Demystifying the border of algebraic models

Joint works with Pranjal Dutta \& Prateek Dwivedi. [CCC'21, FOCS'21, FOCS'22]

Nitin Saxena
CSE, IIT Kanpur

March, 2024
TIFR, Mumbai

Table of Contents

1. Basic Definitions and Terminologies
2. Border Depth-3 Circuits
3. Proving Upper Bounds
4. Proving Lower Bounds
5. Conclusion

Basic Definitions and Terminologies

Algebraic circuits- VP

Algebraic circuits- VP

Algebraic circuits- VP

Algebraic circuits- VP

The determinant polynomial- VBP

The determinant polynomial- VBP

\square Let $X_{s}=\left[x_{i, j}\right]_{1 \leq i, j \leq s}$ be an $s \times s$ matrix of distinct variables $x_{i, j}$. Let $\operatorname{Sym}_{s}:=\{\pi \mid \pi:\{1, \ldots, s\} \longrightarrow\{1, \ldots, s\}$ such that π is bijective $\}$. Define

$$
\operatorname{det}_{s}:=\operatorname{det}\left(X_{s}\right)=\sum_{\pi \in \operatorname{Sym}_{s}} \operatorname{sgn}(\pi) \cdot \prod_{i=1}^{s} x_{i, \pi(i)} .
$$

The determinant polynomial- VBP

Let $X_{s}=\left[x_{i, j}\right]_{1 \leq i, j \leq s}$ be an $s \times s$ matrix of distinct variables $X_{i, j}$. Let Sym $_{s}:=\{\pi \mid \pi:\{1, \ldots, s\} \longrightarrow\{1, \ldots, s\}$ such that π is bijective $\}$. Define

$$
\operatorname{det}_{s}:=\operatorname{det}\left(X_{s}\right)=\sum_{\pi \in \operatorname{Sym}_{s}} \operatorname{sgn}(\pi) \cdot \prod_{i=1}^{s} x_{i, \pi(i)} .
$$

VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially-bounded determinantal-complexity $\operatorname{dc}\left(f_{n}\right)$.

The determinant polynomial- VBP

\square Let $X_{s}=\left[x_{i, j}\right]_{1 \leq i, j \leq s}$ be an $s \times s$ matrix of distinct variables $x_{i, j}$. Let $\operatorname{Sym}_{s}:=\{\pi \mid \pi:\{1, \ldots, s\} \longrightarrow\{1, \ldots, s\}$ such that π is bijective $\}$. Define

$$
\operatorname{det}_{s}:=\operatorname{det}\left(X_{S}\right)=\sum_{\pi \in \operatorname{Sym}_{s}} \operatorname{sgn}(\pi) \cdot \prod_{i=1}^{s} x_{i, \pi(i)} .
$$

\square VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially-bounded determinantal-complexity $\mathrm{dc}\left(f_{n}\right)$.
\square Relates tightly to Algebraic Branching Programs ABP, or IMM: Iterated Matrix Multiplication.

'Hard' polynomials?

- Hard polynomial family $\left(f_{n}\right)_{n}$ such that it cannot be computed by a $\operatorname{poly}(n)$-size determinant? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?

'Hard' polynomials?

- Hard polynomial family $\left(f_{n}\right)_{n}$ such that it cannot be computed by a poly (n)-size determinant? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?

A A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11].

'Hard' polynomials?

- Hard polynomial family $\left(f_{n}\right)_{n}$ such that it cannot be computed by a poly (n)-size determinant? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?

A A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

'Hard' polynomials?

- Hard polynomial family $\left(f_{n}\right)_{n}$ such that it cannot be computed by a $\operatorname{poly}(n)$-size determinant? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?

A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{s}\right)=\sum_{\pi \in \operatorname{Sym}_{s}} \prod_{i=1}^{s} x_{i, \pi(i)}
$$

‘Hard' polynomials?

- Hard polynomial family $\left(f_{n}\right)_{n}$ such that it cannot be computed by a $\operatorname{poly}(n)$-size determinant? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?

A A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{s}\right)=\sum_{\pi \in \operatorname{Sym}_{s}} \prod_{i=1}^{s} x_{i, \pi(i)}
$$

\square The minimum dimension of the matrix X_{s} to compute f, is called the permanental complexity $\mathrm{pc}(f)$.

Valiant's Conjecture- VNP

VNP = "explicit" (but "hard to compute"?) [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials
$\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is polynomially-bounded.

Valiant's Conjecture- VNP

VNP = "explicit" (but "hard to compute"?) [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials
$\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is polynomially-bounded.

- $\mathrm{VBP} \subseteq \mathrm{VP} \subseteq \mathrm{VNP}$.

Valiant's Conjecture- VNP

VNP = "explicit" (but "hard to compute"?) [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials
$\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is polynomially-bounded.

- $\mathrm{VBP} \subseteq \mathrm{VP} \subseteq \mathrm{VNP}$.

Valiant's Conjecture [Valiant 1979]

VBP \neq VNP \& VP \neq VNP.
Equivalently, dc $\left(\right.$ perm $\left._{n}\right)$ and size $\left(\right.$ perm $\left._{n}\right)$ are both $n^{\omega(1)}$.

Border complexity

Let Γ be any sensible measure. Eg. it can be size, dc and so on.

Border complexity

\square Let Γ be any sensible measure. Eg. it can be size, dc and so on.

- For Γ, we can define the border complexity measure $\bar{\Gamma}$ via:
$\bar{\Gamma}(h)$ is the smallest s such that h can be approximated arbitrarily closely by polynomials h_{ε} with $\Gamma\left(h_{\varepsilon}\right) \leq s$.

Border complexity

\square Let Γ be any sensible measure. Eg. it can be size, dc and so on.
For Γ, we can define the border complexity measure $\bar{\Gamma}$ via:
$\bar{\Gamma}(h)$ is the smallest s such that h can be approximated arbitrarily closely by polynomials h_{ε} with $\Gamma\left(h_{\varepsilon}\right) \leq s$. In other words,

$$
\lim _{\varepsilon \rightarrow 0} h_{\varepsilon}=h(\text { least-coefficient wrt } \varepsilon) .
$$

Border complexity

\square Let Γ be any sensible measure. Eg. it can be size, dc and so on.
For Γ, we can define the border complexity measure $\bar{\Gamma}$ via:
$\bar{\Gamma}(h)$ is the smallest s such that h can be approximated arbitrarily closely by polynomials h_{ε} with $\Gamma\left(h_{\varepsilon}\right) \leq s$. In other words,

$$
\lim _{\varepsilon \rightarrow 0} h_{\varepsilon}=h(\text { least-coefficient wrt } \varepsilon)
$$

E.g. $\lim _{\varepsilon \rightarrow 0}\left(\varepsilon z+\varepsilon^{-1} z^{2} x_{1}\right)=\lim _{\varepsilon \rightarrow 0}\left(\varepsilon^{2} z+z^{2} x_{1}\right)=z^{2} x_{1}$.

Border complexity

\square Let Γ be any sensible measure. Eg. it can be size, dc and so on.
For Γ, we can define the border complexity measure $\bar{\Gamma}$ via:
$\bar{\Gamma}(h)$ is the smallest s such that h can be approximated arbitrarily closely by polynomials h_{ε} with $\Gamma\left(h_{\varepsilon}\right) \leq s$. In other words,

$$
\lim _{\varepsilon \rightarrow 0} h_{\varepsilon}=h(\text { least-coefficient wrt } \varepsilon)
$$

E.g. $\lim _{\varepsilon \rightarrow 0}\left(\varepsilon z+\varepsilon^{-1} z^{2} x_{1}\right)=\lim _{\varepsilon \rightarrow 0}\left(\varepsilon^{2} z+z^{2} x_{1}\right)=z^{2} x_{1}$.
\square This motivates a new model: 'approximative circuit'.

Approximative circuits

Algebraic approximation

- Suppose, we assume the following:
$>g(\boldsymbol{x}, \varepsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \varepsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \varepsilon^{i},
$$

Algebraic approximation

Suppose, we assume the following:
$>g(\boldsymbol{x}, \varepsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \varepsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \varepsilon^{i}
$$

$>$ How easy is g_{0} in comparison to g ?

Algebraic approximation

Suppose, we assume the following:
$>g(\boldsymbol{x}, \varepsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \varepsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \varepsilon^{i}
$$

$>$ How easy is g_{0} in comparison to g ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\varepsilon=0$?!

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \varepsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \varepsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \varepsilon^{i}
$$

$>$ How easy is g_{0} in comparison to g ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\varepsilon=0$?! Setting $\varepsilon=0$ may not be 'valid' as it could be using $1 / \varepsilon$ in the wire. Though it is well-defined!

Algebraic approximation

- Suppose, we assume the following:
$>g(\boldsymbol{x}, \varepsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \varepsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \varepsilon^{i}
$$

$>$ How easy is g_{0} in comparison to g ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\varepsilon=0$?! Setting $\varepsilon=0$ may not be 'valid' as it could be using $1 / \varepsilon$ in the wire. Though it is well-defined!

Bottomline: g_{0} is non-trivially 'approximated' by the circuit, since $\lim _{\varepsilon \rightarrow 0} g(\boldsymbol{x}, \varepsilon)=g_{0}$.

Algebraic approximation- $\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.

Algebraic approximation- $\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.

If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, $2^{s^{2}}$ [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].

Algebraic approximation- $\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.
\square If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, $2^{s^{2}}$ [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020]. [Bezout's degree theorem in Zariski topology.]

Algebraic approximation $-\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.
\square If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, $2^{s^{2}}$ [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].
[Bezout's degree theorem in Zariski topology.]
Let us assume that $g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i} \varepsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.

Algebraic approximation $-\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.
\square If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, $2^{s^{2}}$ [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].
[Bezout's degree theorem in Zariski topology.]
Let us assume that $g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i} \varepsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many values from \mathbb{F} randomly and interpolate ε;

Algebraic approximation $-\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.
\square If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, $2^{s^{2}}$ [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].
[Bezout's degree theorem in Zariski topology.]
Let us assume that $g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i} \varepsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many values from \mathbb{F} randomly and interpolate ε;
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

Algebraic approximation $-\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.

If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, $2^{s^{2}}$ [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].
[Bezout's degree theorem in Zariski topology.]
Let us assume that $g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i} \varepsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many values from \mathbb{F} randomly and interpolate ε;
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.
Curious e.g.: Complexity of degree-s factor of a size-s polynomial?

Algebraic approximation $-\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$, of $\operatorname{size}_{\mathbb{F}}(\varepsilon)=s$, and an error polynomial $S(\boldsymbol{x}, \varepsilon) \in \mathbb{F}[\varepsilon][\boldsymbol{x}]$ such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

Informally we write, $\lim _{\varepsilon \rightarrow 0} g=h$.
\square If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, $2^{s^{2}}$ [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].
[Bezout's degree theorem in Zariski topology.]
Let us assume that $g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i} \varepsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many values from \mathbb{F} randomly and interpolate ε;

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

Curious e.g.: Complexity of degree-s factor of a size-s polynomial? [Bhargav-Dwivedi-S. STOC'24] introduces presentable border.

Border Depth-3 Circuits

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
- How powerful are $\Sigma^{[2]} \Pi \Sigma$ circuits? Are they universal?

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.

How powerful are $\Sigma^{[2]} \Pi \Sigma$ circuits? Are they universal?
\square Impossibility result: The Inner Product polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$ cannot be written as a $\Sigma^{[2]} \Pi \Sigma$ circuit,

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
- How powerful are $\Sigma^{[2]} \Pi \Sigma$ circuits? Are they universal?
\square Impossibility result: The Inner Product polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$ cannot be written as a $\Sigma^{[2]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp (n)$ product fan-in!).

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
- How powerful are $\Sigma^{[2]} \Pi \Sigma$ circuits? Are they universal?
\square Impossibility result: The Inner Product polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$ cannot be written as a $\Sigma^{[2]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp (n)$ product fan-in!).
\square How about $\overline{\Sigma^{[2]} \Pi \Sigma}$?

Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon),
$$

Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon),
$$

where g can be computed by a $\Sigma^{[k]} \Pi \Sigma$ circuit, over $\mathbb{F}(\varepsilon)$, of size s.

Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)
$$

where g can be computed by a $\Sigma^{[k]} \Pi \Sigma$ circuit, over $\mathbb{F}(\varepsilon)$, of size s.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, $P \in \overline{\Sigma^{[2]} \Pi \Sigma}$,

Power of border depth-3 circuits

- Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

$$
g(\boldsymbol{x}, \varepsilon)=h(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon),
$$

where g can be computed by a $\Sigma^{[k]} \Pi \Sigma$ circuit, over $\mathbb{F}(\varepsilon)$, of size s.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, $P \in \overline{\Sigma^{[2]} \Pi \Sigma}$, where the first product has fanin $\exp (n, d)$ and the second is merely constant !

Proof of Kumar's result

Proof.

\Perp skip proof

1. Let $\mathrm{WR}(P)=: m$. That is, there are linear forms ℓ_{i} such that

Proof of Kumar's result

Proof.

\Perp skip proof

1. Let $\mathrm{WR}(P)=: m$. That is, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

Proof of Kumar's result

Proof.

\mapsto skip proof

1. Let $\mathrm{WR}(P)=: m$. That is, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$.

Proof of Kumar's result

Proof.

ゆ skip proof

1. Let $\mathrm{WR}(P)=: m$. That is, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

Proof of Kumar's result

Proof.

ゆ skip proof

1. Let $\mathrm{WR}(P)=: m$. That is, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace x_{i} by $\varepsilon \cdot x_{i}$ to get that

Proof of Kumar's result

Proof.

\mapsto skip proof

1. Let $\mathrm{WR}(P)=: m$. That is, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace x_{i} by $\varepsilon \cdot x_{i}$ to get that

$$
\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\varepsilon \cdot \ell_{i}\right)=1+\varepsilon^{d} \cdot P+\varepsilon^{2 d} \cdot R(\boldsymbol{x}, \varepsilon)
$$

Proof of Kumar's result

Proof.

* skip proof

1. Let $\mathrm{WR}(P)=: m$. That is, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace x_{i} by $\varepsilon \cdot x_{i}$ to get that

$$
\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\varepsilon \cdot \ell_{i}\right)=1+\varepsilon^{d} \cdot P+\varepsilon^{2 d} \cdot R(\boldsymbol{x}, \varepsilon)
$$

4. Divide by ε^{d} and rearrange to get

$$
P+\varepsilon^{d} \cdot R(\boldsymbol{x}, \varepsilon)=-\varepsilon^{-d}+\varepsilon^{-d} \cdot \prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\varepsilon \cdot \ell_{i}\right) \in \Sigma^{[2]} \Pi^{[m d]} \Sigma
$$

Proving Upper Bounds

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

- If h is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin poly (n), what's the exact complexity of h ?

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If h is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin $\operatorname{poly}(n)$, what's the exact complexity of h ?

Border of poly-size depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-S. FOCS'21].
$\overline{\Sigma^{[2]} \Pi \Sigma} \subseteq$ VBP, for polynomial-sized $\overline{\Sigma^{[2]} \Pi \Sigma}$-circuits.

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If h is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin $\operatorname{poly}(n)$, what's the exact complexity of h ?

Border of poly-size depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-S. FOCS'21].

$\overline{\Sigma^{[2]} \Pi \Sigma} \subseteq$ VBP, for polynomial-sized $\overline{\Sigma^{[2]} \Pi \Sigma}$-circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the "degree counter",

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the "degree counter",
$>\alpha_{i}$ ensures "unit" : If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\varepsilon)^{*}$.

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the "degree counter",
$>\alpha_{i}$ ensures "unit" : If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\varepsilon)^{*}$.
There's no loss if we study $\Phi(f) \bmod z^{d+1}$.

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the "degree counter",
$>\alpha_{i}$ ensures "unit" : If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\varepsilon)^{*}$.

- There's no loss if we study $\Phi(f) \bmod z^{d+1}$. [Truncation by degree.]

Proof sketch for $k=2$

Grand Idea: Reduce to $k=1$, by hook-or-crook !
$\square T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=d$.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the "degree counter",
$>\alpha_{i}$ ensures "unit": If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\varepsilon)^{*}$.

- There's no loss if we study $\Phi(f) \bmod z^{d+1}$. [Truncation by degree.]
- We devise a technique called DiDIL - Divide, Derive, Induct with Limit.

$k=2$ proof continued: Divide and Derive

val $\mathrm{van}_{z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h=\varepsilon z+\varepsilon^{-1} z^{2} x_{1}=(\varepsilon z) \cdot\left(1+\varepsilon^{-2} z x_{1}\right)$. Then, $\operatorname{val}_{z}(h)=1$.

$k=2$ proof continued: Divide and Derive

val $\mathrm{van}_{z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h=\varepsilon z+\varepsilon^{-1} z^{2} x_{1}=(\varepsilon z) \cdot\left(1+\varepsilon^{-2} z x_{1}\right)$. Then, $\operatorname{val}_{z}(h)=1$.
\square Analysis trivia: $\operatorname{val}_{z}(h)=0$ makes $\mathbf{1} / h$ a power-series in $\mathbb{F}(\varepsilon, \boldsymbol{x})[[z]]$.

$k=2$ proof continued: Divide and Derive

val ${ }_{z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h=\varepsilon z+\varepsilon^{-1} z^{2} x_{1}=(\varepsilon z) \cdot\left(1+\varepsilon^{-2} z x_{1}\right)$. Then, $\operatorname{val}_{z}(h)=1$.
\square Analysis trivia: $\operatorname{val}_{z}(h)=0$ makes $\mathbf{1} / h$ a power-series in $\mathbb{F}(\varepsilon, \boldsymbol{x})[[z]]$.
$\square \operatorname{Wlog}_{\operatorname{val}}^{z}\left(\Phi\left(T_{2}\right)\right) \leq \operatorname{val}_{z}\left(\Phi\left(T_{1}\right)\right)$, else we can rearrange.

$k=2$ proof continued: Divide and Derive

val ${ }_{z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h=\varepsilon z+\varepsilon^{-1} z^{2} x_{1}=(\varepsilon z) \cdot\left(1+\varepsilon^{-2} z x_{1}\right)$. Then, $\operatorname{val}_{z}(h)=1$.
\square Analysis trivia: $\operatorname{val}_{z}(h)=0$ makes $\mathbf{1} / h$ a power-series in $\mathbb{F}(\varepsilon, \boldsymbol{x})[[z]]$.
$\square \operatorname{Wlog}_{\operatorname{val}}^{z}\left(\Phi\left(T_{2}\right)\right) \leq \operatorname{val}_{z}\left(\Phi\left(T_{1}\right)\right)$, else we can rearrange.
Divide both sides by $\Phi\left(T_{2}\right)$ and take partial derivative with respect to z, to get:

$k=2$ proof continued: Divide and Derive

$\square \mathrm{val}_{z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h=\varepsilon z+\varepsilon^{-1} z^{2} x_{1}=(\varepsilon z) \cdot\left(1+\varepsilon^{-2} z x_{1}\right)$. Then, $\operatorname{val}_{z}(h)=1$.
\square Analysis trivia: $\operatorname{val}_{z}(h)=0$ makes $\mathbf{1} / h$ a power-series in $\mathbb{F}(\varepsilon, \boldsymbol{x})[[z]]$.
Wlog $\operatorname{val}_{z}\left(\Phi\left(T_{2}\right)\right) \leq \operatorname{val}_{z}\left(\Phi\left(T_{1}\right)\right)$, else we can rearrange.
Divide both sides by $\Phi\left(T_{2}\right)$ and take partial derivative with respect to z, to get:

$$
\begin{align*}
\Phi(f)+\varepsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \Phi\left(f / T_{2}\right)+\varepsilon \cdot \Phi\left(S / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right)+1 \\
\Longrightarrow \partial_{z} \Phi\left(f / T_{2}\right)+\varepsilon \cdot \partial_{z} \Phi\left(S / T_{2}\right) & =\partial_{z} \Phi\left(T_{1} / T_{2}\right)=: g_{1} \tag{1}
\end{align*}
$$

$k=2$ proof continued: Divide and Derive

$\square \mathrm{val}_{z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h=\varepsilon z+\varepsilon^{-1} z^{2} x_{1}=(\varepsilon z) \cdot\left(1+\varepsilon^{-2} z x_{1}\right)$. Then, $\operatorname{val}_{z}(h)=1$.
\square Analysis trivia: $\operatorname{val}_{z}(h)=0$ makes $\mathbf{1} / h$ a power-series in $\mathbb{F}(\varepsilon, \boldsymbol{x})[[z]]$.
Wlog $\operatorname{val}_{z}\left(\Phi\left(T_{2}\right)\right) \leq \operatorname{val}_{z}\left(\Phi\left(T_{1}\right)\right)$, else we can rearrange.
Divide both sides by $\Phi\left(T_{2}\right)$ and take partial derivative with respect to z, to get:

$$
\begin{align*}
\Phi(f)+\varepsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \Phi\left(f / T_{2}\right)+\varepsilon \cdot \Phi\left(S / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right)+1 \\
\Longrightarrow \partial_{z} \Phi\left(f / T_{2}\right)+\varepsilon \cdot \partial_{z} \Phi\left(S / T_{2}\right) & =\partial_{z} \Phi\left(T_{1} / T_{2}\right)=: g_{1} \tag{1}
\end{align*}
$$

$\square \lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(T_{1} / T_{2}\right)=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.

$k=2$ proof continued

[First target: compute $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.

$k=2$ proof continued

- First target: compute $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.
\square Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.

$k=2$ proof continued

- First target: compute $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.
\square Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$.

$k=2$ proof continued

\square First target: compute $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.
\square Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z} \Phi\left(T_{1} / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right) \cdot \operatorname{dlog} \Phi\left(T_{1} / T_{2}\right) \\
& =\Phi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\Phi\left(T_{2}\right)\right)\right)
\end{aligned}
$$

$k=2$ proof continued

First target: compute $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.
\square Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z} \Phi\left(T_{1} / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right) \cdot \operatorname{dlog} \Phi\left(T_{1} / T_{2}\right) \\
& =\Phi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog}\left(\Phi\left(T_{1}\right)\right)-\operatorname{dlog}\left(\Phi\left(T_{2}\right)\right)\right)
\end{aligned}
$$

\square Both $\Phi\left(T_{1}\right)$ and $\Phi\left(T_{2}\right)$ have $\Pi \Sigma$ circuits (they have z and ε).

$k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z} \Phi\left(T_{1} / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog} \Phi\left(T_{1}\right)-\operatorname{dlog} \Phi\left(T_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right)
\end{aligned}
$$

$k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z} \Phi\left(T_{1} / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog} \Phi\left(T_{1}\right)-\operatorname{dlog} \Phi\left(T_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

\square Here, Σ signifies just a linear polynomial $\ell($ in z, \mathbf{x} and unit $\bmod z)$.

$k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z} \Phi\left(T_{1} / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog} \Phi\left(T_{1}\right)-\operatorname{dlog} \Phi\left(T_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

\square Here, Σ signifies just a linear polynomial $\ell($ in z, \mathbf{x} and unit $\bmod z)$.
\square Recall: $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.

$k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z} \Phi\left(T_{1} / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog} \Phi\left(T_{1}\right)-\operatorname{dlog} \Phi\left(T_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

\square Here, Σ signifies just a linear polynomial $\ell($ in z, \mathbf{x} and unit $\bmod z)$.
\square Recall: $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.
$\square \operatorname{deg}(f)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}(\Phi(f))\right)=d-1$.

$k=2$ proof continued

$$
\begin{aligned}
g_{1}=\partial_{z} \Phi\left(T_{1} / T_{2}\right) & =\Phi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog} \Phi\left(T_{1}\right)-\operatorname{dlog} \Phi\left(T_{2}\right)\right) \\
& =\Pi \Sigma / \Pi \Sigma \cdot(\operatorname{dlog}(\Pi \Sigma)-\operatorname{dlog}(\Pi \Sigma)) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) .
\end{aligned}
$$

\square Here, Σ signifies just a linear polynomial $\ell($ in z, \mathbf{x} and unit $\bmod z)$.
\square Recall: $\lim _{\varepsilon \rightarrow 0} g_{1}=\lim _{\varepsilon \rightarrow 0} \partial_{z} \Phi\left(f / T_{2}\right)$.
$\square \operatorname{deg}(f)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}(\Phi(f))\right)=d-1$.

- Suffices to compute $g_{1} \bmod z^{d}$ and take the limit!

$k=2$ proof: dlog strikes!

- What is $\operatorname{dlog}(\ell)$?

$k=2$ proof: dlog strikes!

\square What is $\operatorname{dlog}(\ell)$? Note, $\ell=: A-z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^{*}, B \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$.

$k=2$ proof: dlog strikes!

\square What is $\operatorname{dlog}(\ell)$? Note, $\ell=: A-z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^{*}, B \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$.

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =-\frac{B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j}
\end{aligned}
$$

$\in \Sigma \wedge \Sigma$. [Magic trick]

$k=2$ proof: dlog strikes!

\square What is $\operatorname{dlog}(\ell)$? Note, $\ell=: A-z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^{*}, B \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$.

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =-\frac{B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j}
\end{aligned}
$$

$\in \Sigma \wedge \Sigma$. [Magic trick]

- Thus,

$k=2$ proof: dlog strikes!

\square What is $\operatorname{dlog}(\ell)$? Note, $\ell=: A-z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^{*}, B \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$.

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =-\frac{B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j}
\end{aligned}
$$

$\in \Sigma \wedge \Sigma$. [Magic trick]

- Thus,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} g_{1} \bmod z^{d} & \equiv \lim _{\varepsilon \rightarrow 0} \Pi \Sigma / \Pi \Sigma \cdot\left(\sum \mathrm{d} \log (\Sigma)\right) \bmod z^{d} \\
& \equiv \lim _{\varepsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma) \bmod z^{d} \\
& \in \frac{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)}{\bmod z^{d}}
\end{aligned}
$$

Finishing the proof- Induct and Limit

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \bar{D}$. Therefore,

Finishing the proof- Induct and Limit

$\square \overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

Finishing the proof- Induct and Limit

- $\bar{C} \cdot \mathcal{D} \subseteq \bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

\square Integrate g_{1} (i.e. interpolate $\partial_{z} \Phi\left(T_{1} / T_{2}\right)$ wrt z), eliminate division, to get $\Phi(f) /\left(\lim _{\varepsilon \rightarrow 0} \Phi\left(T_{2}\right)\right)=\mathrm{ABP} \Longrightarrow \Phi(f)=\mathrm{ABP} \Longrightarrow f=\mathrm{ABP}$.

Finishing the proof- Induct and Limit

$\square \overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

\square Integrate g_{1} (i.e. interpolate $\partial_{z} \Phi\left(T_{1} / T_{2}\right)$ wrt z), eliminate division, to get $\Phi(f) /\left(\lim _{\varepsilon \rightarrow 0} \Phi\left(T_{2}\right)\right)=\mathrm{ABP} \Longrightarrow \Phi(f)=\mathrm{ABP} \Longrightarrow f=\mathrm{ABP}$.

Note: Definite integration requires setting $z=0$ in $\Phi\left(T_{1} / T_{2}\right)+1$; that's why we need power-series in z.

Proving Lower Bounds

Looking for finer separations

\rightarrow skip the section

Looking for finer separations

$\xrightarrow{ } \rightarrow$ skip the section

- Can we show an exponential gap between $\overline{\Sigma^{[2]} \Pi \Sigma}$ and VBP?

Looking for finer separations

\mapsto skip the section
\square Can we show an exponential gap between $\overline{\Sigma^{[2]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?

Looking for finer separations

\mapsto skip the section
Can we show an exponential gap between $\overline{\Sigma^{[2]} \Pi \Sigma}$ and VBP?
. Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Note: This (impossibility) is already known in the classical setting!

Looking for finer separations

\rightarrow skip the section
\square Can we show an exponential gap between $\overline{\Sigma^{[2]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Note: This (impossibility) is already known in the classical setting!
$x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

Looking for finer separations

\mapsto skip the section
Can we show an exponential gap between $\overline{\Sigma^{[2]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Note: This (impossibility) is already known in the classical setting!
$x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
Catch: But, $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]} \Pi^{O(k)} \Sigma}$!

Looking for finer separations

\mapsto skip the section
\square Can we show an exponential gap between $\overline{\Sigma^{[2]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Note: This (impossibility) is already known in the classical setting!
$x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
Catch: But, $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]} \Pi^{O(k)} \Sigma}$!

- What lower bound works (if at all!)?

Our results

[Dutta-S. FOCS'22]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\Sigma^{[k+1]} \Pi \Sigma$ circuit of size $O(n)$;

Our results

[Dutta-S. FOCS'22]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\Sigma^{[k+1]} \Pi \Sigma$ circuit of size $O(n)$; but, f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

Our results

[Dutta-S. FOCS'22]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\Sigma^{[k+1]} \Pi \Sigma$ circuit of size $O(n)$; but, f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
\square Fix $k=2$. Define the polynomial $P_{d}(\mathbf{x}):=x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+$ $x_{2 d+1} \cdots x_{3 d}$, a degree- d polynomial on $n=3 d$-variables.

Our results

[Dutta-S. FOCS'22]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\Sigma^{[k+1]} \Pi \Sigma$ circuit of size $O(n)$; but, f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

- Fix $k=2$. Define the polynomial $P_{d}(\mathbf{x}):=x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+$ $x_{2 d+1} \cdots x_{3 d}$, a degree- d polynomial on $n=3 d$-variables.
- P_{d} has trivial fanin-3 depth-3 circuit (and hence in border too!).

Our results

[Dutta-S. FOCS'22]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\Sigma^{[k+1]} \Pi \Sigma$ circuit of size $O(n)$; but, f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

- Fix $k=2$. Define the polynomial $P_{d}(\mathbf{x}):=x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+$ $x_{2 d+1} \cdots x_{3 d}$, a degree- d polynomial on $n=3 d$-variables.
- P_{d} has trivial fanin-3 depth-3 circuit (and hence in border too!).
\square We will show that P_{d} requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.

Our results

[Dutta-S. FOCS'22]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\Sigma^{[k+1]} \Pi \Sigma$ circuit of size $O(n)$; but, f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

- Fix $k=2$. Define the polynomial $P_{d}(\mathbf{x}):=x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+$ $x_{2 d+1} \cdots x_{3 d}$, a degree- d polynomial on $n=3 d$-variables.
- P_{d} has trivial fanin-3 depth-3 circuit (and hence in border too!).
\square We will show that P_{d} requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.
Kumar's proof establishes that P_{d} has a $2^{O(d)}-$ size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits, showing optimality!

Our results

[Dutta-S. FOCS'22]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\Sigma^{[k+1]} \Pi \Sigma$ circuit of size $O(n)$; but, f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
\square Fix $k=2$. Define the polynomial $P_{d}(\mathbf{x}):=x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+$ $x_{2 d+1} \cdots x_{3 d}$, a degree- d polynomial on $n=3 d$-variables.

- P_{d} has trivial fanin-3 depth-3 circuit (and hence in border too!).
\square We will show that P_{d} requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.
Kumar's proof establishes that P_{d} has a $2^{O(d)}-$ size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits, showing optimality!

Classical is about impossibility. While, border is about optimality.

Proof Idea in $k=2$: Non-homogeneity is all we need to care

- Three cases to consider:
$>\underline{\text { Case I: }} T_{1}$ and T_{2} each has one linear polynomial $\ell_{i} \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ as a factor, whose ε-free term is a linear form. Example: $\ell=(1+\varepsilon) x_{1}+\varepsilon x_{2}$,

Proof Idea in $k=2$: Non-homogeneity is all we need to care

- Three cases to consider:
$>\underline{\text { Case I: }} T_{1}$ and T_{2} each has one linear polynomial $\ell_{i} \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ as a factor, whose ε-free term is a linear form. Example: $\ell=(1+\varepsilon) x_{1}+\varepsilon x_{2}$,
$>$ Case II (intermediate): T_{1} has one homogeneous factor (say ℓ_{1}) and ε-free part of all factors in T_{2} are non-homogeneous (in \boldsymbol{x}). Non-homogeneous example: $(1+\varepsilon)+\varepsilon X_{1}$.

Proof Idea in $k=2$: Non-homogeneity is all we need to care

- Three cases to consider:
$>\underline{\text { Case I: }} T_{1}$ and T_{2} each has one linear polynomial $\ell_{i} \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ as a factor, whose ε-free term is a linear form. Example: $\ell=(1+\varepsilon) x_{1}+\varepsilon x_{2}$,
$>$ Case II (intermediate): T_{1} has one homogeneous factor (say ℓ_{1}) and ε-free part of all factors in T_{2} are non-homogeneous (in \boldsymbol{x}). Non-homogeneous example: $(1+\varepsilon)+\varepsilon x_{1}$.
$>$ Case III (all-non-homogeneous): Each T_{i} has all the linear polynomial factors whose ε-free part is non-homogeneous.

Proof Idea in $k=2$: Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: T_{1} and T_{2} each has one linear polynomial $\ell_{i} \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ as a factor, whose ε-free term is a linear form. Example: $\ell=(1+\varepsilon) x_{1}+\varepsilon x_{2}$,
$>$ Case II (intermediate): T_{1} has one homogeneous factor (say ℓ_{1}) and ε-free part of all factors in T_{2} are non-homogeneous (in \boldsymbol{x}). Non-homogeneous example: $(1+\varepsilon)+\varepsilon X_{1}$.
$>$ Case III (all-non-homogeneous): Each T_{i} has all the linear polynomial factors whose ε-free part is non-homogeneous.
\square For the first case, take $I:=\left\langle\ell_{1}, \ell_{2}, \varepsilon\right\rangle(\Rightarrow 1 \notin \mathcal{I})$ and show that $x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+x_{2 d+1} \cdots x_{3 d}=P_{d} \bmod I \neq 0$, while circuit $T_{1}+T_{2}-\varepsilon S \equiv 0 \bmod I$.

Proof Idea in $k=2$: Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: T_{1} and T_{2} each has one linear polynomial $\ell_{i} \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ as a factor, whose ε-free term is a linear form. Example: $\ell=(1+\varepsilon) x_{1}+\varepsilon x_{2}$,
$>$ Case II (intermediate): T_{1} has one homogeneous factor (say ℓ_{1}) and ε-free part of all factors in T_{2} are non-homogeneous (in \boldsymbol{x}). Non-homogeneous example: $(1+\varepsilon)+\varepsilon x_{1}$.
$>$ Case III (all-non-homogeneous): Each T_{i} has all the linear polynomial factors whose ε-free part is non-homogeneous.
\square For the first case, take $I:=\left\langle\ell_{1}, \ell_{2}, \varepsilon\right\rangle(\Rightarrow 1 \notin \mathcal{I})$ and show that $x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+x_{2 d+1} \cdots x_{3 d}=P_{d} \bmod I \neq 0$, while circuit $T_{1}+T_{2}-\varepsilon S \equiv 0 \bmod I$.
\square For the second case, take $I:=\left\langle\ell_{1}, \varepsilon\right\rangle$. Then, circuit $T_{1}+T_{2}-\varepsilon S \bmod I \in$ $\overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.

Proof Idea in $k=2$: Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: T_{1} and T_{2} each has one linear polynomial $\ell_{i} \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ as a factor, whose ε-free term is a linear form. Example: $\ell=(1+\varepsilon) x_{1}+\varepsilon x_{2}$,
$>$ Case II (intermediate): T_{1} has one homogeneous factor (say ℓ_{1}) and ε-free part of all factors in T_{2} are non-homogeneous (in \boldsymbol{x}). Non-homogeneous example: $(1+\varepsilon)+\varepsilon x_{1}$.
$>$ Case III (all-non-homogeneous): Each T_{i} has all the linear polynomial factors whose ε-free part is non-homogeneous.
\square For the first case, take $I:=\left\langle\ell_{1}, \ell_{2}, \varepsilon\right\rangle(\Rightarrow 1 \notin I)$ and show that $x_{1} \cdots x_{d}+x_{d+1} \cdots x_{2 d}+x_{2 d+1} \cdots x_{3 d}=P_{d} \bmod I \neq 0$, while circuit $T_{1}+T_{2}-\varepsilon S \equiv 0 \bmod I$.
\square For the second case, take $I:=\left\langle\ell_{1}, \varepsilon\right\rangle$. Then, circuit $T_{1}+T_{2}-\varepsilon S \bmod I \in$ $\overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.

So, all-non-homogeneous case is all that remains ...

DiDIL trick: for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ have all-non-homogeneous linear factors.

DiDIL trick: for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ have all-non-homogeneous linear factors.
\square Use DiDIL with the (degree counter) map Φ : $\boldsymbol{x} \mapsto \boldsymbol{x}$.

DiDIL trick: for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ have all-non-homogeneous linear factors.
\square Use DiDIL with the (degree counter) map $\Phi: \boldsymbol{x} \mapsto \boldsymbol{z x}$.
- DiDIL shows:

$$
\partial_{z}\left(z^{d} P_{d} / \lim _{\varepsilon \rightarrow 0} \Phi\left(T_{2}\right)\right)=\lim _{\varepsilon \rightarrow 0} g_{1} \in \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)}
$$

DiDIL trick: for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ have all-non-homogeneous linear factors.
\square Use DiDIL with the (degree counter) map $\Phi: \boldsymbol{x} \mapsto \boldsymbol{z}$.
- DiDIL shows:

$$
\partial_{z}\left(z^{d} P_{d} / \lim _{\varepsilon \rightarrow 0} \Phi\left(T_{2}\right)\right)=\lim _{\varepsilon \rightarrow 0} g_{1} \in \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)}
$$

- Use the least-monomial, in z, to show that $P_{d} \in \overline{\Sigma^{s} \wedge \Sigma}$.

DiDIL trick: for all-non-homogeneous $k=2$

- $P_{d}(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)=T_{1}+T_{2}$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]$ have all-non-homogeneous linear factors.
\square Use DiDIL with the (degree counter) map $\Phi: \boldsymbol{x} \mapsto \boldsymbol{z}$.
- DiDIL shows:

$$
\partial_{z}\left(z^{d} P_{d} / \lim _{\varepsilon \rightarrow 0} \Phi\left(T_{2}\right)\right)=\lim _{\varepsilon \rightarrow 0} g_{1} \in \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)}
$$

- Use the least-monomial, in z, to show that $P_{d} \in \overline{\Sigma^{s} \wedge \Sigma}$.

Next, partial-derivative measure, in \mathbf{x}, implies $s \geq 2^{\Omega(d)}$!

Conclusion

Concluding remarks

Also, ROABP core gives us many PIT results (see our two papers).

Concluding remarks

- Also, ROABP core gives us many PIT results (see our two papers).
- Can we show $\overline{\Sigma^{[k]} \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$ (resp. VF)?

Concluding remarks

\square Also, ROABP core gives us many PIT results (see our two papers).
\square Can we show $\overline{\Sigma^{[k]} \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$ (resp. VF)?
Border of the sum of two products of univariate matrices (i.e. $\overline{\Sigma^{[2]} \mathrm{ROABP}}$)?

Concluding remarks

\square Also, ROABP core gives us many PIT results (see our two papers).
\square Can we show $\overline{\Sigma^{[k]} \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$ (resp. VF)?
Border of the sum of two products of univariate matrices (i.e. $\overline{\Sigma^{[2]} \mathrm{ROABP}}$)?
Is the border of VP explicit; i.e. in VNP? [Bhargav-Dwivedi-S. STOC'24]

Concluding remarks

\square Also, ROABP core gives us many PIT results (see our two papers).
\square Can we show $\overline{\Sigma^{[k]} \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$ (resp. VF)?
Border of the sum of two products of univariate matrices (i.e. $\overline{\Sigma^{[2]} \mathrm{ROABP}}$)?
Is the border of VP explicit; i.e. in VNP? [Bhargav-Dwivedi-S. STOC'24]
Are degree-s factors of a size-s polynomial explicit?

Concluding remarks

\square Also, ROABP core gives us many PIT results (see our two papers).
Can we show $\overline{\Sigma^{[k]} \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$ (resp. VF)?
Border of the sum of two products of univariate matrices (i.e. $\overline{\Sigma^{[2]} \mathrm{ROABP}}$)?
Is the border of VP explicit; i.e. in VNP? [Bhargav-Dwivedi-S. STOC'24]
Are degree-s factors of a size-s polynomial explicit?

Thank you! Questions?

