The border and its demystification

[-- Joint works with Pranjal Dutta, Prateek Dwivedi, CS Bhargav in CCC'21, FOCS'21, FOCS'22, STOC'24]

Nitin Saxena

CSE, IIT Kanpur

September 2024 Schloss Dagstuhl, Deutschland

SCHLOSS DAGSTUHL Leibniz-Zentrum für Informatik

Computation, Circuit, VP

□ Computation is what a Turing machine does.

- ➤ Computes a language of strings.
- ▶ Resources: *Time*, *Space*, ...
- □ Circuit is a *relaxed* variant.
 - ➢ Boolean vs Algebraic.
 - \succ Computes a polynomial $f(x_n)$.

> node = operator ; edge = constant ; leaf = variable ; root = output .

 \Box size of a circuit = #nodes + #edges.

> depth of a circuit = length of longest-path (leaf to root).

 \Box size(f) = min size of circuit computing $f(\mathbf{x}_n)$.

□ Class *VP* is set of $f(x_n)$ with size(f) + deg(f) = poly(n). > $f = x_1^{2^n} x_2 \cdots x_n$ is **not** in VP.

Branching Program - VBP

 $\Box \text{ Determinant } det_s: det(X_{s \times s}) = \Sigma_{\sigma} sgn(\sigma) \cdot X_{1,\sigma(1)} \cdots X_{s,\sigma(s)}.$

□ Iterated matrix multiplication (IMM): = (1,1)-th entry of $M_1 \cdots M_d$, where, M_i are $s \times s$ matrices.

□ Theorem [Le Verrier 1840; Csanky'76]: Both are in VP !

- □ IMM defines the algebraic branching program (ABP) model.
 - $\succ M_i$ with *linear* polynomials in x_n .
 - ightarrow ABP size of this ABP is $s^2 dn$.
 - ▷ Class *VBP* is set of $f(x_n)$ with *ABPsize*(f) = poly(n).
- **Theorem [Mahajan, Vinay'97]**: det \equiv IMM, and are in *VBP* \subseteq *VP*.
- $\Box \text{ OPEN: } VBP \neq VP ?$

➢ is Computing harder than Linear-Algebra ?

 $TBP \subseteq VP.$ x+y x+y x+y x+y x+y x+y x+y x-y x-y

 $3x3 ABP \equiv Formula$

ExpSum circuits - VNP

□ ExpSum circuit : f(x_n) = Σ_{a∈{0,1}}^m g(x, a), where verifier g ∈ VP.
 ▷ Det, Permanent are of this type. [Count graph matchings]

□ ExpSum defines the class VNP. [Explicit polynomials]
 > Like NP: a = witness string; g = verifier algorithm.
 > VNPsize of this ExpSum is size(g) · deg(g) · nm .
 > Class VNP is set of f(x_n) with VNPsize(f) = poly(n).

Theorem: $VBP \subseteq VP \subseteq VNP$.

 $\Box \text{ OPEN: } VP \neq VNP ?$

- ➢ Is ExpSum *impractical* ?!
- > Algebraic version of $P \neq NP$!

Leslie Valiant (1949-)

□ <u>Valiant's conjecture ('79)</u>: There are *explicit*, hard polynomials ?
 > is Counting harder than Linear-Algebra ? det ≈ per ?

Approximative Circuits: VP

■ How to *approximate* a polynomial?

▶ Introduce variable ε , say $g(\mathbf{x}, \varepsilon)$, and define $f(\mathbf{x}) \coloneqq \lim_{\varepsilon \to 0} g(\mathbf{x}, \varepsilon)$.

> What's the *algebraic* way? Any field F.

□ Approximative circuit : $g(\mathbf{x}, \varepsilon) = \sum_{i=0}^{M} g_i(\mathbf{x}) \cdot \varepsilon^i$, of *VPsize s*, with constants in the function field $F(\varepsilon)$.

 $((x + \varepsilon y)^3 - x^3)/3\varepsilon \rightarrow x^2 y$

 $(1+\varepsilon)$

 $-2/\varepsilon$

► Define
$$f(\mathbf{x}) \coloneqq \lim_{\epsilon \to 0} g(\mathbf{x}, \epsilon) \coloneqq g_0(\mathbf{x})$$
.
► $= g(\mathbf{x}, 0)$, but edge-constants may be **undefined** under $\epsilon = 0$.

- □ Such $f(\mathbf{x})$ define the class \overline{VP} .
 - ➢ It's the Zariski closure of VP. [Border]
 - \succ size(f) is size(g). [Approximative complexity]

□ **Theorem [Bürgisser'20]**: $M \le 2^{s^2}$; $\overline{size}(f) \le size(f) \le exp(\overline{size}(f))$.

- $\Box \text{ OPEN: } VP = \overline{VP} ?$
 - ➤ is approximation practical ?

Motivating problem in \overline{VP} $f = x^{2^s} - 1$

Circuit factoring: Given f(x) of size-*s*, find deg-*d* factor *h*?

- > Degree of f(x) could be 2^s . [so we need to *restrict* the factor degree]
- > What's the *algebraic* way? Any field F.
- \Box OPEN: Is size(h) = poly(sd)? [Factor Conjecture]
- **Theorem [Bürgisser'04]**: $\overline{size}(h) = poly(sd)$.
- □ Trick (perturbed Newton): Bad case is f = h^eq , e is superpoly(s).
 > Say, h =: x₁ α mod ⟨x₂,..., x_n⟩.
 - ▶ Perturb, say x_1 , by ε . Factor $f'(\mathbf{x}, \varepsilon) \coloneqq f(x_1 + \varepsilon, x_2, ...) f(\alpha + \varepsilon, x_2, ...)$.
 - $\succ h$ is a simple factor of $f'(\pmb{x}, \varepsilon) \bmod \langle x_2, \dots, x_n \rangle$. [Kaltofen'89]
 - ≻ Lift to an actual factor in $F(\varepsilon)[\mathbf{x}]$ approximatively, i.e. $\varepsilon \to 0$.
- □ Gives $h \in \overline{VP}$, but **unknown** in *VP*.
 - Circuits closed under Factoring ?

Where does VP live?

$\Box \text{ OPEN: } \overline{VP} \subseteq VNP ? \text{ [deBorder]}$

> How to present the approximative circuit $g(\mathbf{x}, \mathbf{\varepsilon})$, in practice.

□ Presentable border: Assume $c_1(\varepsilon)$, $c_2(\varepsilon)$ to be circuits in ε !

 $\succ \varepsilon$ is an *input* variable to size-*s* circuit $g(x, \varepsilon)$.

> Such f(x) define the class $\overline{VP}_{\varepsilon}$. [Circuit in ε]

□ Theorem [Bhargav, Dwivedi, S., STOC'24]: $\overline{VP}_{\varepsilon} \subseteq VNP$.

Trick (extract coeff): g(x, ε) = ε^Mf(x) + ε^{M+1}Q(x, ε), M is superpoly(s).
 ► Interpolate the circuit g(x, ε), with ε values in finite field F_{p^a}.
 ► p^a > M, write f(x) as ExpSum, with verifier g?
 ► g(x, ε), ε ∈ F_{p^a}: move to Boolean circuit and back. [Valiant's criterion]

 $c_2(\varepsilon)$

Where does VP live? Factors?

□ Theorem [Bhargav, Dwivedi, S., STOC'24]: $\overline{VP}_{\varepsilon} \subseteq VNP$.

Presentable is *explicit*!

□ Theorem [BDS'24]: Size-s circuits have deg≤ s factors* in VNP.
 > *separable [Bürgisser'04 gave presentable factor circuit!]

> Also [BDS'24]: *VNP* is **closed** under factoring (over finite fields).

➢ OPEN: Is VP closed under factoring (over finite fields)?
➢ [BDS'24]: √f(x) mod 2 is explicit, but is it practical?

 $\Box \text{ OPEN: } VP = \overline{VP}_{\varepsilon} = \overline{VP} \neq VNP ?$

➢ Is approximation practical & ExpSum impractical ?!

Shallow circuits - deeper techniques!

□ Depth-3 circuit, fanin-k, $\Sigma^k \Pi \Sigma : g = \Sigma_{i=1}^k \Pi_{j=1}^d \ell_{i,j}(x)$, where $\ell_{i,j}$ are *linear* polynomials over field *F*.

□ **Border**-depth-3 circuit, fanin-*k*, $\overline{\Sigma^k \Pi \Sigma}$: *g* as above, but over *F*(ε), and then $f(\mathbf{x}) \coloneqq \lim_{\varepsilon \to 0} g(\mathbf{x}, \varepsilon)$.

- □ What can $\Sigma^2 \Pi \Sigma$ and $\overline{\Sigma^2 \Pi \Sigma}$ compute?
- □ Former can't compute $f = x_1x_2 + x_3x_4 + x_5x_6$.
- **Theorem [Kumar'20]**: $\overline{\Sigma^2 \Pi \Sigma}$ computes every $f(\mathbf{x})$.
- $\square Trick (Waring form \& rank): Write f(\mathbf{x}) = \Sigma_{i=1}^m \ell_i^d.$
 - > Stare at $\Sigma_{i=1}^m (1 + \varepsilon^d \cdot \ell_i^d)$.
 - > What's it mod ε^{2d} ?

$$\triangleright = 1 + \varepsilon^d \cdot f$$
.

Debordering border-depth-3

 $\Box \ \overline{\Sigma^k \Pi \Sigma} : \text{Express } g = \Sigma_{i=1}^k \ \Pi_{j=1}^d \ell_{i,j}(\boldsymbol{x}, \varepsilon), \text{ and then } f(\boldsymbol{x}) \coloneqq \lim_{\varepsilon \to 0} g(\boldsymbol{x}, \varepsilon).$

Root

□ What's f exactly? > In VP? $\overline{VP}_{\varepsilon}$? VNP?

Theorem [Dutta,Dwivedi,S., FOCS'21]: $\Sigma^2 \Pi \Sigma \subseteq VBP$.

- $\square Trick (induction glorified): T_1 + T_2 = f(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon) .$
 - $> T_1/T_2 + 1 = f/T_2 + \varepsilon \cdot S/T_2$.

≻ Introduce variable *z* for derivation. Map φ : $x_i \mapsto z \cdot x_i + \alpha_i$.

$$\succ g_1 \coloneqq \partial_z \varphi(T_1/T_2) = \partial_z \varphi(f/T_2) + \varepsilon \cdot \partial_z \varphi(S/T_2) .$$

 $\succ g_1 = \varphi(T_1/T_2) \cdot (dlog\varphi(T_1) - dlog\varphi(T_2)) \cdot [dlog(h) \coloneqq \frac{\partial_z h}{h}]$

Debordering border-depth-3

 $\Box g_1 = \varphi(T_1/T_2) \cdot (dlog\varphi(T_1) - dlog\varphi(T_2)) \cdot [dlog(h) \coloneqq \frac{\partial_z h}{h}]$

$$\succ \in \overline{\left(\frac{\Pi\Sigma}{\Pi\Sigma}\right)} \cdot \Sigma \wedge \Sigma \qquad [dlog(A - z \cdot B) = \frac{-B}{A - z \cdot B} = \left(-\frac{B}{A}\right) \left(1 + \frac{zB}{A} + \left(\frac{zB}{A}\right)^2 + \cdots\right)]$$

$$\succ \in \frac{ABP}{ABP} \qquad [border \ of \ ROABP]$$

$$\triangleright \ \partial_z \varphi \left(\frac{f}{T_2}\right) \rightarrow g_1 \rightarrow \frac{ABP}{ABP} \ , \ gives \ f \in ABP \quad [by \ interpolation]$$

 $\langle I_2 \rangle$ ADP

> **DiDIL** = Divide, Derive, Induct, Limit.

Theorem [Dutta,Dwivedi,S., FOCS'21]: $\Sigma^2 \Pi \Sigma \subseteq VBP$.

Finer lower bounds inside border-depth-3

 $\Box \ \overline{\Sigma^k \Pi \Sigma} : \text{Express } g = \Sigma_{i=1}^k \ \Pi_{j=1}^d \ell_{i,j}(\mathbf{x}, \varepsilon), \text{ and then } f(\mathbf{x}) \coloneqq \lim_{\varepsilon \to 0} g(\mathbf{x}, \varepsilon).$

□ How do *k* and k + 1 compare?

> Remember $\Sigma^k \Pi \Sigma$ computes every $f(\mathbf{x}_n)$!

Theorem [Dutta,S., FOCS'22]: $\Sigma^k \Pi \Sigma$, $\Sigma^{k+1} \Pi \Sigma$ are exp(n) separated.

- $\Box Trick (modify DiDIL): P_d \coloneqq x_{1,1} \cdots x_{1,d} + x_{2,1} \cdots x_{2,d} + x_{3,1} \cdots x_{3,d} .$
 - Assume $T_1 + T_2 = P_d(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$.

▶ Introduce variable *z* for derivation. Homogenized map $\varphi: x_i \mapsto z \cdot x_i$.

$$\begin{array}{l} \triangleright \ \partial_z \varphi \left(\frac{P_d}{T_2} \right) \to \left(\frac{\Pi \Sigma}{\Pi \Sigma} \right) \cdot \Sigma \wedge \Sigma \\ \triangleright \ x_{1,1} \cdots x_{1,d} \to \overline{\Sigma \wedge \Sigma} \qquad [\text{coef of } z^d \ \& \ \text{a trick}] \\ \triangleright \ \text{implies } size \geq 2^d \quad [\text{Waring rank}] \end{array}$$

Conclusion

- Special ABP (ROABP) makes Debordering, Lower bounds, and Identity testing possible.
 - ➤ What about the sum of two ROABPs?
- ♦ Strengthen results to $\overline{\Sigma^k \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$?
- ✤ Is border presentable? Explicit?
- * Circuit factoring?
- Details at https://www.cse.iitk.ac.in/users/nitin/

THANK YOU!

Questions?