## Demystifying the border of depth-3 circuits

Joint works with Pranjal Dutta \& Prateek Dwivedi. [CCC'21, FOCS'21, FOCS'22]

Nitin Saxena<br>CSE, IIT Kanpur

September the $13^{\text {th }}, 2022$
Schloss Dagstuhl, Leibniz-Zentrum

## Table of Contents

1. Basic Definitions and Terminologies
2. Border Complexity and GCT
3. Border Depth-3 Circuits
4. Proving Upper Bounds
5. Proving Lower Bounds
6. Conclusion

## Basic Definitions and Terminologies

## Algebraic circuits- VP



## Algebraic circuits- VP



## Algebraic circuits- VP



## Algebraic circuits- VP



## The determinant polynomial- VBP

## The determinant polynomial- VBP

$\square$ Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that $\pi$ is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

## The determinant polynomial- VBP

$\square$ Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that $\pi$ is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

$\square$ det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree $\leq 1$.

## The determinant polynomial- VBP

$\square$ Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that $\pi$ is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

$\square$ det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree $\leq 1$.

The minimum dimension of the matrix to compute $f$, is called the determinantal complexity $\mathrm{dc}(f)$.

## The determinant polynomial- VBP

$\square$ Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that $\pi$ is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

$\square$ det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree $\leq 1$.
The minimum dimension of the matrix to compute $f$, is called the determinantal complexity dc $(f)$.
$\square$ E.g. $\operatorname{dc}\left(x_{1} \cdots x_{n}\right)=n$, since

$$
x_{1} \cdots x_{n}=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & x_{n}
\end{array}\right)
$$

## The determinant polynomial- VBP

$\square$ Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that $\pi$ is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

$\square$ det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree $\leq 1$.
The minimum dimension of the matrix to compute $f$, is called the determinantal complexity $\mathrm{dc}(f)$.
$\square$ E.g. $\operatorname{dc}\left(x_{1} \cdots x_{n}\right)=n$, since

$$
x_{1} \cdots x_{n}=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & x_{n}
\end{array}\right)
$$

VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially bounded $\mathrm{dc}\left(f_{n}\right)$.

## 'Hard' polynomials?

$\square$ Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an $n^{c}$-size circuit, for every constant $c$ ? i.e. size $\left(f_{n}\right)=n^{\omega(1)}$ ?

## 'Hard' polynomials?

$\square$ Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an $n^{C}$-size circuit, for every constant $c$ ? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$ ?
$\square$ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11].

## 'Hard' polynomials?

$\square$ Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an $n^{C}$-size circuit, for every constant $c$ ? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$ ?
$\square$ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

## 'Hard' polynomials?

$\square$ Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an $n^{c}$-size circuit, for every constant $c$ ? i.e. size $\left(f_{n}\right)=n^{\omega(1)}$ ?
$\square$ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

- Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}
$$

## 'Hard' polynomials?

$\square$ Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an $n^{c}$-size circuit, for every constant $c$ ? i.e. size $\left(f_{n}\right)=n^{\omega(1)}$ ?
$\square$ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

- Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}
$$

$\square$ perm is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree $\leq 1$.

## 'Hard' polynomials?

$\square$ Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an $n^{c}$-size circuit, for every constant $c$ ? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$ ?
$\square$ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

- Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}
$$

$\square$ perm is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree $\leq 1$.

The minimum dimension of the matrix to compute $f$, is called the permanental complexity $\mathrm{pc}(f)$.

## Valiant's Conjecture- VNP

VNP = "hard to compute?" [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
$\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is bounded by $n^{c}$ for some constant $c$.

## Valiant's Conjecture- VNP

VNP = "hard to compute?" [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
$\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is bounded by $n^{c}$ for some constant $c$.

- $\mathrm{VBP} \subseteq \mathrm{VP} \subseteq \mathrm{VNP}$.


## Valiant's Conjecture- VNP

## VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is bounded by $n^{c}$ for some constant $c$.
$\square \mathrm{VBP} \subseteq \mathrm{VP} \subseteq \mathrm{VNP}$.

## Valiant's Conjecture [Valiant 1979]

VBP $\neq \mathrm{VNP} \& \mathrm{VP} \neq \mathrm{VNP}$. Equivalently, dc $\left(\right.$ perm $\left._{n}\right)$ and size $\left(\right.$ perm $\left._{n}\right)$ are both $n^{\omega(1)}$.

## Connections to Boolean circuit complexity

## Connections to Boolean circuit complexity

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:


## Connections to Boolean circuit complexity

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
$>P /$ poly $\neq N P /$ poly $\Longrightarrow V B P \neq V N P$ and $V P \neq$ VNP (over finite fields).


## Connections to Boolean circuit complexity

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
$>P /$ poly $\neq N P /$ poly $\Longrightarrow V B P \neq V N P$ and $V P \neq$ VNP (over finite fields).
$>$ Assumin GRH (Generalized Riemann hypothesis), the results hold over $\mathbb{C}$ as well.


## Connections to Boolean circuit complexity

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
$>P /$ poly $\neq N P /$ poly $\Longrightarrow V B P \neq V N P$ and $V P \neq$ VNP (over finite fields).
$>$ Assumin GRH (Generalized Riemann hypothesis), the results hold over $\mathbb{C}$ as well.


## Border Complexity and GCT

Waring rank— Depth-3 diagonal

## Waring rank— Depth-3 diagonal

Can 'approximations' also help in algebraic computational models?

## Waring rank— Depth-3 diagonal

Can 'approximations' also help in algebraic computational models?
An important measure is Waring rank, denoted WR( $\cdot$ ).

## Waring rank— Depth-3 diagonal

Can 'approximations' also help in algebraic computational models?
An important measure is Waring rank, denoted WR( $\cdot$ ).

## Waring Rank

The smallest $r$ such that a homogeneous degree $d$ polynomial $h$ can be written as a sum of $d$-th power of linear forms $\ell_{i}$, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.

## Waring rank— Depth-3 diagonal

Can 'approximations' also help in algebraic computational models?
An important measure is Waring rank, denoted WR( $\cdot$ ).

## Waring Rank

The smallest $r$ such that a homogeneous degree $d$ polynomial $h$ can be written as a sum of $d$-th power of linear forms $\ell_{i}$, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.
$\square$ Recall: $h=\sum_{e_{1}, . ., e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree $d$ polynomial if $\sum e_{i}=d$, for every tuple $\left(e_{1}, \ldots, e_{n}\right)$ with $a_{e_{1}, \ldots, e_{n}} \neq 0$.

## Waring rank— Depth-3 diagonal

Can 'approximations' also help in algebraic computational models?
An important measure is Waring rank, denoted WR( $\cdot$ ).

## Waring Rank

The smallest $r$ such that a homogeneous degree $d$ polynomial $h$ can be written as a sum of $d$-th power of linear forms $\ell_{i}$, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.
$\square$ Recall: $h=\sum_{e_{1}, . ., e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree $d$ polynomial if $\sum e_{i}=d$, for every tuple $\left(e_{1}, \ldots, e_{n}\right)$ with $a_{e_{1}, \ldots, e_{n}} \neq 0$.

Recall: A linear form $\ell$ is of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}$.

## Waring rank— Depth-3 diagonal

Can 'approximations' also help in algebraic computational models?
An important measure is Waring rank, denoted WR( $\cdot$ ).

## Waring Rank

The smallest $r$ such that a homogeneous degree $d$ polynomial $h$ can be written as a sum of $d$-th power of linear forms $\ell_{i}$, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.
$\square$ Recall: $h=\sum_{e_{1}, . ., e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree $d$ polynomial if $\sum e_{i}=d$, for every tuple $\left(e_{1}, \ldots, e_{n}\right)$ with $a_{e_{1}, \ldots, e_{n}} \neq 0$.

Recall: A linear form $\ell$ is of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}$.
For any homogeneous polynomial $h, \mathrm{WR}(h)$ is finite.

## Waring rank— Depth-3 diagonal

Can 'approximations' also help in algebraic computational models?
An important measure is Waring rank, denoted WR( $\cdot$ ).

## Waring Rank

The smallest $r$ such that a homogeneous degree $d$ polynomial $h$ can be written as a sum of $d$-th power of linear forms $\ell_{i}$, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.
$\square$ Recall: $h=\sum_{e_{1}, . ., e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree $d$ polynomial if $\sum e_{i}=d$, for every tuple $\left(e_{1}, \ldots, e_{n}\right)$ with $a_{e_{1}, \ldots, e_{n}} \neq 0$.

Recall: A linear form $\ell$ is of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}$.
For any homogeneous polynomial $h, \mathrm{WR}(h)$ is finite.

- Often $\mathrm{WR}(h) \leq r$ is denoted as $h \in \Sigma^{[r]} \wedge \Sigma$ (homogeneous depth-3 diagonal circuits).


## Approximation helps

- Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because


## Approximation helps

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3} .
$$

## Approximation helps

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3}
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.


## Approximation helps

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3}
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.

Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

## Approximation helps

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3}
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.
- Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

$$
=x^{2} y+\epsilon x y^{2}+\frac{\epsilon^{2}}{3} y^{3} \xrightarrow{\epsilon \rightarrow 0} x^{2} y=: h \quad \text { (coefficient-wise). }
$$

## Approximation helps

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3}
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.

Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

$$
=x^{2} y+\epsilon x y^{2}+\frac{\epsilon^{2}}{3} y^{3} \xrightarrow{\epsilon \rightarrow 0} x^{2} y=: h \quad \text { (coefficient-wise). }
$$

Note: $\mathrm{WR}\left(h_{\epsilon}\right) \leq 2$, for any fixed non-zero $\epsilon$. But $\mathrm{WR}(h)=3$ !

## Approximation helps

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3}
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.
- Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

$$
=x^{2} y+\epsilon x y^{2}+\frac{\epsilon^{2}}{3} y^{3} \xrightarrow{\epsilon \rightarrow 0} x^{2} y=: h \quad \text { (coefficient-wise). }
$$

Note: $\mathrm{WR}\left(h_{\epsilon}\right) \leq 2$, for any fixed non-zero $\epsilon$. But $\mathrm{WR}(h)=3$ !


## Border Waring Rank—Approximative depth-3 diagonal

## Border Waring Rank—Approximative depth-3 diagonal

## Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$, of a $d$-form $h$ is defined as the smallest $s$ such that $h=\lim _{\epsilon \rightarrow 0} \sum_{i \in[s]} \ell_{i}^{d}$, where $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, are homogeneous linear forms.

## Border Waring Rank—Approximative depth-3 diagonal

## Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$, of a $d$-form $h$ is defined as the smallest $s$ such that $h=\lim _{\epsilon \rightarrow 0} \sum_{i \in[s]} \ell_{i}^{d}$, where $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, are homogeneous linear forms.

- $\overline{\mathrm{WR}}\left(x^{2} y\right)=2<\mathrm{WR}\left(x^{2} y\right)=3$.


## Border complexity

## Border complexity

Let $\Gamma$ be any sensible measure. It can be size, dc and so on.

## Border complexity

$\square$ Let $\Gamma$ be any sensible measure. It can be size, dc and so on.

- For any $\Gamma$, we can define the border complexity measure $\bar{\Gamma}$ via: $\bar{\Gamma}(h)$ is the smallest $n$ such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$.


## Border complexity

Let $\Gamma$ be any sensible measure. It can be size, dc and so on.
For any $\Gamma$, we can define the border complexity measure $\bar{\Gamma}$ via: $\bar{\Gamma}(h)$ is the smallest $n$ such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$. In other words,

$$
\lim _{\epsilon \rightarrow 0} h_{\epsilon}=h \text { (coefficient-wise) }
$$

## Border complexity

Let $\Gamma$ be any sensible measure. It can be size, dc and so on.
For any $\Gamma$, we can define the border complexity measure $\bar{\Gamma}$ via: $\bar{\Gamma}(h)$ is the smallest $n$ such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$. In other words,

$$
\lim _{\epsilon \rightarrow 0} h_{\epsilon}=h \text { (coefficient-wise) }
$$

$\square$ We will work with 'approximative circuits'.

## Approximative circuits



## Algebraic approximation

## Algebraic approximation

Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

## Algebraic approximation

Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i},
$$

$>$ Can we say anything about the complexity of $g_{0}$ ?

## Algebraic approximation

Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i},
$$

$>$ Can we say anything about the complexity of $g_{0}$ ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$ ?!


## Algebraic approximation

$\square$ Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of $g_{0}$ ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$ ?! Setting $\epsilon=0$ may not be 'valid' as it could be using $1 / \epsilon$ in the wire. Though it is well-defined!


## Algebraic approximation

- Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of $g_{0}$ ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$ ?! Setting $\epsilon=0$ may not be 'valid' as it could be using $1 / \epsilon$ in the wire. Though it is well-defined!

Summary: $g_{0}$ is really something non-trivial and being 'approximated' by the circuit since $\lim _{\epsilon \rightarrow 0} g(\boldsymbol{x}, \epsilon)=g_{0}$.

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $S$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $s$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

## Algebraic approximation- $\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $s$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
. $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $s$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
. $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.
$\square$ If $g$ has circuit of size $s$ over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of $\epsilon$ in $g$ can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $S$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
. $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.
$\square$ If $g$ has circuit of size $s$ over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of $\epsilon$ in $g$ can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020]. [Bezout's degree theorem.]

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $S$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.
$\square$ If $g$ has circuit of size $s$ over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of $\epsilon$ in $g$ can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020]. [Bezout's degree theorem.]

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $S$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.

If $g$ has circuit of size $s$ over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of $\epsilon$ in $g$ can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020]. [Bezout's degree theorem.]

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from $\mathbb{F}$ randomly and interpolate;

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $S$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.

If $g$ has circuit of size $s$ over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of $\epsilon$ in $g$ can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020]. [Bezout's degree theorem.]

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from $\mathbb{F}$ randomly and interpolate;
$>\operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

## Algebraic approximation $-\overline{\mathrm{VP}}$

## Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity $s$, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size $s$, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
. $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.
$\square$ If $g$ has circuit of size $s$ over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of $\epsilon$ in $g$ can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020]. [Bezout's degree theorem.]

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from $\mathbb{F}$ randomly and interpolate;
$>\operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

## Lower bounds for border depth-2 circuits

## Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:

## Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:

$$
>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi \text { and } \overline{\Pi \Sigma}=\Pi \Sigma .
$$

## Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:

$$
>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi \text { and } \overline{\Pi \Sigma}=\Pi \Sigma
$$

$>\operatorname{det}_{n}$ is irreducible and $\exp (n)$-sparse. So, $\operatorname{det}_{n}$ requires exponential-size border depth- 2 circuits!

## Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:
$>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi$ and $\overline{\Pi \Sigma}=\Pi \Sigma$.
$>\operatorname{det}_{n}$ is irreducible and $\exp (n)$-sparse. So, $\operatorname{det}_{n}$ requires exponential-size border depth- 2 circuits!
$>$ What about border depth-3 circuits (both upper bound and lower bound)?

## Border Depth-3 Circuits

## Depth-3 circuits

## Depth-3 circuits

Depth-3 circuits with top fan-in $k$, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

## Depth-3 circuits

Depth-3 circuits with top fan-in $k$, are denoted as $\Sigma^{[k]} \Pi \Sigma$.
They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.

## Depth-3 circuits

Depth-3 circuits with top fan-in $k$, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
$\square$ Product fan-in $=\max d_{i}$.


## Depth-3 circuits

Depth-3 circuits with top fan-in $k$, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
$\square$ Product fan-in $=\max d_{i}$.
How powerful are $\Sigma^{[k]} \Pi \Sigma$ circuits, for constant $k$ ? Are they universal?


## Depth-3 circuits

Depth-3 circuits with top fan-in $k$, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
$\square$ Product fan-in $=\max d_{i}$.
How powerful are $\Sigma^{[k]} \Pi \Sigma$ circuits, for constant $k$ ? Are they universal?
- Impossibility result: The Inner Product polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\ldots+x_{k+1} y_{k+1} \quad$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp (n)$ product fan-in!).


## Depth-3 circuits

Depth-3 circuits with top fan-in $k$, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.

Droduct fan-in $=\max d_{i}$.
How powerful are $\Sigma^{[k]} \Pi \Sigma$ circuits, for constant $k$ ? Are they universal?

- Impossibility result: The Inner Product polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\ldots+x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp (n)$ product fan-in!).

The same holds if we replace by $\operatorname{det}_{n}$.

## Lower bound for Constant fanin depth-3 circuits

- detn cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in.


## Lower bound for Constant fanin depth-3 circuits

- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.


## Lower bound for Constant fanin depth-3 circuits

- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick $\ell_{1}$ from $T_{1}$ and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.


## Lower bound for Constant fanin depth-3 circuits

- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in.

Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick $\ell_{1}$ from $T_{1}$ and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while det ${ }_{n} \bmod I_{1} \neq 0$.

## Lower bound for Constant fanin depth-3 circuits

- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick $\ell_{1}$ from $T_{1}$ and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent $\ell_{i}$ in the ideal $I_{i}$.
- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick $\ell_{1}$ from $T_{1}$ and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent $\ell_{i}$ in the ideal $\mathcal{I}_{i}$.
$>$ At the end, there is some $I_{k}$ such that RHS has become 0 while LHS is non-zero (because $k \ll n$ ).
- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick $\ell_{1}$ from $T_{1}$ and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent $\ell_{i}$ in the ideal $\mathcal{I}_{i}$.
$>$ At the end, there is some $I_{k}$ such that RHS has become 0 while LHS is non-zero (because $k \ll n$ ).
- Therefore, $\Sigma^{[k]} \Pi \Sigma \subsetneq \mathrm{VBP}$ !
- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick $\ell_{1}$ from $T_{1}$ and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent $\ell_{i}$ in the ideal $\mathcal{I}_{i}$.
$>$ At the end, there is some $I_{k}$ such that RHS has become 0 while LHS is non-zero (because $k \ll n$ ).
- Therefore, $\Sigma^{[k]} \Pi \Sigma \subsetneq \mathrm{VBP}$ !
- How about $\overline{\Sigma^{[k]} \Pi \Sigma}$ ?


## Power of border depth-3 circuits

## Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size $s$ if there exists a polynomial $g$ such that

## Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size $s$ if there exists a polynomial $g$ such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

## Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size $s$ if there exists a polynomial $g$ such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

where $g$ can be computed by a $\Sigma^{[k]} \Pi \Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size $s$.

## Power of border depth-3 circuits

- Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size $s$ if there exists a polynomial $g$ such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

where $g$ can be computed by a $\Sigma^{[k]} \Pi \Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size $s$.

## Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let $P$ be any $n$-variate degree $d$ polynomial. Then, $P \in \overline{\Sigma^{[2]} \Pi \Sigma}$, where the multiplication gate is $\exp (n, d)$.

## Proof of Kumar's result

## Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms $\ell_{i}$ such that

## Proof of Kumar's result

## Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms $\ell_{i}$ such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)] .
$$

## Proof of Kumar's result

## Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms $\ell_{i}$ such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)] .
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$.

## Proof of Kumar's result

## Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms $\ell_{i}$ such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

## Proof of Kumar's result

## Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms $\ell_{i}$ such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace $x_{i}$ by $\epsilon \cdot x_{i}$ to get that

## Proof of Kumar's result

## Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms $\ell_{i}$ such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace $x_{i}$ by $\epsilon \cdot x_{i}$ to get that

$$
\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\epsilon \cdot \ell_{i}\right)=1+\epsilon^{d} \cdot P+\epsilon^{2 d} \cdot R(\boldsymbol{x}, \epsilon)
$$

## Proof of Kumar's result

## Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms $\ell_{i}$ such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace $x_{i}$ by $\epsilon \cdot x_{i}$ to get that

$$
\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\epsilon \cdot \ell_{i}\right)=1+\epsilon^{d} \cdot P+\epsilon^{2 d} \cdot R(\boldsymbol{x}, \epsilon)
$$

4. Divide by $\epsilon^{d}$ and rearrange to get

$$
P+\epsilon^{d} \cdot R(\boldsymbol{x}, \epsilon)=-\epsilon^{-d}+\epsilon^{-d} \cdot \prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\epsilon \cdot \ell_{i}\right) \in \Sigma^{[2]} \Pi^{[m d]} \Sigma .
$$

## Proving Upper Bounds

- If $h$ is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin, bounded by poly ( $n$ ), what's the exact complexity of $h$ ?


## De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If $h$ is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin, bounded by poly $(n)$, what's the exact complexity of $h$ ?

## Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS'21].

$\overline{\Sigma^{[2]} \Pi \Sigma} \subseteq$ VBP, for polynomial-sized $\overline{\Sigma^{[2]} \Pi \Sigma}$-circuits.

## De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If $h$ is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin, bounded by poly $(n)$, what's the exact complexity of $h$ ?

## Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS'21].

$\overline{\Sigma^{[2]} \Pi \Sigma} \subseteq$ VBP, for polynomial-sized $\overline{\Sigma^{[2]} \Pi \Sigma}$-circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant $k$.

## Proof sketch for $k=2$

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
$\square$ Apply a map $\Phi$, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
$\square$ Apply a map $\Phi$, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable $z$ is the "degree counter",

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
$\square$ Apply a map $\Phi$, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable $z$ is the "degree counter",
$>\alpha_{i}$ to make sure: If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\epsilon)^{*}$.

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
$\square$ Apply a map $\Phi$, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable $z$ is the "degree counter",
$>\alpha_{i}$ to make sure: If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\epsilon)^{*}$.
It suffices to find $\Phi(f) \bmod z^{d+1}=\Phi(f)$.

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
$\square$ Apply a map $\Phi$, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable $z$ is the "degree counter",
$>\alpha_{i}$ to make sure: If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\epsilon)^{*}$.
It suffices to find $\Phi(f) \bmod z^{d+1}=\Phi(f)$. [Truncation by degree.]

## Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$ !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
$\square$ Apply a map $\Phi$, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable $z$ is the "degree counter",
$>\alpha_{i}$ to make sure: If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\epsilon)^{*}$.
It suffices to find $\Phi(f) \bmod z^{d+1}=\Phi(f)$. [Truncation by degree.]

- We devise a technique called DiDIL - Divide, Derive, Interpolate with Limit.


## $k=2$ proof continued: Divide and Derive

## $k=2$ proof continued: Divide and Derive

- $\mathrm{val}_{\epsilon}(\cdot)$ denotes the highest power of $\epsilon$ dividing it.

$$
\text { E.g., } h=\epsilon^{-2} x_{1}+\epsilon^{-1} x_{2}+\epsilon x_{3} \text {. Then, } \operatorname{val}_{\epsilon}(h)=-2 \text {. }
$$

## $k=2$ proof continued: Divide and Derive

- $\mathrm{val}_{\epsilon}(\cdot)$ denotes the highest power of $\epsilon$ dividing it.

$$
\text { E.g., } h=\epsilon^{-2} x_{1}+\epsilon^{-1} x_{2}+\epsilon x_{3} \text {. Then, } \operatorname{val}_{\epsilon}(h)=-2 \text {. }
$$

$\square \operatorname{Let} \Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.

## $k=2$ proof continued: Divide and Derive

- $\operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of $\epsilon$ dividing it.
E.g., $h=\epsilon^{-2} x_{1}+\epsilon^{-1} x_{2}+\epsilon x_{3}$. Then, $\operatorname{val}_{\epsilon}(h)=-2$.
- Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.

Then, (i) $\tilde{T}_{i} \in \mathbb{F}[\epsilon, \boldsymbol{x}, z]$, and (ii) $\lim _{\epsilon \rightarrow 0} \tilde{T_{2}}=t_{2} \in \mathbb{F}[\boldsymbol{x}, z] \backslash\{0\}$, exists.

## $k=2$ proof continued: Divide and Derive

- $\operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of $\epsilon$ dividing it.
E.g., $h=\epsilon^{-2} x_{1}+\epsilon^{-1} x_{2}+\epsilon x_{3}$. Then, $\operatorname{val}_{\epsilon}(h)=-2$.

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
Then, (i) $\tilde{T}_{i} \in \mathbb{F}[\epsilon, \boldsymbol{x}, z]$, and (ii) $\lim _{\epsilon \rightarrow 0} \tilde{T_{2}}=t_{2} \in \mathbb{F}[\boldsymbol{x}, z] \backslash\{0\}$, exists.
Divide both side by $\tilde{T}_{2}$ and take partial derivative with respect to $z$, to get:

## $k=2$ proof continued: Divide and Derive

Val $\operatorname{van}_{\epsilon}(\cdot)$ denotes the highest power of $\epsilon$ dividing it.
E.g., $h=\epsilon^{-2} x_{1}+\epsilon^{-1} x_{2}+\epsilon x_{3}$. Then, $\operatorname{val}_{\epsilon}(h)=-2$.

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$. Then, (i) $\tilde{T}_{i} \in \mathbb{F}[\epsilon, \boldsymbol{x}, z]$, and (ii) $\lim _{\epsilon \rightarrow 0} \tilde{T_{2}}=t_{2} \in \mathbb{F}[\boldsymbol{x}, z] \backslash\{0\}$, exists.

Divide both side by $\tilde{T}_{2}$ and take partial derivative with respect to $z$, to get:

$$
\begin{align*}
\Phi(f)+\epsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \Phi(f) / \tilde{T}_{2}+\epsilon \cdot \Phi(S) / \tilde{T}_{2} & =\Phi\left(T_{1}\right) / \tilde{T}_{2}+\epsilon^{a_{2}} \\
\Longrightarrow \partial_{z}\left(\Phi(f) / \tilde{T}_{2}\right)+\epsilon \cdot \partial_{z}\left(\Phi(S) / \tilde{T}_{2}\right) & =\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right)=: g_{1} . \tag{1}
\end{align*}
$$

## $k=2$ proof continued: Divide and Derive

- $\operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of $\epsilon$ dividing it.
E.g., $h=\epsilon^{-2} x_{1}+\epsilon^{-1} x_{2}+\epsilon x_{3}$. Then, $\operatorname{val}_{\epsilon}(h)=-2$.
- Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$. Then, (i) $\tilde{T}_{i} \in \mathbb{F}[\epsilon, \boldsymbol{x}, z]$, and (ii) $\lim _{\epsilon \rightarrow 0} \tilde{T_{2}}=t_{2} \in \mathbb{F}[\boldsymbol{x}, z] \backslash\{0\}$, exists.

Divide both side by $\tilde{T}_{2}$ and take partial derivative with respect to $z$, to get:

$$
\begin{align*}
\Phi(f)+\epsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \Phi(f) / \tilde{T}_{2}+\epsilon \cdot \Phi(S) / \tilde{T}_{2} & =\Phi\left(T_{1}\right) / \tilde{T}_{2}+\epsilon^{a_{2}} \\
\Longrightarrow \partial_{z}\left(\Phi(f) / \tilde{T}_{2}\right)+\epsilon \cdot \partial_{z}\left(\Phi(S) / \tilde{T}_{2}\right) & =\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right)=: g_{1} . \tag{1}
\end{align*}
$$

$\square \lim _{\epsilon \rightarrow 0} g_{1}=\lim _{\epsilon \rightarrow 0} \partial_{Z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right)=\partial_{Z}\left(\Phi(f) / t_{2}\right)$.

## $k=2$ proof continued

## $k=2$ proof continued

First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.

## $k=2$ proof continued

$\square$ First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.
Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{Z}(h) / h$.

## $k=2$ proof continued

$\square$ First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.
$\square$ Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
$\square$ dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$.

## $k=2$ proof continued

$\square$ First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.
Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\mathrm{d} \log \left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot \operatorname{dlog}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) \\
& =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\tilde{T}_{2}\right)\right)
\end{aligned}
$$

## $k=2$ proof continued

$\square$ First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.
$\square$ Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\mathrm{d} \log \left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot \operatorname{dlog}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) \\
& =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\tilde{T}_{2}\right)\right)
\end{aligned}
$$

Both $\Phi\left(T_{1}\right)$ and $\tilde{T}_{2}$ have $\Pi \Sigma$ circuits (they have $z$ and $\epsilon$ ).

## $k=2$ proof continued

## $k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\tilde{T}_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

## $k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\tilde{T}_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

$\square$ Here $\Sigma$ means just a linear polynomial $\ell$ (in $z, \mathbf{x}$ and unit wrt the former).

## $k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\tilde{T}_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

$\square$ Here $\Sigma$ means just a linear polynomial $\ell($ in $z, \mathbf{x}$ and unit wrt the former).
$\square$ Recall: $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.

## $k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\tilde{T}_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

$\square$ Here $\Sigma$ means just a linear polynomial $\ell$ (in $z, \mathbf{x}$ and unit wrt the former).
Recall: $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.
$\square \operatorname{deg}(f)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}(\Phi(f))\right)=d-1$.

## $k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\tilde{T}_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

$\square$ Here $\Sigma$ means just a linear polynomial $\ell$ (in $z, \mathbf{x}$ and unit wrt the former).
Recall: $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.
$\square \operatorname{deg}(f)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}(\Phi(f))\right)=d-1$.
$\square$ Suffices to compute $g_{1} \bmod z^{d}$ and take the limit!

## $k=2$ proof: dlog strikes!

- What is $\operatorname{dlog}(\ell)$ ?


## $k=2$ proof: dlog strikes!

. What is dlog $(\ell)$ ? Note, $\ell=A-z \cdot B$, where $A \in \mathbb{F}(\epsilon), B \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$.

## $k=2$ proof: dlog strikes!

$\square$ What is $\operatorname{dlog}(\ell)$ ? Note, $\ell=A-z \cdot B$, where $A \in \mathbb{F}(\epsilon), B \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$.

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =-\frac{B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j}
\end{aligned}
$$

$\in \Sigma \wedge \Sigma$. [Magic trick]

## $k=2$ proof: dlog strikes!

$\square$ What is $\operatorname{dlog}(\ell)$ ? Note, $\ell=A-z \cdot B$, where $A \in \mathbb{F}(\epsilon), B \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$.

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =-\frac{B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j}
\end{aligned}
$$

$\in \Sigma \wedge \Sigma$. [Magic trick]

- Thus,


## $k=2$ proof: dlog strikes!

$\square$ What is $\operatorname{dlog}(\ell)$ ? Note, $\ell=A-z \cdot B$, where $A \in \mathbb{F}(\epsilon), B \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$.

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =-\frac{B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j}
\end{aligned}
$$

$\in \Sigma \wedge \Sigma$. [Magic trick]

- Thus,

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d} & \equiv \lim _{\epsilon \rightarrow 0} \Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) \bmod z^{d} \\
& \equiv \lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma) \bmod z^{d} \\
& \in \overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} \bmod z^{d}
\end{aligned}
$$

## Finishing the proof

- $\bar{C} \cdot \mathcal{D} \subseteq \bar{C} \cdot \overline{\mathcal{D}}$. Therefore,


## Finishing the proof

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \bar{D}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

## Finishing the proof

- $\bar{C} \cdot \mathcal{D} \subseteq \bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

$\square$ Eliminate division and integrate (interpolate) to get $\Phi(f) / t_{2}=\mathrm{ABP} \Longrightarrow \Phi(f)=\mathrm{ABP} \Longrightarrow f=\mathrm{ABP}$.

## Proving Lower Bounds

## Lifting classical lower bound in the border

## Lifting classical lower bound in the border

Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

## Lifting classical lower bound in the border

Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
$>$ [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathrm{IMM}_{n, d}$ with $d=o(\log n)$ requires $n^{\omega(1)}$-size depth-3 circuits.

## Lifting classical lower bound in the border

- Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
> [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathrm{IMM}_{n, d}$ with $d=o(\log n)$ requires $n^{\omega(1)}$-size depth-3 circuits.
> Rank-based lower bounds can be lifted in the border!


## Lifting classical lower bound in the border

- Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
$>$ [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathrm{IMM}_{n, d}$ with $d=o(\log n)$ requires $n^{\omega(1)}$-size depth-3 circuits.
$>$ Rank-based lower bounds can be lifted in the border!
$>$ Since, $\mathrm{IMM}_{n, d} \in \mathrm{VBP}, \overline{\Sigma^{[k]} \Pi \Sigma} \neq \mathrm{VBP}$.


## Looking for finer lower bounds

## Looking for finer lower bounds

Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

## Looking for finer lower bounds

Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

- Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ ?


## Looking for finer lower bounds

- Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
- Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ ?

Note: This is already known (impossibility) in the classical setting!

## Looking for finer lower bounds

Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

- Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ ?

Note: This is already known (impossibility) in the classical setting!
$x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

## Looking for finer lower bounds

$\square$ Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

- Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ ?

Note: This is already known (impossibility) in the classical setting!

- $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

Catch: $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ does not work anymore in border, since, $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]} \Pi^{O(k)} \Sigma}$ !

## Looking for finer lower bounds

$\square$ Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

- Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ ?

Note: This is already known (impossibility) in the classical setting!
a $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
Catch: $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ does not work anymore in border, since, $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]} \Pi^{O(k)} \Sigma}$ !
$\square$ What does work (if at all!)?

## Our results

## Our results

## [Dutta-Saxena FOCS'22]

Fix any constant $k \geq 1$. There is an explicit $n$-variate and $<n$ degree polynomial $f$ such that $f$ can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$; but, $f$ requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

## Our results

## [Dutta-Saxena FOCS'22]

Fix any constant $k \geq 1$. There is an explicit $n$-variate and $<n$ degree polynomial $f$ such that $f$ can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$; but, $f$ requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
$\square$ Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- $d$ polynomial on $n=3 d$-variables.

## Our results

## [Dutta-Saxena FOCS'22]

Fix any constant $k \geq 1$. There is an explicit $n$-variate and $<n$ degree polynomial $f$ such that $f$ can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$; but, $f$ requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
$\square$ Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- $d$ polynomial on $n=3 d$-variables.

- $P_{d}$ has trivial fanin-3 depth-3 circuit (and hence in border too!).


## Our results

## [Dutta-Saxena FOCS'22]

Fix any constant $k \geq 1$. There is an explicit $n$-variate and $<n$ degree polynomial $f$ such that $f$ can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$; but, $f$ requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- $d$ polynomial on $n=3 d$-variables.

- $P_{d}$ has trivial fanin-3 depth-3 circuit (and hence in border too!).
- We will show that $P_{d}$ requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.


## Our results

## [Dutta-Saxena FOCS'22]

Fix any constant $k \geq 1$. There is an explicit $n$-variate and $<n$ degree polynomial $f$ such that $f$ can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$; but, $f$ requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- $d$ polynomial on $n=3 d$-variables.

- $P_{d}$ has trivial fanin-3 depth-3 circuit (and hence in border too!).
- We will show that $P_{d}$ requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.

Kumar's proof establishes that $P_{d}$ has a $2^{O(d)}-$ size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits, showing optimality!

## Our results

## [Dutta-Saxena FOCS'22]

Fix any constant $k \geq 1$. There is an explicit $n$-variate and $<n$ degree polynomial $f$ such that $f$ can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$; but, $f$ requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- $d$ polynomial on $n=3 d$-variables.

- $P_{d}$ has trivial fanin-3 depth-3 circuit (and hence in border too!).
- We will show that $P_{d}$ requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.

Kumar's proof establishes that $P_{d}$ has a $2^{O(d)}-$ size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits, showing optimality!

Classical is about impossibility while in border, it is about optimality.

## Non-homogeneity is 'bad'

Recall the non-border lower bound proof, of making an ideal $I_{k}=\left\langle\ell_{1}, \ldots, \ell_{k}\right\rangle$, such that $\operatorname{det}_{n} \neq 0 \bmod I_{k}$, but $\Sigma^{[k]} \Pi \Sigma=0 \bmod I_{k}$.

## Non-homogeneity is 'bad'

$\square$ Recall the non-border lower bound proof, of making an ideal $I_{k}=\left\langle\ell_{1}, \ldots, \ell_{k}\right\rangle$, such that $\operatorname{det}_{n} \neq 0 \bmod I_{k}$, but $\Sigma^{[k]} \Pi \Sigma=0 \bmod I_{k}$.

Let $\ell_{1}:=1+\epsilon x_{1}$. What does taking mod $\ell_{1}$ in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon$ (and then $\epsilon \rightarrow 0$ )!

## Non-homogeneity is 'bad'

Recall the non-border lower bound proof, of making an ideal $I_{k}=\left\langle\ell_{1}, \ldots, \ell_{k}\right\rangle$, such that $\operatorname{det}_{n} \neq 0 \bmod I_{k}$, but $\Sigma^{[k]} \Pi \Sigma=0 \bmod I_{k}$.

Let $\ell_{1}:=1+\epsilon x_{1}$. What does taking mod $\ell_{1}$ in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon($ and then $\epsilon \rightarrow 0)$ !

In other words, work with $\mathcal{I}:=\left\langle\ell_{1}, \epsilon\right\rangle=\langle 1\rangle$ !

## Non-homogeneity is 'bad'

Recall the non-border lower bound proof, of making an ideal $I_{k}=\left\langle\ell_{1}, \ldots, \ell_{k}\right\rangle$, such that $\operatorname{det}_{n} \neq 0 \bmod I_{k}$, but $\Sigma^{[k]} \Pi \Sigma=0 \bmod I_{k}$.

Let $\ell_{1}:=1+\epsilon x_{1}$. What does taking mod $\ell_{1}$ in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon($ and then $\epsilon \rightarrow 0)$ !

In other words, work with $I:=\left\langle\ell_{1}, \epsilon\right\rangle=\langle 1\rangle$ !
Lesson: Taking mod blindly fails miserably!

## Non-homogeneity is 'bad'

Recall the non-border lower bound proof, of making an ideal $I_{k}=\left\langle\ell_{1}, \ldots, \ell_{k}\right\rangle$, such that $\operatorname{det}_{n} \neq 0 \bmod I_{k}$, but $\Sigma^{[k]} \Pi \Sigma=0 \bmod I_{k}$.

Let $\ell_{1}:=1+\epsilon x_{1}$. What does taking mod $\ell_{1}$ in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon$ (and then $\epsilon \rightarrow 0$ )!

In other words, work with $I:=\left\langle\ell_{1}, \epsilon\right\rangle=\langle 1\rangle$ !
Lesson: Taking mod blindly fails miserably!
The worst case:

$$
f+\epsilon S=T_{1}+T_{2},
$$

where $T_{i}$ has each linear factor of the form $1+\epsilon \ell$ !

## Non-homogeneity is all we need to care

## Non-homogeneity is all we need to care

Three cases to consider:
$>$ Case I: Each $T_{1}$ and $T_{2}$ has one linear polynomial $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor, whose $\epsilon$-free term is a linear form. Example: $\ell=(1+\epsilon) x_{1}+\epsilon X_{2}$,

## Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each $T_{1}$ and $T_{2}$ has one linear polynomial $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor, whose $\epsilon$-free term is a linear form. Example: $\ell=(1+\epsilon) x_{1}+\epsilon X_{2}$,
$>$ Case II (intermediate): $T_{1}$ has one homogeneous factor (say $\ell_{1}$ ) and $\epsilon$-free part of all factors in $T_{2}$ are non-homogeneous (in $\boldsymbol{x}$ ). Non-homogeneous example: $(1+\epsilon)+\epsilon X_{1}$.


## Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each $T_{1}$ and $T_{2}$ has one linear polynomial $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor, whose $\epsilon$-free term is a linear form. Example: $\ell=(1+\epsilon) x_{1}+\epsilon X_{2}$,
 part of all factors in $T_{2}$ are non-homogeneous (in $\boldsymbol{x}$ ). Non-homogeneous example: $(1+\epsilon)+\epsilon X_{1}$.
$>$ Case III (all-non-homogeneous): Each $T_{i}$ has all the linear polynomial factors whose $\epsilon$-free is non-homogeneous.


## Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each $T_{1}$ and $T_{2}$ has one linear polynomial $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor, whose $\epsilon$-free term is a linear form. Example: $\ell=(1+\epsilon) x_{1}+\epsilon X_{2}$,
$>$ Case II (intermediate): $T_{1}$ has one homogeneous factor (say $\ell_{1}$ ) and $\epsilon$-free part of all factors in $T_{2}$ are non-homogeneous (in $\boldsymbol{x}$ ). Non-homogeneous example: $(1+\epsilon)+\epsilon X_{1}$.
$>$ Case III (all-non-homogeneous): Each $T_{i}$ has all the linear polynomial factors whose $\epsilon$-free is non-homogeneous.
$\square$ For the first case, take $I:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle(\Rightarrow 1 \notin \mathcal{I})$ and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS circuit $\equiv 0 \bmod I$.


## Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each $T_{1}$ and $T_{2}$ has one linear polynomial $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor, whose $\epsilon$-free term is a linear form. Example: $\ell=(1+\epsilon) x_{1}+\epsilon X_{2}$,
 part of all factors in $T_{2}$ are non-homogeneous (in $\boldsymbol{x}$ ). Non-homogeneous example: $(1+\epsilon)+\epsilon X_{1}$.
$>$ Case III (all-non-homogeneous): Each $T_{i}$ has all the linear polynomial factors whose $\epsilon$-free is non-homogeneous.
- For the first case, take $I:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle(\Rightarrow 1 \notin I)$ and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS circuit $\equiv 0 \bmod I$.
$\square$ For the second case, take $I:=\left\langle\ell_{1}, \epsilon\right\rangle$. Then, RHS $\bmod I \in \overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.


## Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each $T_{1}$ and $T_{2}$ has one linear polynomial $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor, whose $\epsilon$-free term is a linear form. Example: $\ell=(1+\epsilon) x_{1}+\epsilon X_{2}$,
 part of all factors in $T_{2}$ are non-homogeneous (in $\boldsymbol{x}$ ). Non-homogeneous example: $(1+\epsilon)+\epsilon X_{1}$.
$>$ Case III (all-non-homogeneous): Each $T_{i}$ has all the linear polynomial factors whose $\epsilon$-free is non-homogeneous.
- For the first case, take $\mathcal{I}:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle(\Rightarrow 1 \notin \mathcal{I})$ and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS circuit $\equiv 0 \bmod I$.
$\square$ For the second case, take $I:=\left\langle\ell_{1}, \epsilon\right\rangle$. Then, RHS $\bmod I \in \overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.

So, all-non-homogeneous is all we have to care!

## Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each $T_{1}$ and $T_{2}$ has one linear polynomial $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor, whose $\epsilon$-free term is a linear form. Example: $\ell=(1+\epsilon) x_{1}+\epsilon X_{2}$,
 part of all factors in $T_{2}$ are non-homogeneous (in $\boldsymbol{x}$ ). Non-homogeneous example: $(1+\epsilon)+\epsilon X_{1}$.
$>$ Case III (all-non-homogeneous): Each $T_{i}$ has all the linear polynomial factors whose $\epsilon$-free is non-homogeneous.
- For the first case, take $\mathcal{I}:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle(\Rightarrow 1 \notin \mathcal{I})$ and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS circuit $\equiv 0 \bmod I$.
$\square$ For the second case, take $I:=\left\langle\ell_{1}, \epsilon\right\rangle$. Then, RHS $\bmod I \in \overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.

So, all-non-homogeneous is all we have to care!

## Lower bound for all-non-homogeneous $k=2$

## Lower bound for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.


## Lower bound for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
$\square$ Use DiDIL with the (different) map $\Phi: \boldsymbol{x} \mapsto \boldsymbol{z x}$.


## Lower bound for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
$\square$ Use DiDIL with the (different) map $\Phi: \boldsymbol{x} \mapsto \boldsymbol{z x}$.
- DiDIL shows:

$$
\partial_{z}\left(z^{d} P_{d} / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1} \in \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)} .
$$

- $P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
$\square$ Use DiDIL with the (different) map $\Phi: \boldsymbol{x} \mapsto \boldsymbol{x}$.
- DiDIL shows:

$$
\partial_{z}\left(z^{d} P_{d} / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1} \in \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)} .
$$

- Use the minimum power of $z$ to show that $P_{d} \in \overline{\Sigma \wedge \Sigma}$.
- $P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
$\square$ Use DiDIL with the (different) map $\Phi: \boldsymbol{x} \mapsto \boldsymbol{x}$.
- DiDIL shows:

$$
\partial_{z}\left(z^{d} P_{d} / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1} \in \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)} .
$$

$\square$ Use the minimum power of $z$ to show that $P_{d} \in \overline{\Sigma \wedge \Sigma}$.

- Partial-derivative measure shows that the above implies $s \geq 2^{\Omega(d)}$ !


## Conclusion

## Concluding remarks

## Concluding remarks

## Concluding remarks

ROABP presence helps us give many PIT results (see the papers).

## Concluding remarks

ROABP presence helps us give many PIT results (see the papers).
$\square$ Can we show $\Sigma^{[k]} \Pi^{[d]} \Sigma \subseteq \Sigma \Pi \Sigma$, for $d=\operatorname{poly}(n)$ ?

## Concluding remarks

ROABP presence helps us give many PIT results (see the papers).
Can we show $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \subseteq \Sigma \Pi \Sigma$, for $d=\operatorname{poly}(n)$ ?
Can we extend the hierarchy theorem to bounded (top \& bottom fanin) depth-4 circuits? i.e., for a fixed constant $\delta$, is

$$
\overline{\Sigma^{[1]} \Pi \Sigma \Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[2]} \Pi \Sigma \Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]} \Pi \Sigma \Pi^{[\delta]}} \cdots
$$

where the respective gaps are exponential? Clearly, $\delta=1$ holds, from this work.

## Concluding remarks

ROABP presence helps us give many PIT results (see the papers).
Can we show $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \subseteq \Sigma \Pi \Sigma$, for $d=\operatorname{poly}(n)$ ?
Can we extend the hierarchy theorem to bounded (top \& bottom fanin) depth-4 circuits? i.e., for a fixed constant $\delta$, is

$$
\overline{\Sigma^{[1]} \Pi \Sigma \Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[2]} \Pi \Sigma \Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]} \Pi \Sigma \Pi^{[\delta]}} \cdots
$$

where the respective gaps are exponential? Clearly, $\delta=1$ holds, from this work.

## Thank you! Questions?

