The border and its demystification

[-- Joint works with Pranjal Dutta, Prateek Dwivedi, CS Bhargav in CCC'21, FOCS'21, FOCS'22, STOC'24]

Nitin Saxena

CSE, IIT Kanpur

September 2024 Schloss Dagstuhl, Deutschland

Leibniz-Zentrum für Informatik

Computation, Circuit, VP

□ Computation is what a Turing machine does.

- Computes a language of strings.
- Resources: *Time*, *Space*, …
- Circuit is a *relaxed* variant.
	- Boolean vs Algebraic.
	- \triangleright Computes a polynomial $f(x_n)$.

 \triangleright node = *operator*; edge = *constant*; leaf = *variable*; root = *output*.

- size of a circuit = *#nodes + #edges* .
	- \triangleright depth of a circuit = length of longest-path (leaf to root).

 \Box size(f) = min size of circuit computing $f(x_n)$.

 \Box Class VP is set of $f(x_n)$ with $size(f) + deg(f) = poly(n)$. \triangleright $f = x_1^{2^n} x_2 \cdots x_n$ is **not** in VP.

Branching Program - VBP

 \Box Determinant det_s : $det(X_{s\times s})=\varSigma_{\sigma}\;sgn(\sigma)\cdot X_{1,\sigma(1)}\cdots X_{s,\sigma(s)}$.

 \Box **Iterated matrix multiplication (IMM):** = (1, 1)-th entry of $M_1 \cdots M_d$, where, M_i are $s \times s$ matrices.

Theorem [Le Verrier 1840; Csanky'76]: Both are in *VP* !

IMM defines the algebraic branching program (ABP) model.

- $\triangleright M_i$ with *linear* polynomials in x_n .
- \blacktriangleright ABPsize of this ABP is s^2dn .
- \triangleright Class VBP is set of $f(x_n)$ with $ABPsize(f) = poly(n)$.

□ Theorem [Mahajan,Vinay'97]: det \equiv IMM, and are in $VBP \subseteq VP$.

 \Box OPEN: $VBP \neq VP$?

is Computing **harder** than Linear-Algebra ?

 $rac{1}{2}y$

 $3x3$ ABP \equiv Formula

ExpSum circuits - VNP

 \Box ExpSum circuit : $f(x_n) = \Sigma_{a \in \{0,1\}^m} g(x, a)$, where verifier $g \in VP$. \triangleright Det, Permanent are of this type. [Count graph matchings]

 ExpSum defines the class *VNP*. [*Explicit* polynomials] \triangleright Like NP: $a =$ witness string; $q =$ verifier algorithm. \triangleright VNPsize of this ExpSum is $size(g) \cdot deg(g) \cdot nm$. \triangleright Class *VNP* is set of $f(x_n)$ with *VNP size* $(f) = poly(n)$.

 \Box Theorem: $VBP \subseteq VP \subseteq VNP$.

 \Box OPEN: $VP \neq VNP$?

- Is ExpSum *impractical* ?!
- \triangleright Algebraic version of $P \neq NP$!

Leslie Valiant (1949-)

 Valiant's conjecture ('79): There are *explicit*, **hard** polynomials ? \triangleright is Counting **harder** than Linear-Algebra ? *det* \ast *per* ?

Approximative Circuits: VP

□ How to *approximate* a polynomial?

 \triangleright Introduce variable ε, say $g(x, ε)$, and define $f(x) \coloneqq \lim$ $\varepsilon \rightarrow 0$ $g(x, \varepsilon)$.

- \triangleright What's the *algebraic* way? *Any* field *F*.
- **Q** Approximative circuit : $g(x, \varepsilon) = \sum_{i=0}^{M} g_i(x) \cdot \varepsilon^i$, of *VPsize s*, with constants in the function field $F(\varepsilon)$.

$$
\triangleright
$$
 Define $f(x) := \lim_{\varepsilon \to 0} g(x, \varepsilon) := g_0(x)$.

$$
\triangleright = g(x, 0),
$$
 but edge-constants may be **undefined** under $\varepsilon = 0$.

- \Box Such $f(x)$ define the class \overline{VP} .
	- It's the Zariski closure of *VP*. [*Border*]
	- \triangleright **size(f)** is size(g). [Approximative complexity]

Theorem [Bürgisser'20]: $M \leq 2^{s^2}$; $\overline{size}(f) \leq size(f) \leq exp(\overline{size}(f))$.

 $-2/\varepsilon$

 $((x + \varepsilon y)^3 - x^3)/3\varepsilon \rightarrow x^2y$

 $\sqrt[4]{1/(1+\varepsilon)}$

- \Box OPEN: $VP = \overline{VP}$?
	- \triangleright is approximation **practical**?

Motivating problem in VP $f = x^{2^s} - 1$

Q Circuit factoring: Given $f(x)$ of size-s, find deg-d factor h?

- \triangleright Degree of $f(x)$ could be 2^s. [so we need to *restrict* the factor degree]
- \triangleright What's the *algebraic* way? *Any* field F.
- \Box OPEN: Is $size(h) = poly(sd)$? [Factor Conjecture]
- **Theorem [Bürgisser'04]:** $\overline{size}(h) = poly(sd)$.
- *Trick (perturbed Newton)*: Bad case is $f = h^e q$, **e** is superpoly(s). \triangleright Say, $h =: x_1 - \alpha \mod (x_2, ..., x_n)$.
	- \triangleright Perturb, say x_1 , by ε . Factor $f'(x, \varepsilon) := f(x_1 + \varepsilon, x_2, ...) f(\alpha + \varepsilon, x_2, ...)$.
	- \triangleright h is a simple factor of $f'(x,\varepsilon) \bmod \langle x_2,\ldots,x_n\rangle$. [Kaltofen'89]
	- \triangleright Lift to an actual factor in $F(\varepsilon)[x]$ approximatively, i.e. $\varepsilon \to 0$.
- \Box Gives $h \in \overline{VP}$, but **unknown** in VP .
	- Circuits closed under **Factoring** ?

Where does VP **live?**

\Box OPEN: $\overline{VP} \subseteq VNP$? [deBorder]

 \triangleright How to present the approximative circuit $g(x, \varepsilon)$, in practice.

 \Box Presentable border: Assume $c_1(\varepsilon)$, $c_2(\varepsilon)$ to be circuits in ε !

 \triangleright ε is an *input* variable to size-*s* circuit $g(x, \varepsilon)$.

 \triangleright Such $f(x)$ define the class $\overline{VP}_{\varepsilon}$. [Circuit in ε]

□ Theorem [Bhargav,Dwivedi,S., STOC'24]: \overline{VP}_s ⊆ VNP .

 \Box *Trick (extract coeff)*: $g(x, \varepsilon) = \varepsilon^M f(x) + \varepsilon^{M+1} Q(x, \varepsilon)$, *M* is superpoly(s). \triangleright Interpolate the circuit $g(x, \varepsilon)$, with ε values in *finite field* F_{p^a} . \triangleright $p^a > M$, write $f(x)$ as **ExpSum**, with *verifier* g? \triangleright $g(x, \varepsilon)$, $\varepsilon \in F_p$ ^a: move to Boolean circuit and back. [Valiant's criterion] $c_1(\varepsilon)$

 $\left| c_{2}(\varepsilon)\right|$

Where does VP **live? Factors?**

□ Theorem [Bhargav,Dwivedi,S., STOC'24]: $\overline{VP}_\varepsilon$ ⊆ VNP .

Presentable is *explicit*!

□ Theorem [BDS'24]: Size-s circuits have deg≤ s factors^{*} in *VNP*. *separable [Bürgisser'04 gave *presentable* factor circuit!]

Also **[BDS'24]**: *VNP* is **closed** under factoring (over finite fields).

 \geq OPEN: Is *VP* closed under factoring (over finite fields)? \triangleright [BDS'24]: $\sqrt{f(x)}$ mod 2 is explicit, but is it *practical*?

 \Box OPEN: $VP = \overline{VP}_{\varepsilon} = \overline{VP} \neq VNP$?

Is approximation *practical &* ExpSum *impractical* ?!

Shallow circuits - deeper techniques!

 \Box Depth-3 circuit, fanin-k, $\Sigma^k \Pi \Sigma$: $g = \Sigma_{i=1}^k \prod_{j=1}^d \ell_{i,j}(x)$, where $\ell_{i,j}$ are *linear* polynomials over field F.

Border-depth-3 circuit, fanin-k, $\sum^{k} \Pi \Sigma : g$ as above, but over $F(\varepsilon)$, and then $f(x) \coloneqq \lim_{h \to 0}$ $\varepsilon \rightarrow 0$ $g(x, \varepsilon)$.

- What can $\Sigma^2 \Pi \Sigma$ and $\Sigma^2 \Pi \Sigma$ compute?
- **Q** Former can't compute $f = x_1x_2 + x_3x_4 + x_5x_6$.
- **Theorem [Kumar'20]:** $\Sigma^2 \Pi \Sigma$ computes *every* $f(x)$.
- \Box *Trick (Waring form & rank)*: Write $f(x) = \sum_{i=1}^{m} \ell_i^d$. Stare at $\mathbf{\Sigma}_{i=1}^m (1 + \varepsilon^d \cdot \ell_i^d)$. \triangleright What's it mod ε^{2d} ? \triangleright = 1 + $\varepsilon^d \cdot f$.

Debordering border-depth-3

 \Box $\overline{\Sigma^k \Pi \Sigma}$: Express $g = \Sigma_{i=1}^k \prod_{j=1}^d \ell_{i,j}(x,\varepsilon)$, and then $f(x) \coloneqq \lim_{\varepsilon \to 0}$ $\varepsilon \rightarrow 0$ $g(x, \varepsilon)$.

Root

 \Box What's f exactly? \triangleright In VP? \overline{VP}_{s} ? VNP?

□ Theorem [Dutta,Dwivedi,S., FOCS'21]: $\Sigma^2 \Pi \Sigma \subseteq VBP$.

- \Box *Trick (induction glorified)*: $T_1 + T_2 = f(x) + \varepsilon \cdot S(x, \varepsilon)$.
	- $\triangleright T_1/T_2 + 1 = f/T_2 + \varepsilon \cdot S/T_2$.

 \blacktriangleright Introduce variable z for derivation. Map $\varphi \colon x_i \mapsto z \cdot x_i + \alpha_i$.

$$
\triangleright g_1 := \partial_z \varphi(T_1/T_2) = \partial_z \varphi(f/T_2) + \varepsilon \cdot \partial_z \varphi(S/T_2) .
$$

 \blacktriangleright $g_1 = \varphi(T_1/T_2) \cdot (dlog \varphi(T_1) - dlog \varphi(T_2))$. $[dlog(h) := \frac{\partial_z h}{h}]$ ℎ]

Debordering border-depth-3

 $\Box g_1 = \varphi(T_1/T_2) \cdot (dlog \varphi(T_1) - dlog \varphi(T_2))$. [$dlog(h) \coloneqq \frac{\partial_z h}{h}$ ℎ]

$$
\geq \epsilon \overline{\left(\frac{\pi \Sigma}{\pi \Sigma}\right) \cdot \Sigma \wedge \Sigma} \qquad [dlog(A - z \cdot B) = \frac{-B}{A - z \cdot B} = \left(-\frac{B}{A}\right) \left(1 + \frac{zB}{A} + \left(\frac{zB}{A}\right)^2 + \cdots\right)]
$$

\n
$$
\geq \epsilon \frac{ABP}{ABP} \qquad [border of ROABP]
$$

\n
$$
\geq \partial_z \varphi \left(\frac{f}{T_2}\right) \to g_1 \to \frac{ABP}{ABP} \quad, gives \ f \in ABP \quad [by \ interpolation]
$$

DiDIL = Divide, Derive, Induct, Limit .

Theorem [Dutta,Dwivedi,S., FOCS'21]: $\Sigma^2 \Pi \Sigma \subseteq VBP$.

Finer lower bounds inside border-depth-3

 \Box $\overline{\Sigma^k \Pi \Sigma}$: Express $g = \Sigma_{i=1}^k \prod_{j=1}^d \ell_{i,j}(x,\varepsilon)$, and then $f(x) \coloneqq \lim_{\varepsilon \to 0}$ $\varepsilon \rightarrow 0$ $g(x, \varepsilon)$.

 \Box How do k and $k + 1$ compare?

 \triangleright Remember $\Sigma^k \Pi \Sigma$ computes every $f(x_n)$!

Theorem [Dutta, S., FOCS'22]: $\Sigma^k \Pi \Sigma$, $\Sigma^{k+1} \Pi \Sigma$ are $exp(n)$ separated.

- **□** *Trick (modify DiDIL)*: $P_d := x_{1,1} \cdots x_{1,d} + x_{2,1} \cdots x_{2,d} + x_{3,1} \cdots x_{3,d}$.
	- \triangleright Assume $T_1 + T_2 = P_d(x) + \varepsilon \cdot S(x, \varepsilon)$.

Introduce variable *z* for **derivation**. Homogenized map $\varphi: x_i \mapsto z \cdot x_i$.

$$
\triangleright \partial_z \varphi \left(\frac{P_d}{T_2} \right) \to \left(\frac{\Pi \Sigma}{\Pi \Sigma} \right) \cdot \Sigma \wedge \Sigma
$$

\n
$$
\triangleright x_{1,1} \cdots x_{1,d} \to \overline{\Sigma \wedge \Sigma}
$$
 [coeff of z^d & a trick]
\n
$$
\triangleright \text{ implies } size \geq 2^d \quad \text{[Warning rank]}
$$

Conclusion

- Special ABP (ROABP) makes *Debordering*, *Lower bounds*, and *Identity testing* possible.
	- What about the sum of two ROABPs?
- \div Strengthen results to $\Sigma^k \Pi \Sigma \subseteq \Sigma \Pi \Sigma$?
- Is border presentable? Explicit?
- **❖** Circuit factoring?
- Details at https://www.cse.iitk.ac.in/users/nitin/

THANK YOU!

Questions?