface H of Îk−1 + 〈p〉, over

Fq, and the maps ψ1 : H → V(Îk−1 + 〈p〉) and ψ2 : V(Îk−1 + 〈p〉) → H

using [HW99]. (Also, see Fig. 5.1).

8: Similar to Figure 5.1, compute the hypersurface Ĥ birational to Îk−1 over

Ĝ, and the mappings ψ̂1 : Ĥ→ V(Îk−1) and ψ̂2 : V(Îk−1)→ Ĥ .

9: Find a random Fq-root a on H using [HW99].

10: Map a to the 0-th coordinate of the corresponding root of Ĥ, using Lemma

5.3, to get the approximation a′.

11: Lift a′ to â, using Hensel’s lifting, which is a root of Ĥ modulo pk (Lemma

5.7).

68

12: return the pullback of â =: (â0, . . . , âk−1) given by ψ̂1(â).

5.4 Correctness of HNpk

Theorem 5.4 (Correctness). If an ideal in L returned by Algorithm 5 has Ĝ-root

(â0, . . . , âk−1) (given by Algorithm 7), then the system F := {f1(x), . . . , fm(x)} has

G-root (â0+ . . .+pk−1âk−1 mod pk). Conversely, if F has G-root a0+ . . .+pk−1ak−1,

then an ideal in L has some Ĝ-root (â0, . . . , âk−1), such that a0 + . . . + pk−1ak−1 ≡

â0 + . . .+ pk−1âk−1 mod pk.

Proof. The method of finding G-roots of a system of polynomials goes through three

algorithms– Algorithm 5, 6 and 7. The primary Algorithm 5, as discussed, works

recursively over a tree; with the branches corresponding to absolutely irreducible

components of the Fq-ideals (Step 5 of Algorithm 5 as seen in Section 5.1).

Invariant reduces. We first bound the depth of this tree by showing an easy

property: val-multiplicity is at least 1 in every step given by the following lemma.

Lemma 5.5 (Val-multiplicity ≥ 1). Given the lifting as defined in Algorithm 5, the

val-multiplicity is at least 1 in each step; i.e. p|fj(yℓ + px) mod Ĉ, where Ĉ is the

p-adic lift of an irreducible component of the ideal I, as described in the algorithm.

Thus, at each step of lifting, either a new block yℓ is added, or some dim(Iℓ) falls.

So, the depth of the tree is ≤ k + kn; and the number of the variables (that store

virtual roots) is ≤ nk. Furthermore, by arguing on the degree and the dimension of

the irreducible components, we deduce:

Lemma 5.6 (Size of tree [Dwi22]). The total number of leaves L of the recursion-tree

T , described in Section 5.1, is at most d(nk)O((nk)2).

Roots that lift. We use [HW99, Sec.3] as a subroutine in Steps 3, 7, 14 of

Algorithm 6 to obtain the irreducible components of the ideal over Fq. After this,

the ideals will be lifted in the main algorithm (Steps 9, 14 of Algorithm 5) using

Lemma 5.3. However, its proof needs to create a map from the Fq-ideal (resp. its lift

69

over Ĝ) to a hypersurface. In this process, the map becomes undefined on ‘few’ roots

of H (and hence misses some roots of C in the codomain). This happens because the

map ψ1 : H→ V(C) is a rational function where the denominators might be zero for

some points of H, and (as already discussed) we consider the polynomial e∗ which

captures these missed ‘images’ in V(C). We continue our procedure on C + 〈e∗〉

(Step 13 of Algorithm 6). Lemma 5.6 shows that this reduces the dimension of the

birationally equivalent hypersurface each time.

Apart from these points, some singular points of H might have lifts to Ĝ, but we

are unable to apply Hensel lifting directly. To cover these roots (and their missed

‘images’ in V(Ĉ)), we consider another ideal where we include the pullback, say h∗,

of a suitable first-order derivative of the polynomial h (that defines H).

Likewise, when the ideal is relatively irreducible, the roots will be shared with h′,

the derivative of the polynomial representing H, and we add its pullback h∗ (Lemma

5.2) in Step 12 of Algorithm 6. The dimension of the ideal thus formed reduces

by exactly one [HW99], and we continue decomposing the ideal, until it returns an

absolutely irreducible ideal. Thus, the while-loop (Steps 4-14 of Algorithm 6) runs

for at most nk steps, which is the maximum possible dimension of the ideal.

Roots captured by L. We want to show that all the roots of f1(x) ≡ · · · ≡

fm(x) ≡ 0 mod pk are present in L, and vice versa.

First, we show that roots of L always give rise to a root of the system F of

polynomial equations f1(x) ≡ · · · ≡ fm(x) ≡ 0 mod 〈pk, φ(z)〉. In order to do this,

we show the following two lemmas, which help in proving that the roots of the

system can be constructed from the roots of the projection of the ideals unto Fq.

Lemma 5.7 (dim > 0 lift). Given an absolutely irreducible hypersurface H (resp. its

lift Ĥ) over Fq of dim > 0. Its random Fq-root is non-singular with high probability.

Thus, we can lift a random root of H to Ĝ-root of Ĥ.

Lemma 5.8 (single-point lift). Given an Fq-ideal I (resp. its lift Î) that is radical

and is a single point. We can uniquely lift it to Ĝ-root of Î.

As we see, the lifting slightly changes when the ideal consists of a single point.

70

Now, these single point ideals correspond to 0-dimensional components over Fq,

which are dO(nk)-many. We can consider the trivial lifts of these single points and

check if these finitely many points satisfy the system F .

Using these two lemmas, we prove the correctness of Algorithm 7, which proves

one side of the claim: L exactly captures the roots of the system F .

Lemma 5.9 (Correctness of Algorithm 7). Given Ĝ-ideal Îk−1 in a leaf of the tree

T , Algorithm 7 finds a generic common Ĝ-root (if one exists) of the preceding ideals

{Îℓ | ℓ}.

Using Lemma 5.9, we are now in a position to show that we can recover some

root of the system F from L.

Proposition 5.10 (Root in L −→ Root of F). Given a root of a leaf in L (using

T and Algorithm 7), we can find a common G-root of the system F of polynomials

fj, for j ∈ [m].

Conversely, we can show that every G-root of the system F has its p-adic lift

present in some ideal of L.

Proposition 5.11 (Root of F −→ Root in L, [Dwi22]). If the system of polynomials,

as described before, has a root in G, then Algorithm 7 outputs a root for some leaf

ideal Îk−1 in L.

Therefore, we have shown that the roots of nodes in L exactly correspond to

those of F . Further, these can be realized by Algorithm 7.

Proof of Lemma 5.5. Let us consider the multivariate Taylor’s expansion (Definition

2.1) of the j-th polynomial fj(yℓ + px) given by

fj(yℓ + px) = fj(yℓ) + p
∑
i∈[n]

∂xi
fj(yℓ) · xi + . . . , (5.2)

where the terms of order-|i| (partial-derivative) are divisible by p|i|.

As we traverse along the depth of the tree, the polynomial fj(yℓ) mod p will be

added to I (Step 4 of Algorithm 5). In Step 5, we consider the absolutely irreducible

components of this ideal projected down to Ĝ/〈p〉 = Fq, and loop over them from

71

Step 7 of Algorithm 5. These absolutely irreducible components are such that they

are first the factors of I, after which we lift them to Ĝ. Thus, for any component Ĉ

of Step 9, we have I = Î+ 〈p〉 ⊆ Ĉ+ 〈p〉 = C.

Now, when we add fj(yℓ) mod p to I, while introducing a new set of virtual roots

yℓ, in Step 4 of Algorithm 5, then Equation 5.2 modulo I is divisible by p. Therefore,

from the previous paragraph, we get that Equation 5.2 modulo Ĉ is also divisible by

p, implying that the val-multiplicity is ≥ 1, and after division by p, the polynomial

will still have coefficients in Ĝ.

Proof of Lemma 5.7. Let the hypersurface H be given by the polynomial 〈h(Y)〉 over

Fq(ℓ1, . . . , ℓr) as before. Since it is absolutely irreducible, the variety V(h, h′) has

dimension one less than that of V(h), where h′ 6= 0 is some first-order derivative of

h. Therefore, the probability of a point being a non-singular root of H, is around

(1 − qr−1/qr) = 1 − 1/q (by Theorem 2.13). Using a random non-singular root,

we can lift it to modulo any p-power (by Theorem 3.2); thus, we get a Ĝ-root.

Proof of Lemma 5.8. Since the ideal has a single point say a; the ideal Î is just of

the form 〈y− â〉. So, we output â.

Proof of Lemma 5.9. Using Lemma 5.3, we map an Fq-root of ideal I to the 0-th

coordinate of some (unknown) p-adic root of the ideal Î. After this, if the root is

random, we can lift to a Ĝ-root using Hensel’s lifting (Lemma 5.7). If the root comes

from a single point ideal I, then we use Lemma 5.8. Thus, Algorithm 7 correctly

returns a Ĝ-root of the given ideal Î (as long as, q is ‘large’ enough for sampling).

But what about the other ideals in the path in T leading to Î?

We further need to show that the variety V(Îℓ−1) extends to V(Îℓ) (where Îℓ−1, Îℓ

are the eventual definitions in recursion-tree T). Consider a lift using Lemma 5.3;

say in the Fq-ideal Iℓ−1 the variables Bℓ−1 are localized giving the triangular form

(reduced Gröbner basis) in Fq(Bℓ−1)[B
′
ℓ−1], where B′

ℓ−1 := ∪i≤ℓ−1yi \Bℓ−1. Similarly,

define Bℓ and B′
ℓ, for Iℓ. Recall the variable order, blockwise, yℓ−1 < yℓ. By

Algorithm 5 (Step 8), Bℓ−1 = Bℓ; and Iℓ−1 ⊆ Iℓ. Thus, the minpoly of the variables

72

B′
ℓ−1, over Fq(Bℓ), in B−1

ℓ Iℓ; is the same as it was in B−1
ℓ−1Iℓ−1. So, all the variables

∪i≤ℓ−1yi have the same minpoly in the two Gröbner bases; and the triangular form

is preserved in the new ideal B−1
ℓ Iℓ.

Consequently, from Lemma 5.3 lifting, the generators of B−1
ℓ−1Îℓ−1 are contained

inside those of B−1
ℓ Îℓ. Therefore, the variety of Îℓ−1 extends to that of Îℓ: For any

generic root (â0, . . . , âℓ) of Îℓ, the projection (â0, . . . , âℓ−1) is a root of the predecessor

ideal Îℓ−1.

With this induction step done, we can complete the proof for all 0 ≤ ℓ ≤

k− 1. We use a monomial ordering, that is consistent with all steps, namely: y0,1 <

y0,2 < · · · y0,n < · · · yk−1,1 < yk−1,2 < · · · yk−1,n. Under localization of respective

transcendence-basis, we keep the leading term of the generators of these ideals, to

be yi,j-powers; maintaining the triangular form of Gröbner basis. Thus, a generic

root of the leaf Îk−1, is also a generic common root of the ideals {Î0, . . . , Îk−1} that

led to the leaf Îk−1 ∈ T .

Proof of Proposition 5.10. We are given a prime ideal, say Îk−1 ∈ L, and the associ-

ated latest prime ideals I := {Î0, . . . , Îk−1} in the recursion-tree T of Algorithm 5.

Let us assume that when the ℓ-th ideal (Îℓ−1) was defined the last (satisfying Step

8 of Algorithm 5), the j-th polynomial was f (ℓ)
j (x) ∈ Ĝ[y0, . . . yℓ−1][x] (done at Step

10 of Algorithm 5).

From the p-adic root of I, say (a0, . . . , ak−1) ∈ Ĝnk by Algorithm 7; we want

to show that we can construct a common G-root of fj(x)’s, j ∈ [m]. We prove

this by simply using the lifting-steps, one precision at a time, that designed the

recursion-tree.

p | f (0)
j (y0) mod Î0 , (5.3)

p | f (1)
j (y0, y1) mod Î1 ,

...

p | f (k−1)
j (y0, y1, . . . , yk−1) mod Îk−1 .

73

Next, we can merge the divisibility properties of the key k lifting-steps (Algo-

rithms 5 & 7), at the common p-adic point (a0, . . . , ak−1) of Equation 5.3. This can

be written as the following cascading divisibilities:

p | f (0)
j (a0) → p2 | f (0)

j (a0 + pa1) (5.4)

→ p3 | f (0)
j (a0 + pa1 + p2a2)

→ . . . → pk | f (0)
j (a0 + pa1 + . . .+ pk−1ak−1) ,

which provides the required precision pk; thus giving the G-root (a0+ . . .+pk−1ak−1)

of fj. This finishes proof.

Chapter 6

Constant degree roots

As we have seen in Section 2.3, factoring a polynomial f(x) mod pk is difficult when

f(x) ≡ φ(x)e mod p, where φ(x) is irreducible modulo p, as otherwise, we can

find factors using Hensel’s lifting. There have been several works trying to factor

polynomials modulo prime powers, until [DMS21] gave an algorithm to find the

factors for k ≤ 4. We will call this exponent e as the transcendence degree.

The crux of [DMS21] was reducing the problem of factoring a univariate mod-

ulo pk to root finding over the ring Z[z]/〈pk, φ(z)ak〉, where a ≤ e is the required

transcendence degree of the factor. The reduction has been explained in [Dwi22].

Theorem 6.1 (Reduction [Dwi22]). Let f(x) be a polynomial such that f(x) ≡

φ(x)e mod p, where φ(x) is irreducible over Fp; and h(x) = φ(x)a − p.y be a factor

of f(x) mod pk of transcendence degree a ≤ e, for a polynomial y. Then, h(x) divides

f(x) over Z/pkZ if and only if

E = f(x)·(φ(x)a(k−1)+φ(x)a(k−2)(py)+. . .+φ(x)a(py)k−2+(py)k−1) ≡ 0 mod 〈pk, φ(x)ak〉.

[Dwi22] further reduces this to root finding of a system of polynomials over

Z[z]/〈pk, φ(z)〉. Our algorithm of HNpk from Chapter 5 can thus be used to roots

over Galois rings and thereby recover small degree factors of f(x) mod pk.

Chapter 7

Conclusions

The problems give some interesting consequences for finding factors of polynomials

modulo pk. However, it is still open to find any factor of f(x) mod pk, and progress

on this would generalize Hensel’s lifting for any factor. A slightly weaker problem

would be to find constant degree roots of f(x) mod pk for large k.

Furthermore, the first algorithm of Chapter 3 finds roots of an n-variate d-degree

polynomial f(x) mod pk for small d, n, log p while that of Chapter 5 does the same for

constant n, k. This naturally gives rise to the question of finding roots for constant

n, where d, k, log p can be arbitrarily large.

References

[BLQ13] Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. “Polyno-
mial root finding over local rings and application to error correcting
codes”. In: Applicable Algebra in Engineering, Communication and Com-
puting 24.6 (2013), pp. 413–443.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory. Vol. 1. Cam-
bridge, MA: MIT Press, 1996.

[Buc65] Bruno Buchberger. “Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal”. PhD
thesis. Universität Innsbruck, 1965.

[CDS22] Sayak Chakrabarti, Ashish Dwivedi, and Nitin Saxena. “Factoring mod-
ular polynomials via Hilbert’s Nullstellensatz”. submitted. 2022.

[Che+19] Qi Cheng et al. “Counting roots for polynomials modulo prime powers”.
In: The Open Book Series 2.1 (2019), pp. 191–205.

[CLO13] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algo-
rithms: an introduction to computational algebraic geometry and com-
mutative algebra. Springer Science & Business Media, Switzerland, 2013.

[CS22] Sayak Chakrabarti and Nitin Saxena. “Describing the roots of multivari-
ates mod pk and efficient computation of Igusa’s local zeta function”.
submitted. 2022.

[CZ81] David G Cantor and Hans Zassenhaus. “A new algorithm for factoring
polynomials over finite fields”. In: Mathematics of Computation 36.154
(1981), pp. 587–592.

[Den84] Jan Denef. “The rationality of the Poincaré series associated to the p-
adic points on a variety”. In: Invent. math 77.1 (1984), pp. 1–23.

[DMS19] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. “Counting Basic-Irreducible
Factors Mod pk in Deterministic Poly-Time and p-Adic Applications”. In:
Proceedings of 34th Computational Complexity Conference (CCC 2019).
Springer, 2019, 15:1–15:29.

[DMS21] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. “Efficiently factoring
polynomials modulo p4”. In: Journal of Symbolic Computation 104 (2021).
Preliminary version appeared in The 44th ACM International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC) 2019, pp. 805–
823.

https://www.cse.iitk.ac.in/users/nitin/papers/HNpk.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/HNpk.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/IZF-n-var.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/IZF-n-var.pdf
https://doi.org/10.1145/3326229.3326233

77

[DS20] Ashish Dwivedi and Nitin Saxena. “Computing Igusa’s local zeta func-
tion of univariates in deterministic polynomial-time”. In: 14th Algorith-
mic Number Theory Symposium (ANTS XIV), Open Book Series 4.1
(2020), pp. 197–214.

[Dwi17] Ashish Dwivedi. “On the Complexity of Hilbert’s Nullstellensatz over
Positive Characteristic”. M.Tech Thesis, Indian Institute of Technilogy,
Kanpur, India. 2017.

[Dwi22] Ashish Dwivedi. “Polynomials over composites: Compact root represen-
tation via ideals and algorithmic consequences”. PhD thesis. Indian In-
stitute of Technology, Kanpur, India, 2022.

[GCM21] Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal. “On Algorithms
to Find p-ordering”. In: Conference on Algorithms and Discrete Applied
Mathematics. Springer. 2021, pp. 333–345.

[GH96] Joachim van zur Gathen and Silke Hartlieb. Factorization of polyno-
mials modulo small prime powers. Tech. rep. University of Paderborn,
Germany, 1996, pp. 1–11.

[GH98] Joachim von zur Gathen and Silke Hartlieb. “Factoring Modular Polyno-
mials”. In: J. Symb. Comput. 26.5 (1998). Prelimiary version in ISSAC
1996, pp. 583–606.

[Gou97] Fernando Q Gouvêa. p-adic Numbers. Springer Berlin, Heidelberg, Ger-
many, 1997.

[GTZ88] Patrizia Gianni, Barry Trager, and Gail Zacharias. “Gröbner bases and
primary decomposition of polynomial ideals”. In: Journal of Symbolic
Computation 6.2-3 (1988), pp. 149–167.

[Hen18] Kurt Hensel. “Eine neue Theorie der algebraischen Zahlen”. In: Mathe-
matische Zeitschrift 2.3 (1918), pp. 433–452.

[HW99] M-D Huang and Y-C Wong. “Solvability of systems of polynomial con-
gruences modulo a large prime”. In: computational complexity 8.3 (1999),
pp. 227–257.

[Igu07] Jun-ichi Igusa. An introduction to the theory of local zeta functions.
Vol. 14. American Mathematical Soc., Rhode Island, USA, 2007.

[Igu74] Jun-ichi Igusa. “Complex powers and asymptotic expansions. I. Func-
tions of certain types.” In: Journal für die reine und angewandte Math-
ematik (1974).

[Igu77] Jun-Ichi Igusa. “Some observations on higher degree characters”. In:
American Journal of Mathematics 99.2 (1977), pp. 393–417.

[Kal85] Erich Kaltofen. “Polynomial-time reductions from multivariate to bi-and
univariate integral polynomial factorization”. In: SIAM Journal on Com-
puting 14.2 (1985), pp. 469–489.

[Kob12] Neal Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. Vol. 58.
Springer-Verlag, New York, USA, 2012.

78

[KT90] Erich Kaltofen and Barry M Trager. “Computing with polynomials given
byblack boxes for their evaluations: Greatest common divisors, factoriza-
tion, separation of numerators and denominators”. In: Journal of Sym-
bolic Computation 9.3 (1990), pp. 301–320.

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and
their applications. Cambridge university press, Cambridge, UK, 1994.

[McD74] Bernard R McDonald. Finite rings with identity. Vol. 28. Marcel Dekker
Incorporated, New York, USA, 1974.

[Moo93] E Hastings Moore. “A doubly-infinite system of simple groups”. In: Bul-
letin of the American Mathematical Society 3.3 (1893), pp. 73–78.

[NRS17] Vincent Neiger, Johan Rosenkilde, and Éric Schost. “Fast computation
of the roots of polynomials over the ring of power series”. In: Proceedings
of the 2017 ACM on International Symposium on Symbolic and Algebraic
Computation. 2017, pp. 349–356.

[Pan95] Peter N Panayi. “Computation of Leopoldt’s P-adic regulator.” PhD
thesis. University of East Anglia, Norwich, England, 1995.

[Sch74] Wolfgang M Schmidt. “A lower bound for the number of solutions of
equations over finite fields”. In: Journal of Number Theory 6.6 (1974),
pp. 448–480.

[Sir17] Carlo Sircana. “Factorization of polynomials over Z/(pn)”. In: Proceed-
ings of the 2017 ACM on International Symposium on Symbolic and
Algebraic Computation. 2017, pp. 405–412.

	Acknowledgements
	List of Publications
	Introduction
	Preliminaries
	Notations
	Basic algebra and algebraic geometry
	Factorization modulo prime powers
	Root finding of univariates -5mumod5mu-pk

	Describing the roots of multivariates modulo prime powers
	Overview of the algorithm
	Degree reduction: Polynomial after lifting
	Structure of polynomial via val-mult=d1 roots
	Create-Walk() subroutine: Completion of the algorithm
	Generalization to n-variates

	Computing the Igusa's Local Zeta Function
	Describing the roots over Zp
	Computing the Igusa's local zeta function

	Solvability of system of polynomial equations over Galois rings
	Overview of the algorithm
	Mapping Fp roots to Zp roots
	Recovering a G-root of an ideal in L and T (of Algorithm 5)
	Correctness of HNpk

	Constant degree roots
	Conclusions
	References

