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Motivation

Identities

• High School algebra teaches us lots of useful algebraic
identities.

• For example,
x3 +y3 + z3−3xyz = (x +y + z)(x2 +y2 + z2−xy −yz− zx).

• Lebesgue identity:

(a2 + b2 + c2 + d2)2 = (a2 + b2 − c2 − d2)2 + (2ac + 2bd)2+

(2ad − 2bc)2
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Motivation

Identities

• Identity communicated by Euler in a letter to Goldbach on
April 15, 1750:
(a2

1 + a2
2 + a2

3 + a2
4)(b

2
1 + b2

2 + b2
3 + b2

4) =

(a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b3)

2 +

(a1b3 − a2b4 + a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 + a4b1)

2

• All these can be checked by expansion.

4 / 26



Motivation

Identities

• Identity communicated by Euler in a letter to Goldbach on
April 15, 1750:
(a2

1 + a2
2 + a2

3 + a2
4)(b

2
1 + b2

2 + b2
3 + b2

4) =

(a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b3)

2 +

(a1b3 − a2b4 + a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 + a4b1)

2

• All these can be checked by expansion.

4 / 26



Motivation

Bigger Identities

• Let p be an odd prime number. Then:

p∑
i=1

∏
a1,...,am∈Fp

a1+···+am=i (mod p)

(y + a1x1 + · · ·+ amxm) = 0

• The polynomial on the LHS has degree: pm−1 .

• A naive expansion of the above produces exponentially many
terms.

• Then how do we check the above identity efficiently ?
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Motivation

Randomness Helps

• Evaluate the above polynomial at a random point.

• It can be shown that “with high probability” the polynomial
evaluates to zero iff it is an identity!

• But can this identity testing be done efficiently without using
randomness?
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Motivation

Randomness Helps ??

• There are many problems with nice randomized efficient
algorithms.

• Like, Identity testing, Primality testing, Polynomial
factorization, Quicksort, Min-cut,......

• But there is a belief that randomness in polynomial time
algorithms is always dispensable. In short:

“God does not play dice....”
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Motivation

Randomness Helps ??

• Impagliazzo-Wigderson ’96 showed that if there are “hard”
functions in E then polynomial time randomized algorithms
can be derandomized.

• Primality testing was successfully derandomized by
Agrawal-Kayal-S in 2002.

• After Primality testing, arguably, the next most important
problem waiting to be derandomized is identity testing.
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Identity Testing

Formalizing Identity Testing

• We can assume that our polynomial expression is given in the
form of an Arithmetic circuit C:

C(x , y)

+

∗ ∗ ∗

+ +
x y

x y x y

−
1

−
1

• Identity testing is the problem of checking whether a given
circuit is zero or not.
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Identity Testing

A Randomized Solution

• Schwartz ’80, Zippel ’79 gave a randomized algorithm for
identity testing.

• Given an arithmetic circuit C (x1, . . . , xn) ∈ F[x1, . . . , xn]:
• Pick a random tuple (α1, . . . , αn) ∈ Fn.
• Return YES iff C (α1, . . . , αn) = 0.

• Clearly, this can be done in time polynomial in the size of C .
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Identity Testing

A Randomized Solution

Proof of Correctness:

• If C is a zero circuit then clearly the algorithm returns YES
for any choice of (α1, . . . , αn) ∈ Fn.

• Say, C (x1, . . . , xn) is computing a nonzero polynomial of total
degree d .

• It can be shown that:

Prob(α1,...,αn)∈Fn [C (α1, . . . , αn) = 0] ≤ d

#F

• Thus, for a suitably large F, d
#F ≤

1
2 .

• Thus, with a good chance we will pick a non-root of C .
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Identity Testing

The Question

Big question here: Can we do identity testing in deterministic
polynomial time?
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Identity Testing

Connections

Identity testing is instrumental in many complexity theory results:

• Graph matching problems have efficient randomized parallel
algorithms (Lovasz ’79).

• PSPACE has interactive protocols (Shamir ’90).

• NEXP has two-prover interactive protocols
(Babai-Fortnow-Lund ’90).

• The first deterministic polynomial time Primality test was
based on checking whether (x + 1)n − (xn + 1) = 0 (mod n)
(Agrawal-Kayal-S ’02).
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Identity Testing

Deeper Connections

• (Impagliazzo-Kabanets ’03) showed that a derandomized
identity test would imply circuit lower bounds for NEXP.

• Thus, a derandomization of identity testing would both:
• provide evidence that randomization in algorithms is

dispensable, and
• give circuit lower bounds.
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Constant Depth Circuits

Progress

• Some progress has been made when the input circuit has
bounded many levels.

• Multilinear circuits of depth 3: (Raz-Shpilka ’04) gave a
deterministic polynomial time identity test.

• Circuits of depth 3 with bounded top fanin: (Kayal-S ’06)
gave a deterministic polynomial time identity test.
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Constant Depth Circuits

Depth 3 Circuits: The Setting

• For identity testing, it is sufficient to consider a
“sum of product of linear functions” (ΣΠΣ circuit).

+

∗

+ +

∗

+ +
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Constant Depth Circuits

Depth 3 Circuits: The Setting

• Our input circuit C over a field F will look like:
C(z1, . . . , zn) = T1 + · · ·+ Tk

where Ti is a product of linear functions Li ,1, . . . , Li ,d

where Li ,j = (ai ,j ,0 + ai ,j ,1z1 + · · ·+ ai ,j ,nzn), a’s ∈ F.
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Constant Depth Circuits

The Idea of Chinese Remaindering

• Let C be:
C(x1, . . . , xn) = T1 + · · ·+ Tk

where Ti = Li ,1 · · · Li ,d

• Pick (d + 1) coprime linear functions p1, . . . , pd+1 from the
set {Li ,j | i ∈ [k], j ∈ [d ]}.

• C = 0 iff for all i ∈ [d + 1], C = 0 (mod pi ).

• C ?
= 0 (mod pi ) can be checked recursively because:
• C modulo pi has top fanin atmost (k − 1)

because for some j , Tj = 0 (mod pi ).
• Let τ be an invertible map on x1, . . . , xn sending pi 7→ x1.
• Then C = 0 (mod pi ) iff C(τ(x1), . . . , τ(xn)) = 0 (mod x1).
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• C ?
= 0 (mod pi ) can be checked recursively because:
• C modulo pi has top fanin atmost (k − 1)

because for some j , Tj = 0 (mod pi ).
• Let τ be an invertible map on x1, . . . , xn sending pi 7→ x1.
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Constant Depth Circuits

Chinese Remaindering needs generalization

• There may not always be (d + 1) coprime linear functions in
the set {Li ,j | i ∈ [k], j ∈ [d ]}.

• So we need to pick powers pe1
1 , . . . , pe`

` of coprime linear
functions p1, . . . , p` such that,

1. every pei

i divides some Tj .
2. e1 + · · ·+ e` ≥ d .

• How do we check C ?
= 0 (mod pei

i )?

• We transform pi 7→ x1 by applying an invertible map τ on
x1, . . . , xn . Then C = 0 (mod pei

i ) iff

C(τ(x1), . . . , τ(xn)) = 0 over F[x1]/(xei
1 ).

• Thus, we recursively solve identity testing over “bigger” rings.

Skip details
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Constant Depth Circuits

Identity Test (in more detail)

• Let R be a local subring of F[x1, . . . , xm] with maximal ideal
M.

• Let the input be a ΣΠΣ circuit C(z1, . . . , zn) in R[z1, . . . , zn]:
C = T1 + · · ·+ Tk

where, Ti = Li ,1 · · · Li ,d

• Wlog let T1 produce the lexicographically largest monomial.

• T1 can be factored into coprime polynomials as follows:
T1 = α · p1(z1, . . . , zn) · · · ps(z1, . . . , zn)
where, pi = (`i + mi ,1) · · · (`i + mi ,di

) for some linear form `i

and α, mi ,j ’s are in M.
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Constant Depth Circuits

Identity Test (in more detail)

• C(z1, . . . , zn) = 0 iff

for all i ∈ [s], C = 0 (mod pi )
and

lexicographically largest monomial of C has zero coefficient.

• For a fixed i : transform `i 7→ z1 by an invertible linear
transformation τi on z1, . . . , zn and, thus,
pi 7→ (z1 + mi ,1) · · · (z1 + mi ,di

)

• Then C = 0 (mod pi ) iff

τi (C) = 0 (mod (z1 + mi ,1) · · · (z1 + mi ,di
)).

• This entails checking τi (T2) + · · ·+ τi (Tk) = 0 over the local
ring R[z1]/ ((z1 + mi ,1) · · · (z1 + mi ,di

)).

• Thus, we can recursively check whether C = 0 (mod pi ).
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Constant Depth Circuits

Time Complexity

• Note that in each recursive call:

1. Fanin k reduces by atleast 1
2. Dimension of the base ring increases atmost d times.

• The computations that we do are on rings of dimension
atmost dk .

• Identity testing for depth 3 circuits over n variables, total
degree d and top fanin k can be done in time poly(dk , n).
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Conclusion

In Conclusion

• Depth 3 Identity testing for bounded top fanin is in P.

• Open Problem: Identity testing for general depth 3 circuits ?

• “Easier” Open Problem: Identity testing for a diagonalized
ΣΠΣ circuit, i.e.,

C (x1, . . . , xn) = Ld
1 + · · ·+ Ld

k

where, L1, . . . , Lk are linear functions.

Questions?
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