
Bootstrapping variables in circuits

Nitin Saxena (CSE@IIT Kanpur, India)

(Joint work with Manindra Agrawal & Sumanta Ghosh, STOC'18)

2018, Université Paris Diderot 



Bootstrapping Variables 2

Contents

Polynomial identity testing

Hardness/ de-randomness & a conjecture

Partial Hsg

Perfect Bootstrapping 

Shallow Bootstrapping 

Constant Bootstrapping

Conclusion



Bootstrapping Variables 3

Polynomial identity testing
Given an arithmetic circuit C(x1 ,..., xn) of size s, whether it is zero?

In poly(s) many bit operations?
Think of field F = finite field, rationals, numberfield, or localfield. 

Brute-force expansion is as expensive as ss.

Randomization gives a practical solution.
Evaluate C(x1 ,..., xn) at a random point in Fn. 
(Ore 1922), (DeMillo & Lipton 1978), (Zippel 1979), (Schwartz 1980).

This test is blackbox, i.e. one does not need to see C.
Whitebox PIT – where we are allowed to look inside C.

Blackbox PIT is equivalent to designing a hitting-set H ⊂ Fn.
H contains a non-root of each nonzero C(x1 ,..., xn) of size s. 



Bootstrapping Variables 4

Polynomial identity testing
Question of interest: Design hitting-sets for circuits.

Appears in numerous guises in computation.

Complexity results
Interactive protocol (Babai,Lund,Fortnow,Karloff,Nisan,Shamir 1990), 
PCP theorem (Arora,Safra,Lund,Motwani,Sudan,Szegedy 1998), …

Algorithms
Graph matching, matrix completion (Lovász 1979), equivalence of 
branching programs (Blum, et al 1980), interpolation (Clausen, et al 
1991), primality (Agrawal,Kayal,S. 2002), learning (Klivans, Shpilka 
2006), polynomial root testing (Kopparty, Yekhanin 2008), factoring 
(Shpilka, Volkovich 2010 & Kopparty, Saraf, Shpilka 2014), alg.independence test 
(Pandey, S. ,Sinhababu, 2016), approx.root finding (Guo, S. ,Sinhababu, 2018), .…  
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Polynomial identity testing
Hitting-sets relate to circuit lower bounds.

It is conjectured that VP≠VNP. (Valiant's Hypothesis 1979)

Or, permanent is harder than determinant?

“proving permanent hardness” flips to “designing hitting-sets”.
 Almost, (Heintz,Schnorr 1980), (Kabanets,Impagliazzo 2004), 
(Agrawal 2005 2006), (Dvir,Shpilka,Yehudayoff 2009), (Koiran 2011) ...

Designing an efficient algorithm leads to awesome tools!

Connections to Geometric Complexity Theory and derandomizing 
the Noether's normalization lemma. (Mulmuley 2011, 2012, 2017)
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Hitting-set generator (Hsg)
Functional version of hitting-set H ⊂ Fn for polynomials P:

Consider f(y):= (f
1
(y), ..., f

n
(y) ) whose evaluations contain H.

Call f(y) a (t,d)-hsg for family P if the f
i
(y)'s are time-t 

computable and have degree ≤d. 
By t-hsg or time-t blackbox PIT we mean a (t,t)-hsg.

A poly(s)-degree hsg for size-s circuits can be designed in 
PSPACE.

Hint: the hsg exists and verified via Hilbert's Nullstellensatz. 

(Mulmuley 2012, 2017) What about poly(s)-degree hsg for VP ?  
Designable in PSPACE as well! (Guo, S. ,Sinhababu, 2018)
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A Working Conjecture
Pseudorandomness in boolean circuits:

(Nisan,Wigderson 1994) Optimal prg for P/poly exists iff E-
computable 2Ω(n)-hard function family exists.

Could we prove:
Poly-time hsg for VP exists iff E-computable 2Ω(n)-hard 
polynomial family exists ?

Conjecture-LB: E-computable 2Ω(n)-hard polynomial family 
exists.

This family {f
n
}

n
 has individual-degree (ideg) constant.

Coeff(xe)(f
n
) is 2O(n)-computable.

Implies: Either E⊈#P/poly  OR  VNP is 2Ω(n)-hard. 
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Hsg gives Conjecture-LB-- Annihilator

(Heintz, Schnorr 1980) essentially showed that a poly-time hsg 
implies Conjecture-LB.

Idea: If f(y)= (f
1
(y), ..., f

n
(y) ) is an hsg for size-s degree-s 

circuits P
s
 ,

then consider a nonzero annihilator A(z
1
, ..., z

log s
) such that 

A(f
1
(y), ..., f

log s
(y))=0 .

A is E-computable, by linear algebra.
A is not in P

s
. Thus, A(z

1
, ..., z

m
) is sΩ(1)=2Ω(m)-hard.

Note: 1) A exists with ideg constant.
 
2) The proof only uses the hsg on the first log-variables!
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Conjecture-LB “gives” Hsg-- NW Design
(Kabanets,Impagliazzo 2004) essentially showed that Conjecture-LB 
implies a quasipoly-time hsg.

Idea: Let q
m

 be an E-computable 2Ω(m)-hard polynomial family.

Let P be a nonzero size-s degree-s circuit.
Define ℓ:= c

2
log s > m:= c

1
log s.  

Nisan-Wigderson Design: Stretch the few variables z
1
, ..., z

ℓ
 to 

the s polynomials q
m
(T

1
),..., q

m
(T

s
) , 

where T
i 
's are almost disjoint m-sets.

Suppose P(q
m
(T

1
),..., q

m
(T

s
)) vanishes. Then, by circuit 

factoring (Kaltofen 1989) q
m 

has a small circuit. Contradiction!

We get a poly-time s↦ O(log s) variable reduction for VP.     □
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Partial Hsg
Prior proof ideas suggest that even partial hsg is of interest.

Significantly smaller variate circuits.

Let g
s,m

= (g
s,1

(y), ..., g
s,m

(y) ) be hsg for size-s degree-s 
circuits P

s
 that depend only on first m variables.

If m=s1/c then the partial hsg gives a complete hsg for P
s 
.

Blow up size s ↦ sc .

If m=so(1) then the partial hsg seems weak.
Naively, a size blow up of s ↦ sω(1) .
i.e. super-poly blow up to get a complete hsg.
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Partial Hsg-- Bootstrap question
Bootstrap hsg: For m=so(1) , given a ``small'' g

s,m
 could you 

devise a ``small'' g
s,s

 ?

What about m= loglog s ? 

m= logocs ? m= log★s ?

 m= 6913 ? m= 3 ?

YES! (In this work)

Bootstrapping means that we only need to study extremely 
low-variate circuits.

To prove Conjecture-LB.
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Perfect Bootstrapping
Let's start with a partial hsg for a tiny n= ω(loglog s) .

Let f(y)= (f
1
(y), ..., f

n
(y)) be se-hsg for size-s deg-s n-variate 

circuits P
s,2

 .

Bootstrap in three main steps:

1) Partial hsg to hard polynomial.
Fix m:= c

1
loglog s .

Consider a nonzero annihilator A(z
1
, ..., z

m
) such that 

A(f
1
(y), ..., f

m
(y))=0 . Denote A by q

m,s 
.

q
m,s

 is poly(s)-time computable, by linear algebra.

q
m,s

 is not in P
s,2

. Thus, q
m,s 

is s-hard.

Note- ideg of q
m,s

 is s3e/m, so is non-constant. □
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Perfect Bootstrapping-- Step 2
2) Hard polynomial to Variable reduction.

Define s':= s^c
0
, ℓ:=c

2
loglog s' > m':= c

1
loglog s' and N:= 

2^loglog s' ≈ log s .
Let P be a nonzero size-s degree-s N-variate circuit.
We want to stretch the few variables z

1
, ..., z

ℓ
 to N polynomials 

q
m',s'

(T
1
),..., q

m',s'
(T

N
) , 

where T
i 
's are almost disjoint m'-sets. (NW-design)

Suppose P(q
m',s'

(T
1
),..., q

m',s'
(T

N
)) vanishes. Then, by circuit 

factoring (Kaltofen 1989) q
m',s' 

has a small circuit. Contradiction!

We get a poly-time (log s ↦ O(loglog s)) variable reduction for 
VP.     □
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Perfect Bootstrapping-- Step 3
3) Reusing the partial hsg.

Recall s':= s^c
0
, ℓ:=c

2
loglog s' > m':= c

1
loglog s' and N:= 

2^loglog s' ≈ log s .
Let P be a nonzero size-s degree-s N-variate circuit.
P( q

m',s'
(T

1
),..., q

m',s'
(T

N
) ) ≠ 0 . 

It involves the few variables z
1
, ..., z

ℓ
 .

So, use the se-hsg known for circuits P
s,2

 . □

Repeating this shows: Partial hsg for tiny m= ω(loglog s) 

gives the complete hsg in deterministic poly-time.

Theorem: Partial hsg for m= logocs  yields complete hsg in 
deterministic poly-time.

Any constant c.
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Shallow Bootstrapping
Let's start with a partial hsg for depth-4 with a tiny n≥ 3 .

Let f(y)= (f
1
(y), ..., f

n
(y)) be (poly(sn), O(sn/2/log2s) )-hsg for 

size-s deg-s n-variate depth-4 circuits P
s
 .

Get a partial hsg for multilinear polynomials computed by 
depth-4 with m:= nlog s variables.

Form n blocks of log s variables each.
Apply n disjoint Kronecker maps locally (x

i
↦y2^i). Size grows to 

s2 and nonzeroness preserved.

Let g(y)= (g
1
(y), ..., g

m
(y)) be (poly(sn), O(sn/log2s) )-hsg 

for degree m/2 multilinear polynomials P'
s
 computed by size-s 

m-variate depth-4 circuits.
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Shallow Bootstrapping-- Step 1
Bootstrap in two main steps:

1) Partial hsg to hard polynomial.
Recall: P'

s
 is multilinear, deg m/2 and m=nlog s variate.

Consider a nonzero annihilator A(z
1
, ..., z

m
) such that 

A(g
1
(y), ..., g

m
(y))=0 . Denote A by q

m 
.

q
m
 is poly(s)-time computable, by linear algebra.

q
m
 is not in P'

s
. Thus, q

m 
is s-hard for depth-4.

Note- We can find q
m
 multilinear & deg m/2, as:

#monomials > 2m/√(2m) > O(sn/log2s).m > #constraints.    

By (Agrawal,Vinay 2008), q
m 

is s=2Ω(m/n) -hard for VP. □
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Shallow Bootstrapping-- Step 2
2) Hard polynomial to Variable reduction.

Note- q
m

 is an E-computable 2Ω(m)-hard polynomial family.

As seen before, using NW-design & circuit factoring, we get:

A poly-time s↦ O(log s) variable reduction for VP.     □

After variable reduction, we can trivially design sO(log s)-hsg.  

Theorem: (poly(sn), O(sn/2/log2s) )-hsg for size-s n-variate   
depth-4 circuits yields quasi-hsg for VP.

Any constant n≥3 works!
Trivial is (poly(sn), (s+1)n)-hsg.
ΣΛΣΠ or ΣΠΣΛ circuits suffice.
Poly-hsg for log-variate ΣΠΣ circuits/ width-2-ABP suffices too!
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Constant Bootstrapping
Let m

0 
< f

0
 be constants.

Let g(y)= (g
1
(y), ..., g

m0
(y)) be O(sf0)-hsg for size-s deg-s       

m
0
-variate circuits P

s,0
 .

NW design: (ℓ:=m
0 
, m

0 
/8f

0 
, d:=m

0 
/16f

0
2) and m

1
:= 2^(d

 
/4) .

Bootstrap in three main steps:

1) Partial hsg for P
s,0

 to hard polynomial. 

q
0,s 

is m
0 
/8f

0
 variate.

q
0,s

 is s4f0-time computable, by linear algebra.

q
0,s

 is not in P
s,0

. Thus, q
0,s 

is s-hard.

ideg of q
0,s

 is ≈ s^(8f
0

2/m
0
), so is non-constant. □
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Constant Bootstrapping-- Step 2
2) Hard polynomial to Variable reduction.

Define s':= s^7 and m
1
= 2^(m

0 
/64f

0

2) .

Let P be a nonzero size-s degree-s m
1
-variate circuit.

We want to stretch the few variables z
1
, ..., z

ℓ
 to m

1
 polynomials 

q
0,s'

(T
1
),..., q

0,s'
(T

m1
) , 

where T
i 
's are almost disjoint (m

0 
/8f

0
)-sets. (NW-design)

Suppose P(q
0,s'

(T
1
),..., q

0,s'
(T

m1
)) vanishes. Then, by circuit 

factoring (Kaltofen 1989) q
0,s' 

has size<s' circuit. Contradiction!

We get ≈ s^(f
0
log f

0
) -time (m

1
 ↦ m

0
) variable reduction for 

size-s deg-s m
1
-variate circuits P

s,1
 . □
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Constant Bootstrapping-- Step 3
3) Reusing the partial hsg.

Recall s'= s^7, ℓ=m
0
 and m

1
= 2^(m

0 
/64f

0

2) .

Let P be a nonzero size-s degree-s m
1
-variate circuit.

P( q
0,s'

(T
1
),..., q

0,s'
(T

m1
) ) ≠ 0 . 

It involves the few variables z
1
, ..., z

ℓ
 .

So, use the appropriate O(sf0)-hsg known for circuits P
s,0

 .

Overall, it takes time O(s^(16f
0

2)) .

So, we define f
1
:= 16f

0

2 . □

After i repetitions, we get O(s^f
i
)-hsg for size-s deg-s m

i
-variate 

circuits P
s,i

 .

Thus, hsg for constant-variate circuits can be bootstrapped.   □
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Constant Bootstrapping
For a rapid completion we need m

1
= 2^(m

0 
/64f

0
2) ≫ 

2^(m
0
1-ε) , for a constant ε>0 .

Tetration ensures completion in O(log★s) iterations.

Theorem 1: O(s2)-hsg for m=6913  yields complete hsg in 
deterministic sexp exp( O(log*s) ) -time.

Trivial is O(s6913)-hsg.

Note-- We need m
0
 slightly larger than f

0
2 .

Theorem 2: For constant δ<1/2 , sn^δ -hsg for size-s degree-
s n-variate circuits yields sexp exp( O(log*s) ) -time hsg for size-s 
degree-s circuits.

Trivial is O(sn)-hsg.
Actually, (O(sn), sn^δ)-hsg will suffice!
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At the end …
Powerful bootstrapping of partial hsg for width-2 ABP,     
depth-3, depth-4 and VP models.

Each of these partial hsg imply Conjecture-LB.
Could we connect directly to VP≠?VNP ?

Could we design any of these partial hsg (nontrivially)?

Design (s2^n, sn/2) -hsg for size-s ΣΠΣ(n) ?

Blackbox PIT for O(log★s).log s -variate size-s diagonal 
depth-3 circuits.

(Forbes,Ghosh,S. 2018) solved size-s ΣΛΣ(log s) case.

Thank you!
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