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L MOTIVATION

IDENTITIES

e High School algebra teaches us lots of useful algebraic
identities.

e For example,
XB4+y3+ 28 -3xyz = (x+y+2)(x*+y? + 22 — xy — yz — 2x).
e Lebesgue identity:

(a2 4 b2 4 2+ d?)? = (2% + b — ¢ — d?)? + (2ac + 2bd)?+
(2ad — 2bc)?
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e |dentity communicated by Euler in a letter to Goldbach on
April 15, 1750:
(a3 + a3 + a3 + a3)(b? + b3 + b + b2) =
(a1hy — agby — azby — agbg)? + (arb + axby + azby — aghs)? +
(a1bs — agbg + azby + agb)? + (arby + azbs — azby + aghy)?
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L MOTIVATION

IDENTITIES

e |dentity communicated by Euler in a letter to Goldbach on
April 15, 1750:
(a3 + 2%+ a3+ a2)(b2 + b3 + b3+ b2) =
(a1hy — agby — azby — agbg)? + (arb + axby + azby — aghs)? +
(a1bs — agbg + azby + agb)? + (arby + azbs — azby + aghy)?

o All these can be checked by expansion.
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i=1
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e The polynomial on the LHS has degree:

o F amXm) =0
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BIGGER IDENTITIES

Let p be an odd prime number. Then:

p

Z H (y+aix1+ -+ amxm) =0

i=1 a1,..,ameF,
ai+-+am=i (mod p)

1

The polynomial on the LHS has degree: p"~

e A naive expansion of the above produces exponentially many
terms.

Then how do we check the above identity efficiently ?
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e Evaluate the above polynomial at a random point.
e It can be shown that “with high probability” the polynomial
evaluates to zero iff it is an identity!

e But can this identity testing be done efficiently without using
randomness?
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RANDOMNESS HELPS 77

e There are many problems with nice randomized efficient
algorithms.

o Like, ldentity testing, Primality testing, Polynomial
factorization, Quicksort, Min-cut,......

e But there is a belief that randomness in polynomial time
algorithms is always dispensable. In short:

“God does not play dice...."
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LI\IOTI\’ATION

RANDOMNESS HELPS 77

e Impagliazzo-Wigderson '96 showed that if there are “hard”
functions in E then polynomial time randomized algorithms
can be derandomized.

e Primality testing was successfully derandomized by
Agrawal-Kayal-S in 2002.

e After Primality testing, arguably, the next most important
problem waiting to be derandomized is identity testing.
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LIDENTITY TESTING

FORMALIZING IDENTITY TESTING

e We can assume that our polynomial expression is given in the
form of an Arithmetic circuit C:

C(x,y)

e |dentity testing is the problem of checking whether a given
circuit is zero or not.
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e Schwartz '80, Zippel '79 gave a randomized algorithm for
identity testing.
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LIDENTITY TESTING

A RANDOMIZED SOLUTION

e Schwartz '80, Zippel '79 gave a randomized algorithm for
identity testing.
e Given an arithmetic circuit C(x1,...,x,) € F[xq, ..., x,]:
e Pick a random tuple (a1, ..., a,) € F".
e Return YES iff C(ay,...,a,) =0.

e Clearly, this can be done in time polynomial in the size of C.
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A RANDOMIZED SOLUTION
Proof of Correctness:

e If C is a zero circuit then clearly the algorithm returns YES
for any choice of (aq,...,a,) € F".
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e If C is a zero circuit then clearly the algorithm returns YES

for any choice of (aq,...,a,) € F".
e Say, C(xi,...,Xp) is computing a nonzero polynomial of total
degree d.
e |t can be shown that:
Probya,... e [C0ns . an) = 0] < -2
e 4T

e Thus, for a suitably large F, #i
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LIDENTITY TESTING

A RANDOMIZED SOLUTION

Proof of Correctness:
e If C is a zero circuit then clearly the algorithm returns YES

for any choice of (aq,...,ap) € F".
e Say, C(x1,...,x,) is computing a nonzero polynomial of total
degree d.

It can be shown that:

d
PrOb(Oq,...,Oén)EF" [C(Odl, . ,an) = 0] S ﬁ

Thus, for a suitably large T, #]F <i

Thus, with a good chance we will plck a non-root of C.
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THE QUESTION

Big question here: Can we do identity testing in deterministic
polynomial time?
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Identity testing is instrumental in many complexity theory results:

e Graph matching problems have efficient randomized parallel
algorithms (Lovasz '79).
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LIDENTITY TESTING

CONNECTIONS

Identity testing is instrumental in many complexity theory results:

e Graph matching problems have efficient randomized parallel
algorithms (Lovasz '79).

e PSPACE has interactive protocols (Shamir '90).

e NEXP has two-prover interactive protocols
(Babai-Fortnow-Lund '90).

e The first deterministic polynomial time Primality test was
based on checking whether (x +1)" — (x" + 1) = 0 (mod n)
(Agrawal-Kayal-S '02).
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identity test would imply circuit lower bounds for NEXP.
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LIDENTITY TESTING

DEEPER CONNECTIONS

¢ (Impagliazzo-Kabanets '03) showed that a derandomized
identity test would imply circuit lower bounds for NEXP.
e Thus, a derandomization of identity testing would both:

e provide evidence that randomization in algorithms is
dispensable, and
e give circuit lower bounds.

5 /26
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OUTLINE

CONSTANT DEPTH CIRCUITS
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bounded many levels.

7/26



L Constant DEPTH CIRCUITS

PROGRESS

e Some progress has been made when the input circuit has
bounded many levels.

e Multilinear circuits of depth 3: (Raz-Shpilka '04) gave a
deterministic polynomial time identity test.

7/ 26



L Constant DEPTH CIRCUITS

PROGRESS

e Some progress has been made when the input circuit has
bounded many levels.

e Multilinear circuits of depth 3: (Raz-Shpilka '04) gave a
deterministic polynomial time identity test.

e Circuits of depth 3 with bounded top fanin: (Kayal-S '06)
gave a deterministic polynomial time identity test.

7/26
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DEPTH 3 CIRCUITS: THE SETTING

e For identity testing, it is sufficient to consider a
“sum of product of linear functions” (XX circuit).
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L Constant DEPTH CIRCUITS

DEPTH 3 CIRCUITS: THE SETTING

e Qur input circuit C over a field F will look like:

C(Zl,...,Zn): T1++ Tk
where T; is a product of linear functions L;1,...,L; 4
where L,"j = (a,'d"o +ajij1z1+---+ a,-d-v,,zn), asel.
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set {L;;|i€[k],je[d]}.
e C=0 iff forallie[d+1], C =0 (mod pj).

20 /26



L Constant DEPTH CIRCUITS

THE IDEA OF CHINESE REMAINDERING

Let C be:

C(Xl,...,X,,): Ti+---+ Tk
where T, = L,‘71---L,'7d

Pick (d + 1) coprime linear functions pi, ..., pg+1 from the
set {Liy | i € [K],j € [d]}.
C=0 iff forallie[d+1], C =0 (mod pj).

cZo (mod p;) can be checked recursively because:

20/26



L Constant DEPTH CIRCUITS

THE IDEA OF CHINESE REMAINDERING

Let C be:

C(Xl,...,X,,): Ti+---+ Tk
where T, = L,‘71---L,'7d

Pick (d + 1) coprime linear functions pi, ..., pg+1 from the
set {L;;|i€[k],je[d]}.
e C=0 iff forallie[d+1], C =0 (mod pj).

o C

[~ 1l

0 (mod p;) can be checked recursively because:
e C modulo p; has top fanin atmost (k — 1)

20/26



L Constant DEPTH CIRCUITS

THE IDEA OF CHINESE REMAINDERING

Let C be:

C(Xl,...,X,,): T1+~'-+Tk
where T, = L,‘71---L,'7d

Pick (d + 1) coprime linear functions pi, ..., pg+1 from the
set {L;;|i€[k],je[d]}.
e C=0 iff forallie[d+1], C =0 (mod pj).

e C

[~ 1l

0 (mod p;) can be checked recursively because:

e C modulo p; has top fanin atmost (k — 1)
because for some j, T; =0 (mod p;).

20/26



L Constant DEPTH CIRCUITS

THE IDEA OF CHINESE REMAINDERING

Let C be:

C(Xl,...,X,,): Ti+---+ Tk
where T, = L,‘71---L,'7d

Pick (d + 1) coprime linear functions pi, ..., pg+1 from the
set {L;;|i€[k],je[d]}.
C=0 iff forallie[d+1], C =0 (mod pj).

cZo (mod p;) can be checked recursively because:
e C modulo p; has top fanin atmost (k — 1)
because for some j, T; =0 (mod p;).
e Let 7 be an invertible map on xi, ..., x, sending p; — xi.

26



L Constant DEPTH CIRCUITS

THE IDEA OF CHINESE REMAINDERING

Let C be:

C(Xl,...,X,,): T1+~'-+Tk
where T, = L,‘71---L,'7d

Pick (d + 1) coprime linear functions pi, ..., pg+1 from the
set {L;;|i€[k],je[d]}.

e C=0 iff forallie[d+1], C =0 (mod pj).

o C

[~ 1l

0 (mod p;) can be checked recursively because:
e C modulo p; has top fanin atmost (k — 1)
because for some j, T; =0 (mod p;).
e Let 7 be an invertible map on xi, ..., x, sending p; — xi.

e Then C =0 (mod p;) iff C(7(x1),...,7(xs)) =0 (mod x1).

20/26



L Constant DEPTH CIRCUITS

CHINESE REMAINDERING NEEDS GENERALIZATION

e There may not always be (d + 1) coprime linear functions in
the set {L;; | i € [k],j € [d]}.
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Ti=a pi(z,....z0) - pel2s. . 22)
where, p; = (¢;i + mj1)---(¢; + m; 4,) for some linear form ¢;
and a, m;;'s are in M.

22/26



L Constant DEPTH CIRCUITS

IDENTITY TEST (IN MORE DETAIL)

e C(z1,...,27) =0 iff

for all i € [s], C =0 (mod p;)
and

lexicographically largest monomial of C has zero coefficient.

o

26



L Constant DEPTH CIRCUITS

IDENTITY TEST (IN MORE DETAIL)

e C(z1,...,27) =0 iff

for all i € [s], C =0 (mod p;)
and

lexicographically largest monomial of C has zero coefficient.

e For a fixed i: transform /; — z; by an invertible linear
transformation 7; on z,..., z,



L Constant DEPTH CIRCUITS

IDENTITY TEST (IN MORE DETAIL)

e C(z1,...,27) =0 iff

for all i € [s], C =0 (mod p;)
and

lexicographically largest monomial of C has zero coefficient.

e For a fixed i: transform /; — z; by an invertible linear
transformation 7; on z,..., z, and, thus,
pi— (z1 +mi1)---(z1 + mjg)



L Constant DEPTH CIRCUITS

IDENTITY TEST (IN MORE DETAIL)

e C(z1,...,27) =0 iff

for all i € [s], C =0 (mod p;)
and

lexicographically largest monomial of C has zero coefficient.

e For a fixed i: transform /; — z; by an invertible linear
transformation 7; on z,..., z, and, thus,
pi— (z1 +mi1)---(z1 + mjg)

e Then C =0 (mod p;) iff

7i(C) =0 (mod (z1 + mj1)---(z1 + mjq,)).



L Constant DEPTH CIRCUITS

IDENTITY TEST (IN MORE DETAIL)

C(z1,...,2z0) =0 iff
forall i € [s], C =0 (mod p;)
and
lexicographically largest monomial of C has zero coefficient.
For a fixed i: transform ¢; — z; by an invertible linear
transformation 7; on z,..., z, and, thus,
pi (z1+mi1)- (21 + migq)
Then C =0 (mod p;) iff

7i(C) =0 (mod (z1 + mj1)---(z1 + mjq,)).

This entails checking 7;(T2) + - - - + 7i( Tx) = 0 over the local
ring Rlzi]/ ((z1 + mi) - - (21 + mig,))-



L Constant DEPTH CIRCUITS

IDENTITY TEST (IN MORE DETAIL)

C(z1,...,2z0) =0 iff
forall i € [s], C =0 (mod p;)
and
lexicographically largest monomial of C has zero coefficient.
For a fixed i: transform ¢; — z; by an invertible linear
transformation 7; on z,..., z, and, thus,
pi (z1+mi1)- (21 + migq)
Then C =0 (mod p;) iff

7i(C) =0 (mod (z1 + mj1)---(z1 + mjq,)).

This entails checking 7;(T2) + - - - + 7i( Tx) = 0 over the local
ring Rlzi]/ ((z1 + mi) - - (21 + mig,))-
Thus, we can recursively check whether C = 0 (mod p;).
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TiME COMPLEXITY

e Note that in each recursive call:

1. Fanin k reduces by atleast 1
2. Dimension of the base ring increases atmost d times.

e The computations that we do are on rings of dimension
atmost d*.

e |dentity testing for depth 3 circuits over n variables, total
degree d and top fanin k can be done in time poly(d*, n).
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IN CONCLUSION

e Depth 3 Identity testing for bounded top fanin is in P.
e Open Problem: Identity testing for general depth 3 circuits ?

e “Easier” Open Problem: Identity testing for a diagonalized
> 13X circuit, i.e.,

Clxt, o oyxn) = L4+ 19
where, L1, ..., L, are linear functions.

QUESTIONS?
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