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Prologue
Turing did many things... (including 
winning WW2 !)

But we focus on his abstract
contributions.

Postulated a simple, most general, 
mathematical model for computing – 
Turing machine (TM).

How this postulation, together
with Hilbert's dreams and 
Matiyasevich's realizations, led to 
some fundamental physical/ 
mathematical phenomena...

Turing (1912-1954)
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Prologue
Turing machines first appeared in the paper:



Hilbert's 10th Problem 5

Contents

Prologue

Before Turing

Hilbert challenges

Turing's first paper

Matiyasevich solves the 10th Problem

Epilogue



Hilbert's 10th Problem 6

Before Turing
Gottfried Leibniz dreamt of building a machine 
that could check the truth of math statements.

David Hilbert posed 23 problems in ICM Paris 
(1900) with the speech 
“...What methods, what new facts will the new 
century reveal in the vast and rich field of 
mathematical thought?...”

Only 3 are still unresolved!

This talk is about one of the resolved ones: the
10th problem.

Hilbert (1862-1943)

Leibniz (1646-1716)



Hilbert's 10th Problem 7

Before Turing
Here is the list of the 23 problems:

1) Cantor's problem of the cardinal number of the continuum.
2) The compatibility of the arithmetical axioms.
3) The equality of the volumes of two tetrahedra of equal bases and equal 

altitudes.
4) Problem of the straight line as the shortest distance between two points.
5) Lie's concept of a continuous group of transformations without the 

assumption of the differentiability of the functions defining the group.
6) Mathematical treatment of the axioms of physics.
7) Irrationality and transcendence of certain numbers.
8) Problems of prime numbers.
9) Proof of the most general law of reciprocity in any number field.
10) Determination of the solvability of a diophantine equation.
11) Quadratic forms with any algebraic numerical coefficients.
12) Extension of Kronecker's theorem on abelian fields to any algebraic realm 

 of rationality.
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Before Turing
13) Impossibility of the solution of the general equation of the 7th degree by 

means of functions of only two arguments.
14) Proof of the finiteness of certain complete systems of functions.
15) Rigorous foundation of Schubert's enumerative calculus.
16) Problem of the topology of algebraic curves and surfaces.
17) Expression of definite forms by squares.
18) Building up of space from congruent polyhedra.
19) Are the solutions of regular problems in the calculus of variations always 

 necessarily analytic?
20) The general problem of boundary values.
21) Proof of the existence of linear differential equations having a prescribed

 monodromic group.
22) Uniformization of analytic relations by means of automorphic functions.
23) Further development of the methods of the calculus of variations.
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Hilbert challenges
Hilbert (1928) further asked for 
“an algorithm to decide whether a given statement is 
provable from the axioms using the rules of logic”.

Known as the Entscheidungsproblem.

He “believed” there exists no undecidable problem!

Answer first requires defining 'algorithm' & 
'computation'.

Done by Alonzo Church (1935-6).
Using effective computability based on his λ-calculus. 
Gave a negative answer!

Church (1903-1995)
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Hilbert challenges
Church showed that there is no algorithm to decide the 
equivalence of two given λ-calculus expressions.

λ-calculus formalizes mathematics through functions in 
contrast to set theory.

Eg. natural numbers are defined as
0 := λfx.x
1 := λfx.f x
2 := λfx.f (f x)
3 := λfx.f (f (f x)) 

Addition, multiplication, recursion, substitution, evaluation are 
defined...
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Turing's first paper
Soon after Church, Turing (1936-7) gave his own proof.

Inventing the more tangible – Turing machines.

Showed the uncomputability of the Halting problem. 
Deciding whether a given TM halts or not.

He also realized that Turing machines and λ-calculus are 
equivalent models of computation.

After studying the equivalence of several such models, they 
made the Church-Turing thesis
“a function is realistically computable if and only if it is 
computable by a Turing machine”.
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Turing's first paper
Both the proofs were motivated by Kurt Gödel's work.

Gödel (1931) invented a numbering to logical 
formulas in order to reduce logic to arithmetic, 
and prove his incompleteness theorem.

Turing's proof idea for Entscheidungsproblem:
Enumerate the TMs as {M1, M2, M3, …}.
Let Mi be the one solving the Halting problem.
Consider the TM M: On input x, if Mi rejects x(x) then ACCEPT 
else NOT(x(x)). 
What is M(M) ??
Thus, Halting problem is uncomputable.
Express Halting problem as a first-order statement. 

Gödel (1906-1978)
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Matiyasevich
We saw two uncomputable problems. How about a more 
natural (number theoretic) problem?

Hilbert's 10th problem: Deciding solvability of an integral 
polynomial (aka Diophantine solvability). 

Ancient mathematicians have spent much time looking at 
such “toy” equations.

Univariate: linear, quadratic, cubic, quartic, quintic,...
n-variate: x2-Dy2=1, x3+y3=z3, x100+y100=z100, y2=x3+Ax+B,...

Hilbert asked if one could automate the study of solvability.
Answer (after a long time in 1970): NO!
Meta-Claim: Rarely can humans discern Diophantine equations.
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Matiyasevich
A large body of work towards Hilbert's 10th problem – Emil 
Leon Post (1940), Martin Davis (1949-69), Julia Robinson (1950-60), 
Hilary Putnam (1959-69).

Yuri Matiyasevich (1970) provided the last crucial step, 
giving a negative answer to the 10th problem.

The Theorem: If R is a computably enumerable (ce)
language then there exists P∈ℤ[x,x1,...,xn] such that:
x∈R iff P(x,x1,...,xn) has an integral root.

A language R⊆{0,1}* is ce if there is a TM that accepts exactly R.
P is called a Diophantine representation of R.

=> Halting problem has a Diophantine representation!

Matiyasevich (1947-)
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Matiyasevich (Prime formula)
Before the PROOF, a fun implication:
∃ integral polynomial whose positive values are primes!

Proof: PRIMES is clearly ce. 
Thus, ∃ Diophantine representation P(x,x1,...,xn). 
Consider Q(x,x1,...,xn) := x(1-P2).
Q>0 iff P2<1 iff P=0 iff Q=x is prime! 

There has been much work to discover this prime formula.
(Jones, Sato, Wada & Wiens 1976) gave a 26-variate polynomial of
degree 25. 
(Matiyasevich 1977) gave a 10-variate polynomial of degree 1045. 
(Jones 1982) gave a 58-variate polynomial of degree 4. 
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Matiyasevich (Prime formula)
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Matiyasevich (Proof)
The proof of “every ce language has a Diophantine rep.” is 
fairly tedious.

We will discuss only the basic ideas and steps involved.

Let R⊆{0,1}* be a ce language, and M be a TM that prints 
R one string at a time.

At any point, M is in a configuration C described as
[s(C), p(C), q(C), a0(C),..., aq-1(C)] 

Overall, whether M will print a string b or not can be 
expressed as a first-order formula, FR(b) :=
∃C1 ∃C2 (start(C1) & compute(C1,C2) & stop(C2,b)).

[state, head position, #used cells, 
bits in those cells]
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Matiyasevich (Proof)
start(C1) asserts that C1 is the start configuration.
compute(C1,C2) asserts that in finitely many steps M 
moves from configuration C1 to configuration C2.
stop(C2) asserts that C2 is the stop configuration.

This gives us a first-order formula to express R, almost.
In quantification ∃C we need to encode C as a single integer. 
Idea: Chinese Remaindering (CR).
Encode [a0,..., an-1] as two integers (x,y) such that
n = x (mod 1+y) and ∀i<n, ai = x (mod 1+(i+2)y).

There is another, more serious, issue...
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Matiyasevich (Proof)
For CR to work we need {1+(i+2)y | -1≤i≤n-1} to be 
coprime numbers.

Observe: y=n! works.
How do we express n! as a polynomial in n??

Plan: Diophantine representations of 
1)  Exponential yz                 =>  Binomial coefficient yCz ,
2)  Binomial coefficient yCz  =>   Factorial y!.
3)  Exponential yz.

The last step took the longest time!
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Matiyasevich (Steps 1 & 2)
Step 1: (1+p)y = ∑y

i=0 yCi p
i = u + (yCz+vp)pz.

For a large enough p, one can extract yCz from (1+p)y by first 
dividing by pz and then by p.

Step 2: pCy = p(p-1)...(p-y+1) / y!.
For a large enough p, one can approximate y! from py / pCy.

These ideas can be easily worked out.
What remains is expressing the exponential yz.
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Matiyasevich (Step 3)
Step 3: vn is computed modulo (v2-2av+1) for large a.

Observe: vn = xn(a) + yn(a).(v-a)  (mod v2-2av+1), 
where ( a+√(a2-1) )n = xn(a) + yn(a).√(a2-1) .

We want a Diophantine rep. of xn(a) and yn(a).  

Observe: (xn(a), yn(a)) is a root of  X2 - (a2-1)Y2 = 1. 
Known as Fermat's equation.
Its roots have nice periodic/ recurrence properties.

Ultimately, this allows a Diophantine rep. of vn !
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Epilogue
The 10th problem for ℤ is uncomputable.

(Shapiro & Shlapentokh 1989) showed it uncomputable for any 
integer ring of an alg. number field F, with abelian Gal(F/ℚ).
(Tarski 1930) showed it computable for real closed fields (eg. ℝ).
OPEN: For ℚ ? 

Thanks to Turing we understand computability better now.
What about complexity?
New versions of computation have propped up – 
nondeterministic, randomized, quantum, bio/ DNA,...

“the evolution of the universe itself is a computation” – Digital 
physics / pan-computationalism.

Thank you!
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