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Abstract

Name of the student: Sayak Chakrabarti Roll No: 170648
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Project supervisor: Prof. Nitin Saxena

Month and year of Project submission: December 11, 2020

Factorization and root finding are fundamental problems in mathematics and com-

puter algebra. It has some algorithms developed over fields like finite fields, rationals,

p-adics etc. However this gets more difficult when we consider rings, in our case of

the form of modulo prime powers, where the number of roots as well as factors might

become exponential. For example the polynomial x2 + px mod p2 has all multiples

of p as its roots, which is exponentially many (exponential in log p)! The natural

question arises of how to find or count all the roots or find factorizations. Further-

more since rings do not have the same ”nice” properties that fields have the problem

of finding roots/factors becomes increasingly difficult modulo higher powers of p. In

this article we explore problems of factorization and root finding, and present an

overview of current state of the art in research and explore ideas to possibly ex-

tend the already established results. Existence of roots is a problem explored in

Hilbert’s Nullstellensatz as well. So we explain algebraic geometric techniques and

Hilbert’s Nullstellensatz in this article as they might lead to progress related to root

finding/counting as well.
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Chapter 1

Introduction

Factorization of polynomials and root finding have been important questions to

computer scientists and mathematicians. There has been extensive work on these

fields since the late 20th century. Factorization in finite fields has been achieved in

[2, 3, 5, 14].

However rings create more problems as they are not unique factorization domains.

In order to find a factorization we Hensel’s lifing. But this is not possible for every

polynomial. Hensel’s lifting and its obstructions has been presented in Chapter 3.

In that chapter we also give an algorithm due to [4, 9], and explained in greater

detail in Chapter 5, which gives us a compact way to find and store exponentially

many roots modulo powers of prime p of a polynomial in randomized polynomial

time (polynomial in degree of f , k and log p).

Next we describe Hilbert’s Nullstellensatz in Chapter 4. In Chapter 5, we describe

an algorithm to factorize polynomials in rings of the form Z/pkZ for k ≤ 4 which was

presented in [9]. Then we describe an algorithm to count all the roots, which can be

extended to counting basic irreducible factors, that are basically those irreducible

factors of f modulo pk which remain irreducible mod p from [8]. Based on these

1



Chapter 1: Introduction 2

we discuss some possible approaches and future work that can be done to obtain

new results in Chapter 6.



Chapter 2

Preliminaries

We will mainly work in rings of the form Z/pkZ, where p is a prime and k ∈ N.

Let R(+, .) be a ring and S be a subset of R. We define the following notation for

a ∈ R as:

• a.S = {a.s|s ∈ S}

• a+ s = {a+ s|s ∈ S}

We will also use the notation [n] to denote the set {1, 2, . . . n}.

Throughout this article, p will be considered to be a prime number unless specified.

2.1 Basic Algebraic Geometry

We are now going to describe some algebraic geometry terminologies and definitions.

For a field k, we define affine space as follows:

An
k = {(c1, c2, . . . cn)|ci ∈ k} (2.1)

3
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Now if S ⊂ k[x1, x2, . . . xn] be a collection of polynomials, the ideal generated by

elements of S is called IS. We define the affine variety as:

V (S) = {(v1, v2, . . . vn) ∈ An
k |p(v1, v2, . . . vn) = 0 ∀p ∈ S} (2.2)

It directly follows that V (S) = V (IS).

We also define an ideal I over a zero set V ⊆ kn as

I(V ) = {f ∈ k[x1, x2, . . . xn]|f(a) = 0 ∀a ∈ V } (2.3)

Now we define the projective space. Intuitively it is a space such that we include the

line of intersection of two parallel lines (that do not intersect in the affine space).

Again for a field k, a projective space is defined as

Pnk =
kn+1 − 0̄

∼
(2.4)

where ∼ is the equivalence relation defined by ā = b̄ if and only if ∀i ∈ [n], ai = λbi

for some non-zero λ ∈ k. More related facts and definitions can be found in [CITE].

We also define radical of an ideal I, denoted as
√
I given by:

√
I = {f ∈ k[x1, x2, . . . xn]|∃m ∈ N; fm ∈ I} (2.5)

It can be shown that radical of an ideal is also an ideal.

Now, for any two ideals a, b ∈ k[x1, x2, . . . xn], Zariski Topology states that a ⊆

b =⇒ V (a) ⊇ V (b).

Lemma 2.1. The following relations hold true:

1. V (φ) = kn, V (k[x1, . . . xn]) = φ

2. V (ab) = V (a ∩ b) = V (a) ∪ V (b)
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3. V (
∑

i∈I ai) =
⋂
i∈I V (ai) for a family of ideals (ai)i∈I

Proofs of these can be found in [17].

2.2 Representatives

We define the notation ∗ to represent an entire ring R. For example, when we

consider R of the form Z/pkZ, for a prime p and a positive integer k, and write an

element in the form y = y0 + y1p + y2p
2 + . . . ymp

m + pm+1∗ for yi ∈ Z/pZ ∀i ∈

{0, 1, . . .m}, it refers to the set Sy ⊆ R such that

Sy = {y0 + y1p+ . . . ymp
m + zm+1p

m+1 + . . . zk−1p
k−1|zm+1, zm+2, . . . zk−1 ∈ R/〈p〉}

(2.6)

This is basically a collection (exponentially many) of elements from Z/pkZ which

has some fixed part denoted by the yi’s, and then all the elements from Z/pk−m−1Z.

We will sometimes write this as y = β + pm+1∗ where β is the fixed part. More

explanation about representatives can be found in [9]. We will also denote this as

the tuple (β,m+ 1).

Definition 2.2 (Representative Root). For a polynomial f(x) ∈ Z/pkZ[x] and

r = β + pi∗, for some natural number i ≤ k − 1 and β ∈ Z/piZ, r is called a

representative root of f(x) if ∀a ∈ r, we have f(a) ≡ 0 mod pk. This also means

that β + piy is a root of f(x) mod pk ∀y ∈ Z/pk−iZ

2.3 Split Ideals

First we define zero divisors in the ring of polynomials R[x] where R = Z/pkZ to be

the polynomials f(x) such that f(x) ≡ 0 mod p.
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The concept zero set of a polynomial or a set of polynomials in the ring R is same

as a variety. For S ⊆ R[x̄] we define the zero set as

ZR(S) = {v̄ ∈ Rn|p(v̄) ≡ 0 mod pk ∀p ∈ S} (2.7)

In Chapter 6, we will extensively use the concept of split ideals, to be defined

in this section. The main work will be done with polynomials ideals of the form

I = 〈h0(x0), h1(x̄1), h2(x̄2), . . . hl(x̄l)〉 with each hi(x̄i) ∈ Fp[x̄i] where x̄i denotes the

set of variables {x0, x1, . . . xi}. We will also add another property to this ideal that

∀i ∈ [l + 1] if ā ∈ ZFp〈h0(x0), h1(x̄1), h2(x̄2), . . . hi−1(x̄i−1)〉, then the polynomial

hi(ā, xi) splits completely into distinct linear factors.

Definition 2.3. Given a polynomial f(x) ∈ R[x] and an ideal I ⊆ F[x̄l], we call I

a split ideal wrt f mod pk if

1. I is a triangular ideal of length l+ 1, i.e. I = 〈h0(x0), h1(x̄1), h2(x̄2), . . . hl(x̄l)〉

for some 0 ≤ l ≤ k − 1, and hi(xi) ∈ Fp[x̄i] ∀i ∈ {0, 1, 2, . . . l}

2. |ZFp(I)| = Πl
i=0degxi(hi)

3. for every (a0, a1, . . . al) ∈ ZFp(I), we have f(a0 + a1p+ . . . alp
l) ≡ 0 mod pl+1

Also, the length of I is l + 1 and its degree is deg(I) = Πl
i=0degxi(hi)

Now note that the split ideal contains a notion of the roots of f(x) mod pl+1. Since

the roots are present in the zero set of the triangular ideal, it is in some sense, a

product of all the possible coordinates that can appear in the p-adic expansion of a

root of f(x) in R/〈pl+1〉.

Lemma 2.4 ([8]). If Il = 〈h0(x0), h1(x̄1), h2(x̄2), . . . hl(x̄l)〉 is a split ideal in Fp[x̄l],

then Ij = 〈h0(x0), h1(x̄1), h2(x̄2), . . . hj(x̄j)〉 is also a split ideal in Fp[x̄j] for every

0 ≤ j ≤ l.
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Lemma 2.5 ([8]). A split ideal I ⊆ Fp[x̄l] can be decomposed as I = eā∈ZFp(I)
Iā,

where Iā = 〈(x − a0), (x − a1), . . . (x − al)〉 such that ā = (a0, a1, . . . al). Also by

Chinese Remainder Theorem, we have R/I =
⊕

ā∈ZFp (I)R/Iā.

The proofs of these lemmas can be found in [8].



Chapter 3

Hensel’s lifting and Representative

roots

Hensel’s lifting was given by Kurt Hensel to ”lift” a factorization given modulo a

prime ideal to modulo higher powers of that ideal. In our case we will only deal with

the ideal being 〈p〉Z and lifting to modulo pk for integers k ≥ 1. We will describe

a few properties related to polynomials in rings of the form Z/pkZ. For further

reading, we refer the reader to [1].

Lemma 3.1. A polynomial f(x) ∈ Z[x] can be uniquely written in the form f(x) =

a(x) + p.g(x) for a prime p, where a(x) ∈ Z/pZ.

Proof. The proof directly follows from the fact that f(x) =
∑

i cix
i =

∑
i((ci

mod p)xi) +
∑

i(ci − (ci mod p))xi and Z/pZ being an integral domain, implying

uniqueness.

Lemma 3.2. A polynomial f(x) ∈ Z/pkZ[x] is an unit if and only if f(x) can be

written as f(x) = a+ p.g(x) where a ∈ F×p .

8
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Proof. If f(x) is an unit, it can be written as f(x) = a(x) + p.g(x) by Lemma

3.1. Now since this is an unit, there must be an inverse f(x)−1 written in the form

a′(x)+pg′(x), product of which is one. By taking the product modulo p, we get that

a(x)a′(x) = 1. Now since both a, a′ are polynomials, there degree can not decrease

after multiplication, and hence must be constants. So we get a(x) ∈ F×p .

For the converse, we find an inverse of f(x) = a + p.g(x) for a ∈ F×p . Applying

binomial theorem, we write (a + p.g(x))−1 = a−1(1 + p(a−1g(x))). Now using the

expansion (1 + x)−1 = 1 − x + x2 − . . . , we get f(x)−1 = a−1(1 − p(a−1g(x)) +

p2(a−1g(x))2 − · · · + (−1)k−1(a−1g(x))k−1). It can be checked that f(x)−1f(x) is

indeed 1 over Z/pkZ[x].

Based on these we present Hensel’s lemma, which gives us a technique to lift factor-

izations of certain kinds of polynomials from modulo p to modulo pk.

Theorem 3.3. Let f, g, h ∈ Z[x] be polynomials such that f(x) ≡ g(x)h(x) mod p,

and gcd(g(x) mod p, h(x) mod p) = 1 in Z/pZ[x], then there exists polynomials

(referred to as ”lifts”) g̃, h̃ ∈ Z[x] such that f(x) ≡ g̃(x)h̃(x) mod pk ∀k ∈ N, and

g̃ ≡ g mod p, h̃ ≡ h mod p.

Proof. We give an algorithm to prove this, which has also been explained in [1].

Since gcd of g, h over Fp is one, ∃λ, µ ∈ Fp[x] such that λg + µh ≡ 1 mod p. From

this we iteratively construct a factorization of f modulo higher powers of p as follows.

The proof of correctness is by induction on i. At every step, each of the factors are

Algorithm 1 Hensel’s Lifting

1: for i ∈ 2, 3, . . . k do
2: q := f−gh

pi−1 mod p
3: u := qµ
4: v := qλ
5: g := g + pi−1u
6: h := h+ pi−1v

7: return g̃ = g, h̃ = h
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congruent to the previous factor modulo p. Suppose after update at ith step, g, h

were gi−1, hi−1, and become updated to g̃, h̃ respectively. Then we have f − g̃g̃ ≡

f − (gi−1 + pi−1u)(hi−1 + pi−1v) mod pi. From this, if we substitute the values of

u, v and consider the fact that gi−1, hi−1 are coprime modulo p (since λg + µh ≡ 1

mod p), we can show that this expression is zero modulo pi. It can also be shown

that g̃, h̃ are coprime over p, and the corresponding λ and µ can be found. For the

complete proof, we refer the reader to [1].

Corollary 3.4. Hensel’s lifting is unique upto multiplication by units.

However note that Hensel’s lifting can not proceed if g, h has some non-trivial gcd

modulo p. This basically means that f(x) mod p is a perfect power of some irre-

ducible. [10] gives an analysis of the difficulties we face in this case. We now show

a method from [11] which shows some of the conditions that need to be satisfied in

order to lift.

Theorem 3.5 ([11]). Let f ≡ gh mod pk such that f ≡ φ` mod p, where φ is an

irreducible polynomial modulo p, and e ≤ `/2 such that g ≡ φe mod p, h ≡ φ`−e

mod p. Then the following are equivalent:

1. f−gh
pk
∈ Z[x] and divisible by ge over modulo p

2. For every ψ ∈ Z[x] with deg(ψ) < deg(g), there is a polynomial θ ∈ Z[x] with

deg(θ) < deg(h) such that f ≡ (g + pkψ)(h+ pkθ) mod pk+1

3. There exist polynomials ψ, θ ∈ Z[x], with deg(ψ) < deg(g), deg(θ) < deg(h)

such that f ≡ (g + pkψ)(h+ pkθ) mod pk+1

4. There exist polynomials ψ, θ ∈ Z[x] with f ≡ (g + pkψ)(h+ pkθ) mod pk+1

Proof. (i) =⇒ (ii) Let f−gh
pk
≡ φeα mod p for some α ∈ Z[x], and ψ, θ ∈ Z[x], with

deg(ψ) < deg(g). Let θ ≡ α− g`−2eψ mod p. Then, using the fact that e ≤ `/2, we
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can show that f − (g + pkψ)(h+ pkθ) ≡ 0 mod pk+1.

(ii) =⇒ (iii) =⇒ (iv) is directly follows. Now, we are required to show (iv) =⇒

(i). Let ψ, θ ∈ Z[x] with f ≡ (g + pkψ)(h+ pkθ) mod pk+1. Then we have

f − gh
pk

≡ ψg + θh ≡ ψg`−e + θge ≡ g2(ψg`−2e + θ) mod p

This proves the theorem.

From these we see that if the polynomial to be factored is not a power of some

irreducible modulo p, then we can lift it to modulo any pk. There will be unique fac-

tors (unique upto multiplication by units) and there is an one-one correspondence

of roots modulo p with roots modulo pk. However the more difficult case is left,

when we have f ≡ φ` mod p for some polynomial φ(x) irreducible modulo p. There

have been some attempts to factorize polynomials of this form [19, 9], the best being

[9], which achieved factorization up to modulo p4. We will describe this in greater

details in Chapter 5.

We had defined representatives in Section 2.2 which represents exponentially many

elements in Z/pkZ in polynomial space (polynomial in k, log p). Similarly representa-

tive root was defined in Definition 2.2. Motivation for defining roots of a polynomial

in this way was from the fact that a polynomial might have exponentially many

roots in a ring. For example x2 +px mod p2 has roots which are all the multiples of

p, i.e. 2log p-many roots! We can also write this as the representative root p∗. This

was first introduced in [18].

Theorem 3.6 ([4]). A polynomial f(x) of degree d has at most d-many representa-

tive roots modulo a prime power pk.
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Based on this result, [9] developed an algorithm to find all the roots of a polynomial

modulo any prime power in randomized polynomial time.

Algorithm 2 Find roots modulo pk

1: procedure ROOT-FIND(g(x), pi)
2: if g(x) ≡ 0 mod pi OR i ≤ 0 then return {∗}
3: g(x) ≡ pαg̃(x) mod pi for α ∈ N, g̃ ∈ Z[x] such that g̃(x) 6≡ 0 mod p
4: R = roots of g̃(x) mod p using Cantor Zassenhaus algorithm
5: if R == φ then return {} (Dead-end)

6: S := φ
7: for each root a ∈ R do
8: g̃a(x) := g̃(a+ px)
9: T =ROOT-FIND(g̃a(x), pi−α)
10: S = S ∪ (a+ pT )

11: return S

This algorithm can be further extended to finding roots of a polynomial f(y) ∈

Z[x]/〈p, φk〉 for some polynomial φk, irreducible modulo p.



Chapter 4

Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz is a theorem that links geometry with algebra. Nullstellen-

satz in German means ”theorem of zeroes”, and this theorem establishes a connection

between existence of zeroes of a system of polynomials with ideals of polynomials in

algebraically closed fields. This is a computational problem to determine efficiently

if Hilbert’s Nullstellensatz certificates can be found (and hence decide if a system of

polynomials has a common zero). For more details we refer the reader to [13].

Throughout this chapter, we will denote K as an algebraically closed field.

In mathematics, a fundamental question is the Consistency Question. Given a set

of polynomials f1, f2, . . . fm ∈ K[x1, x2, . . . xn] and the ideal I generated by them,

the consistency question asks if V (I) = φ. For the decidability of this question,

Weak Hilbert’s Nullstellensatz (WHN) gives a certificate for this. The theorem can

be stated as follows:

Theorem 4.1 (WHN). For an ideal I ⊆ K[x1, x2, . . . xn], V (I) = φ ⇐⇒ 1 ∈ I.

Theorem 4.1 also means the existence of polynomials g1, g2, . . . gm ∈ K[x1, x2, . . . xn]

such that f1g1 + f2g2 + . . . fmgm = 1. These polynomials gi’s are referred to as

13
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Nullstellensatz certificates. In order to prove Theorem 4.1 we state some more

theorems and lemmas. The next theorem is called Strong Hilbert’s Nullstellensatz

(SHN).

Theorem 4.2 (SHN). For every ideal I ∈ K[x1, x2, . . . xn],
√
I = I(V (I)).

Another theorem required is the Extension Theorem, stated as follows

Theorem 4.3 (Extension Theorem). Let I = 〈f1, f2, . . . fm〉 ⊂ K[x1, x2, . . . xn] such

that ∃i with fi having highest degree term wrt xn as a non-zero constant in K, and

J = I ∩ K[x1, x2, . . . xn−1]. If (a1, a2, . . . an−1) ∈ V (J) then ∃an ∈ K such that

(a1, a2, . . . an) ∈ V (I).

Proof. Proof of Theorem 4.3 requires the idea of resultants. Basically, when we

have two polynomials f, g ∈ (F [x1, x2, . . . xn−1])[xn], for a field F , we can write the

linear equation af + bg for a, b ∈ (F [x1, x2, . . . xn−1])[xn] for degxn(a) < degxn(g)

and degxn(b) < degxn(f). Now considering the coefficients of powers of xn in a, b

(which are in F [x1, x2, . . . xn−1]) and writing them as a column vector A, we can find

a matrix (from linear equations corresponding to each power of xn), S, such that

af + bg = SA. This matrix S is called the Sylvester matrix and resultant of f, g wrt

xn is defined as Resxn(f, g) = det(S).

From the definition, it is clear that Resxn ∈ (f, g). We also have the fact that

Resn(f, g) = 0 if and only if gcdx2(f, g) is not trivial.

Also, if ā = (a1, . . . an−1) ∈ F n−1 then Resxn(f, g) = lcd(g)Resxn(f(ā, xn), g(ā, xn)) ,

where cd(g) is the degree drop of g, given by degxn(g(x1, . . . xn))− degxn(g(ā, xn)).

More properties of resultants are available at [13]. With this notion of resultant

established, we give the proof of Theorem 4.3, which is due to [7]. Denote ā =

(a1, a2, . . . an−1) ∈ V (J) and consider the homomorphism K[x1, x2, . . . xn] → K[xn]

given by f(x1, x2, . . . xn) 7→ f(ā, xn). Let I ′ = {f(ā, xn|f ∈ I)} ⊆ K[xn]. Now,
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since I ′ is a PID, ∃f ′ such that I ′ = 〈f ′〉. Here f can either be a constant or a

non-constant polynomial.

If f is not a constant, then ∃an ∈ K such that f ′(an) = 0 (since K is algebraically

closed). From this we get (ā, an) ∈ V (I). So it we choose any ā from V (J) and

using the homomorphism and then considering the corresponding I ′, we can choose

an an as required.

Now, let f is a constant, say b ∈ K. We are given that fi has leading coefficient wrt xn

as c ∈ K. Also there must be a polynomial f ′′ ∈ I such that f ′′(ā, xn) = f ′(xn) = b.

Let r(x1, x2, . . . xn−1) = Resxn(fi, f
′′). Now since resultant is contained in the ideal

generated by the two polynomials, we have r ∈ J . Hence r(ā) = 0 as ā ∈ V (J).

We prove using properties of resultants, that this can not be true. We indeed have

r(a) = cdegxn (f ′)(fi(ā, xn), b) as degree drop of f ′ is degxn(f ′). Now fi(ā, xn), b) is

non-zero as a constant can not have a non-trivial gcd with a polynomial over a field.

Hence this is a contradiction and f ′ can not be constant.

Proof of WHN. Note that one direction given by 1 ∈ I =⇒ V (I) = φ is trivial.

Since 1 ∈ I, ∃g1, g2, . . . gm ∈ K[x1, . . . xn], g1f1 + · · · + gmfm = 1. Now, if V (I) is

not empty, ∃ā ∈ V (I) such that fi(ā) = 0 ∀i ∈ [m].

For the other direction, i.e. V (I) = φ =⇒ 1 ∈ I, we prove by induction on the

number of variables, n.

For base case n = 1, it follows from the fact that an ideal formed from univariate

polynomials is a PID generated by their gcd, and since they do not have any common

factors, the gcd must be trivial. Hence 1 ∈ I.

Now suppose this implication holds for n−1 variables. If any of the fi’s are constant

then we are done. So we can assume that they are non-constant with degree in xn of

fi being di. We now want to exploit Theorem 4.3. Choose some z1, z2, . . . zn−1 ∈ K
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and apply the linear transformation

xn = yn

xn−1 = yn−1 + zn−1yn

...

x1 = y1 + z1yn

So fi(x1, . . . xn) can be written as gi(z1, z2, . . . zn−1)ydin +(lower degree terms in yn) =

f ′i(y1, y2, . . . yn), where zj’s are seen as constants. Now, we can choose some (z1, . . . zn)

such that gi(z1, z2, . . . zn) is non-zero. Notice that if 1 ∈ I then 1 ∈ 〈f ′1, . . . f ′m〉,

and vice versa, as well as we are just taking a linear transformation of the co-

ordinates. Suppose I ′ = 〈f ′1, . . . f ′m〉 and J = K[y1, . . . yn−1] ∩ I ′. We also have

V (I) = φ =⇒ V (I ′) = φ, and V (I ′) = φ =⇒ V (J) = φ, as if V (J) as not non-

empty, then neither would V (I)′ be, by Extension Theorem. Hence by induction

hypothesis, 1 ∈ J , and since J ⊂ I =⇒ 1 ∈ I ′ =⇒ 1 ∈ I.

This completes the proof of WHN.

Now in order to prove SHN, we show that SHN and WHN are same. This part of

the proof is from [20].

First note that
√
I ⊆ I(V (I)) is trivial as, if some polynomial f has a root, then fm

has the same root as well.

Lemma 4.4 (SHN =⇒ WHN). For an ideal I, I(V (I)) ⊆
√
I, V (I) = φ =⇒ 1 ∈

I.

Proof. We have V (I) = φ and I(φ) = K[x1, . . . xn]. Now by SHN, I(V (I)) ⊆
√
I =⇒ 1 ∈

√
I. Now ∃d ∈ N such that 1d ∈ I, i.e. 1 ∈ I.
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Lemma 4.5 (WHN =⇒ SHN). For an ideal I, (V (I) = φ =⇒ 1 ∈ I) =⇒

I(V (I)) ⊆
√
I.

Proof. First we take an arbitrary polynomial f ∈ I(V (I)) and proceed to show that

f ∈
√
I, by showing the existence of d ∈ N such that fd =

∑
i∈[m] qifi.

Consider g = 1 − yf(x1, x2, . . . xn) and look at the ideal I ′ = 〈f1, . . . fm, g〉 ⊆

K[x1, . . . xn, y]. Notice that whenever f is zero, g is non-zero, and since V (I) ⊆

V (
√
I) (from Zariski Topology) and g′ is non-zero whenever all of fi’s are zero, we

have V (I ′) = φ. Now WHN implies 1 ∈ I ′. So ∃q′1, . . . q′m, q ∈ K[x1, x2, . . . xn, y], such

that
∑

i∈[m] q
′
ifi+qg = 1. Using this identity over K(x1, . . . xn)[y], we substitute y =

1
f(x1,...xn)

(for which g is zero) and hence get 1 =
∑

i∈[m] q
′
i(x1, . . . xm,

1
f(x1,...xn)

)fi(x1).

Now, if D = max{degy(qi(x1, . . . xn, y))|i ∈ [m]}, we can multiply both sides by

fD to get fD =
∑

i∈[m](q
′
i(x1, . . . xn,

1
f
)fDfi) where each of qi(x1, . . . xm,

1
f
)fD ∈

K[x1, . . . xn]. This implies ∀f ∈ I(V (I)), f ∈
√
I, and hence I(V (I)) ⊆

√
I. Both

this and
√
I ⊆ I(V (I)) prove SHN.

Based on these results, the main question in computer science and computational

mathematics is to find these Nullstellensatz certificates. Another question is the

ideal membership problem, which asks if a given polynomial is present in the ideal

generated by a set of polynomials. Hilbert’s Nullstellensatz is a special case of this

which asks if 1 is present in the ideal. A way to solve for HN certificates can be found

in [6] where they gave an algorithm based on solving simultaneous linear equations.

[15] proved that HN is in polynomial hierarchy, and under Generalized Reimann

Hypothesis, it is actually in AM; while [12] proved that HN is in AM ∩ coAM under

GRH.



Chapter 5

Factorization of polynomials

modulo p4

Polynomial factorization in fields has been studied extensively by computer scientists

and mathematicians. Some of the randomized poly-time methods for factorization

of polynomials in fields are [16] over rationals, [2], [3], [5], [14] over finite fields etc.

However since rings are not unique factorization domains, polynomial factorization

is relatively difficult. In this chapter, we present the techniques of polynomial fac-

torization in rings of the form Z/pkZ for k ≤ 4 given by [9]. Previously [19] had

given an algorithm for factorization unto k = 3, but [9] has the best results until

now.

5.1 Main Idea

The main theorem of this chapter is:

Theorem 5.1 ([9]). Let p be a prime and k ≤ 4 be an integer. Given a polynomial

f(x) ∈ Z, we can factorize f(x) mod pk in randomized poly(deg(f), log p)-time.

18
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We give an algorithm due to [9] to find a factorization and prove its correctness to

show that Theorem 5.1 holds true. Note that if f is not a power of an irreducible

modulo p then we can find two factors such that they do not have any non-trivial gcd.

This implies that for every factorization mod p, there exists at most one unique

lift. So we deal with only the case of f being a power of an irreducible modulo p.

This can be seen as a generalization of Hensel’s lemma upto modulo p4.

We assume that f(x) ≡ φ(x)` mod p for some φ(x) ∈ Z[x] such that φ mod p is

irreducible. Note that a factor of f(x) mod pk will be of the form φa − py mod pk

for some y ∈ (Z/pkZ)[x]. With this observation, we intend to reduce factorization to

that of root finding of some polynomial E(y) ∈ (Z[x])[y] to find the value of y and

hence the factor φa − py. We will later prove that this root finding need to be done

in a local ring of the form Z/〈pk, φak〉. The method of obtaining such an E(y) has

been inspired by binomial theorem and the fact that (1− x)−1 = 1 + x + x2 + . . . ,

which is quite like Lemma 3.2. We consider the expansion of f(x)/(φa − py) and

while considering mod pk, we want it to be divisible by φak.

In this problem we will consider the value of y in a ”sort of” p-adic expansion, decom-

posing the root of E(y) mod 〈pk, φak〉 into coordinates y0, y1, . . . yk−1 ∈ Fp[x]/〈φak〉

such that y = y0 + y1p + . . . yk−1p
k−1 mod 〈pk, φak〉. We will later show that the

root does not depend on the last two coordinates and for the case of k = 4, we can

write E(y) as E ′(y0, y1) in the ring Fp[x]/〈φ4a〉 and the roots can be found from a

modification of Algorithm 2.

We also write each yi as yi = yi,0 + yi,1φ + . . . yi,4a−1φ
4a−1 and write E ′(y0, y1) as

the sum of two univariates to apply root finding. This method of decomposing to

coordinates is a very strong one and the tool will be used to cound the number of

roots and basic irreducible factors in Chapter 6 as well.
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5.2 Towards the Algorithm

We want to establish an algorithm to factorize a polynomial f(x) mod pk of degree

d. It has been shown how we can assume f(x) ≡ φ` mod p for some irreducible

polynomial φ such that `deg(φ) ≤ deg(f) without any loss of generality. So f(x) is

of the form φ` + pg mod pk for some g(x) ∈ Z[x].

First we reduce the problem of factorization to that of root finding of some other

polynmial depending on f in a local ring.

5.2.1 Reduction to root-finding

We want to find a factor h of f ≡ φ` + pg mod pk where h ≡ φa − py for a < ` and

y ∈ (Z/pkZ)[x].

We will denote the ring Z[x]/〈pk, φak〉 by R and Fp[x]/〈φak〉 as R0. Consider the

polynomial E(y) ∈ R[y]

E(y) = f(x)(φa(k−1) + φa(k−2)(py) + · · ·+ φa(py)k−2 + (py)k−1) (5.1)

Using E(y), we reduce factoring f mod pk to root finding as given by the following

theorem.

Theorem 5.2 ([9]). Let f(x), h(x) ∈ Z[x] such that f ≡ φ` + pg mod pk and

h(x) ≡ φa − py mod pk, where y, g ∈ (Z/pkZ)[x] and a ≤ `, then h(x) divides f(x)

modulo pk if and only if

E(y) ≡ 0 mod 〈pk, φak〉 (5.2)

Proof. We denote Q as the ring of fractions of (Z/pkZ)[x]. Now since φ is not a

zero divisor (as otherwise we could just consider f(x) as f(x)/p until φ is not a zero

divisor), we have E(y)/φak ∈ Q. We prove this theorem starting from the reverse
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direction.

Indeed if E(y) ≡ 0 mod 〈pk, φak〉, then E(y)/φak is a valid polynomial over (Z/pkZ)[x].

Multiplying E(y)/φak mod pk with h ≡ φa − py mod pk, we get

(φa−py)E(y)/φak ≡ f(x)/φak(φa−pu)(
k−1∑
i=0

φa(k−i−1)(py)i) ≡ (f/φak)(φak−(py)k) ≡ f mod pk

This implies that h(x) divides f(x) modulo pk.

Now for the other direction. Suppose f(x) ≡ h(x)h0(x) mod pk for some polyno-

mial h0(x) ∈ Z[x]. We also have, from the proof of the reverse direction f(x) ≡

(E(y)/φak)h(x). Subtracting the equations of these two factorizations, we get

h(x)(g(x)− E(y)/φak) ≡ 0 mod pk

Now since h(x) is not a zero divisor, we have E(y)/φak = g(x) in Q. Now since

g(x) ∈ (Z/pkZ)[x], we have E(y) ≡ 0 mod 〈pk, φak〉.

Now notice that we can consider a ≤ `/2 as otherwise we will be considering the

other factor which is f(x)/h(x) mod pk, since h(x) is not a zero divisor. Also, when

we consider y = y0 + y1p + y2p
2 + . . . yk−1p

k−1 for each yi ∈ R0, we can neglect the

last two coordinates. This follows from the following lemma.

Lemma 5.3 ([9]). If y = y0 + y1p+ y2p
2 + . . . yk−1p

k−1 is a root of E(y) in R, then

all the elements of y = y0 + y1p+ y2p
2 + . . . yk−3p

k−3 + pk−2∗ are also roots of E(y).

Proof. Notice that in the expansion of E(y) all the y’s that are present are multiplied

by p, which implies yk−1 will have coefficient divisible by pk, which is 0 in R. Also

for yk−2, all the terms of the form (py)i for i ≥ 2 do not contribute as they are
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zero in R. The only remaining term is f(x)φa(k−2)py. Now f(x)φa(k−2) ≡ φe+ak−2a

mod 〈p, φak〉 which also vanishes modulo 〈pk, φak〉, as e ≥ 2a as we have assumed.

From now on we consider k = 4 and analyze the problem of factorization as done

by [9]. We have

E(y) = f(x)(φ3a + φ2a(py) + φa(py)2 + (py)3) mod 〈p4, φ4a〉 (5.3)

From Lemma 5.3, we use y = y0 + py1 and use the equation

f × (φ3a + φ2ap(y0 + py1) + φap2(y2
0 + 2py0y1) + (py)3) ≡ 0 mod 〈p4, φ4a〉 (5.4)

From this, our main idea is to first solve this modulo 〈p3, φ4a. Note that since f ≡ φ`

mod p, we can say that considering modulo 〈p3, φ4a〉, the variable y1 is redundant.

The following lemma gives us a way to find the representative roots in this ring,

which basically reduces the root finding to characteristic p, and from [9], we are able

to find roots in rings of the form R0.

Lemma 5.4 ([9]). We can efficiently find a unique set S0 of representative pairs

(a0, i0), a0 ∈ R0, i0 ∈ N such that

E((a0 + φi0y0) + py1) = p3E ′(y0, y1) mod 〈p4, φ4a〉

for E ′(y0, y1) ∈ R0[y0, y1] depending on the representative root pair. Also we will

have:

1. |S0| ≤ 2. If the algorithm fails to find any such E ′ then E(y) ≡ 0 mod 〈p4, φ4a〉

has no solutions

2. E ′(y0, y1) = E1(y0) + E2(y0)y1 where E1(y0), E2(y0) ∈ R0[y0], E1 is a cubic in

y0 and E2 is a linear in y0
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3. For every root y ∈ R of E(y) ≡ 0 mod 〈p4, φ4a〉, ∃(a0, i0) ∈ S0, and (a1, a2) ∈

R×R such that y = a0 + φi0a1 + pa2 and E ′(a1, a2) ≡ 0 mod 〈p, φ4a〉

Proof. We first look at the equation E(y) ≡ 0〈p4, φ4a〉 modulo p2. Hence

fφ2a(φa + py0) ≡ 0mod〈p2, φ4a〉

Substituting f = φ` + pg we get pgφ3a ≡ 0 mod 〈p2, φ4a〉 implying

g ≡ 0 mod 〈p, φa〉

which is a necessary condition for y0 to exist.

Also from this we get that g1 = pg1 + φag2.

We consider modulo p3 and get f(φ3a + φ2apy0 + φap2y2
0) ≡ 0 mod 〈p3, φ4a〉. Now

substituting the value of f = φe + pg and the value of g = pg1 + φag2 we get

p2(φe+ay2
0 + φ3ag2y0 + φ3ag1) ≡ 0 mod 〈p3, φ4a〉

Now we can divide this equation by p2φ3a (since e ≥ 2a) we get an equation modulo

〈p, φa〉 which is a quadratic in y0 and its roots can be found using root-find algorithm

with the modification due to [9]. So S0 has atmost 2 representative roots according

to theorem 5 of the form (a0, i0). So for every y ∈ a0 + φi0 ∗+p∗ satisfies

E(y) ≡ 0 mod 〈p3, φ4a〉

Substituting y = a0 + φi0y0 + py1 we have

E(a0 + φi0y0 + py1) ≡ p3E ′(y0, y1) mod 〈p4, φ4a〉
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Substituting this value of y in E(y) we can find E1 and E2 as well which are cubic

and linear respectively.

With E ′(y0, y1) established as above, we now move on to finding its roots modulo

〈p, φ4a〉.

5.2.2 Root finding of E ′(y0, y1) modulo 〈p, φ4a〉

We already have E ′(y0, y1) of the form E1(y0)+E2(y0)y1 where E2 is linear in y0 and

E1 is a cubic. Pertaining to the normal definition of valuations, we define valuation

wrt a polynomial φ as vφ(u) = r is r is the largest integer such that φr|u over modulo

p. The remaining part of the strategy is to go over all possible valuations 0 ≤ r ≤ 4a

and find y0 such that E2(y0) has valuation wrt φ exactly r, but E1(y0) has valuation

greater than or equal to r. From this y1 can be obtained by dividing E1(y0) by

E2(y0). From this we will have y1 ≡ −(E1(y0)/φr)/(E2(y0)/φr) mod 〈p, φ4a−r〉.

This gives rise to the following lemma. Note that if r = 4a, we take y1 to be ∗.

Lemma 5.5 ([9]). A tuple (y0, y1) ∈ R0 × R0 satisfies E1(y0) + y1E2(y0) ≡ 0

mod 〈p, φ4a〉 if and only if vφ(E1(y0)) ≥ vφ(E2(y0)).

Finally we prove another lemma which will be used in filtering out the ”bad” y0’s

for which valuation of E2(y0) is more than r.

Lemma 5.6. ][[9]] Given E2(y0) ∈ R0[y0], which is a linear polynomial, and for

some 0 < r ≤ 4a − 1, let (b, i) be a representative root modulo 〈p, φr〉, consider the

quotient E ′2(y0) = E2(b+ φiy0)/φr.

If E ′2(y0) is not identically zero modulo 〈p, φ〉, then there exists at most one θ ∈

R0/〈φ〉 such that E ′2(θ) ≡ 0 mod 〈p, φ〉, and this θ can be efficiently found.
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Proof. We can write E2(y0) as u+ vy0 mod 〈p, φr〉. Since y0 can take any value, we

have vφ(u), vφ(v) ≥ r. Now, in the three cases as follows, we can find θ as:

1. valφ(u) ≥ r and valφ(v) = r, then E2(θ) ≡ 0 mod 〈p, φ〉 only when θ = −(u/φr)
(v/φr)

mod 〈p, φ〉

2. valφ(u) = r and valφ(v) > r, E2(θ) will never be zero modulo 〈p, φ〉 for any θ

in R0/〈φ〉

3. valφ(u) > r and valφ(v) > r, then consider some r′ > r and do the same.

Using these results we give the algorithm to factorize a polynomial modulo p4 in the

next section.

5.3 The Algorithm

The following algorithm correctly finds a factor of f(x) mod pk where f ≡ φ`

mod p for some irreducible polynomial φ.

Theorem 5.7 ([9]). The output of the algorithm 3 (the set Z − Z ′) contains only

those y0 ∈ R0 such that there is some y1 ∈ R0 with y = y0 + y1p as a root of E(y)

in R. We can do this computation in randomized poly(deg(f), log p) time. Thus we

can find all the roots y = y0 + y1p+ y2p
2 of E(y) in R where y2 = ∗ in R.

Proof. This algorithm basically outputs the roots of E(y) = f(x)(φ3a + φ2a(py) +

φa(py)2 + (py)3) mod 〈p4, φ4a〉 where y = y0 + y1p+ y2p
2 with yi ∈ R0.

Using Lemma 5.4, the algorithm fixes some y0 from the set S0 and attempts to find

roots of E ′(y0, y1) mod 〈p, φ4a〉. This lets us count all the roots y0’s as well for which
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Algorithm 3 Factorization modulo p4

1: Given E(y0 + py1), let S0 be set of all representative pairs (a0, i0) such that
p3|E((a0 + φi0y0) + py1) mod 〈p4, φ4a〉

2: Initialize sets Z = φ, Z ′ = φ, seen as subsets of R0

3: for each (a0, i0) ∈ S0 do
4: Substitute y0 7→ a0 + φi0y0, let E ′(y0, y1) = E1(y0) + y1E2(y0) mod 〈p, φ4a〉

be as defined before
5: if E2(y0) 6≡ 0 mod 〈p, φ〉 then find θ as in Lemma 5.6 such that E2(θ) ≡ 0

mod 〈p, φ〉. Update Z ← Z ∪ (a0 + φi0∗) and Z ′ ← Z ′ ∪ (a0 + φi0(θ + φ∗))
6: for r ∈ [4a] do
7: Initialize sets Zr = φ and Z ′r = φ
8: Call modified root-find algorithm on E1, φ

r to get set S1 of rep. pairs
(a1, i1) such that E1(a1 + φi1y0) ≡ 0 mod 〈p, φr〉

9: for each (a1, i1) ∈ S1 do
10: Consider E ′2(y0) = E2(a1 + φi1y0) mod 〈p, φ4a〉
11: Call modified root-find algorithm on E ′2, φ

r to get rep. pair (a2, i2)
such that E ′2(a2 + φi2y0) ≡ 0 mod 〈p, φr〉

12: if r = 4a then
13: Update Zr ← Zr ∪ (a1 + φi1(a2 + φi2∗)) and Z ′r ← Z ′r ∪ {}
14: else if E ′2(a2 + φi2y0) 6≡ 0 mod 〈p, φr+1〉 then
15: Get θ, if exists, such that E ′2(a2 +φi2(θ+φy0)) ≡ 0 mod 〈p, φr+1〉.

Update Z ′r ← Z ′r ∪ (a1 + φi1(a2 + φi2(θ + φ∗)))
16: Update Zr ← Zr ∪ (a1 + φi1(a2 + φi2∗))
17: Z ← Z ∪ (a0 + φi0Zr) and Z ′ ← Z ′ ∪ (a0 + φi0Z ′r)

18: return Z,Z ′

y1 exists. In this way we find all the solutions of E ′(y0, y1) by looping over all the

possible valuations wrt φ of E2(y0). Lemma 5.5 shows why doing this is sufficient.

Next we consider all the representative roots b + φi∗ such that, for a fixed valu-

ation r, E1(b + φiy0) ≡ E2(b + φiy0) ≡ 0 mod 〈p, φr〉, where b + φi∗ is basically

a1 + φi1(a2 + φi2∗) as obtained in Steps 13 and 16 of Algorithm ??.

We are now left to filter out those y0’s for which E2(b + φiy0) has valuation wrt φ

as more than r. This can be done from Lemma 5.6 to obtain an unique θ ∈ R0/〈φ〉

such that E2(b+ φi(θ + φy0)) ≡ 0 mod 〈p, φr+1〉.

The partial roots are stored in the sets Zr and Z ′r, where Z ′r contains these ”bad”

values filtered out, while Zr contains all the possible roots in b+ φi∗.



Chapter 5: Factorization of polynomials modulo p4 27

So if we choose a ”good” z0 ∈ Zr−Z ′r, we can find z1 given by (E1(z0)/φr)/(E2(z0)/φr)

mod 〈p, φ4a−r〉. From this we get the final sets Z = a0 + φi0Zr and Z ′ = a0 + φi0Z ′r

for (a0, i0) ∈ S0 for the corresponding r, as given in Lemma 5.4. From this we get

our desired results as outputs.

This proof of correctness of the algorithm also gives us the proof of Theorem 5.1

explained through the algorithm. This can be used to find the number of factors

as well. But in the next chapter, we give another new algorithm due to [8] which

gives the count of all the basic irreducible factors modulo pk for any integer k ≥ 1

in deterministic polynomial time, using more techniques from mathematics.



Chapter 6

Counting roots modulo pk

In this chapter we describe a deterministic approach to root counting of a polynomial

modulo pk given by [8]. This is an important result as it is the first deterministic

algorithm to count the total number of roots modulo pk for any integer k ≥ 1. We

have seen in Chapter 5 how factorization can be done modulo pk for k ≤ 4, but this

is a randomized algorithm and does not work beyond mod pk. However although

we are yet not able to achieve deterministic polynomial factorization in rings of the

form Z/pkZ, deterministic root counting was a progress towards the problem of root

finding, and establishes some results which can be used in root finding as well. The

paper [8] discusses methods to count basic irreducible factors as well, but in this

article we only state the main idea which is used to count only the total number of

roots to give a summary of the ideas that we might use in future. Also, we consider

R = Z/pkZ.

28
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6.1 Main Idea

We give an algorithm which is due to [8] to the following theorem to deterministically

count all the roots of a polynomial to prove the following theorem:

Theorem 6.1 ([8]). Given a polynomial f(x) ∈ Z[x], we can count all the roots of

f(x) mod pk in deterministic poly(deg(f), k log p)-time.

The main idea is to partition the root set of f mod pk into d disjoint sets, quite

like representative roots store them. However now we store this roots in split ideals

defined in Chapter 2. In this way we show how we can count them. However a spe-

cific root can still not be obtained from this in deterministic time. The algorithm

basically counts all the lifts of each root of f mod p to f mod pk.

6.1.1 Data Structures Involved

In order to make this algorithm feasible, we need to construct efficient data structures

to store the split ideals and perform computations on them. We define the list data

structure L which partitions the root set of f mod pk into deg(f) many disjoint

subsets. The construction and other operations on this L is done using some special

arithmetic tools that we will discuss in the next section. One can draw a similarity

between each representative root and one disjoint subset stored in L, as we will soon

see that the construction of L is quite similar to Algorithm 2, by considering a new

polynomial f(a+ px) if a is a root.

A split ideal, as defined in Section 2.3, is denoted as an ideal Il formed by l+1 polyno-

mials and is of degree b. We saw how it is a triangular ideal Il = 〈h0(x0), h1(x̄1), h2(x̄2), . . . hl(x̄l)〉

and b = Πl
i=0degxi(hi(x̄i)) with properties states in Definition 2.3. It basically stores
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a subset of the root set of f mod pk of size b, where the roots are considered upto

precision l + 1, i.e. the first l + 1 coordinates of the p-adic expansion taken.

Now, we keep splitting these ideals until we reach a maximal ideal, which we will call

maximal split ideal. Note that these do not give us the implicit roots, but gives us

the root count. However, if we were able to solve a system of polynomial equations

and find the variety generated, we would be able to find roots of a given polynomial

modulo pk in deterministic time as well!

We also describe the list data structure L which we will use. It basically stores

a subset of the root set of f mod pk, might partition it as well. This is basi-

cally a technical way to represent the ideal Il and store all of them, after splitting,

in the form of a tree. We can view the maximal split ideal as a representative

root, and in the end of the algorithm, L stores at most d maximal ideals. Sup-

pose L = {I1(l1, d1), I2(l2, d2), . . . In(ln, dn)}, where each ideal Ij ⊆ Fp[x̄k−1] has two

parameters, the length lj and degree dj. After repeated partitioning, a maximal

split ideal I(l, D) stores a subset of the root set of f mod pk which is of size D.

Now l means the number of coordinates considered, and the rest will be included in

the ∗ portion of the representative roots. This implies that I(l, D) has size Dpk−l

for the corresponding root. For efficiency of the algorithm, we consider a stack S,

where we store tuples of the form (Ij, fIj), and will keep updating the values. Now,

fIj = f(x0 + px1 + p2x2 + . . . plj−1xlj−1 + pljx) mod Ij.

Based on these we also use the root tree data structure. It will be used to show that

|L| and degree of split ideals in L always remains at most deg(f). We will call this

tree as RT.

In RT, each generator h1 in any I ∈ L corresponds to an edge, and each node denotes

the splitting of that ideal. There is an attribute to each node, called the degree,

which measures the possible extensions to the next level. This degree is distributed

to its children degrees.



Chapter 6: Counting roots modulo pk 31

Definition 6.2. Degree of leaves is defined to be 1.

Let NI = (I, fI) be a node corresponding to a split ideal I ⊆ Fp[x̄l], where fI(x̄l, x) ∈

R[x̄l, x]. Let α be the largest power of p dividing fI mod Î and gI(x̄l, x) = fI/p
α

mod Î (gI = 0 if α ≥ k), then the degree ofN denoted by [N ] is [N ] = max(1, degx(gI

mod I)× deg(I)).

We also define, for each node N〈0〉 = (〈0〉, f〈0〉 = f(x)). We will set deg(〈0〉) = 1.

So this follows from the definition that [N〈0〉] = d = deg(f). [8] gives some more

properties of the degree defined in this way.

The construction of the RT is as follows.

In order to show an upper bound, we will use the concept of the roots tree (RT),

which basically keeps track of the updates on S. A node is given by N = (I, fI),

where (I, fI) is an element of the stack S. Each push into the stack will create a

new node.

The root of RT is given by N〈0〉 = (〈0〉, f〈0〉 = f(x)). Add a child node NI0 to the root

which corresponds to initialization of the stack with (I0, fI0), where I0 = 〈h0(x0)〉

as defined before.

If at some time, the algorithm pops (Il−1, fl−1) from S, then we make our current

node the leaf node corresponding to (Il−1, fl−1) and do the following changes:

1. If Il−1 is grown as Il = Il−1 + 〈hl−1(x̄l−1)〉, then we create a child of NIl−1
using

edge label hl and label this new node NIl

2. If the algorithm reaches a dead-end (no updates in S and L occur at this

point), then add a child labelled D to NIl−1
. This indicates a dead-end in this

branch. Similarly, if we obtain a maximal split ideal, then we add M as its

child.
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3. Suppose processing a split ideal Il−1 needs us to factorize hi and hence factor

each ideal in S. Then we consider each U and move to the ancestor node of it

which corresponds to an ideal of length i, say NUi−1
= (Ui−1, fUi−1

). Then we

make m copies of the subtree at NUi−1
and these subtrees are attached with

an edge hi,j for every j ∈ [m].

6.1.2 Mathematical Tools

The main tool involved in counting the roots is considering the p-adic representation.

We know that for a polynomial f mod pk, a root has p-adic decomposition as r0 +

r1p+. . . rk−1p
k−1. Thus we represent each root as x0+x1p+x2p

2+. . . xk−1p
k−1, where

xi’s are variables storing each coordinate of a root, and for some xj corresponding

to a root, it depends on the previous xi’s, 0 ≤ i < j.

Another tool used is the Frobenius polynomial xp− x mod p. This contains all the

roots of f(x) mod p and we can consider gcd of this frobenius polynomial with f(x)

in modulo p to find a product of all the roots. Thus the degree of the gcd represents

the number of roots of f in Fp. The next challenge is to find a method to store the

next coordinate in the p-adic representation of each root. We have the polynomial

h0(x0) as the gcd of f with xp − x modulo p and store the ideal I0 = 〈h0(x0)〉.

In order to obtain the next coordinate, we consider the bivariate polynomial g(x0, x1)

as f(x0 + px) ≡ pαg(x0, x1) mod Î0, where Î0 is a lift of I0, which we will explain

later, and α is such that g 6≡ 0 mod p. Note that the main idea for using modulo

the ideal Il is basically because, for a multivariate polynomial h(x1, x2, . . . xl, x), and

constants ai’s, we have h(a1, a2, . . . al, x) = h(x1, x2, . . . xl, x) mod 〈x1 − a1, x2 −

a2, . . . xl − al〉. Now. notice that if we fix x0 to any root of f mod p, then the

set of possible x1 are the roots of g(x0, x) mod p for some fixed x0. So we again

calculate the gcd as gcd(g(x0, x) mod p, xp − x) mod I0 and denote this as h1.

Now we increment the split ideal as I1 = I0 + 〈h1(x0, x1)〉. In this way we get
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a count of roots upto modulo p2. In order to obtain till precision modulo pl+1

from pl, we continue doing this method. We solve for a new g each step given

by f(x0 + x1p + . . . xlp
l + xpl+1) ≡ pαg(x̄l, x) mod Îl. Then we consider hl+1 =

gcd(g(x̄l, x) mod p, xp − x) mod Il and update Il+1 = Il + 〈hl+1(x̄l+1). We update

these ideals by adding to L, which we will describe later.

We also need to show that this construction of L is efficient and |L| ≤ deg(f).

We saw in the description of RT how the degree represented in every node gets

distributed to its children. Note that the operations on L like reduction modulo

current split ideal, inversion, zero divisor testing, gcd, exponentiation, counting

valuations wrt p etc. are all bounded by poly(deg(f), k log p, deg(I)). However its

more difficult to bound the number of iterations and deg(I). We analyze the number

of iterations with the help of roots-tree RT. Every node of the RT corresponds to

an intermediate split Ideal I, where an edge height i from the root corresponds to

hi(x̄i), which is a generator of I. Whenever we update the split as Il = Il−1 +hl(x̄l),

a child is added to the node that corresponds to Il−1, and the edge connecting this

child to the parent is labelled as hl. Similarly, when we split an ideal at some hi(x̄i)

into say m ideals, m new subtrees are created which is connected to the parent by

edges labelled as hi. In this way the depth of the RT upper bounds the number of

iterations.

Now, in order to look at the degree distributions (Definition 6.2) in the RT, we look

at each node N with an associated parameter [N ], which will denote the degree of

node N . We can see how degree of a parent distributes to the degrees of its children.

This gives an intuition to measure the possible extensions of xl modulo Il−1, which

is a multiple of deg(Il−1). Now, from the distributive property of [N ] for some ideal

Il−1 comes from the fact that, when we update Il = Il−1 + 〈hl〉, the degree of the

child is bounded by the multiplicity of roots in hl(ā, x) times deg(Il−1), for some

root a ∈ ZFp(Il−1). These details will be explained later.
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We now give an algorithm to prove that Theorem 6.1 holds true.

6.2 The Algorithm

In this section we develop an algorithm due to [8], used to partition the root sets

of f(x) mod pk and count the total number of roots using the idea developed in

Section . This algorithm takes a monic f mod pk of degree d and returns a set of

at most d maximal split ideals, whose zero sets partition the root set of f mod pk.

For the maximal ideal Ij = 〈h0(x0), h1(x̄1), . . . hl(x̄l)〉, its root set ZFp(Ij) has size

Πl
i=0degxihi(x̄i), and each such zero represents pk−l−1 zeroes of f mod pk (denotes

a representative root of the form β + pl+1∗). Adding over all j’s we can thus get a

count of the total number of roots of f mod pk.

The algorithm starts with initializing the stack S containing the roots of f mod p,

i.e. S contains only the ideal I0 = 〈h0(x0)〉, where h0(x0) = gcd(f(x0) mod p, xp0 −

x0). The zero set of this ideal contains all the roots of f mod p. By Î0 ⊆ R[x0], the

lift of I0, we refer to the ideal generated by {h0(x0)} over R[x0].

During the iterations of the main while loop of the algorithm, we pop a split ideal

from S, and try to increase its precision, i.e. find out the next coordinate of the

roots in their p-adic decomposition. This process leads to two cases. First case is

that we get another split ideal such that the precision of the root set has increased

by a new coordinate xl+1, or the current split ideal factors into more split ideals,

seen as children in the RT. Now after the splitting, in order to include xl+1 into the

coordinates of the roots, we update fI as fI(x̄l, xl+1 + px) mod Ĵ , where J is the

new split ideal. Next we compute g(x̄l, x) as f(x0+x1p+. . . xlp
l+pl+1x) = pαg(x̄l, x)

mod I to prevent the degree blowup.

Continuing in this way, whenever we get a maximal split ideal, we move it to L.

However if the ideal can not be extended then we get a dead end and discard that
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ideal. Intuitively this is because a number which is a root of f mod pl for some

l < k might not always be a root of f mod pk. In both these cases, the size of the

stack decreases. We keep on doing this and terminate the algorithm when the size

of S becomes 0.

In Algorithm 4, we use the following procedures:

1. Modify f : We do this whenever we push elements into the stack. We have

a given split ideal I ⊆ Fp[x̄l] and let fI(x̄l, x) ∈ R[x̄l, x] be reduced mod Î.

Let J ⊆ Fp[x̄l+1] such that J = Il + 〈hl+1(xl+1)〉, and Ĵ be its lift to R[x̄l+1].

Then we can perform operations like creating fJ(x̄l+1, x) = fI(x̄l, xl+1 + px)

mod Ĵ in deterministic poly-time. A formal proof is available in [CITE]. Also,

when we have the tuple (U = 〈h0(x0), h1(x̄1), . . . hl(x̄l)〉, f〈U〉) ∈ S, we can

consider the factorization hi = hi,1hi,2 . . . hi,m and create tuples (Uj, f〈Uj〉) in

deterministic poly-time. This has also been showin in [CITE].

2. Reduce(a(x̄l), Jl) returns reduced form of a modulo Jl. [CITE] gives an

algorithm to do this as well, by recursively reducing while fixing every variable

and doing operations only on the last variable xl as x.

3. Test-Zero-Div(a(x̄l, Il)) either reports that a mod Îl is not a zero divisor,

or outputs a factorization of one of the generators of Il when true. In this

as well, operations are done by fixing all the variables but the last one and

recursively calling and checking the leading term of xl wrt Il−1, which is a

polynomial in x̄l−1.

4. GCD(a(x̄l, x), b(x̄l, x), Il) computes the gcd if a(x̄l, x) mod Il, b(x̄l, x) mod Il,

considering x as a variable, or returns False if a zero divisor occurs in inter-

mediate calculations.
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Based on these, the algorithm to calculate the number of roots of f mod pk is as

follows.

Algorithm 4 Count roots modulo pk

1: L = φ
2: S = φ
3: Let f̃(x0) = f(x0) mod p, degree d
4: h0(x0) = gcd(f̃ , xp0 − x0), I = 〈h0(x0)〉 ⊆ R0[x0], Î is lift of I to R[x0]
5: fI(x0, x) = f(x0 + px) mod Î
6: S ← push(I, fI)
7: while S 6= φ do
8: Stop ← pop(S), Let Stop = ({h0(x0), . . . hl(x̄l), fI(x̄l, x))

9: Compute α, g̃ such that fI ≡ pαg̃(x̄l, x) mod Î such that pα||fI mod Î
10: if α ≥ k then Update L = L ∪ I, Go to Step 7

11: Let g̃ = g(x̄l, x) mod I with g1(x̄l) being leading coefficient wrt x
12: if Test-Zero-Div(g1(x̄l, I)) = True then
13: Test-Zero-Div(g1(x̄l, I)) returns factorization hi(x̄i) =

hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i) mod Ii−1 for some i, Go To Step 23

14: Filter out distinct Fp roots by taking gcd with xp − x
15: Recompute g̃ = g(x̄l, x).g1(x̄l)

−1 mod I
16: Using repeated squaring and reducing modulo I+ 〈ḡ〉, compute h̃l+1(x̄l, x) =

xp − x mod I
17: if gcd(g̃, h̃l+1, I) = False then
18: This returns factorization hi(x̄i) = hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i) mod Ii−1

for some i, Go To Step 23
19: else if g̃ and h̃l+1 are coprime then
20: Ideal can not grow more, Go To Step 7
21: else
22: gcdx(g̃, h̃i+1) mod I is non-trivial, say hl+1(x̄l, x), which is monic wrt x.

Substitute x by x̄l+1 and update J = I + 〈hl+1(x̄l+1)〉. Let Ĵ be the lift of J to
R[x̄l+1]. Compute fJ(x̄l+1) = f(x̄l, xl+1 + px) mod Ĵ , puch (J, fJ) to S, Go To
Step 7

23: We are given factorization of hi | Ii−1. Push Stop back in stack. For every
(U, f〈U〉) ∈ S, find m split ideals Uj’s, compute (Uj, f〈Uj〉) and push all of them
to stack for j ∈ [m]

24: return L, the list of maximal splitting ideals partitioning root set.
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6.3 Analysis of Algorithm 4

In order to prove the correctness of the algorithm, the main goal is to prove the

following:

Theorem 6.3 ([8]). Algorithm 4 describes the partition of the root set of f mod pk

through a list data structure L, which is a collection of maximal ideals I1, I2, . . . In.

It partitions the root set such that ZR(f) = ∪j∈[n]Sj, where Sj = ZFp(Ij)

Proof Outline. It was proven in [8] that S always contains split ideals, l < k and

α > l at any iteration. The also proved the interesting result that, for any two

polynomials z(x̄l), w(x̄l) ∈ Fp[x̄l], and a split ideal Il−1 ∈ Fp[x̄l−1], the algorithm

given to compute GCD(z(x̄l), w(x̄l), Il−1) in [8] returns a polynomial h(x̄l) such that

for any a ∈ Il−1, h(ā, x) is same as gcd(z(ā, x), w(ā, x)) upto multiplication by units

in F×p .

It is also assured that the algorithm finally terminates. This is true as, we know the

degree of the node is distributed among its children in the RT. Whenever we have

a dead end, it is same as removing that polynomial along with the degree. Now,

it can be shown that the number of disjoint polynomials always increases and the

total number is upper bounded by the degree. So the algorithm must terminate.

The complete proof of this can be found in [8] (Theorem 9).

Based on the construction of the RT, [8] also showed some properties of RT which

were used to later prove that the algorithm terminates after polynomial many steps.

Note that at each step, the size of RT increases, but we never delete any node from

it. So the number of iterations is upper bounded by the size of this tree after it is

completely constructed.

From the construction, also note that for a node NI = (I, fI(x̄l, x)), and its child

NJ = (J, fJ(x̄l+1, x))[8] proved that this algorithm runs for polynomial many steps,
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i.e. time complexity is polynomial in degree of f and k log p.

Using this approach and the same calculations, [8] also give a method to count

the basic irreducible factors mod pk. They use the fact that a basic irreducible

factor g(x) ∈ (Z/pkZ)[x] of f mod pk of degree b completely splits in the Galois

ring G(pk, b) = Z[y]/〈pk, φ(y)〉, wherre φ(y) mod p is an irreducible polynomial of

degree b. Conversely finding roots of a polynomial f in G(pk, b) is same as finding

its basic irreducible factors, and the same approach follows.



Chapter 7

Conclusion and future work

In Chapters 5 and 6 we saw methods which are used to find factors and count roots

of polynomials modulo prime powers. The approach in 5 gets increasingly difficult

going modulo p5 with more number of variables. For this we intend to employ tech-

niques used to find roots of polynomials having more than one variables, efficiently.

Indeed we saw in both Chapters 5 and 6 how writing the p-adic representation helps

in approaches. So if we consider the each coordinate as a variable as intend to apply

certain conditions to reduce them to root finding of polynomials. Chapter 5 did use

root finding of a given polynomial E(y). If we can solve this modulo higher powers

of p, this approach might be possible to factorize polynomials modulo p5 and higher.

Indeed split ideals as used in 6 also is a system of polynomials. We can intend to

do something similar and apply Hilbert’s Nullstellensatz to decide if they are have

a common root, and hence decide irreducibility.
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