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The problem of PIT 
 Polynomial identity testing: given a polynomial 

p(x1,x2,…,xn) over F, is it identically zero?
 All coefficients of p(x1,…,xn) are zero.

 (x+y)2 - x2 - y2 - 2xy is identically zero.
 So is: (a2+b2+c2+d2)(A2+B2+C2+D2)

                   - (aA+bB+cC+dD)2 - (aB-bA+cD-dC)2

                   - (aC-bD-cA+dB)2  - (aD-dA+bC-cB)2

 x(x-1) is NOT identically zero over F2.



Circuits: Blackbox or not

 Non blackbox: can analyze structure of C
 Blackbox: cannot look inside C

 Feed values and see what you get
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We want algorithm whose running 
time is polynomial in size of the 
circuit.
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A simple, randomized test

 [Schwartz '80, Zippel '79] This is a randomized 
blackbox poly-time algorithm.

 (Big) open problem: Find a deterministic polynomial 
time algorithm.
 We would really like a black box algorithm

v1

v2

vn

p(v1,v2,…,vn)

If output is 0, we 
guess it is identity.

Otherwise, we 
know it isn’t.
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Why?

 Come on, it’s an interesting mathematical problem. 
Do you need a further reason?

 [Impagliazzo Kabanets '03] Derandomization implies 
circuit lower bounds for permanent

 [AKS '02]  Primality Testing ; (x + a)n–xn-a=0 (mod n)
 [L '79, MVV '87] Bipartite matching in NC?...
 Many more



What do we do?

If you can't solve a problem, then there is an 
easier problem you can solve. Find it.

George Pólya 1887-1985



Get shallow results
 Let’s restrict the depth and see what we get
 Depth 2? Non-blackbox trivial!

 [GKS '90, BOT '88] Polytime & blackbox
 Depth 3?
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Shallowness is not so bad!

 They say…
 [AV '08] Chasm at Depth 4!
 If you can solve blackbox PIT for depth 4, then 

you’ve “solved” it for all depths.

M. Agrawal V. Vinay



Shallowness is not so bad!
The two main ideas involved are......

[AJMV '98] Any circuit C computing a polynomial p(x1,...,xn) 
of degree d can be converted into a depth O(log d) circuit 
C'.   

[AV '08] Few top layers of C' are collapsed to get a depth-2
         circuit. The same is done to the remaining bottom layers of 

C'. 

This yields a depth-4 circuit C'' with only a 
subexponential blowup.



The past…                  … of Depth-3

 [Dvir Shpilka '05] Non-blackbox poly(n)exp((log d)k) 
time algorithm

 [Kayal Saxena '06] Non-blackbox poly(n,dk) time 
algorithm 

 [Karnin Shpilka '08] Blackbox poly(n)exp((log d)k) 
 [Us] Blackbox poly(n)exp(k3 log2 d)



The rank

 Introduced by [DS '05]: fundamental property of depth 3 
circuits

 [DS '05] Rank of simple minimal identity < (log d)k-2     
(compare with kd)

 How many independent variables can an identity have?
 An identity is very constrained, so few degrees of freedom

M =
α1  α2                      αn

n

kd

Rank(C) = Rank (M)
n-dim vector over F



Exemplary Example

Here is the highest rank depth-3, fanin-3 example over Reals.
y(y+x1+x2)(y+x2+x3)(y+x3+x1) – (y+x1)(y+x2)(y+x3)(y+x1+x2+x3) 

         + x1x2x3(2y+x1+x2+x3) = 0 

It is of rank 4.
It is easy to see the geometry behind this identity: 
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What we did

 Rank of depth 3 simple, minimal identity < k3 log d
 There is identity with rank (k log d), so this is almost optimal
 Let P be a nonzero poly generated by depth 3 circuit. Then 

rank of linear factors of P is at most k3 log d
 So [KS '08] implies det. blackbox exp(k3 log2 d) test
 We develop techniques to study depth 3 circuits 

over any field.
 Probably more interesting/important than result

 [Kayal Saraf '09] If base field is reals, rank < kk



Be simple and minimal

 Depth-3: C = T1 + T2 + … + Tk

 Simplicity: no common (linear) factor for all Tr’s
 x1x2…xn - x1x2…xn  (Rank = n)

 Minimality: no subset of Tr’s are identity
 x1x2…xnz1 - x1x2…xnz1 + y1y2…ynz2 - y1y2…ynz2               

(Rank = 2n+2)

 We give poly-time algo that returns small basis or 
gives obstruction



Top fanin k=3
 C = T1 + T2 + T3 = Π Li + Π Mj + Π Nk = 0
 [AB '99, AKS '02, KS '06] Go modulo!

Vanishes!

 By unique factorization, there is 1-1 mapping between 
M’s and N’s (they are same upto constants)

 This is the L1 matching.



The Li matchings

 For every Li, the M’s and N’s have a perfect 
matching
 Always non-trivial linear combinations

M’s N’s

Li

Li

Li

Li

Mj Nk Suppose α = 0

So Li is common factor. 
Circuit is not simple!
So α,β ≠ 0



The spanning procedure

 We iteratively build a basis B.
 sp(B) is set of forms spanned by B

 Start with B = {L1,M1}

L’s M’s N’s



The spanning procedure

sp(B) marked
in green

L’s M’s N’s

L1 M1

linear comb.
of L1 and M1

 Start with B = {L1,M1}



The spanning procedure

L’s M’s N’s

 Start with B = {L1,M1}
 Choose L2 outside sp(B). Add it to B.



The spanning procedure

 Start with B = {L1,M1}
 Choose L2 outside sp(B). Add it to B.

 Update sp(B) and repeat until all forms are spanned
 Rank bound = #rounds + 1

L’s M’s N’s



The log2d bound

 Claim: After every round, # of green M’s doubles

 All Li neighbors of green part are not green

L’s M’s N’s

Li

Li should be
green.
Contradiction!

Li

Nk

Mj



The log2d bound

 Claim: After every round, # of green M’s doubles

L’s M’s N’s

Li

Li



The log2d bound

 Claim: After every round, # of green M’s doubles

 Rank bound is (log2 d + 1)
 Lower bound example has exactly same matching 

structure (exists for any finite char field)

L’s M’s N’s

Li

Total green
doubled

Li



Larger k: can’t induct easily

 C = T1 + T2 + T3 + T4 + T5

 L ϵ T1. So how about C (mod L)? Top fanin is now 4.
 But C(mod L) may not be simple or minimal any more!

x1x2 + (x3-x1)x2 + (x4-x2)x3 – x3x4

Going (mod x1), we get x2x3 + (x4-x2)x3 – x3x4

T1
T2 T3 T4 T5

L



The ideal way to Matchings

 We saw the power of matchings for k=3
 We extend matchings to ideal matchings for all k

 Looking at C modulo an ideal, not just a linear form

 Use these to construct a spanning procedure as 
before
 Find some small set of forms not in sp(B), add them to B, 

continue
 The number of rounds of this procedure gives the bound



Ideal matchings

 C (mod L1, L2, L3) or C (mod I)
 I is ideal <L1, L2, L3>

 T4 + T5 = 0 (mod I)
 By unique factorization, we get I-matching

T1
T2 T3 T4 T5

L1

L2

L3



Life isn’t ideal

 C (mod L1, L2) has no terms

 How can we get a matching?

L1

L2

Lin. comb. of L1 and L2



Simple and gcd parts

 C (mod I) has gcd part and simple part
 C = x1x2 + (x3-x1)x2 + (x4-x2)x3 - x3x4 
 C (mod x1) = x2x3 + (x4-x2)x3 - x3x4 

 So x3 is gcd(C mod x1)
 x2 + (x4-x2) - x4 is sim(C mod x1)

L1

gcd(C(mod L1))

sim(C(mod L1))



Simple and gcd parts

L1

gcd(C mod L1)

L2

gcd(C mod (L1, L2))

L3

gcd(C mod (L1, L2,L3))

I matching

 C (mod I) has gcd part and simple part
 C = x1x2 + (x3-x1)x2 + (x4-x2)x3 - x3x4 
 C (mod x1) = x2x3 + (x4-x2)x3 - x3x4 

 So x3 is gcd(C mod x1)
 x2 + (x4-x2) - x4 is sim(C mod x1)



Simple and gcd parts

 Let I = <L1, L2, L3>
 Piece together gcd portions

 Eventually, we can’t even use this, but this gives the 
right idea

L1

L2

L3

I matching



The spanning procedure sp(B)

L1



The spanning procedure

 We want to get ideal I for matching
 Add new form to I, remove gcd (mod I), update sp(B U I), 

repeat…
 In the end of round, add I to B

gcd(C mod L1)

L2
L1

sp(B U {L1})



The spanning procedure

gcd(C mod L1)

L1

L2

gcd(C mod (L1, L2))



The spanning procedure

L3

L2

gcd(C mod (L1, L2))

gcd(C mod L1)

L1
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The spanning procedure

 Progress not possible!
 We only have partial matchings mod I

 I = <L1, L2, L3>

L3

L2

gcd(C mod (L1, L2))

gcd(C mod L1)

L1



Partial matchings

 We only get partial matchings at end of round
 Carefully, we can deal with this

 Rank bound is: k x (# rounds)

Matched (mod I)

In sp(B U I)



#rounds: Types of matchings

 At beginning of round, we have B
 At end, between two terms we have I-matching

 Type 1: Blue parts have different forms
 Type 2: Blue parts have same forms

I

Ti Tj



Counting Type 1 matchings

 In every round, at least two terms are matched
 If there are more than (k2 log d) type-1 matchings

 Pigeonhole argument says one pair (Ti, Tj) is matched more than 
(log d) times

 Doubling argument (like k=3) implies that this cannot happen

I1

I2

I3

I4



Counting Type 2 matchings

 This deals with pathological case of same forms 
getting matched
 Previous doubling-argument will not work

 That uses a different argument
 There are at most k of these

 Minimality enters the picture.
 Algorithmically, we can detect non-minimality



The rank bound

 Thus, #rounds < (k2 log d) + k
 Rank bound of: k x (k2 log d + k) = O(k3log d).



In conclusion…

 Interesting matching structures in depth 3 identities
 Combinatorial view of algebraic properties

 Can we get poly(k) rank when F = R?
 [Kayal Saraf 2009] get kk

 What about identity testing for depth 3 circuits? 
Nothing is known when k is large
 [DS 2005, KS 2006] use some recursive arguments that get 

k in exponent
 Maybe our techniques can get around this…?



A Saxena-Seshadhri paper
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