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O Let Xs = [xj,j]1<i j<s be an s X s matrix of distinct variables x; ;. Let
Symg :={nm | m:{1,...,8} — {1,..., s} such that r is bijective }. Define

S
dets = det(Xs) = Z sgn(n)-l_[x,-‘,r(,-) .
i=1

meSymyg

O VBP: The class VBP is defined as the set of all sequences of polynomials (fy)n
with polynomially-bounded determinantal-complexity de(fp).

QO Relates tightly to Algebraic Branching Programs ABP, or IMM: Iterated Matrix
Multiplication.
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‘Hard’ polynomials?

Q Hard polynomial family (f;), such that it cannot be computed by a poly(n)-size
determinant? i.c. size(fy) = n®(1)2

U A random polynomial with 0-1 coefficient is hard [Hrubes-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

U Candidate hard polynomial:

s
perm(Xs) = Z l_lx,-’,,(,-).

meSymg i=1

O The minimum dimension of the matrix Xs to compute f, is called the
permanental complexity pc(f).
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Valiant’s Conjecture— VNP

VNP = “explicit” (but ‘“hard to compute”?)
The class VNP is defined as the set of all sequences of polynomials
(fa(X1, - - .. Xn))n>1 such that pc(fp) is polynomially-bounded.

0 VBP C VP C VNP.

Valiant’s Conjecture
VBP # VNP & VP # VNP.

Equivalently, dc(perm,,) and size(perm,,) are both n«(1).
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Border complexity

O Let I" be any sensible measure. Eg. it can be size, dc and so on.
Q For I, we can define the border complexity measure T via:

T'(h) is the smallest s such that h can be approximated arbitrarily closely by
polynomials hz with I'(h) < s. In other words,

lim hge = h (least-coefficient wrt €) .
e—0

1,2 2

E.g. limz_0 (sz+s‘ z x1) = limz_ (322+22x1) = 7°xq .

O This motivates a new model: ‘approximative circuit’.
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F(e) = {% | p,q € Fle],q(e) # O} is the fn.field
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O Suppose, we assume the following:

> g(x,e) € F[xq,...,Xn, €], i.e. it is a polynomial of the form

M
g(x.8) = > Gilxt,....xn) &,
i=0

> How easy is gg in comparison to g?
O Obvious attempt:

> Since, g(x,0) = go, why not just set £ = 0?! Setting & = 0 may not be
‘valid’ as it could be using 1/¢ in the wire. Though it is well-defined!

O Bottomline: gg is non-trivially ‘approximated’ by the circuit, since
lims—09(x, &) = go-
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Algebraic Approximation [Biirgisser 2004]
A polynomial h € F[x] has approximative complexity s, if there is a circuit
g € Fle][x], of sizeg(,) = s, and an error polynomial S(x, &) € F[e][x] such that

g(x,e) = h(x)+e-S(x,¢e) .

Informally we write, limg,_,09 = h.

Q If g has circuit of size s over F(&), then the degree of € in g is at most
exponential, 252 [Lehmkuhl, Lickteig 1989] [Biirgisser 2004, erratum-2020].
[Bezout’s degree theorem in Zariski topology.]

O Let us assume that g(x, &) = Zil\io gie', where M = 25°. Note: 9o = h.
> Pick M + 1 many values from F randomly and interpolate &;
Q size(h) < size(h) < exp(size(h)).

Q Curious e.g.: Complexity of degree-s factor of a size-s polynomial?

[Bhargav-Dwivedi-S. STOC 24] introduces presentable border.
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Depth-3 circuits

U Depth-3 circuits with top fan-in k, are denoted as xlkls,

U They compute polynomials (not necessarily homogeneous) of the form
Z;‘ﬂ H;L Cjj, where ¢j; are linear polynomials (i.e. ag + &1xq + ... + anXp, for
aj € F).

O How powerful are *[2IIS circuits? Are they universal?

QO Impossibility result: The Inner Product polynomial (X, y) := Xqy1 + Xo¥o + X3)/3
cannot be written as a [2ITIT circuit, regardless of the product fan-in (even
allowing exp(n) product fan-in!).

Q How about T[2IT1X ?
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Power of border depth-3 circuits

Q Recall: h € ZIKITIX of size s if there exists a polynomial g such that
g(x,e) = h(x)+e&-S(x,¢),
where g can be computed by a >KITIE circuit, over F(e), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, P € Z[2ITIX , where the first
product has fanin exp(n, d) and the second is merely constant !
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Proof.
1. Let WR(P) =: m. That is, there are linear forms ¢; such that
m
P = Z f;j [m can be as large as exp(n,d)] .
i=1
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Proof.
1. Let WR(P) =: m. That is, there are linear forms ¢; such that
m
P = Z f;j [m can be as large as exp(n,d)] .
i=1
2. Consider A(x) := [—[Ifz1 1+ t’;j) = Hd 1(@j + ), for a; € C. Note that

A(x) = 1+ P+ B where deg(B) > 2d .
3. Replace x; by € - x; to get that

m d
[1] [+ -6) = 1+&7-P+&*-Rix,e) .

=1 Ji=

4. Divide by &9 and rearrange to get

d
I—[(aj+a~f,~) e xl2lplmdly
1=

:ls

P+e? R(x,e) = —e 9+

—_

i
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De-bordering S[2IITY circuits

Q If h is approximated by a 21T circuit with product fanin poly(n), what’s the
exact complexity of h?

Border of poly-size depth-3 top-fanin-2 circuits are ’easy’ [Dutta-Dwivedi-S.
FOCS’21].

>[2ITT1Z ¢ VBP, for polynomial-sized =[21TTZ-circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Grand Idea: Reduce to k = 1, by hook-or-crook !
Q Ty +To =f(x)+e-S(x,¢&), where T; € IIX € F(g)[x]. Assume deg(f) =d.
O Apply a map ®, defined by ® : x; — z - xj + @;, where @; € F are random.
> The variable z is the “degree counter”,
> q; ensures “unit” : If £ | T;, then ®(€)|,—g = €(aq,...,an) € F(e)*.
Q There’s no loss if we study ®(f) mod z4*'. [Truncation by degree.]

O We devise a technique called DiDIL - Divide, Derive, Induct with Limit.
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Q valz(-) denotes the highest power of z dividing it (= least one across
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Q limg 091 =limg_0 0zO(T1/T2) = limg_,0 0, D(f/T2).
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Q First target: compute limg_,o g1 = limgo_,9 9;®(f/To) .
Q Logarithmic derivative: dlog,(h) := dz(h)/h.
U dlog linearizes product: dlog(hyho) = dlog(hq) +dlog(hs). Note:

070(T1/Tp) = ®(T1/Tp) - dlogd(T1/T2)
O(T1/Tp) - (dlog(@(T4)) — dlog(®(T>))) .

O Both ©(T4) and ®(T») have I1Z circuits (they have z and &).
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g1 = 0:0(T1/Tp) = ®(T1/Tp) - (dlogd(T4) — dlog®(T>))
= MX/TX - (dlog(I1X) — dlog(I1X))

ns/1s - (Z dIog(E)) :

U Here, X signifies just a linear polynomial ¢ (in z, X and unit mod z).
QO Recall: limg_,g g1 = limg_q 9;®(f/To).
U deg(f) =d = deg,(®(f)) =d = deg,(0d2(D(f))) =d - 1.

Q Suffices to compute g4 mod z? and take the limit!
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O What is dlog(¢)? Note, £ =: A—z - B, where A € F(g)*, B € F(e)[x].
8
A(1-z-B/A)
B T (z-BY
x (%)
€ XAX. [Magic trick]

dlog(A - zB) =

Q Thus,
. d_ | ) d
F!anO g1 mod z° = Flli)no nx/mn= ( E dIog(Z)) mod z

= lim (/%) (SA %) mod P
E—

e (IZ/IIT) - (ZAZ) mod 29 .
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Q C-DcC-D. Therefore,

(TIZ/IE)-(ZAS) Cc (/) -SAS
(ABP/ABP) - ABP
ABP/ABP .

N

Q Integrate g4 (i.e. interpolate 9;®(Ty/To) wrt z), eliminate division, to get
D(f)/(limg_0 ®(T2)) = ABP = ®(f) = ABP = f = ABP.

Q Note: Definite integration requires setting z = 0 in ®(7T1/T») + 1; that’s why we
need power-series in Z.
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Looking for finer separations

O Can we show an exponential gap between Z[21TIZ and VBP?

O Ambitious goal: Can we separate Z[KITIE and Zk+11TIX ?

O Note: This (impossibility) is already known in the classical setting!
O Xq - Y1 +...+ Xke1 - Yke1 cannot be computed by sIKIIE circuits!
O Catch: But, X1 - Y1 + ...+ Xke1 - Ykt € sRIo®y |

O What lower bound works (if at all!)?
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Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIK*1ITIE circuit of size O(n);

but, f requires 22" size SIKITIY circuits.

QO Fix k = 2. Define the polynomial Py(X) = X1 ---Xg + Xg41 - Xog +
Xod+1 * - X3g , a degree-d polynomial on n = 3d-variables.

U Py has trivial fanin-3 depth-3 circuit (and hence in border too!).
O We will show that Py requires 22(d) gize 21T circuits.

U Kumar’s proof establishes that Py has a 20(d) size $[2IT1S circuits, showing
optimality!

Q Classical is about impossibility. While, border is about optimality.
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O Three cases to consider:
> Case I: Tq and T each has one linear polynomial ¢; € F(&)[x] as a factor,
whose e-free term is a linear form. Example: £ = (1 + €)Xy + &xo,

> Case II (intermediate): T1 has one homogeneous factor (say ¢1) and e-free
part of all factors in T» are non-homogeneous (in X). Non-homogeneous
example: (1 + &) +é&xq.

> Case III (all-non-homogeneous): Each T; has all the linear polynomial
factors whose e-free part is non-homogeneous.

Q For the first case, take 7 := ({1, {o,&) (= 1 ¢ I') and show that
X{ -+ Xg + Xgu1 - -Xog + Xogei - X3zg = Pg mod I #0,
while circuit Ty + To —&S =0 mod 7.

Q For the second case, take 7 := ({4, &). Then, circuit T{ + To —&eS mod I €
TIZ = 112, while Py mod I ¢ II3.

O So, all-non-homogeneous case is all that remains ...
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DiDIL trick: for all-non-homogeneous k = 2

Q Py(x)+e-S(x,&) =Ty + Tp, where T; € [IZ € F(¢)[x] have
all-non-homogeneous linear factors.
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DiDIL trick: for all-non-homogeneous k = 2

Q Py(x)+e-S(x,&) =Ty + Tp, where T; € [IZ € F(¢)[x] have
all-non-homogeneous linear factors.

Q Use DIiDIL with the (degree counter) map @ : X +— zX.

U DiDIL shows:

8, |29Py/ lim ®(T)| = lim g7 & (MZ/MZ)- (ZAY).
£— £—

U Use the least-monomial, in z, to show that Py € £5 A X.

O Next, partial-derivative measure, in X, implies s > 2Q(d)
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Concluding remarks

O Also, ROABP core gives us many PIT results (see our two papers).
Q Can we show ZIKITIE € ZIX (resp. VF)?
Q Border of the sum of two products of univariate matrices (i.e. Z[2JROABP )?

Q Is the border of VP explicit; i.e. in VNP? [Bhargav-Dwivedi-S. STOC’24]

Are degree-s factors of a size-s polynomial explicit?

Thank you! Questions?
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