
How to make Algebraic Computations
GRH free?

Nitin Saxena1

(with Gábor Ivanyos2, Marek Karpinski1 and Lajos Rónyai2)

1Hausdorff Center for Mathematics, Bonn

2Computer and Automation Research Institute, Budapest

NTACC Workshop 2010
Warsaw

0 / 39

Outline

Part I: Introduction

Introduction

Polynomial Factoring
The Problem
GRH Connection
Finite Algebra Questions

Standard Algebraic Terms

0 / 39

Outline

Part II: Commutative

Outline of Part II

Our Results: Commutative Algebras

New Concepts / Tools
Semiregularity
Lagrange Resolvent
Kummer Extension

A Warmup Application

Proof of the Main Result

0 / 39

Outline

Part III: Noncommutative

Outline of Part III

Our Results: Noncommutative Algebras

Proof of the Main Result

0 / 39

Part I

Introduction

0 / 39

Polynomial Factoring

The Problem

Outline

Polynomial Factoring
The Problem
GRH Connection
Finite Algebra Questions

Standard Algebraic Terms

0 / 39

Polynomial Factoring

The Problem

Polynomial Factoring over Finite Fields

• Given a polynomial f (x) ∈ Fq[x] we want a nontrivial factor.

• It is not only a fundamental problem but also has practical
applications: coding theory, integer factoring algorithms,
cryptography, computer algebra, ...

• Berlekamp (1967) showed that the problem reduces in
deterministic polynomial time to the problem of: factoring a
degree n polynomial with n distinct roots in a prime field Fp.

1 / 39

Polynomial Factoring

The Problem

Polynomial Factoring over Finite Fields

• Given a polynomial f (x) ∈ Fq[x] we want a nontrivial factor.

• It is not only a fundamental problem but also has practical
applications: coding theory, integer factoring algorithms,
cryptography, computer algebra, ...

• Berlekamp (1967) showed that the problem reduces in
deterministic polynomial time to the problem of: factoring a
degree n polynomial with n distinct roots in a prime field Fp.

1 / 39

Polynomial Factoring

The Problem

Polynomial Factoring over Finite Fields

• Given a polynomial f (x) ∈ Fq[x] we want a nontrivial factor.

• It is not only a fundamental problem but also has practical
applications: coding theory, integer factoring algorithms,
cryptography, computer algebra, ...

• Berlekamp (1967) showed that the problem reduces in
deterministic polynomial time to the problem of: factoring a
degree n polynomial with n distinct roots in a prime field Fp.

1 / 39

Polynomial Factoring

The Problem

Polynomial Factoring Methods
• Let f (x) be the input polynomial of degree n with distinct n

roots in Fp.
• Factoring is very well studied: (Legendre 1700s), (Berlekamp 1967),

(Moenck 1977), (Rabin 1980), (Cantor, Zassenhaus 1981), (Camion

1983), (Huang 1985), (Schoof 1985), (von zur Gathen 1987), (Mignotte,

Schnorr 1988), (Evdokimov 1989, 1994), (von zur Gathen, Shoup 1992),

(Kaltofen, Shoup 1995), (Cheng, Huang 2000), (Bach, von zur Gathen,

Lenstra 2001), (Gao 2001), (Stein 2001), (van de Woestijne 2005),

(Kedlaya, Umans 2008), (Ivanyos, Karpinski, Saxena 2009), (Zra lek

2010),.....

• The best deterministic algorithm known takes time
O∼(n2√p) (S90).

• The really useful algorithms - (B67), (CZ81), (vzGS92),
(KS95) - are all randomized and take poly(n log p) time.

• It is an open question to derandomize them.
2 / 39

Polynomial Factoring

The Problem

Polynomial Factoring Methods
• Let f (x) be the input polynomial of degree n with distinct n

roots in Fp.
• Factoring is very well studied: (Legendre 1700s), (Berlekamp 1967),

(Moenck 1977), (Rabin 1980), (Cantor, Zassenhaus 1981), (Camion

1983), (Huang 1985), (Schoof 1985), (von zur Gathen 1987), (Mignotte,

Schnorr 1988), (Evdokimov 1989, 1994), (von zur Gathen, Shoup 1992),

(Kaltofen, Shoup 1995), (Cheng, Huang 2000), (Bach, von zur Gathen,

Lenstra 2001), (Gao 2001), (Stein 2001), (van de Woestijne 2005),

(Kedlaya, Umans 2008), (Ivanyos, Karpinski, Saxena 2009), (Zra lek

2010),.....

• The best deterministic algorithm known takes time
O∼(n2√p) (S90).

• The really useful algorithms - (B67), (CZ81), (vzGS92),
(KS95) - are all randomized and take poly(n log p) time.

• It is an open question to derandomize them.
2 / 39

Polynomial Factoring

The Problem

Polynomial Factoring Methods
• Let f (x) be the input polynomial of degree n with distinct n

roots in Fp.
• Factoring is very well studied: (Legendre 1700s), (Berlekamp 1967),

(Moenck 1977), (Rabin 1980), (Cantor, Zassenhaus 1981), (Camion

1983), (Huang 1985), (Schoof 1985), (von zur Gathen 1987), (Mignotte,

Schnorr 1988), (Evdokimov 1989, 1994), (von zur Gathen, Shoup 1992),

(Kaltofen, Shoup 1995), (Cheng, Huang 2000), (Bach, von zur Gathen,

Lenstra 2001), (Gao 2001), (Stein 2001), (van de Woestijne 2005),

(Kedlaya, Umans 2008), (Ivanyos, Karpinski, Saxena 2009), (Zra lek

2010),.....

• The best deterministic algorithm known takes time
O∼(n2√p) (S90).

• The really useful algorithms - (B67), (CZ81), (vzGS92),
(KS95) - are all randomized and take poly(n log p) time.

• It is an open question to derandomize them.
2 / 39

Polynomial Factoring

The Problem

Polynomial Factoring Methods
• Let f (x) be the input polynomial of degree n with distinct n

roots in Fp.
• Factoring is very well studied: (Legendre 1700s), (Berlekamp 1967),

(Moenck 1977), (Rabin 1980), (Cantor, Zassenhaus 1981), (Camion

1983), (Huang 1985), (Schoof 1985), (von zur Gathen 1987), (Mignotte,

Schnorr 1988), (Evdokimov 1989, 1994), (von zur Gathen, Shoup 1992),

(Kaltofen, Shoup 1995), (Cheng, Huang 2000), (Bach, von zur Gathen,

Lenstra 2001), (Gao 2001), (Stein 2001), (van de Woestijne 2005),

(Kedlaya, Umans 2008), (Ivanyos, Karpinski, Saxena 2009), (Zra lek

2010),.....

• The best deterministic algorithm known takes time
O∼(n2√p) (S90).

• The really useful algorithms - (B67), (CZ81), (vzGS92),
(KS95) - are all randomized and take poly(n log p) time.

• It is an open question to derandomize them.
2 / 39

Polynomial Factoring

The Problem

Polynomial Factoring Methods
• Let f (x) be the input polynomial of degree n with distinct n

roots in Fp.
• Factoring is very well studied: (Legendre 1700s), (Berlekamp 1967),

(Moenck 1977), (Rabin 1980), (Cantor, Zassenhaus 1981), (Camion

1983), (Huang 1985), (Schoof 1985), (von zur Gathen 1987), (Mignotte,

Schnorr 1988), (Evdokimov 1989, 1994), (von zur Gathen, Shoup 1992),

(Kaltofen, Shoup 1995), (Cheng, Huang 2000), (Bach, von zur Gathen,

Lenstra 2001), (Gao 2001), (Stein 2001), (van de Woestijne 2005),

(Kedlaya, Umans 2008), (Ivanyos, Karpinski, Saxena 2009), (Zra lek

2010),.....

• The best deterministic algorithm known takes time
O∼(n2√p) (S90).

• The really useful algorithms - (B67), (CZ81), (vzGS92),
(KS95) - are all randomized and take poly(n log p) time.

• It is an open question to derandomize them.
2 / 39

Polynomial Factoring

The Problem

Reminder: Randomized Factoring

• The simplest (and practical) algorithm was already
suggested by Legendre (1752-1833).

• Given f (x) of degree n having that many roots in
Fp.

• Choose a random a ∈ Fp.

• Compute g(x) := gcd(f (x + a), x
p−1

2 − 1).

• With more than 50% chance g(x) is a nontrivial
factor!

• Key fact: (x
p−1

2 − 1) ’collects’ the squares mod p,
and is easy to compute (mod f (x)).

Fig: Legendre?

3 / 39

Polynomial Factoring

The Problem

Reminder: Randomized Factoring

• The simplest (and practical) algorithm was already
suggested by Legendre (1752-1833).

• Given f (x) of degree n having that many roots in
Fp.

• Choose a random a ∈ Fp.

• Compute g(x) := gcd(f (x + a), x
p−1

2 − 1).

• With more than 50% chance g(x) is a nontrivial
factor!

• Key fact: (x
p−1

2 − 1) ’collects’ the squares mod p,
and is easy to compute (mod f (x)).

Fig: Legendre?

3 / 39

Polynomial Factoring

The Problem

Reminder: Randomized Factoring

• The simplest (and practical) algorithm was already
suggested by Legendre (1752-1833).

• Given f (x) of degree n having that many roots in
Fp.

• Choose a random a ∈ Fp.

• Compute g(x) := gcd(f (x + a), x
p−1

2 − 1).

• With more than 50% chance g(x) is a nontrivial
factor!

• Key fact: (x
p−1

2 − 1) ’collects’ the squares mod p,
and is easy to compute (mod f (x)).

Fig: Legendre?

3 / 39

Polynomial Factoring

The Problem

Reminder: Randomized Factoring

• The simplest (and practical) algorithm was already
suggested by Legendre (1752-1833).

• Given f (x) of degree n having that many roots in
Fp.

• Choose a random a ∈ Fp.

• Compute g(x) := gcd(f (x + a), x
p−1

2 − 1).

• With more than 50% chance g(x) is a nontrivial
factor!

• Key fact: (x
p−1

2 − 1) ’collects’ the squares mod p,
and is easy to compute (mod f (x)).

Fig: Legendre?

3 / 39

Polynomial Factoring

The Problem

Reminder: Randomized Factoring

• The simplest (and practical) algorithm was already
suggested by Legendre (1752-1833).

• Given f (x) of degree n having that many roots in
Fp.

• Choose a random a ∈ Fp.

• Compute g(x) := gcd(f (x + a), x
p−1

2 − 1).

• With more than 50% chance g(x) is a nontrivial
factor!

• Key fact: (x
p−1

2 − 1) ’collects’ the squares mod p,
and is easy to compute (mod f (x)).

Fig: Legendre?

3 / 39

Polynomial Factoring

The Problem

Reminder: Randomized Factoring

• The simplest (and practical) algorithm was already
suggested by Legendre (1752-1833).

• Given f (x) of degree n having that many roots in
Fp.

• Choose a random a ∈ Fp.

• Compute g(x) := gcd(f (x + a), x
p−1

2 − 1).

• With more than 50% chance g(x) is a nontrivial
factor!

• Key fact: (x
p−1

2 − 1) ’collects’ the squares mod p,
and is easy to compute (mod f (x)).

Fig: Legendre?

3 / 39

Polynomial Factoring

The Problem

Reminder: Randomized Factoring

• The simplest (and practical) algorithm was already
suggested by Legendre (1752-1833).

• Given f (x) of degree n having that many roots in
Fp.

• Choose a random a ∈ Fp.

• Compute g(x) := gcd(f (x + a), x
p−1

2 − 1).

• With more than 50% chance g(x) is a nontrivial
factor!

• Key fact: (x
p−1

2 − 1) ’collects’ the squares mod p,
and is easy to compute (mod f (x)).

Fig: Legendre?

3 / 39

Polynomial Factoring

GRH Connection

Outline

Polynomial Factoring
The Problem
GRH Connection
Finite Algebra Questions

Standard Algebraic Terms

3 / 39

Polynomial Factoring

GRH Connection

Riemann Hypothesis & Polynomial Factoring

Generalized Riemann Hypothesis (GRH)

For any Dirichlet character χ and a complex root s of
the Dirichlet L-function L(χ, s) =

∑∞
n=1

χ(n)
ns : if

Re(s) ∈ [0, 1] then Re(s) = 1
2 .

• Generalized Riemann Hypothesis (GRH) has been
useful in understanding the deterministic
complexity of polynomial factoring, albeit only in
special cases.

• Most prominently, a degree n polynomial f (x) can
be nontrivially factored in deterministic
poly(log p, nlog n) time by GRH (Evdokimov 1994).

• From such results we eliminate GRH (with a
caveat!).

Fig: Riemann

4 / 39

Polynomial Factoring

GRH Connection

Riemann Hypothesis & Polynomial Factoring

Generalized Riemann Hypothesis (GRH)

For any Dirichlet character χ and a complex root s of
the Dirichlet L-function L(χ, s) =

∑∞
n=1

χ(n)
ns : if

Re(s) ∈ [0, 1] then Re(s) = 1
2 .

• Generalized Riemann Hypothesis (GRH) has been
useful in understanding the deterministic
complexity of polynomial factoring, albeit only in
special cases.

• Most prominently, a degree n polynomial f (x) can
be nontrivially factored in deterministic
poly(log p, nlog n) time by GRH (Evdokimov 1994).

• From such results we eliminate GRH (with a
caveat!).

Fig: Riemann

4 / 39

Polynomial Factoring

GRH Connection

Riemann Hypothesis & Polynomial Factoring

Generalized Riemann Hypothesis (GRH)

For any Dirichlet character χ and a complex root s of
the Dirichlet L-function L(χ, s) =

∑∞
n=1

χ(n)
ns : if

Re(s) ∈ [0, 1] then Re(s) = 1
2 .

• Generalized Riemann Hypothesis (GRH) has been
useful in understanding the deterministic
complexity of polynomial factoring, albeit only in
special cases.

• Most prominently, a degree n polynomial f (x) can
be nontrivially factored in deterministic
poly(log p, nlog n) time by GRH (Evdokimov 1994).

• From such results we eliminate GRH (with a
caveat!).

Fig: Riemann

4 / 39

Polynomial Factoring

GRH Connection

Riemann Hypothesis & Polynomial Factoring

Generalized Riemann Hypothesis (GRH)

For any Dirichlet character χ and a complex root s of
the Dirichlet L-function L(χ, s) =

∑∞
n=1

χ(n)
ns : if

Re(s) ∈ [0, 1] then Re(s) = 1
2 .

• Generalized Riemann Hypothesis (GRH) has been
useful in understanding the deterministic
complexity of polynomial factoring, albeit only in
special cases.

• Most prominently, a degree n polynomial f (x) can
be nontrivially factored in deterministic
poly(log p, nlog n) time by GRH (Evdokimov 1994).

• From such results we eliminate GRH (with a
caveat!).

Fig: Riemann

4 / 39

Polynomial Factoring

Finite Algebra Questions

Outline

Polynomial Factoring
The Problem
GRH Connection
Finite Algebra Questions

Standard Algebraic Terms

4 / 39

Polynomial Factoring

Finite Algebra Questions

Finite Algebra over a Finite Field

• Polynomial factoring applies to structural questions in finite
algebras.

• Friedl & Rónyai (1985) showed that finding zero divisors in
finite algebras over finite fields reduces to polynomial
factoring.

• Thus, under GRH, they gave a poly(log p, nlog n) time
deterministic algorithm for finding zero divisors.

• Our methods, in noncommutative algebras, make this
algorithm completely GRH free.

5 / 39

Polynomial Factoring

Finite Algebra Questions

Finite Algebra over a Finite Field

• Polynomial factoring applies to structural questions in finite
algebras.

• Friedl & Rónyai (1985) showed that finding zero divisors in
finite algebras over finite fields reduces to polynomial
factoring.

• Thus, under GRH, they gave a poly(log p, nlog n) time
deterministic algorithm for finding zero divisors.

• Our methods, in noncommutative algebras, make this
algorithm completely GRH free.

5 / 39

Polynomial Factoring

Finite Algebra Questions

Finite Algebra over a Finite Field

• Polynomial factoring applies to structural questions in finite
algebras.

• Friedl & Rónyai (1985) showed that finding zero divisors in
finite algebras over finite fields reduces to polynomial
factoring.

• Thus, under GRH, they gave a poly(log p, nlog n) time
deterministic algorithm for finding zero divisors.

• Our methods, in noncommutative algebras, make this
algorithm completely GRH free.

5 / 39

Polynomial Factoring

Finite Algebra Questions

Finite Algebra over a Finite Field

• Polynomial factoring applies to structural questions in finite
algebras.

• Friedl & Rónyai (1985) showed that finding zero divisors in
finite algebras over finite fields reduces to polynomial
factoring.

• Thus, under GRH, they gave a poly(log p, nlog n) time
deterministic algorithm for finding zero divisors.

• Our methods, in noncommutative algebras, make this
algorithm completely GRH free.

5 / 39

Polynomial Factoring

Finite Algebra Questions

How to make our world GRH free?

• Assuming GRH, there is a poly-time algorithm to compute
r
√

a (mod p) (Huang 1985).

• Any algorithm that assumes GRH, invokes the above routine
to compute r -th roots in an algebra A.

• What if instead of computing the r -th root explicitly, we use
an implicit root?

• I.e., we simply go to the extension algebra A[ζr][r
√

a],
explicitly A[X ,Y]/(

∑r−1
i=0 X i ,Y r − a).

• We make this idea work by developing a Galois theory for
algebras.

6 / 39

Polynomial Factoring

Finite Algebra Questions

How to make our world GRH free?

• Assuming GRH, there is a poly-time algorithm to compute
r
√

a (mod p) (Huang 1985).

• Any algorithm that assumes GRH, invokes the above routine
to compute r -th roots in an algebra A.

• What if instead of computing the r -th root explicitly, we use
an implicit root?

• I.e., we simply go to the extension algebra A[ζr][r
√

a],
explicitly A[X ,Y]/(

∑r−1
i=0 X i ,Y r − a).

• We make this idea work by developing a Galois theory for
algebras.

6 / 39

Polynomial Factoring

Finite Algebra Questions

How to make our world GRH free?

• Assuming GRH, there is a poly-time algorithm to compute
r
√

a (mod p) (Huang 1985).

• Any algorithm that assumes GRH, invokes the above routine
to compute r -th roots in an algebra A.

• What if instead of computing the r -th root explicitly, we use
an implicit root?

• I.e., we simply go to the extension algebra A[ζr][r
√

a],
explicitly A[X ,Y]/(

∑r−1
i=0 X i ,Y r − a).

• We make this idea work by developing a Galois theory for
algebras.

6 / 39

Polynomial Factoring

Finite Algebra Questions

How to make our world GRH free?

• Assuming GRH, there is a poly-time algorithm to compute
r
√

a (mod p) (Huang 1985).

• Any algorithm that assumes GRH, invokes the above routine
to compute r -th roots in an algebra A.

• What if instead of computing the r -th root explicitly, we use
an implicit root?

• I.e., we simply go to the extension algebra A[ζr][r
√

a],
explicitly A[X ,Y]/(

∑r−1
i=0 X i ,Y r − a).

• We make this idea work by developing a Galois theory for
algebras.

6 / 39

Polynomial Factoring

Finite Algebra Questions

How to make our world GRH free?

• Assuming GRH, there is a poly-time algorithm to compute
r
√

a (mod p) (Huang 1985).

• Any algorithm that assumes GRH, invokes the above routine
to compute r -th roots in an algebra A.

• What if instead of computing the r -th root explicitly, we use
an implicit root?

• I.e., we simply go to the extension algebra A[ζr][r
√

a],
explicitly A[X ,Y]/(

∑r−1
i=0 X i ,Y r − a).

• We make this idea work by developing a Galois theory for
algebras.

6 / 39

Polynomial Factoring

Finite Algebra Questions

Reminder: Galois theory

• Galois (1811-1832) studied fields by groups.

• For a field extension K ⊂ L consider the group GL

of automorphisms of L that fix K elementwise.

• Essentially, [L : K] = |GL|.
• Essentially, there is a 1-1 correspondence between

the subfields of L and subgroups of GL.

• The first triumph of Galois theory: quintic
polynomials cannot be solved by radicals.

• ’Positive’ side-effect: for special polynomials the
theory gives a systematic way to express roots
using radicals!

Fig: Galois

7 / 39

Polynomial Factoring

Finite Algebra Questions

Reminder: Galois theory

• Galois (1811-1832) studied fields by groups.

• For a field extension K ⊂ L consider the group GL

of automorphisms of L that fix K elementwise.

• Essentially, [L : K] = |GL|.
• Essentially, there is a 1-1 correspondence between

the subfields of L and subgroups of GL.

• The first triumph of Galois theory: quintic
polynomials cannot be solved by radicals.

• ’Positive’ side-effect: for special polynomials the
theory gives a systematic way to express roots
using radicals!

Fig: Galois

7 / 39

Polynomial Factoring

Finite Algebra Questions

Reminder: Galois theory

• Galois (1811-1832) studied fields by groups.

• For a field extension K ⊂ L consider the group GL

of automorphisms of L that fix K elementwise.

• Essentially, [L : K] = |GL|.
• Essentially, there is a 1-1 correspondence between

the subfields of L and subgroups of GL.

• The first triumph of Galois theory: quintic
polynomials cannot be solved by radicals.

• ’Positive’ side-effect: for special polynomials the
theory gives a systematic way to express roots
using radicals!

Fig: Galois

7 / 39

Polynomial Factoring

Finite Algebra Questions

Reminder: Galois theory

• Galois (1811-1832) studied fields by groups.

• For a field extension K ⊂ L consider the group GL

of automorphisms of L that fix K elementwise.

• Essentially, [L : K] = |GL|.
• Essentially, there is a 1-1 correspondence between

the subfields of L and subgroups of GL.

• The first triumph of Galois theory: quintic
polynomials cannot be solved by radicals.

• ’Positive’ side-effect: for special polynomials the
theory gives a systematic way to express roots
using radicals!

Fig: Galois

7 / 39

Polynomial Factoring

Finite Algebra Questions

Reminder: Galois theory

• Galois (1811-1832) studied fields by groups.

• For a field extension K ⊂ L consider the group GL

of automorphisms of L that fix K elementwise.

• Essentially, [L : K] = |GL|.
• Essentially, there is a 1-1 correspondence between

the subfields of L and subgroups of GL.

• The first triumph of Galois theory: quintic
polynomials cannot be solved by radicals.

• ’Positive’ side-effect: for special polynomials the
theory gives a systematic way to express roots
using radicals!

Fig: Galois

7 / 39

Polynomial Factoring

Finite Algebra Questions

Reminder: Galois theory

• Galois (1811-1832) studied fields by groups.

• For a field extension K ⊂ L consider the group GL

of automorphisms of L that fix K elementwise.

• Essentially, [L : K] = |GL|.
• Essentially, there is a 1-1 correspondence between

the subfields of L and subgroups of GL.

• The first triumph of Galois theory: quintic
polynomials cannot be solved by radicals.

• ’Positive’ side-effect: for special polynomials the
theory gives a systematic way to express roots
using radicals!

Fig: Galois

7 / 39

Standard Algebraic Terms

Outline

Polynomial Factoring
The Problem
GRH Connection
Finite Algebra Questions

Standard Algebraic Terms

7 / 39

Standard Algebraic Terms

Module Terms

• Let R be a ring. A left R-module M consists of an abelian
group (M,+) and a scalar multiplication R ×M → M
satisfying natural conditions.

• Just R-module when scalar multiplication commutes.

• Free R-module M if there is a free basis B ⊂ M s.t. every
element in M has a unique representation as

∑
b∈B rbb

(rb ∈ R).

• Rank rkRM is the size of a free basis.

• Example: a vector space is a free module of rank equal to its
dimension.

8 / 39

Standard Algebraic Terms

Module Terms

• Let R be a ring. A left R-module M consists of an abelian
group (M,+) and a scalar multiplication R ×M → M
satisfying natural conditions.

• Just R-module when scalar multiplication commutes.

• Free R-module M if there is a free basis B ⊂ M s.t. every
element in M has a unique representation as

∑
b∈B rbb

(rb ∈ R).

• Rank rkRM is the size of a free basis.

• Example: a vector space is a free module of rank equal to its
dimension.

8 / 39

Standard Algebraic Terms

Module Terms

• Let R be a ring. A left R-module M consists of an abelian
group (M,+) and a scalar multiplication R ×M → M
satisfying natural conditions.

• Just R-module when scalar multiplication commutes.

• Free R-module M if there is a free basis B ⊂ M s.t. every
element in M has a unique representation as

∑
b∈B rbb

(rb ∈ R).

• Rank rkRM is the size of a free basis.

• Example: a vector space is a free module of rank equal to its
dimension.

8 / 39

Standard Algebraic Terms

Module Terms

• Let R be a ring. A left R-module M consists of an abelian
group (M,+) and a scalar multiplication R ×M → M
satisfying natural conditions.

• Just R-module when scalar multiplication commutes.

• Free R-module M if there is a free basis B ⊂ M s.t. every
element in M has a unique representation as

∑
b∈B rbb

(rb ∈ R).

• Rank rkRM is the size of a free basis.

• Example: a vector space is a free module of rank equal to its
dimension.

8 / 39

Standard Algebraic Terms

Module Terms

• Let R be a ring. A left R-module M consists of an abelian
group (M,+) and a scalar multiplication R ×M → M
satisfying natural conditions.

• Just R-module when scalar multiplication commutes.

• Free R-module M if there is a free basis B ⊂ M s.t. every
element in M has a unique representation as

∑
b∈B rbb

(rb ∈ R).

• Rank rkRM is the size of a free basis.

• Example: a vector space is a free module of rank equal to its
dimension.

8 / 39

Standard Algebraic Terms

Algebra Terms

• An R-algebra A consists of an R-module (A,+) and a
multiplication operation in A that commutes with the scalar
multiplication.

• Example: if A is a ring with a subring B in its center then A
is a B-algebra.

• A zero divisor x ∈ A is a nonzero element s.t. for some
nonzero y , y ′ ∈ A, yx = xy ′ = 0. (Factor � Zero divisor)

• An ideal I of the R-algebra A is an R-submodule s.t. AI ⊂ I
and IA ⊂ I . (Trivial: {0} and A.)

• Simple algebra has no nontrivial ideals. Example: a field F.

• Semisimple algebra is a direct sum of finitely many simple
algebras. Example: Fp[x]/(f (x)) for a squarefree f (x).

9 / 39

Standard Algebraic Terms

Algebra Terms

• An R-algebra A consists of an R-module (A,+) and a
multiplication operation in A that commutes with the scalar
multiplication.

• Example: if A is a ring with a subring B in its center then A
is a B-algebra.

• A zero divisor x ∈ A is a nonzero element s.t. for some
nonzero y , y ′ ∈ A, yx = xy ′ = 0. (Factor � Zero divisor)

• An ideal I of the R-algebra A is an R-submodule s.t. AI ⊂ I
and IA ⊂ I . (Trivial: {0} and A.)

• Simple algebra has no nontrivial ideals. Example: a field F.

• Semisimple algebra is a direct sum of finitely many simple
algebras. Example: Fp[x]/(f (x)) for a squarefree f (x).

9 / 39

Standard Algebraic Terms

Algebra Terms

• An R-algebra A consists of an R-module (A,+) and a
multiplication operation in A that commutes with the scalar
multiplication.

• Example: if A is a ring with a subring B in its center then A
is a B-algebra.

• A zero divisor x ∈ A is a nonzero element s.t. for some
nonzero y , y ′ ∈ A, yx = xy ′ = 0. (Factor � Zero divisor)

• An ideal I of the R-algebra A is an R-submodule s.t. AI ⊂ I
and IA ⊂ I . (Trivial: {0} and A.)

• Simple algebra has no nontrivial ideals. Example: a field F.

• Semisimple algebra is a direct sum of finitely many simple
algebras. Example: Fp[x]/(f (x)) for a squarefree f (x).

9 / 39

Standard Algebraic Terms

Algebra Terms

• An R-algebra A consists of an R-module (A,+) and a
multiplication operation in A that commutes with the scalar
multiplication.

• Example: if A is a ring with a subring B in its center then A
is a B-algebra.

• A zero divisor x ∈ A is a nonzero element s.t. for some
nonzero y , y ′ ∈ A, yx = xy ′ = 0. (Factor � Zero divisor)

• An ideal I of the R-algebra A is an R-submodule s.t. AI ⊂ I
and IA ⊂ I . (Trivial: {0} and A.)

• Simple algebra has no nontrivial ideals. Example: a field F.

• Semisimple algebra is a direct sum of finitely many simple
algebras. Example: Fp[x]/(f (x)) for a squarefree f (x).

9 / 39

Standard Algebraic Terms

Algebra Terms

• An R-algebra A consists of an R-module (A,+) and a
multiplication operation in A that commutes with the scalar
multiplication.

• Example: if A is a ring with a subring B in its center then A
is a B-algebra.

• A zero divisor x ∈ A is a nonzero element s.t. for some
nonzero y , y ′ ∈ A, yx = xy ′ = 0. (Factor � Zero divisor)

• An ideal I of the R-algebra A is an R-submodule s.t. AI ⊂ I
and IA ⊂ I . (Trivial: {0} and A.)

• Simple algebra has no nontrivial ideals. Example: a field F.

• Semisimple algebra is a direct sum of finitely many simple
algebras. Example: Fp[x]/(f (x)) for a squarefree f (x).

9 / 39

Standard Algebraic Terms

Algebra Terms

• An R-algebra A consists of an R-module (A,+) and a
multiplication operation in A that commutes with the scalar
multiplication.

• Example: if A is a ring with a subring B in its center then A
is a B-algebra.

• A zero divisor x ∈ A is a nonzero element s.t. for some
nonzero y , y ′ ∈ A, yx = xy ′ = 0. (Factor � Zero divisor)

• An ideal I of the R-algebra A is an R-submodule s.t. AI ⊂ I
and IA ⊂ I . (Trivial: {0} and A.)

• Simple algebra has no nontrivial ideals. Example: a field F.

• Semisimple algebra is a direct sum of finitely many simple
algebras. Example: Fp[x]/(f (x)) for a squarefree f (x).

9 / 39

Standard Algebraic Terms

Algebra Terms

• An R-algebra A consists of an R-module (A,+) and a
multiplication operation in A that commutes with the scalar
multiplication.

• Example: if A is a ring with a subring B in its center then A
is a B-algebra.

• A zero divisor x ∈ A is a nonzero element s.t. for some
nonzero y , y ′ ∈ A, yx = xy ′ = 0. (Factor � Zero divisor)

• An ideal I of the R-algebra A is an R-submodule s.t. AI ⊂ I
and IA ⊂ I . (Trivial: {0} and A.)

• Simple algebra has no nontrivial ideals. Example: a field F.

• Semisimple algebra is a direct sum of finitely many simple
algebras. Example: Fp[x]/(f (x)) for a squarefree f (x).

9 / 39

Standard Algebraic Terms

Algebra Terms (Contd.)

• An algebra A is an extension of a subalgebra B if A is a free
B-module. Example: Fp[x]/(f (x)) extends Fp.

• Let A1 and A2 be B-algebras. The tensor product A1 ⊗B A2

is a B-module with generators a1 ⊗ a2. It is also an algebra
with multiplication: (a1 ⊗ a2) · (a′1 ⊗ a′2) = (a1a′1 ⊗ a2a′2).

• Example: F[x]/(f (x))⊗F F[y]/(g(y)) ∼= F[x , y]/(f (x), g(y)).

• B-homomorphism from algebra A1 to A2 is a map that
preserves all operations and fixes B elementwise.

• Homomorphisms can be injective, surjective or both.

• The group of F-automorphisms of A, AutF(A).

10 / 39

Standard Algebraic Terms

Algebra Terms (Contd.)

• An algebra A is an extension of a subalgebra B if A is a free
B-module. Example: Fp[x]/(f (x)) extends Fp.

• Let A1 and A2 be B-algebras. The tensor product A1 ⊗B A2

is a B-module with generators a1 ⊗ a2. It is also an algebra
with multiplication: (a1 ⊗ a2) · (a′1 ⊗ a′2) = (a1a′1 ⊗ a2a′2).

• Example: F[x]/(f (x))⊗F F[y]/(g(y)) ∼= F[x , y]/(f (x), g(y)).

• B-homomorphism from algebra A1 to A2 is a map that
preserves all operations and fixes B elementwise.

• Homomorphisms can be injective, surjective or both.

• The group of F-automorphisms of A, AutF(A).

10 / 39

Standard Algebraic Terms

Algebra Terms (Contd.)

• An algebra A is an extension of a subalgebra B if A is a free
B-module. Example: Fp[x]/(f (x)) extends Fp.

• Let A1 and A2 be B-algebras. The tensor product A1 ⊗B A2

is a B-module with generators a1 ⊗ a2. It is also an algebra
with multiplication: (a1 ⊗ a2) · (a′1 ⊗ a′2) = (a1a′1 ⊗ a2a′2).

• Example: F[x]/(f (x))⊗F F[y]/(g(y)) ∼= F[x , y]/(f (x), g(y)).

• B-homomorphism from algebra A1 to A2 is a map that
preserves all operations and fixes B elementwise.

• Homomorphisms can be injective, surjective or both.

• The group of F-automorphisms of A, AutF(A).

10 / 39

Standard Algebraic Terms

Algebra Terms (Contd.)

• An algebra A is an extension of a subalgebra B if A is a free
B-module. Example: Fp[x]/(f (x)) extends Fp.

• Let A1 and A2 be B-algebras. The tensor product A1 ⊗B A2

is a B-module with generators a1 ⊗ a2. It is also an algebra
with multiplication: (a1 ⊗ a2) · (a′1 ⊗ a′2) = (a1a′1 ⊗ a2a′2).

• Example: F[x]/(f (x))⊗F F[y]/(g(y)) ∼= F[x , y]/(f (x), g(y)).

• B-homomorphism from algebra A1 to A2 is a map that
preserves all operations and fixes B elementwise.

• Homomorphisms can be injective, surjective or both.

• The group of F-automorphisms of A, AutF(A).

10 / 39

Standard Algebraic Terms

Algebra Terms (Contd.)

• An algebra A is an extension of a subalgebra B if A is a free
B-module. Example: Fp[x]/(f (x)) extends Fp.

• Let A1 and A2 be B-algebras. The tensor product A1 ⊗B A2

is a B-module with generators a1 ⊗ a2. It is also an algebra
with multiplication: (a1 ⊗ a2) · (a′1 ⊗ a′2) = (a1a′1 ⊗ a2a′2).

• Example: F[x]/(f (x))⊗F F[y]/(g(y)) ∼= F[x , y]/(f (x), g(y)).

• B-homomorphism from algebra A1 to A2 is a map that
preserves all operations and fixes B elementwise.

• Homomorphisms can be injective, surjective or both.

• The group of F-automorphisms of A, AutF(A).

10 / 39

Standard Algebraic Terms

Algebra Terms (Contd.)

• An algebra A is an extension of a subalgebra B if A is a free
B-module. Example: Fp[x]/(f (x)) extends Fp.

• Let A1 and A2 be B-algebras. The tensor product A1 ⊗B A2

is a B-module with generators a1 ⊗ a2. It is also an algebra
with multiplication: (a1 ⊗ a2) · (a′1 ⊗ a′2) = (a1a′1 ⊗ a2a′2).

• Example: F[x]/(f (x))⊗F F[y]/(g(y)) ∼= F[x , y]/(f (x), g(y)).

• B-homomorphism from algebra A1 to A2 is a map that
preserves all operations and fixes B elementwise.

• Homomorphisms can be injective, surjective or both.

• The group of F-automorphisms of A, AutF(A).

10 / 39

Standard Algebraic Terms

Input/Output Representation

• We only consider finite algebras over finite fields.

• An algebra A over a finite field F is given in basis form.

• Basis elements b1, . . . , bn ∈ A are given together with the
relations bi · bj =

∑n
`=1 αi ,j ,`b` (α-s in F).

• Homomorphisms between algebras are also presented in basis
form, i.e. by giving the respective images of b1, . . . , bn.

11 / 39

Standard Algebraic Terms

Input/Output Representation

• We only consider finite algebras over finite fields.

• An algebra A over a finite field F is given in basis form.

• Basis elements b1, . . . , bn ∈ A are given together with the
relations bi · bj =

∑n
`=1 αi ,j ,`b` (α-s in F).

• Homomorphisms between algebras are also presented in basis
form, i.e. by giving the respective images of b1, . . . , bn.

11 / 39

Standard Algebraic Terms

Input/Output Representation

• We only consider finite algebras over finite fields.

• An algebra A over a finite field F is given in basis form.

• Basis elements b1, . . . , bn ∈ A are given together with the
relations bi · bj =

∑n
`=1 αi ,j ,`b` (α-s in F).

• Homomorphisms between algebras are also presented in basis
form, i.e. by giving the respective images of b1, . . . , bn.

11 / 39

Standard Algebraic Terms

Input/Output Representation

• We only consider finite algebras over finite fields.

• An algebra A over a finite field F is given in basis form.

• Basis elements b1, . . . , bn ∈ A are given together with the
relations bi · bj =

∑n
`=1 αi ,j ,`b` (α-s in F).

• Homomorphisms between algebras are also presented in basis
form, i.e. by giving the respective images of b1, . . . , bn.

11 / 39

Part II

Commutative

11 / 39

Our Results: Commutative Algebras

Outline

Our Results: Commutative Algebras

New Concepts / Tools
Semiregularity
Lagrange Resolvent
Kummer Extension

A Warmup Application

Proof of the Main Result

11 / 39

Our Results: Commutative Algebras

Either Factor or Find an Automorphism

• Input: A polynomial f (x), over a finite field F, of degree n.

• Output: Either we find a nontrivial factor of f (x) or a
nontrivial automorphism σ, of A = F[x]/(f (x)), of order n.

• Complexity: Deterministic poly(log |F|, nlog n) time.

• In a sense we do find all the roots of f (X). But they live in
A, namely, x , σ(x), . . . , σn−1(x) ∈ A.

• Such a σ is easy to find in F[x]/(x2 − a), eg. x 7→ −x works.
But in other cases is a very nontrivial question.

12 / 39

Our Results: Commutative Algebras

Either Factor or Find an Automorphism

• Input: A polynomial f (x), over a finite field F, of degree n.

• Output: Either we find a nontrivial factor of f (x) or a
nontrivial automorphism σ, of A = F[x]/(f (x)), of order n.

• Complexity: Deterministic poly(log |F|, nlog n) time.

• In a sense we do find all the roots of f (X). But they live in
A, namely, x , σ(x), . . . , σn−1(x) ∈ A.

• Such a σ is easy to find in F[x]/(x2 − a), eg. x 7→ −x works.
But in other cases is a very nontrivial question.

12 / 39

Our Results: Commutative Algebras

Either Factor or Find an Automorphism

• Input: A polynomial f (x), over a finite field F, of degree n.

• Output: Either we find a nontrivial factor of f (x) or a
nontrivial automorphism σ, of A = F[x]/(f (x)), of order n.

• Complexity: Deterministic poly(log |F|, nlog n) time.

• In a sense we do find all the roots of f (X). But they live in
A, namely, x , σ(x), . . . , σn−1(x) ∈ A.

• Such a σ is easy to find in F[x]/(x2 − a), eg. x 7→ −x works.
But in other cases is a very nontrivial question.

12 / 39

Our Results: Commutative Algebras

Either Factor or Find an Automorphism

• Input: A polynomial f (x), over a finite field F, of degree n.

• Output: Either we find a nontrivial factor of f (x) or a
nontrivial automorphism σ, of A = F[x]/(f (x)), of order n.

• Complexity: Deterministic poly(log |F|, nlog n) time.

• In a sense we do find all the roots of f (X). But they live in
A, namely, x , σ(x), . . . , σn−1(x) ∈ A.

• Such a σ is easy to find in F[x]/(x2 − a), eg. x 7→ −x works.
But in other cases is a very nontrivial question.

12 / 39

Our Results: Commutative Algebras

Either Factor or Find an Automorphism

• Input: A polynomial f (x), over a finite field F, of degree n.

• Output: Either we find a nontrivial factor of f (x) or a
nontrivial automorphism σ, of A = F[x]/(f (x)), of order n.

• Complexity: Deterministic poly(log |F|, nlog n) time.

• In a sense we do find all the roots of f (X). But they live in
A, namely, x , σ(x), . . . , σn−1(x) ∈ A.

• Such a σ is easy to find in F[x]/(x2 − a), eg. x 7→ −x works.
But in other cases is a very nontrivial question.

12 / 39

Our Results: Commutative Algebras

Application to Algebras

• As a direct application we have the following algorithm.

• Input: Given a commutative semisimple algebra A, over a
finite field F.

• Output: We can find a decomposition, A = A1 ⊕ · · · ⊕ At ,
with an automorphism of Ai of order dimFAi .

• Complexity: Deterministic quasipolynomial time.

13 / 39

Our Results: Commutative Algebras

Application to Algebras

• As a direct application we have the following algorithm.

• Input: Given a commutative semisimple algebra A, over a
finite field F.

• Output: We can find a decomposition, A = A1 ⊕ · · · ⊕ At ,
with an automorphism of Ai of order dimFAi .

• Complexity: Deterministic quasipolynomial time.

13 / 39

Our Results: Commutative Algebras

Application to Algebras

• As a direct application we have the following algorithm.

• Input: Given a commutative semisimple algebra A, over a
finite field F.

• Output: We can find a decomposition, A = A1 ⊕ · · · ⊕ At ,
with an automorphism of Ai of order dimFAi .

• Complexity: Deterministic quasipolynomial time.

13 / 39

Our Results: Commutative Algebras

Application to Algebras

• As a direct application we have the following algorithm.

• Input: Given a commutative semisimple algebra A, over a
finite field F.

• Output: We can find a decomposition, A = A1 ⊕ · · · ⊕ At ,
with an automorphism of Ai of order dimFAi .

• Complexity: Deterministic quasipolynomial time.

13 / 39

Our Results: Commutative Algebras

Application to Cyclotomic Polynomials

• Our methods can be used to actually factor certain
polynomials.

• Let Φm(x) be the m-th cyclotomic polynomial.

• Examples: Φ1(x) = (x − 1), Φ2(x) = (x2 − 1)/Φ1(x),
Φ3(x) = (x3 − 1)/Φ1(x), Φ4(x) = (x4 − 1)/Φ1(x)Φ2(x),...

• We can factor Φm(x) over F in deterministic polynomial time,
if Z∗m is noncyclic.

• I.e. When m /∈ {1, 2, 4, pi , 2pi}, we can find a nontrivial factor
of Φm(x) over a finite field F.

14 / 39

Our Results: Commutative Algebras

Application to Cyclotomic Polynomials

• Our methods can be used to actually factor certain
polynomials.

• Let Φm(x) be the m-th cyclotomic polynomial.

• Examples: Φ1(x) = (x − 1), Φ2(x) = (x2 − 1)/Φ1(x),
Φ3(x) = (x3 − 1)/Φ1(x), Φ4(x) = (x4 − 1)/Φ1(x)Φ2(x),...

• We can factor Φm(x) over F in deterministic polynomial time,
if Z∗m is noncyclic.

• I.e. When m /∈ {1, 2, 4, pi , 2pi}, we can find a nontrivial factor
of Φm(x) over a finite field F.

14 / 39

Our Results: Commutative Algebras

Application to Cyclotomic Polynomials

• Our methods can be used to actually factor certain
polynomials.

• Let Φm(x) be the m-th cyclotomic polynomial.

• Examples: Φ1(x) = (x − 1), Φ2(x) = (x2 − 1)/Φ1(x),
Φ3(x) = (x3 − 1)/Φ1(x), Φ4(x) = (x4 − 1)/Φ1(x)Φ2(x),...

• We can factor Φm(x) over F in deterministic polynomial time,
if Z∗m is noncyclic.

• I.e. When m /∈ {1, 2, 4, pi , 2pi}, we can find a nontrivial factor
of Φm(x) over a finite field F.

14 / 39

Our Results: Commutative Algebras

Application to Cyclotomic Polynomials

• Our methods can be used to actually factor certain
polynomials.

• Let Φm(x) be the m-th cyclotomic polynomial.

• Examples: Φ1(x) = (x − 1), Φ2(x) = (x2 − 1)/Φ1(x),
Φ3(x) = (x3 − 1)/Φ1(x), Φ4(x) = (x4 − 1)/Φ1(x)Φ2(x),...

• We can factor Φm(x) over F in deterministic polynomial time,
if Z∗m is noncyclic.

• I.e. When m /∈ {1, 2, 4, pi , 2pi}, we can find a nontrivial factor
of Φm(x) over a finite field F.

14 / 39

Our Results: Commutative Algebras

Application to Cyclotomic Polynomials

• Our methods can be used to actually factor certain
polynomials.

• Let Φm(x) be the m-th cyclotomic polynomial.

• Examples: Φ1(x) = (x − 1), Φ2(x) = (x2 − 1)/Φ1(x),
Φ3(x) = (x3 − 1)/Φ1(x), Φ4(x) = (x4 − 1)/Φ1(x)Φ2(x),...

• We can factor Φm(x) over F in deterministic polynomial time,
if Z∗m is noncyclic.

• I.e. When m /∈ {1, 2, 4, pi , 2pi}, we can find a nontrivial factor
of Φm(x) over a finite field F.

14 / 39

Our Results: Commutative Algebras

Other Applications

• Our methods also “eliminate” GRH from other known results.

Using Galois Group
Let f (x) have a Galois group over Q of size m. Then we can either
factor f (x) (mod p) or find an automorphism of Fp[x]/(f (x)) of
order deg f , in poly(m, log p) time.

Using Special Fields
Let f (x) be a polynomial of degree n with that many roots in Fp.
Let r be the largest prime factor of (p − 1). Then we can either
factor f (x) (mod p) or find an automorphism of Fp[x]/(f (x)) of
order n, in poly(r , n, log p) time.

15 / 39

Our Results: Commutative Algebras

Other Applications

• Our methods also “eliminate” GRH from other known results.

Using Galois Group
Let f (x) have a Galois group over Q of size m. Then we can either
factor f (x) (mod p) or find an automorphism of Fp[x]/(f (x)) of
order deg f , in poly(m, log p) time.

Using Special Fields
Let f (x) be a polynomial of degree n with that many roots in Fp.
Let r be the largest prime factor of (p − 1). Then we can either
factor f (x) (mod p) or find an automorphism of Fp[x]/(f (x)) of
order n, in poly(r , n, log p) time.

15 / 39

Our Results: Commutative Algebras

Other Applications

• Our methods also “eliminate” GRH from other known results.

Using Galois Group
Let f (x) have a Galois group over Q of size m. Then we can either
factor f (x) (mod p) or find an automorphism of Fp[x]/(f (x)) of
order deg f , in poly(m, log p) time.

Using Special Fields
Let f (x) be a polynomial of degree n with that many roots in Fp.
Let r be the largest prime factor of (p − 1). Then we can either
factor f (x) (mod p) or find an automorphism of Fp[x]/(f (x)) of
order n, in poly(r , n, log p) time.

15 / 39

New Concepts / Tools

Semiregularity

Outline

Our Results: Commutative Algebras

New Concepts / Tools
Semiregularity
Lagrange Resolvent
Kummer Extension

A Warmup Application

Proof of the Main Result

15 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms

• Let A be a commutative semisimple F-algebra and subgroup
G ≤ AutF(A).

• We call G semiregular if none of its elements fixes a nontrivial
ideal of A.

• We call a σ ∈ AutF(A) semiregular if 〈σ〉 is semiregular.

• Example: Let A = Fp ⊕ Fp⊕ Fp2 ⊕ Fp2 . It has an
automorphism σ that swaps the two Fp components, and also
the two Fp2 components. Then G = {1, σ} is a semiregular
group of automorphisms of A.

16 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms

• Let A be a commutative semisimple F-algebra and subgroup
G ≤ AutF(A).

• We call G semiregular if none of its elements fixes a nontrivial
ideal of A.

• We call a σ ∈ AutF(A) semiregular if 〈σ〉 is semiregular.

• Example: Let A = Fp ⊕ Fp⊕ Fp2 ⊕ Fp2 . It has an
automorphism σ that swaps the two Fp components, and also
the two Fp2 components. Then G = {1, σ} is a semiregular
group of automorphisms of A.

16 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms

• Let A be a commutative semisimple F-algebra and subgroup
G ≤ AutF(A).

• We call G semiregular if none of its elements fixes a nontrivial
ideal of A.

• We call a σ ∈ AutF(A) semiregular if 〈σ〉 is semiregular.

• Example: Let A = Fp ⊕ Fp⊕ Fp2 ⊕ Fp2 . It has an
automorphism σ that swaps the two Fp components, and also
the two Fp2 components. Then G = {1, σ} is a semiregular
group of automorphisms of A.

16 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms

• Let A be a commutative semisimple F-algebra and subgroup
G ≤ AutF(A).

• We call G semiregular if none of its elements fixes a nontrivial
ideal of A.

• We call a σ ∈ AutF(A) semiregular if 〈σ〉 is semiregular.

• Example: Let A = Fp ⊕ Fp⊕ Fp2 ⊕ Fp2 . It has an
automorphism σ that swaps the two Fp components, and also
the two Fp2 components. Then G = {1, σ} is a semiregular
group of automorphisms of A.

16 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms

• Let A be a commutative semisimple F-algebra and subgroup
G ≤ AutF(A).

• We call G semiregular if none of its elements fixes a nontrivial
ideal of A.

• We call a σ ∈ AutF(A) semiregular if 〈σ〉 is semiregular.

• Example: Let A = Fp ⊕ Fp⊕ Fp2 ⊕ Fp2 . It has an
automorphism σ that swaps the two Fp components, and also
the two Fp2 components. Then G = {1, σ} is a semiregular
group of automorphisms of A.

16 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms (Contd.)

• Let G be a subgroup of AutF(A). We denote by AG the
elements of A fixed by G .

• Theorem: G is semiregular iff A is a free AG -module of rank
|G |.

• It can be seen as a generalized Galois extension.

• If G is not semiregular then while trying to find a free basis of
A over AG we will discover a zero divisor of A.

• Thus, in this work we can always assume that an
automorphism at hand is semiregular.

17 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms (Contd.)

• Let G be a subgroup of AutF(A). We denote by AG the
elements of A fixed by G .

• Theorem: G is semiregular iff A is a free AG -module of rank
|G |.

• It can be seen as a generalized Galois extension.

• If G is not semiregular then while trying to find a free basis of
A over AG we will discover a zero divisor of A.

• Thus, in this work we can always assume that an
automorphism at hand is semiregular.

17 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms (Contd.)

• Let G be a subgroup of AutF(A). We denote by AG the
elements of A fixed by G .

• Theorem: G is semiregular iff A is a free AG -module of rank
|G |.

• It can be seen as a generalized Galois extension.

• If G is not semiregular then while trying to find a free basis of
A over AG we will discover a zero divisor of A.

• Thus, in this work we can always assume that an
automorphism at hand is semiregular.

17 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms (Contd.)

• Let G be a subgroup of AutF(A). We denote by AG the
elements of A fixed by G .

• Theorem: G is semiregular iff A is a free AG -module of rank
|G |.

• It can be seen as a generalized Galois extension.

• If G is not semiregular then while trying to find a free basis of
A over AG we will discover a zero divisor of A.

• Thus, in this work we can always assume that an
automorphism at hand is semiregular.

17 / 39

New Concepts / Tools

Semiregularity

Semiregular Automorphisms (Contd.)

• Let G be a subgroup of AutF(A). We denote by AG the
elements of A fixed by G .

• Theorem: G is semiregular iff A is a free AG -module of rank
|G |.

• It can be seen as a generalized Galois extension.

• If G is not semiregular then while trying to find a free basis of
A over AG we will discover a zero divisor of A.

• Thus, in this work we can always assume that an
automorphism at hand is semiregular.

17 / 39

New Concepts / Tools

Lagrange Resolvent

Outline

Our Results: Commutative Algebras

New Concepts / Tools
Semiregularity
Lagrange Resolvent
Kummer Extension

A Warmup Application

Proof of the Main Result

17 / 39

New Concepts / Tools

Lagrange Resolvent

Reminder: Classical Lagrange resolvent

• As we know: a cubic polynomial is solvable by
radicals.

• Lagrange (1736-1813) gave an elegant formula by
reducing cubic to a quadratic.

• Say α, β, γ are roots of a cubic f (x) (in C).

• Say ω is a primitive 3-rd root of unity.

• Lagrange considered the combinations:
r1 := (α + ωβ + ω2γ) and r2 := (α + ω2β + ωγ).

• These are Lagrange resolvents.

• Note: σ(r1) = ωr1 where σ permutes the roots.

Fig: Lagrange

18 / 39

New Concepts / Tools

Lagrange Resolvent

Reminder: Classical Lagrange resolvent

• As we know: a cubic polynomial is solvable by
radicals.

• Lagrange (1736-1813) gave an elegant formula by
reducing cubic to a quadratic.

• Say α, β, γ are roots of a cubic f (x) (in C).

• Say ω is a primitive 3-rd root of unity.

• Lagrange considered the combinations:
r1 := (α + ωβ + ω2γ) and r2 := (α + ω2β + ωγ).

• These are Lagrange resolvents.

• Note: σ(r1) = ωr1 where σ permutes the roots.

Fig: Lagrange

18 / 39

New Concepts / Tools

Lagrange Resolvent

Reminder: Classical Lagrange resolvent

• As we know: a cubic polynomial is solvable by
radicals.

• Lagrange (1736-1813) gave an elegant formula by
reducing cubic to a quadratic.

• Say α, β, γ are roots of a cubic f (x) (in C).

• Say ω is a primitive 3-rd root of unity.

• Lagrange considered the combinations:
r1 := (α + ωβ + ω2γ) and r2 := (α + ω2β + ωγ).

• These are Lagrange resolvents.

• Note: σ(r1) = ωr1 where σ permutes the roots.

Fig: Lagrange

18 / 39

New Concepts / Tools

Lagrange Resolvent

Reminder: Classical Lagrange resolvent

• As we know: a cubic polynomial is solvable by
radicals.

• Lagrange (1736-1813) gave an elegant formula by
reducing cubic to a quadratic.

• Say α, β, γ are roots of a cubic f (x) (in C).

• Say ω is a primitive 3-rd root of unity.

• Lagrange considered the combinations:
r1 := (α + ωβ + ω2γ) and r2 := (α + ω2β + ωγ).

• These are Lagrange resolvents.

• Note: σ(r1) = ωr1 where σ permutes the roots.

Fig: Lagrange

18 / 39

New Concepts / Tools

Lagrange Resolvent

Reminder: Classical Lagrange resolvent

• As we know: a cubic polynomial is solvable by
radicals.

• Lagrange (1736-1813) gave an elegant formula by
reducing cubic to a quadratic.

• Say α, β, γ are roots of a cubic f (x) (in C).

• Say ω is a primitive 3-rd root of unity.

• Lagrange considered the combinations:
r1 := (α + ωβ + ω2γ) and r2 := (α + ω2β + ωγ).

• These are Lagrange resolvents.

• Note: σ(r1) = ωr1 where σ permutes the roots.

Fig: Lagrange

18 / 39

New Concepts / Tools

Lagrange Resolvent

Reminder: Classical Lagrange resolvent

• As we know: a cubic polynomial is solvable by
radicals.

• Lagrange (1736-1813) gave an elegant formula by
reducing cubic to a quadratic.

• Say α, β, γ are roots of a cubic f (x) (in C).

• Say ω is a primitive 3-rd root of unity.

• Lagrange considered the combinations:
r1 := (α + ωβ + ω2γ) and r2 := (α + ω2β + ωγ).

• These are Lagrange resolvents.

• Note: σ(r1) = ωr1 where σ permutes the roots.

Fig: Lagrange

18 / 39

New Concepts / Tools

Lagrange Resolvent

Reminder: Classical Lagrange resolvent

• As we know: a cubic polynomial is solvable by
radicals.

• Lagrange (1736-1813) gave an elegant formula by
reducing cubic to a quadratic.

• Say α, β, γ are roots of a cubic f (x) (in C).

• Say ω is a primitive 3-rd root of unity.

• Lagrange considered the combinations:
r1 := (α + ωβ + ω2γ) and r2 := (α + ω2β + ωγ).

• These are Lagrange resolvents.

• Note: σ(r1) = ωr1 where σ permutes the roots.

Fig: Lagrange

18 / 39

New Concepts / Tools

Lagrange Resolvent

Computing (our) Lagrange Resolvent

• Let A be a commutative semisimple F-algebra and
σ ∈ AutF(A).

• Let σ be of prime order r and ζ be a primitive r -th root of
unity in Aσ.

• We call a nonzero element x ∈ A Lagrange resolvent, if
σ(x) = ζx .

• Theorem: Given A, σ and ζ, we can efficiently compute a
Lagrange resolvent.

• Proof idea: We pick a y ∈ A \ Aσ. Consider
(y , ζ j) :=

∑r−1
i=0 ζ

ijσi (y).

• One of these (y , ζ j) gives the Lagrange resolvent!

19 / 39

New Concepts / Tools

Lagrange Resolvent

Computing (our) Lagrange Resolvent

• Let A be a commutative semisimple F-algebra and
σ ∈ AutF(A).

• Let σ be of prime order r and ζ be a primitive r -th root of
unity in Aσ.

• We call a nonzero element x ∈ A Lagrange resolvent, if
σ(x) = ζx .

• Theorem: Given A, σ and ζ, we can efficiently compute a
Lagrange resolvent.

• Proof idea: We pick a y ∈ A \ Aσ. Consider
(y , ζ j) :=

∑r−1
i=0 ζ

ijσi (y).

• One of these (y , ζ j) gives the Lagrange resolvent!

19 / 39

New Concepts / Tools

Lagrange Resolvent

Computing (our) Lagrange Resolvent

• Let A be a commutative semisimple F-algebra and
σ ∈ AutF(A).

• Let σ be of prime order r and ζ be a primitive r -th root of
unity in Aσ.

• We call a nonzero element x ∈ A Lagrange resolvent, if
σ(x) = ζx .

• Theorem: Given A, σ and ζ, we can efficiently compute a
Lagrange resolvent.

• Proof idea: We pick a y ∈ A \ Aσ. Consider
(y , ζ j) :=

∑r−1
i=0 ζ

ijσi (y).

• One of these (y , ζ j) gives the Lagrange resolvent!

19 / 39

New Concepts / Tools

Lagrange Resolvent

Computing (our) Lagrange Resolvent

• Let A be a commutative semisimple F-algebra and
σ ∈ AutF(A).

• Let σ be of prime order r and ζ be a primitive r -th root of
unity in Aσ.

• We call a nonzero element x ∈ A Lagrange resolvent, if
σ(x) = ζx .

• Theorem: Given A, σ and ζ, we can efficiently compute a
Lagrange resolvent.

• Proof idea: We pick a y ∈ A \ Aσ. Consider
(y , ζ j) :=

∑r−1
i=0 ζ

ijσi (y).

• One of these (y , ζ j) gives the Lagrange resolvent!

19 / 39

New Concepts / Tools

Lagrange Resolvent

Computing (our) Lagrange Resolvent

• Let A be a commutative semisimple F-algebra and
σ ∈ AutF(A).

• Let σ be of prime order r and ζ be a primitive r -th root of
unity in Aσ.

• We call a nonzero element x ∈ A Lagrange resolvent, if
σ(x) = ζx .

• Theorem: Given A, σ and ζ, we can efficiently compute a
Lagrange resolvent.

• Proof idea: We pick a y ∈ A \ Aσ. Consider
(y , ζ j) :=

∑r−1
i=0 ζ

ijσi (y).

• One of these (y , ζ j) gives the Lagrange resolvent!

19 / 39

New Concepts / Tools

Lagrange Resolvent

Computing (our) Lagrange Resolvent

• Let A be a commutative semisimple F-algebra and
σ ∈ AutF(A).

• Let σ be of prime order r and ζ be a primitive r -th root of
unity in Aσ.

• We call a nonzero element x ∈ A Lagrange resolvent, if
σ(x) = ζx .

• Theorem: Given A, σ and ζ, we can efficiently compute a
Lagrange resolvent.

• Proof idea: We pick a y ∈ A \ Aσ. Consider
(y , ζ j) :=

∑r−1
i=0 ζ

ijσi (y).

• One of these (y , ζ j) gives the Lagrange resolvent!

19 / 39

New Concepts / Tools

Kummer Extension

Outline

Our Results: Commutative Algebras

New Concepts / Tools
Semiregularity
Lagrange Resolvent
Kummer Extension

A Warmup Application

Proof of the Main Result

19 / 39

New Concepts / Tools

Kummer Extension

Reminder: Classical Kummer Extension

• Kummer (1810-1893) developed them while
studying Fermat’s last “theorem”.

• A field extension K ⊂ L is called Kummer
extension if :

• K has an r -th primitive root of unity, and

• GL is abelian of size r .

• For example, K [ζr][r
√

c] over K (where c ∈ K [ζr]
but r
√

c /∈ K [ζr]).
Fig: Kummer

20 / 39

New Concepts / Tools

Kummer Extension

Reminder: Classical Kummer Extension

• Kummer (1810-1893) developed them while
studying Fermat’s last “theorem”.

• A field extension K ⊂ L is called Kummer
extension if :

• K has an r -th primitive root of unity, and

• GL is abelian of size r .

• For example, K [ζr][r
√

c] over K (where c ∈ K [ζr]
but r
√

c /∈ K [ζr]).
Fig: Kummer

20 / 39

New Concepts / Tools

Kummer Extension

Reminder: Classical Kummer Extension

• Kummer (1810-1893) developed them while
studying Fermat’s last “theorem”.

• A field extension K ⊂ L is called Kummer
extension if :

• K has an r -th primitive root of unity, and

• GL is abelian of size r .

• For example, K [ζr][r
√

c] over K (where c ∈ K [ζr]
but r
√

c /∈ K [ζr]).
Fig: Kummer

20 / 39

New Concepts / Tools

Kummer Extension

Reminder: Classical Kummer Extension

• Kummer (1810-1893) developed them while
studying Fermat’s last “theorem”.

• A field extension K ⊂ L is called Kummer
extension if :

• K has an r -th primitive root of unity, and

• GL is abelian of size r .

• For example, K [ζr][r
√

c] over K (where c ∈ K [ζr]
but r
√

c /∈ K [ζr]).
Fig: Kummer

20 / 39

New Concepts / Tools

Kummer Extension

Reminder: Classical Kummer Extension

• Kummer (1810-1893) developed them while
studying Fermat’s last “theorem”.

• A field extension K ⊂ L is called Kummer
extension if :

• K has an r -th primitive root of unity, and

• GL is abelian of size r .

• For example, K [ζr][r
√

c] over K (where c ∈ K [ζr]
but r
√

c /∈ K [ζr]).
Fig: Kummer

20 / 39

New Concepts / Tools

Kummer Extension

Cyclotomic Extension

• Let A be a commutative semisimple F-algebra and r be a
prime.

• The r -th cyclotomic extension is simply A[X]/(
∑r−1

i=0 X i),
denoted by A[ζr].

• A[ζr] is also a semisimple F-algebra. If A ∼= A1 ⊕A2 then
A[ζr] ∼= A1[ζr]⊕A2[ζr].

• For a ∈ Z∗r the map ρa : ζr 7→ ζa
r is an automorphism of A[ζr].

• The set of these ρa-s is a group of automorphisms, denoted by
∆r .

21 / 39

New Concepts / Tools

Kummer Extension

Cyclotomic Extension

• Let A be a commutative semisimple F-algebra and r be a
prime.

• The r -th cyclotomic extension is simply A[X]/(
∑r−1

i=0 X i),
denoted by A[ζr].

• A[ζr] is also a semisimple F-algebra. If A ∼= A1 ⊕A2 then
A[ζr] ∼= A1[ζr]⊕A2[ζr].

• For a ∈ Z∗r the map ρa : ζr 7→ ζa
r is an automorphism of A[ζr].

• The set of these ρa-s is a group of automorphisms, denoted by
∆r .

21 / 39

New Concepts / Tools

Kummer Extension

Cyclotomic Extension

• Let A be a commutative semisimple F-algebra and r be a
prime.

• The r -th cyclotomic extension is simply A[X]/(
∑r−1

i=0 X i),
denoted by A[ζr].

• A[ζr] is also a semisimple F-algebra. If A ∼= A1 ⊕A2 then
A[ζr] ∼= A1[ζr]⊕A2[ζr].

• For a ∈ Z∗r the map ρa : ζr 7→ ζa
r is an automorphism of A[ζr].

• The set of these ρa-s is a group of automorphisms, denoted by
∆r .

21 / 39

New Concepts / Tools

Kummer Extension

Cyclotomic Extension

• Let A be a commutative semisimple F-algebra and r be a
prime.

• The r -th cyclotomic extension is simply A[X]/(
∑r−1

i=0 X i),
denoted by A[ζr].

• A[ζr] is also a semisimple F-algebra. If A ∼= A1 ⊕A2 then
A[ζr] ∼= A1[ζr]⊕A2[ζr].

• For a ∈ Z∗r the map ρa : ζr 7→ ζa
r is an automorphism of A[ζr].

• The set of these ρa-s is a group of automorphisms, denoted by
∆r .

21 / 39

New Concepts / Tools

Kummer Extension

Cyclotomic Extension

• Let A be a commutative semisimple F-algebra and r be a
prime.

• The r -th cyclotomic extension is simply A[X]/(
∑r−1

i=0 X i),
denoted by A[ζr].

• A[ζr] is also a semisimple F-algebra. If A ∼= A1 ⊕A2 then
A[ζr] ∼= A1[ζr]⊕A2[ζr].

• For a ∈ Z∗r the map ρa : ζr 7→ ζa
r is an automorphism of A[ζr].

• The set of these ρa-s is a group of automorphisms, denoted by
∆r .

21 / 39

New Concepts / Tools

Kummer Extension

Cyclotomic Extension

• Let A be a commutative semisimple F-algebra and r be a
prime.

• The r -th cyclotomic extension is simply A[X]/(
∑r−1

i=0 X i),
denoted by A[ζr].

• A[ζr] is also a semisimple F-algebra. If A ∼= A1 ⊕A2 then
A[ζr] ∼= A1[ζr]⊕A2[ζr].

• For a ∈ Z∗r the map ρa : ζr 7→ ζa
r is an automorphism of A[ζr].

• The set of these ρa-s is a group of automorphisms, denoted by
∆r .

21 / 39

New Concepts / Tools

Kummer Extension

Teichmüller Subgroup

• First group: Consider the subgroup A[ζr]∗r of units, in A[ζr],
whose order are powers of r . (r -Sylow)

• Its automorphism: Consider the map ωa : x 7→ xaru

where
ord(x) = ru.

• Second group:
TA,r := {x ∈ A[ζr]∗r | ρa(x) = ωa(x) for every ρa ∈ ∆r}.

• This generalizes the classical Teichmüller subgroup. It is a
subgroup on which ∆r -action is “well behaved”.

• Note: Since ρa(ζr) = ζa
r = ζar

r = ωa(ζr), thus ζr ∈ TA,r .

• Bottomline: TA,r is a “nice” subgroup, of units of A[ζr], of
size an r -power.

22 / 39

New Concepts / Tools

Kummer Extension

Teichmüller Subgroup

• First group: Consider the subgroup A[ζr]∗r of units, in A[ζr],
whose order are powers of r . (r -Sylow)

• Its automorphism: Consider the map ωa : x 7→ xaru

where
ord(x) = ru.

• Second group:
TA,r := {x ∈ A[ζr]∗r | ρa(x) = ωa(x) for every ρa ∈ ∆r}.

• This generalizes the classical Teichmüller subgroup. It is a
subgroup on which ∆r -action is “well behaved”.

• Note: Since ρa(ζr) = ζa
r = ζar

r = ωa(ζr), thus ζr ∈ TA,r .

• Bottomline: TA,r is a “nice” subgroup, of units of A[ζr], of
size an r -power.

22 / 39

New Concepts / Tools

Kummer Extension

Teichmüller Subgroup

• First group: Consider the subgroup A[ζr]∗r of units, in A[ζr],
whose order are powers of r . (r -Sylow)

• Its automorphism: Consider the map ωa : x 7→ xaru

where
ord(x) = ru.

• Second group:
TA,r := {x ∈ A[ζr]∗r | ρa(x) = ωa(x) for every ρa ∈ ∆r}.

• This generalizes the classical Teichmüller subgroup. It is a
subgroup on which ∆r -action is “well behaved”.

• Note: Since ρa(ζr) = ζa
r = ζar

r = ωa(ζr), thus ζr ∈ TA,r .

• Bottomline: TA,r is a “nice” subgroup, of units of A[ζr], of
size an r -power.

22 / 39

New Concepts / Tools

Kummer Extension

Teichmüller Subgroup

• First group: Consider the subgroup A[ζr]∗r of units, in A[ζr],
whose order are powers of r . (r -Sylow)

• Its automorphism: Consider the map ωa : x 7→ xaru

where
ord(x) = ru.

• Second group:
TA,r := {x ∈ A[ζr]∗r | ρa(x) = ωa(x) for every ρa ∈ ∆r}.

• This generalizes the classical Teichmüller subgroup. It is a
subgroup on which ∆r -action is “well behaved”.

• Note: Since ρa(ζr) = ζa
r = ζar

r = ωa(ζr), thus ζr ∈ TA,r .

• Bottomline: TA,r is a “nice” subgroup, of units of A[ζr], of
size an r -power.

22 / 39

New Concepts / Tools

Kummer Extension

Teichmüller Subgroup

• First group: Consider the subgroup A[ζr]∗r of units, in A[ζr],
whose order are powers of r . (r -Sylow)

• Its automorphism: Consider the map ωa : x 7→ xaru

where
ord(x) = ru.

• Second group:
TA,r := {x ∈ A[ζr]∗r | ρa(x) = ωa(x) for every ρa ∈ ∆r}.

• This generalizes the classical Teichmüller subgroup. It is a
subgroup on which ∆r -action is “well behaved”.

• Note: Since ρa(ζr) = ζa
r = ζar

r = ωa(ζr), thus ζr ∈ TA,r .

• Bottomline: TA,r is a “nice” subgroup, of units of A[ζr], of
size an r -power.

22 / 39

New Concepts / Tools

Kummer Extension

Teichmüller Subgroup

• First group: Consider the subgroup A[ζr]∗r of units, in A[ζr],
whose order are powers of r . (r -Sylow)

• Its automorphism: Consider the map ωa : x 7→ xaru

where
ord(x) = ru.

• Second group:
TA,r := {x ∈ A[ζr]∗r | ρa(x) = ωa(x) for every ρa ∈ ∆r}.

• This generalizes the classical Teichmüller subgroup. It is a
subgroup on which ∆r -action is “well behaved”.

• Note: Since ρa(ζr) = ζa
r = ζar

r = ωa(ζr), thus ζr ∈ TA,r .

• Bottomline: TA,r is a “nice” subgroup, of units of A[ζr], of
size an r -power.

22 / 39

New Concepts / Tools

Kummer Extension

Kummer Extension of an Algebra

• Let A be a commutative semisimple F-algebra and TA,r ≤
A[ζr]∗ be the Teichmüller subgroup.

• For c ∈ TA,r consider the algebra A[ζr][Y]/(Y r − c).

• It generalizes the classical Kummer extension and is denoted
by A[ζr][r

√
c].

• It is again a semisimple F-algebra.

• The automorphism ρa of A[ζr] beautifully extends to
A[ζr][r

√
c]

via r
√

c 7→ ωa(r
√

c) = (r
√

c)aru

where ord(r
√

c) = ru.

• Bottomline: Automorphisms ∆r of the cyclotomic extension
extend to the Kummer extension.

23 / 39

New Concepts / Tools

Kummer Extension

Kummer Extension of an Algebra

• Let A be a commutative semisimple F-algebra and TA,r ≤
A[ζr]∗ be the Teichmüller subgroup.

• For c ∈ TA,r consider the algebra A[ζr][Y]/(Y r − c).

• It generalizes the classical Kummer extension and is denoted
by A[ζr][r

√
c].

• It is again a semisimple F-algebra.

• The automorphism ρa of A[ζr] beautifully extends to
A[ζr][r

√
c]

via r
√

c 7→ ωa(r
√

c) = (r
√

c)aru

where ord(r
√

c) = ru.

• Bottomline: Automorphisms ∆r of the cyclotomic extension
extend to the Kummer extension.

23 / 39

New Concepts / Tools

Kummer Extension

Kummer Extension of an Algebra

• Let A be a commutative semisimple F-algebra and TA,r ≤
A[ζr]∗ be the Teichmüller subgroup.

• For c ∈ TA,r consider the algebra A[ζr][Y]/(Y r − c).

• It generalizes the classical Kummer extension and is denoted
by A[ζr][r

√
c].

• It is again a semisimple F-algebra.

• The automorphism ρa of A[ζr] beautifully extends to
A[ζr][r

√
c]

via r
√

c 7→ ωa(r
√

c) = (r
√

c)aru

where ord(r
√

c) = ru.

• Bottomline: Automorphisms ∆r of the cyclotomic extension
extend to the Kummer extension.

23 / 39

New Concepts / Tools

Kummer Extension

Kummer Extension of an Algebra

• Let A be a commutative semisimple F-algebra and TA,r ≤
A[ζr]∗ be the Teichmüller subgroup.

• For c ∈ TA,r consider the algebra A[ζr][Y]/(Y r − c).

• It generalizes the classical Kummer extension and is denoted
by A[ζr][r

√
c].

• It is again a semisimple F-algebra.

• The automorphism ρa of A[ζr] beautifully extends to
A[ζr][r

√
c]

via r
√

c 7→ ωa(r
√

c) = (r
√

c)aru

where ord(r
√

c) = ru.

• Bottomline: Automorphisms ∆r of the cyclotomic extension
extend to the Kummer extension.

23 / 39

New Concepts / Tools

Kummer Extension

Kummer Extension of an Algebra

• Let A be a commutative semisimple F-algebra and TA,r ≤
A[ζr]∗ be the Teichmüller subgroup.

• For c ∈ TA,r consider the algebra A[ζr][Y]/(Y r − c).

• It generalizes the classical Kummer extension and is denoted
by A[ζr][r

√
c].

• It is again a semisimple F-algebra.

• The automorphism ρa of A[ζr] beautifully extends to
A[ζr][r

√
c]

via r
√

c 7→ ωa(r
√

c) = (r
√

c)aru

where ord(r
√

c) = ru.

• Bottomline: Automorphisms ∆r of the cyclotomic extension
extend to the Kummer extension.

23 / 39

New Concepts / Tools

Kummer Extension

Kummer Extension of an Algebra

• Let A be a commutative semisimple F-algebra and TA,r ≤
A[ζr]∗ be the Teichmüller subgroup.

• For c ∈ TA,r consider the algebra A[ζr][Y]/(Y r − c).

• It generalizes the classical Kummer extension and is denoted
by A[ζr][r

√
c].

• It is again a semisimple F-algebra.

• The automorphism ρa of A[ζr] beautifully extends to
A[ζr][r

√
c]

via r
√

c 7→ ωa(r
√

c) = (r
√

c)aru

where ord(r
√

c) = ru.

• Bottomline: Automorphisms ∆r of the cyclotomic extension
extend to the Kummer extension.

23 / 39

New Concepts / Tools

Kummer Extension

Kummer Extension of an Algebra

• Let A be a commutative semisimple F-algebra and TA,r ≤
A[ζr]∗ be the Teichmüller subgroup.

• For c ∈ TA,r consider the algebra A[ζr][Y]/(Y r − c).

• It generalizes the classical Kummer extension and is denoted
by A[ζr][r

√
c].

• It is again a semisimple F-algebra.

• The automorphism ρa of A[ζr] beautifully extends to
A[ζr][r

√
c]

via r
√

c 7→ ωa(r
√

c) = (r
√

c)aru

where ord(r
√

c) = ru.

• Bottomline: Automorphisms ∆r of the cyclotomic extension
extend to the Kummer extension.

23 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

New Concepts / Tools

Kummer Extension

Embedding A in a Kummer Extension of Aσ

• Given a commutative semisimple F-algebra A and a
semiregular automorphism σ of prime order r .

• We could consider σ as also an automorphism of A[ζr] by
fixing ζr .

• We can efficiently find an x ∈ TA,r which is a Lagrange
resolvent i.e. σ(x) = ζr x . As before and a trick!

• Clearly σ(x r) = x r , which means that c := x r ∈ TAσ ,r .

• Theorem: There is a natural isomorphism,
Aσ[ζr][r

√
c] ∼= Aσ[ζr][x] = A[ζr].

• Thus, we can efficiently compute a c ∈ TAσ ,r s.t.
A ∼= (Aσ[ζr][r

√
c])∆r . Bottomline: canonical embedding of A.

24 / 39

A Warmup Application

Outline

Our Results: Commutative Algebras

New Concepts / Tools
Semiregularity
Lagrange Resolvent
Kummer Extension

A Warmup Application

Proof of the Main Result

24 / 39

A Warmup Application

Factoring Certain Cyclotomic Polynomials

• Input: Let Φm(X) ∈ F[X] be a cyclotomic polynomial with
Z∗m being noncyclic.

• Consider A = F[X]/(Φm(X)). It is a semisimple F-algebra.

• For i ∈ Z∗m, the map X 7→ X i gives an F-automorphism of A.

• Such maps form a group G of automorphisms. G ∼= Z∗m and
hence noncyclic.

• For prime r |#G , let Pr be the r -Sylow subgroup of G i.e.
elements of G of r -power order.

• The factoring algorithm is based on computing these
subgroups Pr and the various Lagrange resolvents in A.

25 / 39

A Warmup Application

Factoring Certain Cyclotomic Polynomials

• Input: Let Φm(X) ∈ F[X] be a cyclotomic polynomial with
Z∗m being noncyclic.

• Consider A = F[X]/(Φm(X)). It is a semisimple F-algebra.

• For i ∈ Z∗m, the map X 7→ X i gives an F-automorphism of A.

• Such maps form a group G of automorphisms. G ∼= Z∗m and
hence noncyclic.

• For prime r |#G , let Pr be the r -Sylow subgroup of G i.e.
elements of G of r -power order.

• The factoring algorithm is based on computing these
subgroups Pr and the various Lagrange resolvents in A.

25 / 39

A Warmup Application

Factoring Certain Cyclotomic Polynomials

• Input: Let Φm(X) ∈ F[X] be a cyclotomic polynomial with
Z∗m being noncyclic.

• Consider A = F[X]/(Φm(X)). It is a semisimple F-algebra.

• For i ∈ Z∗m, the map X 7→ X i gives an F-automorphism of A.

• Such maps form a group G of automorphisms. G ∼= Z∗m and
hence noncyclic.

• For prime r |#G , let Pr be the r -Sylow subgroup of G i.e.
elements of G of r -power order.

• The factoring algorithm is based on computing these
subgroups Pr and the various Lagrange resolvents in A.

25 / 39

A Warmup Application

Factoring Certain Cyclotomic Polynomials

• Input: Let Φm(X) ∈ F[X] be a cyclotomic polynomial with
Z∗m being noncyclic.

• Consider A = F[X]/(Φm(X)). It is a semisimple F-algebra.

• For i ∈ Z∗m, the map X 7→ X i gives an F-automorphism of A.

• Such maps form a group G of automorphisms. G ∼= Z∗m and
hence noncyclic.

• For prime r |#G , let Pr be the r -Sylow subgroup of G i.e.
elements of G of r -power order.

• The factoring algorithm is based on computing these
subgroups Pr and the various Lagrange resolvents in A.

25 / 39

A Warmup Application

Factoring Certain Cyclotomic Polynomials

• Input: Let Φm(X) ∈ F[X] be a cyclotomic polynomial with
Z∗m being noncyclic.

• Consider A = F[X]/(Φm(X)). It is a semisimple F-algebra.

• For i ∈ Z∗m, the map X 7→ X i gives an F-automorphism of A.

• Such maps form a group G of automorphisms. G ∼= Z∗m and
hence noncyclic.

• For prime r |#G , let Pr be the r -Sylow subgroup of G i.e.
elements of G of r -power order.

• The factoring algorithm is based on computing these
subgroups Pr and the various Lagrange resolvents in A.

25 / 39

A Warmup Application

Factoring Certain Cyclotomic Polynomials

• Input: Let Φm(X) ∈ F[X] be a cyclotomic polynomial with
Z∗m being noncyclic.

• Consider A = F[X]/(Φm(X)). It is a semisimple F-algebra.

• For i ∈ Z∗m, the map X 7→ X i gives an F-automorphism of A.

• Such maps form a group G of automorphisms. G ∼= Z∗m and
hence noncyclic.

• For prime r |#G , let Pr be the r -Sylow subgroup of G i.e.
elements of G of r -power order.

• The factoring algorithm is based on computing these
subgroups Pr and the various Lagrange resolvents in A.

25 / 39

A Warmup Application

Factoring Certain Cyclotomic Polynomials

• Input: Let Φm(X) ∈ F[X] be a cyclotomic polynomial with
Z∗m being noncyclic.

• Consider A = F[X]/(Φm(X)). It is a semisimple F-algebra.

• For i ∈ Z∗m, the map X 7→ X i gives an F-automorphism of A.

• Such maps form a group G of automorphisms. G ∼= Z∗m and
hence noncyclic.

• For prime r |#G , let Pr be the r -Sylow subgroup of G i.e.
elements of G of r -power order.

• The factoring algorithm is based on computing these
subgroups Pr and the various Lagrange resolvents in A.

25 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

A Warmup Application

Factoring Cyclotomic Polynomials (Contd.)

• So G ∼= Z∗m is the noncyclic automorphism group of
A = F[X]/(Φm(X)).

• Pr is its r -Sylow subgroup and Πr is the subset of elements of
order r .

• For each σ ∈ Πr compute the Lagrange resolvent xσ ∈ TA,r
i.e. σ(xσ) = ζr xσ.

• Consider the subgroup Hr := 〈xσ | σ ∈ Πr 〉 of TA,r .

• If Hr is noncyclic then we can compute a zero divisor in A.

• If Hr is cyclic then Pr , which can be seen embedded in
Aut(Hr), is also cyclic.

• Since G is noncyclic, one of the Pr is noncyclic and we are
guaranteed to get a zero divisor in A.

26 / 39

Proof of the Main Result

Outline

Our Results: Commutative Algebras

New Concepts / Tools
Semiregularity
Lagrange Resolvent
Kummer Extension

A Warmup Application

Proof of the Main Result

26 / 39

Proof of the Main Result

Recall the Result

• Given A0 = F[X]/(f (X)). We want to either find a zero
divisor of A0 or an automorphism of order deg f .

• We will actually solve a more general problem: given
commutative semisimple finite algebras B ≤ A, we compute
either a zero divisor in B or a semiregular B-automorphism of
A.

• Our algorithm is recursive. It recurses to an instance with a
smaller dimBA (but larger A).

• Let us denote the algorithm by F(A,B).

• The initial call is F(A0,F). The terminal call is when
dimBA = 1.

27 / 39

Proof of the Main Result

Recall the Result

• Given A0 = F[X]/(f (X)). We want to either find a zero
divisor of A0 or an automorphism of order deg f .

• We will actually solve a more general problem: given
commutative semisimple finite algebras B ≤ A, we compute
either a zero divisor in B or a semiregular B-automorphism of
A.

• Our algorithm is recursive. It recurses to an instance with a
smaller dimBA (but larger A).

• Let us denote the algorithm by F(A,B).

• The initial call is F(A0,F). The terminal call is when
dimBA = 1.

27 / 39

Proof of the Main Result

Recall the Result

• Given A0 = F[X]/(f (X)). We want to either find a zero
divisor of A0 or an automorphism of order deg f .

• We will actually solve a more general problem: given
commutative semisimple finite algebras B ≤ A, we compute
either a zero divisor in B or a semiregular B-automorphism of
A.

• Our algorithm is recursive. It recurses to an instance with a
smaller dimBA (but larger A).

• Let us denote the algorithm by F(A,B).

• The initial call is F(A0,F). The terminal call is when
dimBA = 1.

27 / 39

Proof of the Main Result

Recall the Result

• Given A0 = F[X]/(f (X)). We want to either find a zero
divisor of A0 or an automorphism of order deg f .

• We will actually solve a more general problem: given
commutative semisimple finite algebras B ≤ A, we compute
either a zero divisor in B or a semiregular B-automorphism of
A.

• Our algorithm is recursive. It recurses to an instance with a
smaller dimBA (but larger A).

• Let us denote the algorithm by F(A,B).

• The initial call is F(A0,F). The terminal call is when
dimBA = 1.

27 / 39

Proof of the Main Result

Recall the Result

• Given A0 = F[X]/(f (X)). We want to either find a zero
divisor of A0 or an automorphism of order deg f .

• We will actually solve a more general problem: given
commutative semisimple finite algebras B ≤ A, we compute
either a zero divisor in B or a semiregular B-automorphism of
A.

• Our algorithm is recursive. It recurses to an instance with a
smaller dimBA (but larger A).

• Let us denote the algorithm by F(A,B).

• The initial call is F(A0,F). The terminal call is when
dimBA = 1.

27 / 39

Proof of the Main Result

Recall the Result

• Given A0 = F[X]/(f (X)). We want to either find a zero
divisor of A0 or an automorphism of order deg f .

• We will actually solve a more general problem: given
commutative semisimple finite algebras B ≤ A, we compute
either a zero divisor in B or a semiregular B-automorphism of
A.

• Our algorithm is recursive. It recurses to an instance with a
smaller dimBA (but larger A).

• Let us denote the algorithm by F(A,B).

• The initial call is F(A0,F). The terminal call is when
dimBA = 1.

27 / 39

Proof of the Main Result

The Algorithm F(A,B)

• Now we sketch the recursive algorithm F for inputs A,B.

• Check whether A is a free B-module. If not then we have a
zero divisor in B.

• Case I: m := dimBA is even.

• Tensor idea: Consider the algebra A⊗B A, and its
homomorphism µ : x ⊗ y 7→ xy onto A. The kernel of µ is an
algebra A′ of dimension m(m − 1) over B.

• dimAA′ = (m − 1) and advantage of A′: we know its
B-automorphism σ : x ⊗ y 7→ y ⊗ x .

28 / 39

Proof of the Main Result

The Algorithm F(A,B)

• Now we sketch the recursive algorithm F for inputs A,B.

• Check whether A is a free B-module. If not then we have a
zero divisor in B.

• Case I: m := dimBA is even.

• Tensor idea: Consider the algebra A⊗B A, and its
homomorphism µ : x ⊗ y 7→ xy onto A. The kernel of µ is an
algebra A′ of dimension m(m − 1) over B.

• dimAA′ = (m − 1) and advantage of A′: we know its
B-automorphism σ : x ⊗ y 7→ y ⊗ x .

28 / 39

Proof of the Main Result

The Algorithm F(A,B)

• Now we sketch the recursive algorithm F for inputs A,B.

• Check whether A is a free B-module. If not then we have a
zero divisor in B.

• Case I: m := dimBA is even.

• Tensor idea: Consider the algebra A⊗B A, and its
homomorphism µ : x ⊗ y 7→ xy onto A. The kernel of µ is an
algebra A′ of dimension m(m − 1) over B.

• dimAA′ = (m − 1) and advantage of A′: we know its
B-automorphism σ : x ⊗ y 7→ y ⊗ x .

28 / 39

Proof of the Main Result

The Algorithm F(A,B)

• Now we sketch the recursive algorithm F for inputs A,B.

• Check whether A is a free B-module. If not then we have a
zero divisor in B.

• Case I: m := dimBA is even.

• Tensor idea: Consider the algebra A⊗B A, and its
homomorphism µ : x ⊗ y 7→ xy onto A. The kernel of µ is an
algebra A′ of dimension m(m − 1) over B.

• dimAA′ = (m − 1) and advantage of A′: we know its
B-automorphism σ : x ⊗ y 7→ y ⊗ x .

28 / 39

Proof of the Main Result

The Algorithm F(A,B)

• Now we sketch the recursive algorithm F for inputs A,B.

• Check whether A is a free B-module. If not then we have a
zero divisor in B.

• Case I: m := dimBA is even.

• Tensor idea: Consider the algebra A⊗B A, and its
homomorphism µ : x ⊗ y 7→ xy onto A. The kernel of µ is an
algebra A′ of dimension m(m − 1) over B.

• dimAA′ = (m − 1) and advantage of A′: we know its
B-automorphism σ : x ⊗ y 7→ y ⊗ x .

28 / 39

Proof of the Main Result

The Algorithm F(A,B)

• Now we sketch the recursive algorithm F for inputs A,B.

• Check whether A is a free B-module. If not then we have a
zero divisor in B.

• Case I: m := dimBA is even.

• Tensor idea: Consider the algebra A⊗B A, and its
homomorphism µ : x ⊗ y 7→ xy onto A. The kernel of µ is an
algebra A′ of dimension m(m − 1) over B.

• dimAA′ = (m − 1) and advantage of A′: we know its
B-automorphism σ : x ⊗ y 7→ y ⊗ x .

28 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Even Case

• So we have embeddings B ↪→ A ↪→ A′ ↪→ A⊗B A. And a
B-automorphism σ of A′.

• We intend to bring σ down to A. Important: dimAA′ is odd
while σ is semiregular of order 2.

• Compute a Lagrange resolvent x ∈ TA′,2 i.e. σ(x) = ζ2x .

• If x ∈ A then C := Aσ[ζ2][x] = Aσ[x] is a subalgebra of A
with automorphism σ. So we call F(A, C) and glue the
output with σ. Done!

• If x /∈ A then A′ cannot be a free A[x]-module, as x is of
order 2-power while dimAA′ is odd.

• Thus, we can find a zero divisor in A′, decompose it and
recursively call F(·,A). Done!

29 / 39

Proof of the Main Result

The Algorithm F(A,B): Odd Case

• Case II: m := dimBA is odd. Thus dimAA′ = (m − 1) is
even.

• Note: There are two natural ways to embed A into A′. Via
φ1 : x 7→ x ⊗ 1 or φ2 : x 7→ 1⊗ x .

• We recurse to the even case and compute:
a φ1(A)-automorphism σ1 of A′ and
a φ2(A)-automorphism σ2 of A′.

• Essentially, φ−1
2 σ1φ2 is an automorphism of A, and we are

done!

30 / 39

Proof of the Main Result

The Algorithm F(A,B): Odd Case

• Case II: m := dimBA is odd. Thus dimAA′ = (m − 1) is
even.

• Note: There are two natural ways to embed A into A′. Via
φ1 : x 7→ x ⊗ 1 or φ2 : x 7→ 1⊗ x .

• We recurse to the even case and compute:
a φ1(A)-automorphism σ1 of A′ and
a φ2(A)-automorphism σ2 of A′.

• Essentially, φ−1
2 σ1φ2 is an automorphism of A, and we are

done!

30 / 39

Proof of the Main Result

The Algorithm F(A,B): Odd Case

• Case II: m := dimBA is odd. Thus dimAA′ = (m − 1) is
even.

• Note: There are two natural ways to embed A into A′. Via
φ1 : x 7→ x ⊗ 1 or φ2 : x 7→ 1⊗ x .

• We recurse to the even case and compute:
a φ1(A)-automorphism σ1 of A′ and
a φ2(A)-automorphism σ2 of A′.

• Essentially, φ−1
2 σ1φ2 is an automorphism of A, and we are

done!

30 / 39

Proof of the Main Result

The Algorithm F(A,B): Odd Case

• Case II: m := dimBA is odd. Thus dimAA′ = (m − 1) is
even.

• Note: There are two natural ways to embed A into A′. Via
φ1 : x 7→ x ⊗ 1 or φ2 : x 7→ 1⊗ x .

• We recurse to the even case and compute:
a φ1(A)-automorphism σ1 of A′ and
a φ2(A)-automorphism σ2 of A′.

• Essentially, φ−1
2 σ1φ2 is an automorphism of A, and we are

done!

30 / 39

Proof of the Main Result

The Algorithm F(A,B): Odd Case

• Case II: m := dimBA is odd. Thus dimAA′ = (m − 1) is
even.

• Note: There are two natural ways to embed A into A′. Via
φ1 : x 7→ x ⊗ 1 or φ2 : x 7→ 1⊗ x .

• We recurse to the even case and compute:
a φ1(A)-automorphism σ1 of A′ and
a φ2(A)-automorphism σ2 of A′.

• Essentially, φ−1
2 σ1φ2 is an automorphism of A, and we are

done!

30 / 39

Proof of the Main Result

Time Complexity of F(A,B)

• In any recursive call F(C,D) with d := dimD C odd, we
recurse to a bigger algebra C ⊗D C. dimD C does not increase
but dimB C increases d times.

• Whenever we find a zero divisor of C we decompose it and
always recurse to the smallest component. Thus, halving the
dimD C.

• As we start with dimension m = dimBA, we are always in
algebras of dimension at most mO(log m) above B.

• Overall the deterministic algorithm takes poly(mlog m, log |B|)
time.

31 / 39

Proof of the Main Result

Time Complexity of F(A,B)

• In any recursive call F(C,D) with d := dimD C odd, we
recurse to a bigger algebra C ⊗D C. dimD C does not increase
but dimB C increases d times.

• Whenever we find a zero divisor of C we decompose it and
always recurse to the smallest component. Thus, halving the
dimD C.

• As we start with dimension m = dimBA, we are always in
algebras of dimension at most mO(log m) above B.

• Overall the deterministic algorithm takes poly(mlog m, log |B|)
time.

31 / 39

Proof of the Main Result

Time Complexity of F(A,B)

• In any recursive call F(C,D) with d := dimD C odd, we
recurse to a bigger algebra C ⊗D C. dimD C does not increase
but dimB C increases d times.

• Whenever we find a zero divisor of C we decompose it and
always recurse to the smallest component. Thus, halving the
dimD C.

• As we start with dimension m = dimBA, we are always in
algebras of dimension at most mO(log m) above B.

• Overall the deterministic algorithm takes poly(mlog m, log |B|)
time.

31 / 39

Proof of the Main Result

Time Complexity of F(A,B)

• In any recursive call F(C,D) with d := dimD C odd, we
recurse to a bigger algebra C ⊗D C. dimD C does not increase
but dimB C increases d times.

• Whenever we find a zero divisor of C we decompose it and
always recurse to the smallest component. Thus, halving the
dimD C.

• As we start with dimension m = dimBA, we are always in
algebras of dimension at most mO(log m) above B.

• Overall the deterministic algorithm takes poly(mlog m, log |B|)
time.

31 / 39

Proof of the Main Result

Time Complexity of F(A,B)

• In any recursive call F(C,D) with d := dimD C odd, we
recurse to a bigger algebra C ⊗D C. dimD C does not increase
but dimB C increases d times.

• Whenever we find a zero divisor of C we decompose it and
always recurse to the smallest component. Thus, halving the
dimD C.

• As we start with dimension m = dimBA, we are always in
algebras of dimension at most mO(log m) above B.

• Overall the deterministic algorithm takes poly(mlog m, log |B|)
time.

31 / 39

Proof of the Main Result

Time Complexity of F(A,B)

• In any recursive call F(C,D) with d := dimD C odd, we
recurse to a bigger algebra C ⊗D C. dimD C does not increase
but dimB C increases d times.

• Whenever we find a zero divisor of C we decompose it and
always recurse to the smallest component. Thus, halving the
dimD C.

• As we start with dimension m = dimBA, we are always in
algebras of dimension at most mO(log m) above B.

• Overall the deterministic algorithm takes poly(mlog m, log |B|)
time.

31 / 39

Part III

Noncommutative

31 / 39

Our Results: Noncommutative Algebras

Outline

Our Results: Noncommutative Algebras

Proof of the Main Result

31 / 39

Our Results: Noncommutative Algebras

Find a Zero Divisor

• Input: A noncommutative algebra A of dimension n over a
finite field F.

• Output: A zero divisor z in A. I.e. for some nonzero
y , y ′ ∈ A, yz = zy ′ = 0.

• Complexity: In deterministic poly(nlog n, log |F|) time.

• Note that it is a genuine elimination of GRH!

32 / 39

Our Results: Noncommutative Algebras

Find a Zero Divisor

• Input: A noncommutative algebra A of dimension n over a
finite field F.

• Output: A zero divisor z in A. I.e. for some nonzero
y , y ′ ∈ A, yz = zy ′ = 0.

• Complexity: In deterministic poly(nlog n, log |F|) time.

• Note that it is a genuine elimination of GRH!

32 / 39

Our Results: Noncommutative Algebras

Find a Zero Divisor

• Input: A noncommutative algebra A of dimension n over a
finite field F.

• Output: A zero divisor z in A. I.e. for some nonzero
y , y ′ ∈ A, yz = zy ′ = 0.

• Complexity: In deterministic poly(nlog n, log |F|) time.

• Note that it is a genuine elimination of GRH!

32 / 39

Our Results: Noncommutative Algebras

Find a Zero Divisor

• Input: A noncommutative algebra A of dimension n over a
finite field F.

• Output: A zero divisor z in A. I.e. for some nonzero
y , y ′ ∈ A, yz = zy ′ = 0.

• Complexity: In deterministic poly(nlog n, log |F|) time.

• Note that it is a genuine elimination of GRH!

32 / 39

Our Results: Noncommutative Algebras

Find a Zero Divisor

• Input: A noncommutative algebra A of dimension n over a
finite field F.

• Output: A zero divisor z in A. I.e. for some nonzero
y , y ′ ∈ A, yz = zy ′ = 0.

• Complexity: In deterministic poly(nlog n, log |F|) time.

• Note that it is a genuine elimination of GRH!

32 / 39

Our Results: Noncommutative Algebras

Find Isomorphism with Full Matrix Algebra

• Let K be a finite field and Mn(K) be the full matrix algebra
Kn×n.

• Input: An F-algebra A that is isomorphic to Mn(K), for some
K ⊃ F.

• Output: Construct an explicit isomorphism A ∼= Mn(K).

• Complexity: In deterministic poly(nlog n, log |K |) time.

• In other words, we solve the isomorphism problem for finite
simple algebras in quasipolynomial time.

• Aside: Isomorphism problem for finite algebras is known to be
graph isomorphism hard!

33 / 39

Our Results: Noncommutative Algebras

Find Isomorphism with Full Matrix Algebra

• Let K be a finite field and Mn(K) be the full matrix algebra
Kn×n.

• Input: An F-algebra A that is isomorphic to Mn(K), for some
K ⊃ F.

• Output: Construct an explicit isomorphism A ∼= Mn(K).

• Complexity: In deterministic poly(nlog n, log |K |) time.

• In other words, we solve the isomorphism problem for finite
simple algebras in quasipolynomial time.

• Aside: Isomorphism problem for finite algebras is known to be
graph isomorphism hard!

33 / 39

Our Results: Noncommutative Algebras

Find Isomorphism with Full Matrix Algebra

• Let K be a finite field and Mn(K) be the full matrix algebra
Kn×n.

• Input: An F-algebra A that is isomorphic to Mn(K), for some
K ⊃ F.

• Output: Construct an explicit isomorphism A ∼= Mn(K).

• Complexity: In deterministic poly(nlog n, log |K |) time.

• In other words, we solve the isomorphism problem for finite
simple algebras in quasipolynomial time.

• Aside: Isomorphism problem for finite algebras is known to be
graph isomorphism hard!

33 / 39

Our Results: Noncommutative Algebras

Find Isomorphism with Full Matrix Algebra

• Let K be a finite field and Mn(K) be the full matrix algebra
Kn×n.

• Input: An F-algebra A that is isomorphic to Mn(K), for some
K ⊃ F.

• Output: Construct an explicit isomorphism A ∼= Mn(K).

• Complexity: In deterministic poly(nlog n, log |K |) time.

• In other words, we solve the isomorphism problem for finite
simple algebras in quasipolynomial time.

• Aside: Isomorphism problem for finite algebras is known to be
graph isomorphism hard!

33 / 39

Our Results: Noncommutative Algebras

Find Isomorphism with Full Matrix Algebra

• Let K be a finite field and Mn(K) be the full matrix algebra
Kn×n.

• Input: An F-algebra A that is isomorphic to Mn(K), for some
K ⊃ F.

• Output: Construct an explicit isomorphism A ∼= Mn(K).

• Complexity: In deterministic poly(nlog n, log |K |) time.

• In other words, we solve the isomorphism problem for finite
simple algebras in quasipolynomial time.

• Aside: Isomorphism problem for finite algebras is known to be
graph isomorphism hard!

33 / 39

Our Results: Noncommutative Algebras

Find Isomorphism with Full Matrix Algebra

• Let K be a finite field and Mn(K) be the full matrix algebra
Kn×n.

• Input: An F-algebra A that is isomorphic to Mn(K), for some
K ⊃ F.

• Output: Construct an explicit isomorphism A ∼= Mn(K).

• Complexity: In deterministic poly(nlog n, log |K |) time.

• In other words, we solve the isomorphism problem for finite
simple algebras in quasipolynomial time.

• Aside: Isomorphism problem for finite algebras is known to be
graph isomorphism hard!

33 / 39

Proof of the Main Result

Outline

Our Results: Noncommutative Algebras

Proof of the Main Result

33 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Preprocessing

• Let A be the finite noncommutative F-algebra whose zero
divisor we need to find.

• We could assume it to be semisimple, otherwise there are
methods to compute the radical.

• By a linear system we compute the center C of A, i.e.
elements that commute with A.

• Let C1, . . . , Cr be simple components of C. (We do not
compute them.)

• Now structurally, A ∼=
⊕r

i=1 Mni (Ci). (Artin-Wedderburn)

• If ni -s are not the same then A is not a free C-module. Thus
we compute a zero divisor.

• We can assume A ∼= Mn(C), where we know n and the
commutative semisimple C.

34 / 39

Proof of the Main Result

Automorphism gives Conjugation

• So we are given an F-algebra A isomorphic to Mn(C).

• We intend to compute an automorphism of a commutative
subalgebra and use it to construct a zero divisor in A.

• Theorem (Skolem-Noether): Let σ be a C-automorphism of a
commutative semisimple B ≤ Mn(C). Then ∃y ∈ Mn(C) s.t.
∀x ∈ B, σ(x) = y−1xy .

• Bottomline: Automorphism gives a conjugation.

35 / 39

Proof of the Main Result

Automorphism gives Conjugation

• So we are given an F-algebra A isomorphic to Mn(C).

• We intend to compute an automorphism of a commutative
subalgebra and use it to construct a zero divisor in A.

• Theorem (Skolem-Noether): Let σ be a C-automorphism of a
commutative semisimple B ≤ Mn(C). Then ∃y ∈ Mn(C) s.t.
∀x ∈ B, σ(x) = y−1xy .

• Bottomline: Automorphism gives a conjugation.

35 / 39

Proof of the Main Result

Automorphism gives Conjugation

• So we are given an F-algebra A isomorphic to Mn(C).

• We intend to compute an automorphism of a commutative
subalgebra and use it to construct a zero divisor in A.

• Theorem (Skolem-Noether): Let σ be a C-automorphism of a
commutative semisimple B ≤ Mn(C). Then ∃y ∈ Mn(C) s.t.
∀x ∈ B, σ(x) = y−1xy .

• Bottomline: Automorphism gives a conjugation.

35 / 39

Proof of the Main Result

Automorphism gives Conjugation

• So we are given an F-algebra A isomorphic to Mn(C).

• We intend to compute an automorphism of a commutative
subalgebra and use it to construct a zero divisor in A.

• Theorem (Skolem-Noether): Let σ be a C-automorphism of a
commutative semisimple B ≤ Mn(C). Then ∃y ∈ Mn(C) s.t.
∀x ∈ B, σ(x) = y−1xy .

• Bottomline: Automorphism gives a conjugation.

35 / 39

Proof of the Main Result

Conjugation gives Zero Divisor

• Let y ∈ Mn(C) be of order r , and it induces a nontrivial
automorphism on B i.e. y−1By = B.

• Then it can be shown that (X r − 1) is the minimal polynomial
of y over F.

• Consequently, (y − 1) and (y r−1 + · · ·+ y + 1) are both zero
divisors in Mn(C) ∼= A.

• This observation suggests us a plan: Find a commutative
semisimple B ≤ A and

• a y ∈ A of order r , that induces a nontrivial conjugation
automorphism of B.

36 / 39

Proof of the Main Result

Conjugation gives Zero Divisor

• Let y ∈ Mn(C) be of order r , and it induces a nontrivial
automorphism on B i.e. y−1By = B.

• Then it can be shown that (X r − 1) is the minimal polynomial
of y over F.

• Consequently, (y − 1) and (y r−1 + · · ·+ y + 1) are both zero
divisors in Mn(C) ∼= A.

• This observation suggests us a plan: Find a commutative
semisimple B ≤ A and

• a y ∈ A of order r , that induces a nontrivial conjugation
automorphism of B.

36 / 39

Proof of the Main Result

Conjugation gives Zero Divisor

• Let y ∈ Mn(C) be of order r , and it induces a nontrivial
automorphism on B i.e. y−1By = B.

• Then it can be shown that (X r − 1) is the minimal polynomial
of y over F.

• Consequently, (y − 1) and (y r−1 + · · ·+ y + 1) are both zero
divisors in Mn(C) ∼= A.

• This observation suggests us a plan: Find a commutative
semisimple B ≤ A and

• a y ∈ A of order r , that induces a nontrivial conjugation
automorphism of B.

36 / 39

Proof of the Main Result

Conjugation gives Zero Divisor

• Let y ∈ Mn(C) be of order r , and it induces a nontrivial
automorphism on B i.e. y−1By = B.

• Then it can be shown that (X r − 1) is the minimal polynomial
of y over F.

• Consequently, (y − 1) and (y r−1 + · · ·+ y + 1) are both zero
divisors in Mn(C) ∼= A.

• This observation suggests us a plan: Find a commutative
semisimple B ≤ A and

• a y ∈ A of order r , that induces a nontrivial conjugation
automorphism of B.

36 / 39

Proof of the Main Result

Conjugation gives Zero Divisor

• Let y ∈ Mn(C) be of order r , and it induces a nontrivial
automorphism on B i.e. y−1By = B.

• Then it can be shown that (X r − 1) is the minimal polynomial
of y over F.

• Consequently, (y − 1) and (y r−1 + · · ·+ y + 1) are both zero
divisors in Mn(C) ∼= A.

• This observation suggests us a plan: Find a commutative
semisimple B ≤ A and

• a y ∈ A of order r , that induces a nontrivial conjugation
automorphism of B.

36 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Algorithm: Almost

• Given A and (its center) C. Compute a maximal commutative
semisimple B ≤ A.

• B is a free C-module of rank n.

• Using our commutative algorithm: find a semiregular
C-automorphism σ of B.

• Compute a y ∈ A s.t. ∀b ∈ B, σ(b) = y−1by (guaranteed by
Skolem-Noether).

• We can replace σ and y by an appropriate power s.t.
ord(σ) = r and ord(y) is an r -power.

• Put z := y r . If z = 1 then we are done!

• Assume z 6= 1. ∀b ∈ B, b = σr (b) = z−1bz .

• B[z] is commutative semisimple with automorphism σ via
conjugation by y .

37 / 39

Proof of the Main Result

The Proof Details: Cyclic Algebra

• So B[z] has ζr and an automorphism σ of order r .

• Compute a Lagrange resolvent x ∈ B[z]∗r , i.e. σ(x) = ζr x .

• Consider C′ := B[z]σ and A′ := C′[x , y].

• We can assume A′ to be a free C′-module. Its generators
satisfy: xy = ζr yx and x r , y r ∈ C′.

• A′ is called cyclic algebra. It is a generalization of quaternions.

• With some work we find a zero divisor in it. Done!

38 / 39

Proof of the Main Result

The Proof Details: Cyclic Algebra

• So B[z] has ζr and an automorphism σ of order r .

• Compute a Lagrange resolvent x ∈ B[z]∗r , i.e. σ(x) = ζr x .

• Consider C′ := B[z]σ and A′ := C′[x , y].

• We can assume A′ to be a free C′-module. Its generators
satisfy: xy = ζr yx and x r , y r ∈ C′.

• A′ is called cyclic algebra. It is a generalization of quaternions.

• With some work we find a zero divisor in it. Done!

38 / 39

Proof of the Main Result

The Proof Details: Cyclic Algebra

• So B[z] has ζr and an automorphism σ of order r .

• Compute a Lagrange resolvent x ∈ B[z]∗r , i.e. σ(x) = ζr x .

• Consider C′ := B[z]σ and A′ := C′[x , y].

• We can assume A′ to be a free C′-module. Its generators
satisfy: xy = ζr yx and x r , y r ∈ C′.

• A′ is called cyclic algebra. It is a generalization of quaternions.

• With some work we find a zero divisor in it. Done!

38 / 39

Proof of the Main Result

The Proof Details: Cyclic Algebra

• So B[z] has ζr and an automorphism σ of order r .

• Compute a Lagrange resolvent x ∈ B[z]∗r , i.e. σ(x) = ζr x .

• Consider C′ := B[z]σ and A′ := C′[x , y].

• We can assume A′ to be a free C′-module. Its generators
satisfy: xy = ζr yx and x r , y r ∈ C′.

• A′ is called cyclic algebra. It is a generalization of quaternions.

• With some work we find a zero divisor in it. Done!

38 / 39

Proof of the Main Result

The Proof Details: Cyclic Algebra

• So B[z] has ζr and an automorphism σ of order r .

• Compute a Lagrange resolvent x ∈ B[z]∗r , i.e. σ(x) = ζr x .

• Consider C′ := B[z]σ and A′ := C′[x , y].

• We can assume A′ to be a free C′-module. Its generators
satisfy: xy = ζr yx and x r , y r ∈ C′.

• A′ is called cyclic algebra. It is a generalization of quaternions.

• With some work we find a zero divisor in it. Done!

38 / 39

Proof of the Main Result

The Proof Details: Cyclic Algebra

• So B[z] has ζr and an automorphism σ of order r .

• Compute a Lagrange resolvent x ∈ B[z]∗r , i.e. σ(x) = ζr x .

• Consider C′ := B[z]σ and A′ := C′[x , y].

• We can assume A′ to be a free C′-module. Its generators
satisfy: xy = ζr yx and x r , y r ∈ C′.

• A′ is called cyclic algebra. It is a generalization of quaternions.

• With some work we find a zero divisor in it. Done!

38 / 39

Proof of the Main Result

The Proof Details: Cyclic Algebra

• So B[z] has ζr and an automorphism σ of order r .

• Compute a Lagrange resolvent x ∈ B[z]∗r , i.e. σ(x) = ζr x .

• Consider C′ := B[z]σ and A′ := C′[x , y].

• We can assume A′ to be a free C′-module. Its generators
satisfy: xy = ζr yx and x r , y r ∈ C′.

• A′ is called cyclic algebra. It is a generalization of quaternions.

• With some work we find a zero divisor in it. Done!

38 / 39

Conclusion

Conclusion

• We developed a computational version of Galois theory for
finite semisimple algebras.

• This gave us GRH free ways to compute semiregular
automorphisms in the commutative case.

• And GRH free ways to compute zero divisors in the
noncommutative case.

• In some cases we factor polynomials too!

• Can we extend the methods to solve polynomial factoring ?

Thank You!

39 / 39

Conclusion

Conclusion

• We developed a computational version of Galois theory for
finite semisimple algebras.

• This gave us GRH free ways to compute semiregular
automorphisms in the commutative case.

• And GRH free ways to compute zero divisors in the
noncommutative case.

• In some cases we factor polynomials too!

• Can we extend the methods to solve polynomial factoring ?

Thank You!

39 / 39

Conclusion

Conclusion

• We developed a computational version of Galois theory for
finite semisimple algebras.

• This gave us GRH free ways to compute semiregular
automorphisms in the commutative case.

• And GRH free ways to compute zero divisors in the
noncommutative case.

• In some cases we factor polynomials too!

• Can we extend the methods to solve polynomial factoring ?

Thank You!

39 / 39

Conclusion

Conclusion

• We developed a computational version of Galois theory for
finite semisimple algebras.

• This gave us GRH free ways to compute semiregular
automorphisms in the commutative case.

• And GRH free ways to compute zero divisors in the
noncommutative case.

• In some cases we factor polynomials too!

• Can we extend the methods to solve polynomial factoring ?

Thank You!

39 / 39

Conclusion

Conclusion

• We developed a computational version of Galois theory for
finite semisimple algebras.

• This gave us GRH free ways to compute semiregular
automorphisms in the commutative case.

• And GRH free ways to compute zero divisors in the
noncommutative case.

• In some cases we factor polynomials too!

• Can we extend the methods to solve polynomial factoring ?

Thank You!

39 / 39

Conclusion

Conclusion

• We developed a computational version of Galois theory for
finite semisimple algebras.

• This gave us GRH free ways to compute semiregular
automorphisms in the commutative case.

• And GRH free ways to compute zero divisors in the
noncommutative case.

• In some cases we factor polynomials too!

• Can we extend the methods to solve polynomial factoring ?

Thank You!

39 / 39

	Outline
	
	
	

	Introduction
	Polynomial Factoring
	The Problem
	GRH Connection
	Finite Algebra Questions

	Standard Algebraic Terms

	Commutative
	Our Results: Commutative Algebras
	New Concepts / Tools
	Semiregularity
	Lagrange Resolvent
	Kummer Extension

	A Warmup Application
	Proof of the Main Result

	Noncommutative
	Our Results: Noncommutative Algebras
	Proof of the Main Result
	Conclusion

