A Largish Sum-of-Squares Implies Circuit Hardness and
Derandomization

Pranjal Dutta (CMI & IIT Kanpur) Nitin Saxena (IIT Kanpur)
Thomas Thierauf (Aalen University)

22" September, 2020
tMeet @CSE, IIT Madras (Online)

Table of contents

1. Introduction: Sum-of-squares (SOS)

2. Basic Algebraic Complexity

3. SOS-hardness and VP vs. VNP

4. Sum-of-cubes (SOC) model and Blackbox-PIT

5. Conclusion

Introduction: Sum-of-squares (SOS)

Sum-of-squares (SOS) Representation

Sum-of-squares (SOS) Representation

An n-variate polynomial f(x) € F[x] over a field F is computed as a sum-of-squares
(SOS) if

S

fx) = > 6 fi(x)?, M

i=1

for some top-fanin s, where f;(x) € F[x] and ¢; € F.

Sum-of-squares (SOS) Representation

An n-variate polynomial f(x) € F[x] over a field F is computed as a sum-of-squares
(SOS) if

S

fx) = > 6 fi(x)?, M

i=1

for some top-fanin s, where f;(x) € F[x] and ¢; € F.

Q Size of f in Eqgn. (1) is no. of monomials =3};c(s] |filo-

Sum-of-squares (SOS) Representation

An n-variate polynomial f(x) € F[x] over a field F is computed as a sum-of-squares
(SOS) if

S

fx) = > 6 fi(x)?, M

i=1

for some top-fanin s, where f;(x) € F[x] and ¢; € F.
Q Size of f in Eqn. (1) is no. of monomials =3};¢(s] |filo- ====¢ Iflo denotes sparsity of £.

> Eg.f(x) = 2x + 2 = (x+3/2)% — (x+1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

Sum-of-squares (SOS) Representation

An n-variate polynomial f(x) € F[x] over a field F is computed as a sum-of-squares
(SOS) if

S

fx) = > 6 fi(x)?, M

i=1

for some top-fanin s, where f;(x) € F[x] and ¢; € F.
Q Size of f in Eqn. (1) is no. of monomials =3};¢(s] |filo- ====¢ Iflo denotes sparsity of £.

> Eg.f(x) = 2x + 2 = (x+3/2)% — (x+1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

QO Denote the minimal size by support-sum Sg(f).

Sum-of-squares (SOS) Representation

An n-variate polynomial f(x) € F[x] over a field F is computed as a sum-of-squares
(SOS) if

S

fx) = > 6 fi(x)?, M

i=1

for some top-fanin s, where f;(x) € F[x] and ¢; € F.
Q Size of f in Eqn. (1) is no. of monomials =3};¢(s] |filo- ====¢ Iflo denotes sparsity of £.

> Eg.f(x) = 2x + 2 = (x+3/2)% — (x+1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

QO Denote the minimal size by support-sum Sg(f).

m1\% _ (1=1)\?
Note. SOS is a complete model if char(F) # 2, as f = (%) - (%) .

Sum-of-squares (SOS) Representation

An n-variate polynomial f(x) € F[x] over a field F is computed as a sum-of-squares
(SOS) if

S

fx) = > 6 fi(x)?, M

i=1

for some top-fanin s, where f;(x) € F[x] and ¢; € F.
Q Size of f in Eqn. (1) is no. of monomials =3};¢(s] |filo- ====¢ Iflo denotes sparsity of £.

> Eg.f(x) = 2x + 2 = (x+3/2)% — (x+1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

QO Denote the minimal size by support-sum Sg(f).
f+1 2 f—1 2
Note. SOS is a complete model if char(F) # 2, as f = (%) - (%) .

Trivially, Sp(f) < 2- (|flp + 1) , for any f € F[x].

Upper bound and lower bound: What to expect

QO For simplicity, consider univariate SOS representations (n = 1).

Upper bound and lower bound: What to expect

QO For simplicity, consider univariate SOS representations (n = 1).

U For any char(F) # 2 field F:

1/2

Il

< Sp(f) < 2|flp+2 | (2)

Lower bound by counting monomials:

Upper bound and lower bound: What to expect

QO For simplicity, consider univariate SOS representations (n = 1).

U For any char(F) # 2 field F:

1/2
0

11072 < Sp(f) < 2|flp+2 | @)

Lower bound by counting monomials:

> Suppose f = 37, ¢ f’.2. Assume, [filg = t;.

> Note, |f,.2|0 < t,.2,f0r eachi € [s].

1/2

> 2,‘s=1 t,'2 2 |flp = Z,?=1 ti > |fl,

Upper bound and lower bound: What to expect

QO For simplicity, consider univariate SOS representations (n = 1).

U For any char(F) # 2 field F:

@)

1,72 < Sa(f) < 2|flp+2 |

Lower bound by counting monomials:

> Suppose f = 37, ¢ 2 Assume, [filp = t;.

> Note, |f,.2|0 < t,. , foreach i € [s].

=35, 22l = 32,42 Ifl)>

A

Q If [flg ~ d, then Q(d'/?) < Sg(f) < O(d).

Upper bound and lower bound: What to expect

QO For simplicity, consider univariate SOS representations (n = 1).

U For any char(F) # 2 field F:

@)

1,72 < Sa(f) < 2|flp+2 |

Lower bound by counting monomials:

> Suppose f = 37, ¢ 2 Assume, [filp = t;.

> Note, |f,.2|0 < t,. , foreach i € [s].

=35, 22l = 32,42 Ifl)>

A

Q If |flo ~ d, then Q(d/?) < Sp(f) < O(d).
Q Does there exist d-degree polynomial f(x) such that Sg(f) > Q(d)?

Upper bound and lower bound: What to expect

QO For simplicity, consider univariate SOS representations (n = 1).

U For any char(F) # 2 field F:

@)

1,72 < Sa(f) < 2|flp+2 |

Lower bound by counting monomials:
> Suppose f = 37, ¢ f’.2. Assume, [filg = t;.

> Note, |f,.2|0 < t,.2,f0r eachi € [s].

1/2
> 32 2> f = T84 >)%

A

Q If |flo ~ d, then Q(d/?) < Sp(f) < O(d).
Q Does there exist d-degree polynomial f(x) such that Sg(f) > Q(d)?

> True for “most" polynomials f, by dimension-argument.

Upper bound and lower bound: What to expect

QO For simplicity, consider univariate SOS representations (n = 1).

U For any char(F) # 2 field F:

@)

1,72 < Sa(f) < 2|flp+2 |

Lower bound by counting monomials:
> Suppose f = 37, ¢)".2. Assume, [filg = t;.

> Note, |f,.2|0 < tiz,for eachi € [s].

1/2
> 32 2> f = T84 >)%

A

Q If |flo ~ d, then Q(d/?) < Sp(f) < O(d).
Q Does there exist d-degree polynomial f(x) such that Sg(f) > Q(d)?

> True for “most" polynomials f, by dimension-argument.—

> Assume, F =C.

Think as quadratic-system solving.

Overall Goal

Overall Goal

U Open Problem. Find an explicit univariate polynomial f(x) € C[x] of degree d
such that S(f) > w(d'/?).

Overall Goal

U Open Problem. Find an explicit univariate polynomial f(x) € C[x] of degree d
such that S(f) > w(d'/?).

> S(f) > Q(d/logd), where f(x) = 27:0 22 x!, using [Strassen’74].

Overall Goal

U Open Problem. Find an explicit univariate polynomial f(x) € C[x] of degree d
such that S(f) > w(d'/?).

> S(f) > Q(d/logd), where f(x) = 27:0 22 x!, using [Strassen’74]. But, it
is non-explicit.

Overall Goal

U Open Problem. Find an explicit univariate polynomial f(x) € C[x] of degree d
such that S(f) > w(d'/?).

> S(f) > Q(d/logd), where f(x) = 27:0 22 x!, using [Strassen’74]. But, it
is non-explicit.

> To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

> Eg. (x + 1) is ‘explicit’.

Overall Goal

U Open Problem. Find an explicit univariate polynomial f(x) € C[x] of degree d
such that S(f) > w(d'/?).

> S(f) > Q(d/logd), where f(x) = 27:0 22 x!, using [Strassen’74]. But, it
is non-explicit.

> To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

> Eg. (x + 1) is ‘explicit’.

U Overall Goal (informally): Show that solving Open Problem implies
VP # VNP (and PIT € SUBEXP).

SOS Representation — History

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

> Inspired generations of mathematicians [Ramanujan’17].

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.
> Inspired generations of mathematicians [Ramanujan’17].

> Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.
> Inspired generations of mathematicians [Ramanujan’17].
> Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.
Q (1900) Hilbert's /7th problem: Asks whether a multivariate polynomial, that

takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.
> Inspired generations of mathematicians [Ramanujan’17].
> Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.
Q (1900) Hilbert's /7th problem: Asks whether a multivariate polynomial, that

takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

> Note: ¢; = 1.

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.
> Inspired generations of mathematicians [Ramanujan’17].
> Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.
Q (1900) Hilbert's /7th problem: Asks whether a multivariate polynomial, that

takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

> Note: ¢; = 1.

O (1990s) SOS constraints appear in convex optimization.

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.
> Inspired generations of mathematicians [Ramanujan’17].
> Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.
Q (1900) Hilbert's /7th problem: Asks whether a multivariate polynomial, that

takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

> Note: ¢; = 1.

O (1990s) SOS constraints appear in convex optimization.

> Lasserre hierarchy of relaxations in SDP (based on deg).

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.
> Inspired generations of mathematicians [Ramanujan’17].
> Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.
Q (1900) Hilbert's /7th problem: Asks whether a multivariate polynomial, that

takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

> Note: ¢; = 1.
O (1990s) SOS constraints appear in convex optimization.
> Lasserre hierarchy of relaxations in SDP (based on deg).

> Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

SOS Representation — History

Q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.
> Inspired generations of mathematicians [Ramanujan’17].
> Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.
Q (1900) Hilbert's /7th problem: Asks whether a multivariate polynomial, that

takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

> Note: ¢; = 1.
O (1990s) SOS constraints appear in convex optimization.
> Lasserre hierarchy of relaxations in SDP (based on deg).

> Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

Basic Algebraic Complexity

Algebraic Circuits

f(x)

VP vs. VNP

O Valiant’s Hypothesis [Valiant’79]: Symbolic perm, requires n®(_gize circuit.

VP vs. VNP

O Valiant’s Hypothesis [Valiant’79]: Symbolic perm, requires n®(_gize circuit.

An equivalent statement: Prove| VP # VNP |.

VP vs. VNP

O Valiant’s Hypothesis [Valiant’79]: Symbolic perm, requires n®(_gize circuit.

An equivalent statement: Prove| VP # VNP |.

Q VP : A family (f;), € VP (over F) if £, is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

VP vs. VNP

O Valiant’s Hypothesis [Valiant’79]: Symbolic perm, requires n®(_gize circuit.

An equivalent statement: Prove| VP # VNP |.

Q VP : A family (f;), € VP (over F) if £, is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

Q VNP : A family (f;), € VNP (over F) if 3(gn)n € VP & t(n) = poly(n):

VP vs. VNP

O Valiant’s Hypothesis [Valiant’79]: Symbolic perm, requires n®(_gize circuit.

An equivalent statement: Prove| VP # VNP |.

Q VP : A family (f;), € VP (over F) if £, is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

Q VNP : A family (f;), € VNP (over F) if 3(gn)n € VP & t(n) = poly(n):

fa(x) = Z gn(x,w) |.

we{0,1}(m

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere guery access.

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic

circuit via mere guery access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If P(x) is a nonzero polynomial of degree d, and S C F is finite, then

Probaesr [P(@) = 0] < d/|S].

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere guery access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If P(x) is a nonzero polynomial of degree d, and S C F is finite, then

Probaesr [P(@) = 0] < d/|S].

> The above lemma puts PIT € RP.

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic

circuit via mere guery access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If P(x) is a nonzero polynomial of degree d, and S C F is finite, then

Probaesr [P(@) = 0] < d/|S].

> The above lemma puts PIT € RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP # VNP — PIT € SUBEXP.

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic

circuit via mere guery access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If P(x) is a nonzero polynomial of degree d, and S C F is finite, then

Probaesr [P(@) = 0] < d/|S].

> The above lemma puts PIT € RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP # VNP — PIT € SUBEXP.

> VNP is exponentially harder than VP — PIT € QP.

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere guery access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If P(x) is a nonzero polynomial of degree d, and S C F is finite, then

Probaesr [P(@) = 0] < d/|S].

> The above lemma puts PIT € RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP # VNP — PIT € SUBEXP.

> VNP is exponentially harder than VP — PIT € QP.

?
> Efficient PIT = VP # VNP.

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C = 0
(deterministically).

> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic

circuit via mere guery access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If P(x) is a nonzero polynomial of degree d, and S C F is finite, then

Probaesr [P(@) = 0] < d/|S].

> The above lemma puts PIT € RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP # VNP — PIT € SUBEXP.

> VNP is exponentially harder than VP — PIT € QP.

?
> Efficient PIT = VP # VNP.

Explicitness

Definition (Explicit Functions). The family (fy(x))y, where fy is univariate
degree-d polynomial, is explicit, if its coefficient-function coefy, (fy) is easy:

Explicitness

Definition (Explicit Functions). The family (fy(x))y, where fy is univariate
degree-d polynomial, is explicit, if its coefficient-function coefy, (fy) is easy:

O Each coefficient can be at most poly(d)-bits long, and

Explicitness

Definition (Explicit Functions). The family (fy(x))y, where fy is univariate
degree-d polynomial, is explicit, if its coefficient-function coefy, (fy) is easy:

O Each coefficient can be at most poly(d)-bits long, and

O the coefficient-function gets input (f, 7, d) and outputs the j-th bit of the
coefficient of x' in fy in

Explicitness

Definition (Explicit Functions). The family (fy(x))y, where fy is univariate
degree-d polynomial, is explicit, if its coefficient-function coefy, (fy) is easy:

O Each coefficient can be at most poly(d)-bits long, and

O the coefficient-function gets input (f, 7, d) and outputs the j-th bit of the
coefficient of x' in fy in

> poly(log d)-time.

Explicitness

Definition (Explicit Functions). The family (fy(x))y, where fy is univariate
degree-d polynomial, is explicit, if its coefficient-function coefy, (fy) is easy:
O Each coefficient can be at most poly(d)-bits long, and

O the coefficient-function gets input (f, 7, d) and outputs the j-th bit of the
coefficient of x' in fy in

> poly(log d)-time.
> Or,...in #P/poly.

Explicitness

Definition (Explicit Functions). The family (fy(x))y, where fy is univariate
degree-d polynomial, is explicit, if its coefficient-function coefy, (fy) is easy:

O Each coefficient can be at most poly(d)-bits long, and

O the coefficient-function gets input (f, 7, d) and outputs the j-th bit of the
coefficient of x' in fy in
> poly(log d)-time.
> Or,...in #P/poly.

> Or,...in CH.

Explicitness

Definition (Explicit Functions). The family (fy(x))y, where fy is univariate
degree-d polynomial, is explicit, if its coefficient-function coefy, (fy) is easy:

O Each coefficient can be at most poly(d)-bits long, and

O the coefficient-function gets input (f, 7, d) and outputs the j-th bit of the
coefficient of x' in fy in

> poly(log d)-time.
> Or,...in #P/poly.

> Or,...in CH.%

Requires GRH to separate VP and VNP.

SOS-hardness

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant

function.

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant
function.

Remark. Hardness examples— di’e. (logd)Vlegd g1/2+.01

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant
function.

Remark. Hardness examples— di’e. (logd)Vlegd g1/2+.01

Q There are numerous candidates for fy(x):

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant
function.

Remark. Hardness examples— di’e. (logd)Vlegd g1/2+.01

Q There are numerous candidates for fy(x):

> The famous Pochhammer-Wilkinson polynomial fy := H/('j=1 (x =1).

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant
function.

Remark. Hardness examples— di/z. (logd)Vioed, gl/z+.01
Q There are numerous candidates for fy(x):

> The famous Pochhammer-Wilkinson polynomial fy := H/('j=1 (x =1).

.— yd P2 i
> fy = Zi:O 2" X!,

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant
function.

Remark. Hardness examples— di’e. (logd)Vlegd g1/2+.01

Q There are numerous candidates for fy(x):

> The famous Pochhammer-Wilkinson polynomial fy := H/('j=1 (x =1).

.— yd P2 i
> fy = Zi:O 2" x| =

Z?:o 2'x! is not a candidate

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant
function.

Remark. Hardness examples— di’e. (logd)Vlegd g1/2+.01

Q There are numerous candidates for fy(x):

> The famous Pochhammer-Wilkinson polynomial fy := H/('j=1 (x =1).

.— yd P2 i
> fy = Zi:O 2" x| =

Z?:o 2'x! is not a candidate

> fy = (x+1)7.

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fy)q is
SOS-hard, if Sp(fy) = Q(d%5*€), where & := £(d) = w (,/%) is a sub-constant
function.

Remark. Hardness examples— di’e. (logd)Vlegd g1/2+.01

Q There are numerous candidates for fy(x):

> The famous Pochhammer-Wilkinson polynomial fy := H/('j=1 (x =1).

.— yd P2 i
> fy = Zi:O 2" x| =

> fy o= (x+1)d.%

Z?:o 2'x! is not a candidate

(x +1)? has poly(log d)-size circuit.

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

O [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’ 18] Hardness for special depth-4/3 — sum-of unbounded-powers of
multivariates), /\‘“(1) >TI1.

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

O [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’ 18] Hardness for special depth-4/3 — sum-of unbounded-powers of
multivariates), /\‘“(1) >TI1.

Q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the fop-fanin (we require SOS-size).

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

O [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’ 18] Hardness for special depth-4/3 — sum-of unbounded-powers of
multivariates), /\‘“(1) >TI1.

Q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the fop-fanin (we require SOS-size).
> SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is # []-operations in 3} A? 3 [1-formula.

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

O [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’ 18] Hardness for special depth-4/3 — sum-of unbounded-powers of
multivariates), /\‘“(1) >TI1.

Q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the fop-fanin (we require SOS-size).
> SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is # []-operations in 3} A? 3 [1-formula.
> Circuit-hardness = SOS-hardness (f requires s size circuit implies
S(f) > s/logd); the opposite plausibly doesn’t hold.

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

O [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’ 18] Hardness for special depth-4/3 — sum-of unbounded-powers of
multivariates), /\‘“(1) >TI1.

Q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the fop-fanin (we require SOS-size).
> SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is # []-operations in 3} A? 3 [1-formula.
> Circuit-hardness = SOS-hardness (f requires s size circuit implies
S(f) > s/logd); the opposite plausibly doesn’t hold.

Q real-7-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-7-conjecture about roots of similar depth-4 expressions (also
here, w(Vd) vs. d).

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

O [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’ 18] Hardness for special depth-4/3 — sum-of unbounded-powers of
multivariates), /\‘“(1) >TI1.

Q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the fop-fanin (we require SOS-size).
> SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is # []-operations in 3} A? 3 [1-formula.
> Circuit-hardness = SOS-hardness (f requires s size circuit implies
S(f) > s/logd); the opposite plausibly doesn’t hold.

Q real-7-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-7-conjecture about roots of similar depth-4 expressions (also
here, w(Vd) vs. d).

U [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic

multivariate).

SOS-hardness to VP = VNP

SOS-hardness to VP = VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP # VNP.

SOS-hardness to VP = VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP # VNP.

> Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubes-Wigderson-Yehudayoft”11].

SOS-hardness to VP = VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP # VNP.

> Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubes-Wigderson-Yehudayoft”11].

> Restrict the degrees of f; to be d - o(log d) and the top-fanin s = a°M,

SOS-hardness to VP = VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP # VNP.

> Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubes-Wigderson-Yehudayoft”11].

> Restrict the degrees of f; to be d - o(log d) and the top-fanin s = a°M,

> A stronger SOS-hardness notion with constant €, gives an exponential
separation between VP and VNP. This proof has many technical differences.

SOS-hardness and VP vs. VNP

SOS Decomposition

Main Lemma (SOS Decomposition)

SOS Decomposition

Main Lemma (SOS Decomposition)

Let IF be a field of characteristic # 2. Let f(x) be an n-variate polynomial over F of
degree d, computed by a circuit of size s. Then there exist f; € F[x] and ¢; € F such
that

s

f(x) = Y aifi(x)?,

i=1

where s’ < (sd)©(°89) and deg(f;) < [d/2], forall i € [s'].

SOS Decomposition

Main Lemma (SOS Decomposition)

Let IF be a field of characteristic # 2. Let f(x) be an n-variate polynomial over F of
degree d, computed by a circuit of size s. Then there exist f; € F[x] and ¢; € F such
that

s

f(x) = Y aifi(x)?,

i=1

where s’ < (sd)©(°89) and deg(f;) < [d/2], forall i € [s'].

Can we improve s’ to poly(sd)?

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a{xy + ...+ apxp + ¢ € F[x], where a;,c € F.

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a{xy + ...+ apxp + ¢ € F[x], where a;,c € F.

> The weight of a path is the product of labels of the edges in the path.

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a{xy + ...+ apxp + ¢ € F[x], where a;,c € F.

> The weight of a path is the product of labels of the edges in the path.

> The polynomial computed by the ABP is the polynomial computed at the end
vertex t.

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a{xy + ...+ apxp + ¢ € F[x], where a;,c € F.

> The weight of a path is the product of labels of the edges in the path.
> The polynomial computed by the ABP is the polynomial computed at the end

vertex t.
X2
o——>o
X 3 .
This ABP computes
2
X1X2X3 + X1X2(1+x3) + (1 +x1)x2(1 +x:
140 T xa 1X2X3 + X1x2(1+x3) + (1)x2(1+x3)
o——>e

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

> Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

> Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

> Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

> Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

> Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

> Convert the circuit to a homogeneous ABP of size (width) w := s'°89 such that
each edge has linear form weight (without constants).

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

> Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

> Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

> Convert the circuit to a homogeneous ABP of size (width) w := s'°89 such that
each edge has linear form weight (without constants).

> By construction, i-th layer nodes compute polynomials of degree exactly i.

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

> Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

> Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

> Convert the circuit to a homogeneous ABP of size (width) w := s'°89 such that
each edge has linear form weight (without constants).

> By construction, i-th layer nodes compute polynomials of degree exactly i.

> Cut the ABP, at the d/2-th layer, we get
f=(fly....f)" - (f1', .. .,f,,’,,) = Z}L fi - £/, where f; and f/ have degree d/2.

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

> Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

> Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

> Convert the circuit to a homogeneous ABP of size (width) w := s'°89 such that
each edge has linear form weight (without constants).

> By construction, i-th layer nodes compute polynomials of degree exactly i.

> Cut the ABP, at the d/2-th layer, we get
f=(fly....f)" - (f1', .. .,f,,’,,) = Z}L fi - £/, where f; and f/ have degree d/2.

> Write each product fj - f/ = 1/4 - (f; + f,.’)2 - 1/4.(fi— fl.’)z, which finally gives
the desired decomposition.

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.

0O Wilog, fy is SOS-hard with & = (log log d/log d) /3.

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.

0O Wilog, fy is SOS-hard with & = (log log d/log d) /3.

QO Convert this to a kn-variate n-degree multilinear polynomial Pp, x where
k™ >d > (k—1)", (n and k are both functions of d to be fixed later) and show
that the family € VNP, but ¢ VP.

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.

U Wlog, fy is SOS-hard with € = (log log d/log d)1/3.

QO Convert this to a kn-variate n-degree multilinear polynomial Pp, x where
k™ >d > (k—1)", (n and k are both functions of d to be fixed later) and show
that the family € VNP, but ¢ VP. The conversion is as follows:

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.

U Wlog, fy is SOS-hard with € = (log log d/log d)1/3.
QO Convert this to a kn-variate n-degree multilinear polynomial Pp, x where

k™ >d > (k—1)", (n and k are both functions of d to be fixed later) and show
that the family € VNP, but ¢ VP. The conversion is as follows:

> Introduce new variables y; , wherej € [n] and ¢ € [0,k — 1].

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.

U Wlog, fy is SOS-hard with € = (log log d/log d)1/3.
QO Convert this to a kn-variate n-degree multilinear polynomial Pp, x where

k™ >d > (k—1)", (n and k are both functions of d to be fixed later) and show
that the family € VNP, but ¢ VP. The conversion is as follows:

> Introduce new variables y; , wherej € [n] and ¢ € [0,k — 1].

> Monomial x' in fy(x) maps to ¢(x') :=]—I/’Fz1 Yj.i;» where
P= 3L KT 0 < < k-1

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.

U Wlog, fy is SOS-hard with € = (log log d/log d)1/3.

QO Convert this to a kn-variate n-degree multilinear polynomial Pp, x where
k™ >d > (k—1)", (n and k are both functions of d to be fixed later) and show
that the family € VNP, but ¢ VP. The conversion is as follows:

> Introduce new variables y; , wherej € [n] and ¢ € [0,k — 1].

> Monomial x' in fy(x) maps to ¢(x') :=]—I/’Fz1 Yj.i;» where
P= 3L KT 0 < < k-1

> By definition P, x = ¢(fy) is kn-variate n-degree multilinear polynomial.

Proof of Theorem 1: SOS-hardness to VP # VNP

Recall Theorem 1: If an explicit fy(x) is SOS-hard i.e. Sp(fy) > d'/2*# for

& = w(+/loglogd/logd), then VP # VNP.
U Wlog, fy is SOS-hard with € = (log log d/log d)1/3.

QO Convert this to a kn-variate n-degree multilinear polynomial Pp, x where
k™ >d > (k—1)", (n and k are both functions of d to be fixed later) and show
that the family € VNP, but ¢ VP. The conversion is as follows:

> Introduce new variables y; , wherej € [n] and ¢ € [0,k — 1].

> Monomial x' in fy(x) maps to ¢(x') :=]—I/’Fz1 Yj.i;» where
P= 3L KT 0 < < k-1

> By definition P, x = ¢(fy) is kn-variate n-degree multilinear polynomial.

QO Pp k is very explicit and thus the family € VNP.

Proof of Theorem 1 (continued)

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).

Q Proof by contradiction. Suppose Pp, x has a small-size circuit.

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).
Q Proof by contradiction. Suppose Pp, x has a small-size circuit.

QO SOS Decomposition shows that Py, (y) = 21.5;1 ci - Qi(y)2, where
deg(Q;) < deg(Pnk)/2 < nj/2.

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).
Q Proof by contradiction. Suppose Pp, x has a small-size circuit.

QO SOS Decomposition shows that Py, (y) = 21.5;1 ci - Qi(y)2, where
deg(Q;) < deg(Pnk)/2 < nj/2.

Q Apply ¢ both side to getfy = ¢(Pox) = X5, ¢ - ¢(Q)? .

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).
Q Proof by contradiction. Suppose Pp, x has a small-size circuit.

QO SOS Decomposition shows that Py, (y) = 21.5;1 ci - Qi(y)2, where
deg(Q;) < deg(Pnk)/2 < nj/2.

Q Apply ¢ both side to getfy = ¢(Pox) = X5, ¢ - ¢(Q)? .

kn+n/2)

Q ¢ cannot increase the sparsity. Thus, [#(Q)|o < |Qilo < (n/2

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).
Q Proof by contradiction. Suppose Pp, x has a small-size circuit.

QO SOS Decomposition shows that Py, (y) = 21.5;1 ci - Qi(y)2, where
deg(Q;) < deg(Pnk)/2 < nj/2.

Q Apply ¢ both side to getfy = ¢(Pox) = X5, ¢ - ¢(Q)? .

Q ¢ cannot increase the sparsity. Thus, [¢(Q/)|o < |Qilo < (k":/';/ 3

Q Hence, Sp(fy) < s’ - (k",f/nz/z) :

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).

Q Proof by contradiction. Suppose Pp, x has a small-size circuit.

QO SOS Decomposition shows that Py, (y) = 21.5;1 ci - Qi(y)2, where
deg(Q;) < deg(Pnk)/2 < nj/2.

Q Apply ¢ both side to getfy = ¢(Pox) = X5, ¢ - ¢(Q)? .

Q ¢ cannot increase the sparsity. Thus, [¢(Qj)lo < |Qilo < (kn:/';/z)

Q Hence, Sp(fy) < s - (kn;/nz/Z)

Q Fix k, n appropriately and show:

s’ < d°® | and (kn+n/2) < g'/2rel2 |
n/2

Proof of Theorem 1 (continued)

0 We show that circuit-size(Pp k) = (kn)©() (implying the family ¢ VP).

Q Proof by contradiction. Suppose Pp, x has a small-size circuit.

QO SOS Decomposition shows that Py, (y) = 21.5;1 ci - Qi(y)2, where
deg(Q;) < deg(Pnk)/2 < nj/2.

Q Apply ¢ both side to get fy = ¢(Pp) = Z,-s;1 ci - p(Q)? .

Q ¢ cannot increase the sparsity. Thus, [¢(Qj)lo < |Qilo < (kn:/';/z)

Q Hence, Sp(fy) < s - (kn;/f;/z) .

Q Fix k, n appropriately and show:

s’ < d°® | and (kn+n/2) < g'/2rel2 |
n/2

Q Thus, Sp(fy) < d°(&)+1/2+&/2 = o(g1/2+#) 4 contradiction!

Sum-of-cubes (SOC) model and
Blackbox-PIT

Blackbox-PIT and Sum-of-cubes (SOC)

Blackbox-PIT and Sum-of-cubes (SOC)

O Can SOS-hardness give PIT € P?

Blackbox-PIT and Sum-of-cubes (SOC)

U Can SOS-hardness give PIT € P? Ans: Don’t know. Currently the best known is
QP (when ¢ is constant), using result from [KI04].

Blackbox-PIT and Sum-of-cubes (SOC)

U Can SOS-hardness give PIT € P? Ans: Don’t know. Currently the best known is
QP (when ¢ is constant), using result from [KI04].

O Can we strengthen the condition/measure to put PIT € P?

Blackbox-PIT and Sum-of-cubes (SOC)

U Can SOS-hardness give PIT € P? Ans: Don’t know. Currently the best known is
QP (when ¢ is constant), using result from [KI04].

O Can we strengthen the condition/measure to put PIT € P? Ans: Yes!

Blackbox-PIT and Sum-of-cubes (SOC)

U Can SOS-hardness give PIT € P? Ans: Don’t know. Currently the best known is
QP (when ¢ is constant), using result from [KI04].

O Can we strengthen the condition/measure to put PIT € P? Ans: Yes!

O An n-variate polynomial f(x) € F[x] over a field F is computed as a
sum-of-cubes (SOC) if

S

fx) =) e fi0)®, 3)

i=1
for some top-fanin s, where f;(x) € F[x] and ¢; € F.

Blackbox-PIT and Sum-of-cubes (SOC)

U Can SOS-hardness give PIT € P? Ans: Don’t know. Currently the best known is
QP (when ¢ is constant), using result from [KI04].

O Can we strengthen the condition/measure to put PIT € P? Ans: Yes!

O An n-variate polynomial f(x) € F[x] over a field F is computed as a
sum-of-cubes (SOC) if

S

fx) = > a0, 3)

i=1
for some top-fanin s, where f;(x) € F[x] and ¢; € F.

> Size of f in Eqn. (3) is no. of distinct monomials in f;’s i.e. | U,-S:1 supp(f,-)|.

Blackbox-PIT and Sum-of-cubes (SOC)

U Can SOS-hardness give PIT € P? Ans: Don’t know. Currently the best known is
QP (when ¢ is constant), using result from [KI04].

O Can we strengthen the condition/measure to put PIT € P? Ans: Yes!

O An n-variate polynomial f(x) € F[x] over a field F is computed as a
sum-of-cubes (SOC) if

S

fx) = > a0, 3)

i=1
for some top-fanin s, where f;(x) € F[x] and ¢; € F.

> Size of f in Eqn. (3) is no. of distinct monomials in f;’s i.e. | U,-S:1 supp(f,-)|.

Eg. f(x) == x3+6x%2 = (x+1)% — (x = 1)% + x3. Size of f in this SOC
representation is 2.

Blackbox-PIT and Sum-of-cubes (SOC)

U Can SOS-hardness give PIT € P? Ans: Don’t know. Currently the best known is
QP (when ¢ is constant), using result from [KI04].

O Can we strengthen the condition/measure to put PIT € P? Ans: Yes!

O An n-variate polynomial f(x) € F[x] over a field F is computed as a
sum-of-cubes (SOC) if

S

fx) = > a0, 3)

i=1
for some top-fanin s, where f;(x) € F[x] and ¢; € F.
> Size of f in Eqn. (3) is no. of distinct monomials in f;’s i.e. | U,-S:1 supp(f,-)|.
Eg. f(x) == x3+6x%2 = (x+1)% — (x = 1)% + x3. Size of f in this SOC
representation is 2.

> Denote the minimal size by support-union Ug(f, s).

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):

f=(f+2)%/24 + (-2)%/24 — f3/12.

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):

f=(f+2)%/24 + (-2)%/24 — f3/12.

Q Trivially Ug(f,s) < |f|p + 1, for any s > 3. By counting argument,
1/3
Us(f.s) > 113/,

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):

f=(f+2)%/24 + (-2)%/24 — f3/12.

Q Trivially Ug(f,s) < |f|p + 1, for any s > 3. By counting argument,
1/3
Us(f.s) > 113/,

Q If |flo ~ d, then Q(d"/3) < Ug(f,s) < O(d).

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):
f=(f+2)%/24 + (-2)%/24 — f3/12.
Q Trivially Ug(f,s) < |f|p + 1, for any s > 3. By counting argument,
1/3
Us(f.s) > 113/,
Q If |flo ~ d, then Q(d"/3) < Ug(f,s) < O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(f4)q> where fy is of degree—d, is SOC-hard, if there exists a positive constant
&’ < 1/2 such that Ug (fd,dS’) - Q(d).

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):
f=(f+2)%/24 + (-2)%/24 — f3/12.
Q Trivially Ug(f,s) < |f|p + 1, for any s > 3. By counting argument,
1/3
Us(f.s) > 113/,
Q If |flo ~ d, then Q(d"/3) < Ug(f,s) < O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(f4)q> where fy is of degree—d, is SOC-hard, if there exists a positive constant
&’ < 1/2 such that Ug (fd,dS’) - Q(d).

> Seems false over F = C,R [dimension argument].

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):
f=(f+2)%/24 + (-2)%/24 — f3/12.
Q Trivially Ug(f,s) < |f|p + 1, for any s > 3. By counting argument,
1/3
Us(f.s) > 113/,
Q If |flo ~ d, then Q(d"/3) < Ug(f,s) < O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(f4)q> where fy is of degree—d, is SOC-hard, if there exists a positive constant
&’ < 1/2 such that Ug (fd,dS’) - Q(d).

> Seems false over F = C,R [dimension argument]. «<==%

> Instead fix F = Q, [Natural choice for PIT].

x% +y® =1 has no O solution

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):
f=(f+2)%/24 + (-2)%/24 — f3/12.
Q Trivially Ug(f,s) < |f|p + 1, for any s > 3. By counting argument,
1/3
Us(f.s) > 113/,
Q If |flo ~ d, then Q(d"/3) < Ug(f,s) < O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(f4)q> where fy is of degree—d, is SOC-hard, if there exists a positive constant
&’ < 1/2 such that Ugp (fd,ds/) =Q(d).

> Seems false over F = C,R [dimension argument]. «<==%
> Instead fix F = Q, [Natural choice for PIT].

> [Agrawal’20]: For s = Q(d'/?), Ug(fy, s) = O(d"/?); for s = Q(d?/3),
Ug(fg,s) = ©(d"?).

x% +y® =1 has no O solution

SOC-hardness : What to expect

Q SOC is a complete model for char(F) # 2, 3 because for any f(x):
f=(f+2)%/24 + (-2)%/24 — f3/12.
Q Trivially Ug(f,s) < |f|p + 1, for any s > 3. By counting argument,
1/3
Us(f.s) > 113/,
Q If |flo ~ d, then Q(d"/3) < Ug(f,s) < O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(f4)q> where fy is of degree—d, is SOC-hard, if there exists a positive constant
&’ < 1/2 such that Ugp (fd,ds/) =Q(d).

> Seems false over F = C,R [dimension argument]. «<==%

> Instead fix F = Q, [Natural choice for PIT].

> [Agrawal’20]: For s = Q(d'/?), Ug(fy, s) = O(d"/?); for s = Q(d?/3),
Ug(fg,s) = ©(d"?).

> Fors < o(d'/?), we conjecture that most polynomials fy are SOC-hard.

x% +y® =1 has no O solution

Theorem 2: SOC-hardness to PIT

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT € P.

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT € P.

Proof Idea. Assume fy is SOC-hard for some &’.

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT € P.

Proof Idea. Assume fy is SOC-hard for some &’.

Q Convert it to k = O(1)-variate, ideg-n, poly (n¥)-time-explicit polynomial Pn k.
using inverse-Kronecker map on fy i.e. Pp k (x, "1, . .. xSy =g

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT € P.

Proof Idea. Assume fy is SOC-hard for some &’.

Q Convert it to k = O(1)-variate, ideg-n, poly (n¥)-time-explicit polynomial Pn k.
using inverse-Kronecker map on fy i.e. Pp k (x, "1, . .. ,x(”“)w) =

Q Prove that (Pp, k)n is a constant-variate circuit-hard family i.e.

size(Pp k) = n**()_ Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to

conclude that PIT € P.

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT € P.

Proof Idea. Assume fy is SOC-hard for some &’.

Q Convert it to k = O(1)-variate, ideg-n, poly (n¥)-time-explicit polynomial Pn k.
using inverse-Kronecker map on fy i.e. Pp k (x, "1, . .. ,x(”“)w) =

Q Prove that (Pp, k)n is a constant-variate circuit-hard family i.e.

size(Pp k) = n**()_ Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to

conclude that PIT € P.

U Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f = ZPOW(S’d) C;Qf’, where

i=1
deg(Qj) < 4d/11. [1/3 < 4/11 < 1/e]

20

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT € P.

Proof Idea. Assume fy is SOC-hard for some &’.

Q Convert it to k = O(1)-variate, ideg-n, poly (n¥)-time-explicit polynomial Pn k.
using inverse-Kronecker map on fy i.e. Pp k (x, "1, . .. ,x(”“)w) =

Q Prove that (Pp, k)n is a constant-variate circuit-hard family i.e.

size(Pp k) = n**()_ Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to

conclude that PIT € P.

U Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f = ZPOW(S’d) C;Qf’, where

i=1
deg(Qj) < 4d/11. [1/3 < 4/11 < 1/e]

QO A binomial counting argument shows that small size of Pp, implies
Ug(fy, d") = o(d), a contradiction!

20

Conclusion

Conclusion

O Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

21

Conclusion

O Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

Q Prove the existence of a SOS-hard family for the sum of constantly many squares.

21

Conclusion

O Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

Q Prove the existence of a SOS-hard family for the sum of constantly many squares.

O Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

21

Conclusion

O Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

Q Prove the existence of a SOS-hard family for the sum of constantly many squares.

O Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

O Can we optimize ¢ in the SOS-hardness condition and prove it for any w(Vd)?

21

Conclusion

O Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

Q Prove the existence of a SOS-hard family for the sum of constantly many squares.

O Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

O Can we optimize ¢ in the SOS-hardness condition and prove it for any w(Vd)?
For eg: does proving an SOS lower-bound of Vd - poly(log d), suffice to show
VP # VNP?

21

Conclusion

O Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

Q Prove the existence of a SOS-hard family for the sum of constantly many squares.

O Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

O Can we optimize ¢ in the SOS-hardness condition and prove it for any w(Vd)?
For eg: does proving an SOS lower-bound of Vd - poly(log d), suffice to show
VP # VNP?

21

	Introduction: Sum-of-squares (SOS)
	Basic Algebraic Complexity
	SOS-hardness and VP vs. VNP
	Sum-of-cubes (SOC) model and Blackbox-PIT
	Conclusion

