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Prologue

Primality: The Problem

Given an integer n, test whether it is prime.

Easy Solution: Divide n by all numbers between 2 and (n − 1).

But we would like to do this in time polynomial in log n.

First asked by Kurt Gödel in a letter to John von Neumann in 1956.
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Prologue

Primality: First Attempts

Ancient Chinese (500 B.C.) and Greek (Eratosthenes, 200 B.C.)
methods.

Lucas proved in 1876 that 2127 − 1 is prime; this would remain the
largest known Mersenne prime for three-quarters of a century. Method
generalizes to n with smooth (n + 1) (Lucas-Lehmer Test 1930s).

Pépin’s Test (1877): specialized for Fermat numbers Fk = 22k
+ 1.

Lucas Test (1891): When (n − 1) is smooth.

Pocklington-Lehmer Test (1914): When we know distinct primes
p1, . . . , pt |(n − 1) such that

∏t
i=1 pt ≥

√
n.
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Pépin’s Test (1877): specialized for Fermat numbers Fk = 22k
+ 1.

Lucas Test (1891): When (n − 1) is smooth.

Pocklington-Lehmer Test (1914): When we know distinct primes
p1, . . . , pt |(n − 1) such that

∏t
i=1 pt ≥

√
n.

Nitin Saxena (CWI, Amsterdam) Derandomization Bonn, May 2007 5 / 41



Prologue

Primality: Randomness Enters

Theorem (Solovay-Strassen, 1977)

An odd number n is prime iff for most a ∈ Zn, a
n−1

2 =
(

a
n

)
.

Jacobi symbol
(

a
n

)
is computable in time O∼(log2 n).

We check the above equation for a random a.

This gives a randomized test that takes time O∼(log2 n).

It errs with probability at most 1
2 .
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Prologue

Primality: Randomness Enters

Theorem (Miller-Rabin, 1980)

An odd number n = 1 + 2s · t (odd t) is prime iff for most a ∈ Zn, the
sequence a2s−1·t , a2s−2·t , . . . , at has either a −1 or all 1’s.

We check the above equation for a random a.

This gives a randomized test that takes time O∼(log2 n).

It errs with probability at most 1
4 .

The most popular primality test!
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Randomness

Randomized Algorithms

These randomized primality tests began a vigorous study of
randomness in computation.

Deterministic Polynomial Time: P is the set of boolean functions
f : {0, 1}∗ → {0, 1} such that f (x) is computable by a Turing
machine in |x |c many steps.

Randomized Polynomial Time: BPP is the set of boolean functions f
such that:

∃g ∈ P, ∃d > 0, ∀x , Pr
r∈{0,1}|x|d [g(x , r) = f (x)] ≥ 2

3
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Randomness

Randomized Algorithms: Examples

BPP contains some very well studied algebraic problems:

1 Primality testing.

2 Identity testing – given an arithmetic circuit C (x1, . . . , xn)
computing a polynomial, test whether it is identically zero.

3 Polynomial factoring over finite fields – given a polynomial
f (x) ∈ Fq[x ], find a nontrivial factor.
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Randomness

Determinism and Randomness: Different?

Can we select the random bits carefully in a randomized algorithm
such that there is no error?

For example, if we assume GRH then the first (2 log2 n) a’s suffice to
test primality of n in Solovay-Strassen and Miller-Rabin tests.

Can we derandomize any randomized polynomial time algorithm?

Is BPP=P? or
“God does not play dice....”??
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Randomness

Determinism and Randomness: Hardness

Enters

In the 1990s it was observed that if there are hard problems
then they can be used to derandomize.

Specifically, Impagliazzo-Wigderson showed in 1997 that BPP=P
if E requires exponential boolean circuits.

E is the set of boolean functions f : {0, 1}∗ → {0, 1} such that f (x)
is computable by a Turing machine in 2c|x | many steps.

A boolean circuit comprises of AND, OR, NOT gates.
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Randomness

Determinism and Randomness: Hardness

Enters

Proof Idea: Suppose f ∈BPP and g is the corresponding boolean
function computable in nc time and using m := nd random bits.

Suppose we have a hard boolean function h ∈ E that cannot be
computed in randomized polynomial time.

Then instead of “feeding” g purely random m bits we can feed
h(y (1)), . . . , h(y (m)). Where y (i)’s are substrings of a string
y ∈ {0, 1}c log n.

We intend to show that these m bits would be random enough since
h is hard.

Thus, computing g(x , h(y (1)) · · · h(y (m))) for all y ∈ {0, 1}c log n and
taking the majority vote would give us a deterministic polynomial
time way to compute f .
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Randomness

Determinism and Randomness: Hardness

Enters

Proof that h(y (1)), . . . , h(y (m)) are pseudorandom:

Suppose h(y (1)), . . . , h(y (m)) are not behaving randomly. Say:

| Pry
[
g(x , h(y (1)) · · · h(y (m))) = f (x)

]
− Prr1,...,rm [g(x , r1 · · · rm) = f (x)] | > 1

n

⇒ |
∑m

i=0

(
Pry ,ri ,...,rm

[
g(x , h(y (1)) · · · h(y (i−1)) · ri · · · rm) = f (x)

]
−

Pry ,ri+1,...,rm

[
g(x , h(y (1)) · · · h(y (i)) · ri+1 · · · rm) = f (x)

])
| > 1

n

Therefore, ∃j such that the prob of g(x , h(y (1)) · · · h(y (j−1)) · rj · · · rm) = f (x)

differs from the prob of g(x , h(y (1)) · · · h(y (j)) · rj+1 · · · rm) = f (x) by more
than 1

nm .

Thus, g and f can be used to predict the value of h(y (j)) which
contradicts the hardness of h.

Nitin Saxena (CWI, Amsterdam) Derandomization Bonn, May 2007 14 / 41
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| Pry
[
g(x , h(y (1)) · · · h(y (m))) = f (x)

]
− Prr1,...,rm [g(x , r1 · · · rm) = f (x)] | > 1

n

⇒ |
∑m

i=0

(
Pry ,ri ,...,rm

[
g(x , h(y (1)) · · · h(y (i−1)) · ri · · · rm) = f (x)

]
−

Pry ,ri+1,...,rm

[
g(x , h(y (1)) · · · h(y (i)) · ri+1 · · · rm) = f (x)

])
| > 1

n

Therefore, ∃j such that the prob of g(x , h(y (1)) · · · h(y (j−1)) · rj · · · rm) = f (x)

differs from the prob of g(x , h(y (1)) · · · h(y (j)) · rj+1 · · · rm) = f (x) by more
than 1

nm .

Thus, g and f can be used to predict the value of h(y (j)) which
contradicts the hardness of h.
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Randomness

Derandomization

We saw heuristic evidence that randomized polynomial time
algorithms can always be made deterministic polynomial time.

But such a general derandomization seems tied up with proving
lower bounds.

How about derandomizing concrete algebraic problems?
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Derandomizing Primality Testing

Outline

1 Prologue

2 Randomness

3 Derandomizing Primality Testing

4 Derandomizing Identity Testing
Depth 3 Circuits: Algorithm I
Depth 3 Circuits: Algorithm II

5 Epilogue
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Derandomizing Primality Testing

Agrawal-Kayal-S (AKS) Test

Theorem (A Generalization of FLT)

If n is a prime then for all a ∈ Zn, (x + a)n = (xn + a) (mod n, x r − 1).

This was the basis of the AKS test proposed in 2002.

It was the first unconditional, deterministic and polynomial time
primality test.
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Derandomizing Primality Testing

AKS Test

1 If n is a prime power, it is composite.

2 Select an r such that ordr (n) > 4 log2 n and work in the ring
R := Zn[x ]/(x r − 1).

3 For each a, 1 ≤ a ≤ ` := d2
√

r log ne, check if (x + a)n = (xn + a).

4 If yes then n is prime else composite.
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Derandomizing Primality Testing

AKS Test: The Proof

Suppose all the congruences hold and p is a prime factor of n.

The group I := 〈n, p (mod r)〉. t := #I ≥ ordr (n) ≥ 4 log2 n.

The group J := 〈(x + 1), . . . , (x + `) (mod p, h(x))〉 where h(x) is an
irreducible factor of x r−1

x−1 modulo p.

#J ≥ 2min{t,`} > 22
√

t log n ≥ n2
√

t .

Proof: Let f (x), g(x) be two different products of (x + a)’s, having
degree < t. Suppose f (x) = g(x) (mod p, h(x)).

The test tells us that f (xni ·pj
) = g(xni ·pj

) (mod p, h(x)).

But this means that f (z)− g(z) has atleast t roots in the field
Fp[x ]/(h(x)), which is a contradiction.
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Derandomizing Primality Testing

AKS Test: The Proof

The Two Groups

Group I := 〈n, p (mod r)〉 is of size t > 4 log2 n.

Group J := 〈(x + 1), . . . , (x + `) (mod p, h(x))〉 is of size > n2
√

t .

There exist tuples (i , j) 6= (i ′, j ′) such that 0 ≤ i , j , i ′, j ′ ≤
√

t and
ni · pj ≡ ni ′ · pj ′ (mod r).

The test tells us that for all f (x) ∈ J, f (x)n
i ·pj

= f (xni ·pj
) and

f (x)n
i′ ·pj′

= f (xni′ ·pj′
).

Thus, for all f (x) ∈ J, f (x)n
i ·pj

= f (x)n
i′ ·pj′

.

As J is a cyclic group: ni · pj ≡ ni ′ · pj ′ (mod #J).

As #J is large, ni · pj = ni ′ · pj ′ . Hence, n = p a prime.
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Derandomizing Primality Testing

AKS Test: Time Complexity

Recall that r is the least number such that ordr (n) > 4 log2 n.

Prime number theorem gives r = O(log5 n) and the algorithm takes
time O∼(log10.5 n).

Lenstra and Pomerance (2003) further reduced the time complexity
to O∼(log6 n).
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Derandomizing Identity Testing

Outline

1 Prologue

2 Randomness

3 Derandomizing Primality Testing

4 Derandomizing Identity Testing
Depth 3 Circuits: Algorithm I
Depth 3 Circuits: Algorithm II

5 Epilogue
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Derandomizing Identity Testing

Identities

High School algebra teaches us lots of useful algebraic identities.

For example,
x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx).

Lebesgue identity:

(a2 + b2 + c2 + d2)2 = (a2 + b2 − c2 − d2)2 + (2ac + 2bd)2+

(2ad − 2bc)2
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(2ad − 2bc)2
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Derandomizing Identity Testing

Identities

Identity communicated by Euler in a letter to Goldbach
on April 15, 1750:
(a2

1 + a2
2 + a2

3 + a2
4)(b

2
1 + b2

2 + b2
3 + b2

4) =

(a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b3)

2 +

(a1b3 − a2b4 + a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 + a4b1)

2

All these can be checked by expansion.
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Derandomizing Identity Testing

Formalizing Identity Testing

We can assume that our polynomial expression is given in the form of
an arithmetic circuit C over a field F:

C(x , y)

+

∗ ∗ ∗

+ +
x y

x y x y

−
1

−
1

Identity testing is the problem of checking whether a given circuit is
zero or not.
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Derandomizing Identity Testing

Identity Testing is Important

Identity testing is instrumental in many complexity theory results:

Graph matching is in RNC (Lovasz ’79).

PSPACE=IP (Shamir ’90).

NEXP=MIP (Babai-Fortnow-Lund ’90).

Even AKS Primality test is based on checking whether
(x + 1)n − (xn + 1) = 0 (mod n) (Agrawal-Kayal-S ’02).
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Derandomizing Identity Testing

A Randomized Solution

(Schwartz ’80, Zippel ’79) gave a randomized algorithm for identity
testing.

Given an arithmetic circuit C (x1, . . . , xn) ∈ F[x1, . . . , xn]:
I Pick a random tuple (α1, . . . , αn) ∈ Fn.
I Return YES iff C (α1, . . . , αn) = 0.

Clearly, this can be done in time polynomial in the size of C .
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Derandomizing Identity Testing

The Question

Big question here: Can we do identity testing in deterministic polynomial
time?
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Derandomizing Identity Testing

Consequences of Derandomization

(Impagliazzo-Kabanets ’03) showed that a derandomized identity test
would imply circuit lower bounds for permanent.

Thus, a derandomization of identity testing would both:
I provide evidence that randomization in algorithms is dispensable, and
I give lower bounds.
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Derandomizing Identity Testing

Progress

Some progress has been made for restricted circuits.

Noncommutative formulas: (Raz-Shpilka ’04) gave a deterministic
polynomial time identity test.

Circuits of depth 3 with bounded top fanin: (Kayal-S ’06) gave a
deterministic polynomial time identity test.

Circuits of depth 3 with bounded many distinct linear forms in each
multiplication gate: (S ’07) gives a deterministic polynomial time
identity test.
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm I

Outline

1 Prologue

2 Randomness

3 Derandomizing Primality Testing

4 Derandomizing Identity Testing
Depth 3 Circuits: Algorithm I
Depth 3 Circuits: Algorithm II

5 Epilogue
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm I

Depth 3 Circuits: The Setting

For identity testing, it is sufficient to consider a
“sum of product of linear functions” (ΣΠΣ circuit).

C

+

∗

+ +

∗

+ +
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm I

The Idea of Chinese Remaindering

Let C be: C(x1, . . . , xn) = T1 + · · ·+ Tk

where Ti = Li ,1 · · · Li ,d product of d linear functions.

Pick powers pe1
1 , . . . , pe`

` of coprime linear functions p1, . . . , p` such
that,

1 every pei

i divides some Tj .
2 e1 + · · ·+ e` ≥ d .

C = 0 iff for all i ∈ [`], C = 0 (mod pei
i ).

We transform pi 7→ x1 by applying an invertible map τ on x1, . . . , xn .
Then C = 0 (mod pei

i ) iff

C(τ(x1), . . . , τ(xn)) = 0 over F[x1]/(xei
1 ).

Note that C(τ(x1), . . . , τ(xn)) modulo xei
1 has fanin atmost (k − 1).

Thus, we recursively solve identity testing over “bigger” rings.
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm I

Time Complexity

Note that in each recursive call:
1 Fanin k reduces by atleast 1
2 Dimension of the base ring increases atmost d times.

The computations that we do are on rings of dimension atmost dk .

Identity testing for depth 3 circuits over n variables, total degree d
and top fanin k can be done in time poly(dk , n).
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm II

Outline

1 Prologue

2 Randomness

3 Derandomizing Primality Testing

4 Derandomizing Identity Testing
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm II

Idea for Diagonal Circuits

Suppose the depth 3 circuit is a sum of powers of linear functions:

C(x1, . . . , xn) = `d
1 + · · ·+ `d

k

The idea is to transform it into:∑k
i=1(bi ,1,0+bi ,1,1x1+· · ·+bi ,1,dxd

1 ) · · · (bi ,n,0+bi ,n,1xn+· · ·+bi ,n,dxd
n )

The above circuit can be viewed as a noncommutative circuit (i.e.
x1, . . . , xn do not commutate).

Thus, we can use the known results to identity test C.

As a by-product we also get exponential lower bounds for permanent
and determinant.
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Thus, we can use the known results to identity test C.

As a by-product we also get exponential lower bounds for permanent
and determinant.
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm II

Idea for Diagonal Circuits: The

Transformation

We will present the circuit transformation over a field F of zero
characteristic.

Let C(x1, . . . , xn) =
∑k

i=1(ai ,1x1 + · · ·+ ai ,nxn)
d . Recall

exp(x) = 1 + x + x2

2! + · · ·
⇒ (d!)−1 · C(x1, . . . , xn) =
coefficient of zd in

∑k
i=1 exp ((a1,1x1 + · · ·+ a1,nxn)z).

= coefficient of zd in
∑k

i=1 exp(ai ,1x1z) · · · exp(ai ,nxnz).

= coefficient of zd in
∑k

i=1

∏n
v=1

(
1 + ai ,vxvz + · · ·+ ad

i,vxd
v zd

d!

)
.

=
∑k

i=1

∑dn+1
j=1 z−dj ·∏n

v=1

(
1 + ai ,vxvz j + · · ·+ ad

i,vxd
v zdj

d!

)
(mod zdn+1 − 1).
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm II

Idea for Diagonal Circuits: Generalized

We transformed a diagonal circuit C(x1, . . . , xn) =
∑

i∈[k] `
d
i to a

noncommutative circuit over the ring F[z ]/(zdn+1 − 1).

This transformation on the multiplication gates generalizes:

Theorem [S ’07]

Let C(x1, . . . , xn) =
∑k

i=1 `
ei,1

i ,1 · · · `
ei,c

i ,c where `i ,1, . . . , `i ,c are linear
functions and say (e1,1 + · · ·+ e1,c) =: d which is the total degree of the
polynomial C(x1, . . . , xn). Then identity testing of C can be done in time
poly((e1,1 + 1) · · · (e1,c + 1), k, n).

This immediately gives a poly(2d , k, n) time identity test for general
depth 3 circuits.
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Derandomizing Identity Testing Depth 3 Circuits: Algorithm II

Idea for Diagonal Circuits proves Lower

Bounds

(Nisan ’91) had proved exponential lower bounds on the size of
noncommutative circuits computing determinant or permanent.

Thus, we get that:

[S ’07]

If C(x1, . . . , xn2) =
∑k

i=1 `
ei,1

i ,1 · · · `
ei,c

i ,c of degree d is computing the
determinant or permanent of an n × n matrix then:

1 either c = Ω
(

n
log d

)
.

2 or k = 2Ω(n).
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Epilogue

Epilogue

Derandomization can be done under hardness assumptions.

Derandomization (of identity testing) will prove some hardness results.

For concrete algebraic problems derandomization may be done if we
understand the underlying structure well enough.

Identity testing and polynomial factoring are waiting to be
derandomized!
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