IDENTITIES AND COMPLEXITY

Nitin Saxena

Centrum voor Wiskunde en Informatica Amsterdam

> NVTI Theory Day 2007 Utrecht

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1/26

OUTLINE

MOTIVATION

Identity Testing

Constant Depth Circuits

Conclusion

IDENTITIES

- High School algebra teaches us lots of useful algebraic identities.
- For example, $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx).$
- Lebesgue identity:

 $(a^{2} + b^{2} + c^{2} + d^{2})^{2} = (a^{2} + b^{2} - c^{2} - d^{2})^{2} + (2ac + 2bd)^{2} + (2ad - 2bc)^{2}$

IDENTITIES

- High School algebra teaches us lots of useful algebraic identities.
- For example,

 $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx).$

• Lebesgue identity:

 $(a^{2} + b^{2} + c^{2} + d^{2})^{2} = (a^{2} + b^{2} - c^{2} - d^{2})^{2} + (2ac + 2bd)^{2} + (2ad - 2bc)^{2}$

IDENTITIES

- High School algebra teaches us lots of useful algebraic identities.
- For example,

 $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx).$

• Lebesgue identity:

$$(a^{2} + b^{2} + c^{2} + d^{2})^{2} = (a^{2} + b^{2} - c^{2} - d^{2})^{2} + (2ac + 2bd)^{2} + (2ad - 2bc)^{2}$$

IDENTITIES

• Identity communicated by Euler in a letter to Goldbach on April 15, 1750: $(a_1^2 + a_2^2 + a_3^2 + a_4^2)(b_1^2 + b_2^2 + b_3^2 + b_4^2) =$

 $(a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)^2 + (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)^2 +$ $(a_1b_3 - a_2b_4 + a_3b_1 + a_4b_2)^2 + (a_1b_4 + a_2b_3 - a_3b_2 + a_4b_1)^2$

• All these can be checked by expansion.

IDENTITIES

 Identity communicated by Euler in a letter to Goldbach on April 15, 1750:
 (x² + x² + x² + x²)(t² + t² + t² + t²) =

$$\begin{aligned} (a_1^2 + a_2^2 + a_3^2 + a_4^2)(b_1^2 + b_2^2 + b_3^2 + b_4^2) &= \\ (a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)^2 &+ (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)^2 + \\ (a_1b_3 - a_2b_4 + a_3b_1 + a_4b_2)^2 &+ (a_1b_4 + a_2b_3 - a_3b_2 + a_4b_1)^2 \end{aligned}$$

• All these can be checked by expansion.

$$\sum_{i=1}^{p} \prod_{\substack{a_1,\ldots,a_m \in \mathbb{F}_p \\ a_1+\cdots+a_m=i \pmod{p}}} (y+a_1x_1+\cdots+a_mx_m) = 0$$

- The polynomial on the LHS has degree: p^{m-1} .
- A naive expansion of the above produces exponentially many terms.
- Then how do we check the above identity efficiently ?

$$\sum_{i=1}^{p} \prod_{\substack{a_1,\ldots,a_m \in \mathbb{F}_p \\ a_1+\cdots+a_m=i \pmod{p}}} (y+a_1x_1+\cdots+a_mx_m) = 0$$

- The polynomial on the LHS has degree: p^{m-1} .
- A naive expansion of the above produces exponentially many terms.
- Then how do we check the above identity efficiently ?

$$\sum_{i=1}^{p} \prod_{\substack{a_1,\ldots,a_m \in \mathbb{F}_p \\ a_1+\cdots+a_m=i \pmod{p}}} (y+a_1x_1+\cdots+a_mx_m) = 0$$

- The polynomial on the LHS has degree: p^{m-1} .
- A naive expansion of the above produces exponentially many terms.
- Then how do we check the above identity efficiently ?

$$\sum_{i=1}^{p} \prod_{\substack{a_1,\ldots,a_m \in \mathbb{F}_p \\ a_1+\cdots+a_m=i \pmod{p}}} (y+a_1x_1+\cdots+a_mx_m) = 0$$

- The polynomial on the LHS has degree: p^{m-1} .
- A naive expansion of the above produces exponentially many terms.
- Then how do we check the above identity efficiently ?

• Evaluate the above polynomial at a random point.

- It can be shown that "with high probability" the polynomial evaluates to zero iff it is an identity!
- But can this identity testing be done efficiently without using randomness?

- Evaluate the above polynomial at a random point.
- It can be shown that "with high probability" the polynomial evaluates to zero iff it is an identity!
- But can this identity testing be done efficiently without using randomness?

- Evaluate the above polynomial at a random point.
- It can be shown that "with high probability" the polynomial evaluates to zero iff it is an identity!
- But can this identity testing be done efficiently without using randomness?

- There are many problems with nice randomized efficient algorithms.
- Like, Identity testing, Primality testing, Polynomial factorization, Quicksort, Min-cut,.....
- But there is a belief that randomness in polynomial time algorithms is always dispensable. In short: "God does not play dice...."

- There are many problems with nice randomized efficient algorithms.
- Like, Identity testing, Primality testing, Polynomial factorization, Quicksort, Min-cut,.....
- But there is a belief that randomness in polynomial time algorithms is always dispensable. In short: "God does not play dice...."

- There are many problems with nice randomized efficient algorithms.
- Like, Identity testing, Primality testing, Polynomial factorization, Quicksort, Min-cut,.....
- But there is a belief that randomness in polynomial time algorithms is always dispensable. In short:

"God does not play dice...."

- There are many problems with nice randomized efficient algorithms.
- Like, Identity testing, Primality testing, Polynomial factorization, Quicksort, Min-cut,.....
- But there is a belief that randomness in polynomial time algorithms is always dispensable. In short:

"God does not play dice...."

- Impagliazzo-Wigderson '96 showed that if there are "hard" functions in E then polynomial time randomized algorithms can be derandomized.
- Primality testing was successfully derandomized by Agrawal-Kayal-S in 2002.
- After Primality testing, arguably, the next most important problem waiting to be derandomized is identity testing.

- Impagliazzo-Wigderson '96 showed that if there are "hard" functions in E then polynomial time randomized algorithms can be derandomized.
- Primality testing was successfully derandomized by Agrawal-Kayal-S in 2002.
- After Primality testing, arguably, the next most important problem waiting to be derandomized is identity testing.

- Impagliazzo-Wigderson '96 showed that if there are "hard" functions in E then polynomial time randomized algorithms can be derandomized.
- Primality testing was successfully derandomized by Agrawal-Kayal-S in 2002.
- After Primality testing, arguably, the next most important problem waiting to be derandomized is identity testing.

LIDENTITY TESTING

OUTLINE

Motivation

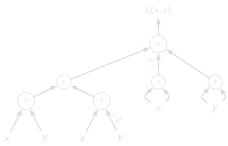
IDENTITY TESTING

Constant Depth Circuits

Conclusion

FORMALIZING IDENTITY TESTING

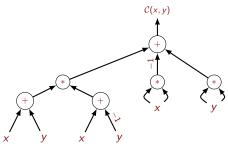
• We can assume that our polynomial expression is given in the form of an Arithmetic circuit C:



• Identity testing is the problem of checking whether a given circuit is zero or not.

FORMALIZING IDENTITY TESTING

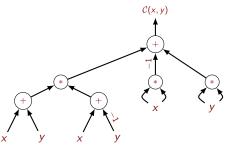
• We can assume that our polynomial expression is given in the form of an Arithmetic circuit C:



• Identity testing is the problem of checking whether a given circuit is zero or not.

FORMALIZING IDENTITY TESTING

• We can assume that our polynomial expression is given in the form of an Arithmetic circuit C:



• Identity testing is the problem of checking whether a given circuit is zero or not.

• Schwartz '80, Zippel '79 gave a randomized algorithm for identity testing.

Given an arithmetic circuit C(x₁,...,x_n) ∈ 𝔼[x₁,...,x_n]:

- Pick a random tuple $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
- Return YES iff $C(\alpha_1, \ldots, \alpha_n) = 0$.

• Clearly, this can be done in time polynomial in the size of C.

- Schwartz '80, Zippel '79 gave a randomized algorithm for identity testing.
- Given an arithmetic circuit $C(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$:
 - Pick a random tuple $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
 - Return YES iff $C(\alpha_1, \ldots, \alpha_n) = 0$.
- Clearly, this can be done in time polynomial in the size of C.

- Schwartz '80, Zippel '79 gave a randomized algorithm for identity testing.
- Given an arithmetic circuit $C(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$:
 - Pick a random tuple $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
 - Return YES iff $C(\alpha_1, \ldots, \alpha_n) = 0$.
- Clearly, this can be done in time polynomial in the size of C.

- Schwartz '80, Zippel '79 gave a randomized algorithm for identity testing.
- Given an arithmetic circuit $C(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$:
 - Pick a random tuple $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
 - Return YES iff $C(\alpha_1, \ldots, \alpha_n) = 0$.

• Clearly, this can be done in time polynomial in the size of C.

- Schwartz '80, Zippel '79 gave a randomized algorithm for identity testing.
- Given an arithmetic circuit $C(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$:
 - Pick a random tuple $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
 - Return YES iff $C(\alpha_1, \ldots, \alpha_n) = 0$.
- Clearly, this can be done in time polynomial in the size of C.

- If C is a zero circuit then clearly the algorithm returns YES for any choice of $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
- Say, $C(x_1, ..., x_n)$ is computing a nonzero polynomial of total degree d.
- It can be shown that:

$$\mathsf{Prob}_{(\alpha_1,\ldots,\alpha_n)\in\mathbb{F}^n}\left[\mathcal{C}(\alpha_1,\ldots,\alpha_n)=0\right]\leq rac{d}{\#\mathbb{F}}$$

- Thus, for a suitably large \mathbb{F} , $\frac{d}{\#\mathbb{F}} \leq \frac{1}{2}$.
- Thus, with a good chance we will pick a non-root of C.

- If C is a zero circuit then clearly the algorithm returns YES for any choice of $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
- Say, C(x₁,..., x_n) is computing a nonzero polynomial of total degree d.
- It can be shown that:

$$\mathsf{Prob}_{(\alpha_1,\ldots,\alpha_n)\in\mathbb{F}^n}\left[C(\alpha_1,\ldots,\alpha_n)=0\right]\leq \frac{d}{\#\mathbb{F}}$$

- Thus, for a suitably large \mathbb{F} , $\frac{d}{\#\mathbb{F}} \leq \frac{1}{2}$.
- Thus, with a good chance we will pick a non-root of *C*.

- If C is a zero circuit then clearly the algorithm returns YES for any choice of (α₁,..., α_n) ∈ Fⁿ.
- Say, C(x₁,..., x_n) is computing a nonzero polynomial of total degree d.
- It can be shown that:

$$\mathsf{Prob}_{(\alpha_1,\ldots,\alpha_n)\in\mathbb{F}^n}\left[\mathcal{C}(\alpha_1,\ldots,\alpha_n)=0\right]\leq rac{d}{\#\mathbb{F}}$$

- Thus, for a suitably large \mathbb{F} , $\frac{d}{\#\mathbb{F}} \leq \frac{1}{2}$.
- Thus, with a good chance we will pick a non-root of *C*.

- If C is a zero circuit then clearly the algorithm returns YES for any choice of (α₁,..., α_n) ∈ Fⁿ.
- Say, C(x₁,..., x_n) is computing a nonzero polynomial of total degree d.
- It can be shown that:

$$\mathsf{Prob}_{(\alpha_1,\ldots,\alpha_n)\in\mathbb{F}^n}\left[\mathcal{C}(\alpha_1,\ldots,\alpha_n)=0\right]\leq rac{d}{\#\mathbb{F}}$$

- Thus, for a suitably large \mathbb{F} , $\frac{d}{\#\mathbb{F}} \leq \frac{1}{2}$.
- Thus, with a good chance we will pick a non-root of C.

- If C is a zero circuit then clearly the algorithm returns YES for any choice of $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}^n$.
- Say, C(x₁,..., x_n) is computing a nonzero polynomial of total degree d.
- It can be shown that:

$$\mathsf{Prob}_{(\alpha_1,\ldots,\alpha_n)\in\mathbb{F}^n}\left[\mathcal{C}(\alpha_1,\ldots,\alpha_n)=0\right]\leq rac{d}{\#\mathbb{F}}$$

- Thus, for a suitably large \mathbb{F} , $\frac{d}{\#\mathbb{F}} \leq \frac{1}{2}$.
- Thus, with a good chance we will pick a non-root of C.

THE QUESTION

Big question here: Can we do identity testing in deterministic polynomial time?

- Graph matching problems have efficient randomized parallel algorithms (Lovasz '79).
- PSPACE has interactive protocols (Shamir '90).
- NEXP has two-prover interactive protocols (Babai-Fortnow-Lund '90).
- The first deterministic polynomial time Primality test was based on checking whether (x + 1)ⁿ - (xⁿ + 1) = 0 (mod n) (Agrawal-Kayal-S '02).

- Graph matching problems have efficient randomized parallel algorithms (Lovasz '79).
- PSPACE has interactive protocols (Shamir '90).
- NEXP has two-prover interactive protocols (Babai-Fortnow-Lund '90).
- The first deterministic polynomial time Primality test was based on checking whether (x + 1)ⁿ - (xⁿ + 1) = 0 (mod n) (Agrawal-Kayal-S '02).

- Graph matching problems have efficient randomized parallel algorithms (Lovasz '79).
- PSPACE has interactive protocols (Shamir '90).
- NEXP has two-prover interactive protocols (Babai-Fortnow-Lund '90).
- The first deterministic polynomial time Primality test was based on checking whether (x + 1)ⁿ - (xⁿ + 1) = 0 (mod n) (Agrawal-Kayal-S '02).

- Graph matching problems have efficient randomized parallel algorithms (Lovasz '79).
- PSPACE has interactive protocols (Shamir '90).
- NEXP has two-prover interactive protocols (Babai-Fortnow-Lund '90).
- The first deterministic polynomial time Primality test was based on checking whether (x + 1)ⁿ (xⁿ + 1) = 0 (mod n) (Agrawal-Kayal-S '02).

- (Impagliazzo-Kabanets '03) showed that a derandomized identity test would imply circuit lower bounds for NEXP.
- Thus, a derandomization of identity testing would both:
 - provide evidence that randomization in algorithms is dispensable, and
 - give circuit lower bounds.

- (Impagliazzo-Kabanets '03) showed that a derandomized identity test would imply circuit lower bounds for NEXP.
- Thus, a derandomization of identity testing would both:
 - provide evidence that randomization in algorithms is dispensable, and
 - give circuit lower bounds.

- (Impagliazzo-Kabanets '03) showed that a derandomized identity test would imply circuit lower bounds for NEXP.
- Thus, a derandomization of identity testing would both:
 - provide evidence that randomization in algorithms is dispensable, and
 - give circuit lower bounds.

- (Impagliazzo-Kabanets '03) showed that a derandomized identity test would imply circuit lower bounds for NEXP.
- Thus, a derandomization of identity testing would both:
 - provide evidence that randomization in algorithms is dispensable, and
 - give circuit lower bounds.

OUTLINE

Motivation

Identity Testing

CONSTANT DEPTH CIRCUITS

Conclusion

・ロ ・ ・ 一 ・ ・ 注 ・ く 注 ・ 、 注 ・ 今 Q ペ 16 / 26 - Constant Depth Circuits

PROGRESS

- Some progress has been made when the input circuit has bounded many levels.
- Multilinear circuits of depth 3: (Raz-Shpilka '04) gave a deterministic polynomial time identity test.
- Circuits of depth 3 with bounded top fanin: (Kayal-S '06) gave a deterministic polynomial time identity test.

- Constant Depth Circuits

PROGRESS

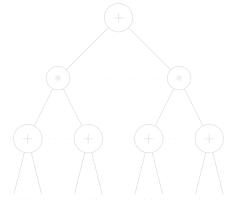
- Some progress has been made when the input circuit has bounded many levels.
- Multilinear circuits of depth 3: (Raz-Shpilka '04) gave a deterministic polynomial time identity test.
- Circuits of depth 3 with bounded top fanin: (Kayal-S '06) gave a deterministic polynomial time identity test.

- Constant Depth Circuits

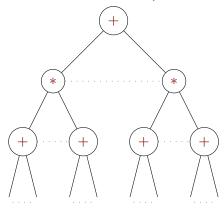
PROGRESS

- Some progress has been made when the input circuit has bounded many levels.
- Multilinear circuits of depth 3: (Raz-Shpilka '04) gave a deterministic polynomial time identity test.
- Circuits of depth 3 with bounded top fanin: (Kayal-S '06) gave a deterministic polynomial time identity test.

 For identity testing, it is sufficient to consider a "sum of product of linear functions" (ΣΠΣ circuit).



 For identity testing, it is sufficient to consider a "sum of product of linear functions" (ΣΠΣ circuit).



• Our input circuit *C* over a field **F** will look like:

 $\mathcal{C}(z_1, \ldots, z_n) = T_1 + \cdots + T_k$ where T_i is a product of linear functions $L_{i,1}, \ldots, L_{i,d}$ where $L_{i,j} = (a_{i,j,0} + a_{i,j,1}z_1 + \cdots + a_{i,j,n}z_n)$, a's $\in \mathbb{F}$.

• Our input circuit \mathcal{C} over a field \mathbb{F} will look like:

 $\mathcal{C}(z_1, \dots, z_n) = T_1 + \dots + T_k$ where T_i is a product of linear functions $L_{i,1}, \dots, L_{i,c}$ where $L_{i,j} = (a_{i,j,0} + a_{i,j,1}z_1 + \dots + a_{i,j,n}z_n)$, a's $\in \mathbb{F}$

• Our input circuit *C* over a field **F** will look like:

 $\mathcal{C}(z_1, \ldots, z_n) = T_1 + \cdots + T_k$ where T_i is a product of linear functions $L_{i,1}, \ldots, L_{i,d}$ where $L_{i,j} = (a_{i,j,0} + a_{i,j,1}z_1 + \cdots + a_{i,j,n}z_n), a's \in \mathbb{F}$.

• Our input circuit C over a field \mathbb{F} will look like:

 $\mathcal{C}(z_1, \ldots, z_n) = T_1 + \cdots + T_k$ where T_i is a product of linear functions $L_{i,1}, \ldots, L_{i,d}$ where $L_{i,j} = (a_{i,j,0} + a_{i,j,1}z_1 + \cdots + a_{i,j,n}z_n)$, a's $\in \mathbb{F}$.

THE IDEA OF CHINESE REMAINDERING

$$C(x_1, \dots, x_n) = T_1 + \dots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- C = 0 iff for all $i \in [d+1]$, $C = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k-1)
 - because for some j_i , $l_j = U(mod p_i)$
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$\mathcal{C}(x_1,\ldots,x_n) = T_1 + \cdots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p; has top fanin atmost (k 1) because for some (a line 0 (mod p)).
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

THE IDEA OF CHINESE REMAINDERING

$$\mathcal{C}(x_1,\ldots,x_n) = T_1 + \cdots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k 1) because for some (c) fine 0 (mod p).
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$C(x_1, \dots, x_n) = T_1 + \dots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k − 1) because for some (1) These 0 (mod p).
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$C(x_1, \dots, x_n) = T_1 + \dots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k 1) because for some (1) from 0 (mod p).
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$C(x_1, \dots, x_n) = T_1 + \dots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k 1) because for some j, $T_j = 0 \pmod{p_i}$.
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$C(x_1, \dots, x_n) = T_1 + \dots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k-1) because for some j, $T_i = 0 \pmod{p_i}$.
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$\mathcal{C}(x_1,\ldots,x_n) = T_1 + \cdots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k 1) because for some j, $T_j = 0 \pmod{p_i}$.
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$\mathcal{C}(x_1,\ldots,x_n) = T_1 + \cdots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k 1) because for some j, $T_j = 0 \pmod{p_i}$.
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

$$\mathcal{C}(x_1,\ldots,x_n) = T_1 + \cdots + T_k$$

where $T_i = L_{i,1} \cdots L_{i,d}$

- Pick (d + 1) coprime linear functions p₁,..., p_{d+1} from the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- $\mathcal{C} = 0$ iff for all $i \in [d+1]$, $\mathcal{C} = 0 \pmod{p_i}$.
- $C \stackrel{?}{=} 0 \pmod{p_i}$ can be checked recursively because:
 - C modulo p_i has top fanin atmost (k 1) because for some j, $T_j = 0 \pmod{p_i}$.
 - Let τ be an invertible map on x_1, \ldots, x_n sending $p_i \mapsto x_1$.
 - Then $\mathcal{C} = 0 \pmod{p_i}$ iff $\mathcal{C}(\tau(x_1), \ldots, \tau(x_n)) = 0 \pmod{x_1}$.

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers $p_1^{e_1}, \ldots, p_\ell^{e_\ell}$ of coprime linear functions p_1, \ldots, p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

$\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0$ over $\mathbb{F}[x_1]/(x_1^{e_i}).$

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j 2. $e_1 + \dots + e_n > d$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

$\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0$ over $\mathbb{F}[x_1]/(x_1^{e_i}).$

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j .
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

$\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0$ over $\mathbb{F}[x_1]/(x_1^{e_i}).$

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j .
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

$\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0$ over $\mathbb{F}[x_1]/(x_1^{e_i}).$

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j .
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

$\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0$ over $\mathbb{F}[x_1]/(x_1^{e_i}).$

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j .
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

 $\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0 \text{ over } \mathbb{F}[x_1]/(x_1^{e_i}).$

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j .
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

 $\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0 \text{ over } \mathbb{F}[x_1]/(x_1^{e_i}).$

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j .
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

 $\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0 \text{ over } \mathbb{F}[x_1]/(x_1^{e_i}).$

Skip details

CHINESE REMAINDERING NEEDS GENERALIZATION

- There may not always be (d + 1) coprime linear functions in the set {L_{i,j} | i ∈ [k], j ∈ [d]}.
- So we need to pick powers p₁^{e₁},..., p_ℓ^{e_ℓ} of coprime linear functions p₁,..., p_ℓ such that,
 - 1. every $p_i^{e_i}$ divides some T_j .
 - $2. e_1 + \cdots + e_\ell \geq d.$
- How do we check $C \stackrel{?}{=} 0 \pmod{p_i^{e_i}}$?
- We transform $p_i \mapsto x_1$ by applying an invertible map τ on x_1, \ldots, x_n . Then $\mathcal{C} = 0 \pmod{p_i^{e_i}}$ iff

 $\mathcal{C}(\tau(x_1),\ldots,\tau(x_n))=0 \text{ over } \mathbb{F}[x_1]/(x_1^{e_i}).$

• Thus, we recursively solve identity testing over "bigger" rings.

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- T₁ can be factored into *coprime* polynomials as follows: T₁ = α · p₁(z₁,..., z_n) ··· p_s(z₁,..., z_n) where, p_i = (l_i + m_{i,1}) ··· (l_i + m_{i,d_i}) for some linear form l_i and α, m_{i,i}'s are in M.

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- *T*₁ can be factored into *coprime* polynomials as follows:
 *T*₁ = α · p₁(z₁,..., z_n) ···· p_s(z₁,..., z_n) where, p_i = (l_i + m_{i,1}) ···· (l_i + m_{i,di}) for some linear form l_i and α, m_{i,i}'s are in *M*.

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- *T*₁ can be factored into *coprime* polynomials as follows:
 *T*₁ = α · p₁(z₁,..., z_n) ···· p_s(z₁,..., z_n) where, p_i = (ℓ_i + m_{i,1}) ···· (ℓ_i + m_{i,d_i}) for some linear form ℓ_i and α, m_{i,j}'s are in *M*.

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- T₁ can be factored into *coprime* polynomials as follows:
 T₁ = α · p₁(z₁,..., z_n) ··· p_s(z₁,..., z_n) where, p_i = (l_i + m_{i,1}) ··· (l_i + m_{i,d_i}) for some linear form l_i and α, m_{i,j}'s are in M.

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- T₁ can be factored into *coprime* polynomials as follows: T₁ = α · p₁(z₁,..., z_n) ··· p_s(z₁,..., z_n) where, p_i = (l_i + m_{i,1}) ··· (l_i + m_{i,d_i}) for some linear form l_i and α, m_{i,j}'s are in M.

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- T_1 can be factored into *coprime* polynomials as follows: $T_1 = \alpha \cdot p_1(z_1, \ldots, z_n) \cdots p_s(z_1, \ldots, z_n)$ where, $p_i = (\ell_i + m_{i,1}) \cdots (\ell_i + m_{i,d_i})$ for some linear form ℓ_i and α , $m_{i,j}$'s are in \mathcal{M} .

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- T_1 can be factored into *coprime* polynomials as follows: $T_1 = \alpha \cdot p_1(z_1, \ldots, z_n) \cdots p_s(z_1, \ldots, z_n)$ where, $p_i = (\ell_i + m_{i,1}) \cdots (\ell_i + m_{i,d_i})$ for some linear form ℓ_i and α , $m_{i,i}$'s are in \mathcal{M} .

- Let *R* be a local subring of 𝔽[*x*₁,...,*x_m*] with maximal ideal *M*.
- Let the input be a $\Sigma \Pi \Sigma$ circuit $C(z_1, \ldots, z_n)$ in $R[z_1, \ldots, z_n]$: $C = T_1 + \cdots + T_k$ where, $T_i = L_{i,1} \cdots L_{i,d}$
- Wlog let T_1 produce the lexicographically largest monomial.
- T_1 can be factored into *coprime* polynomials as follows: $T_1 = \alpha \cdot p_1(z_1, \ldots, z_n) \cdots p_s(z_1, \ldots, z_n)$ where, $p_i = (\ell_i + m_{i,1}) \cdots (\ell_i + m_{i,d_i})$ for some linear form ℓ_i and α , $m_{i,i}$'s are in \mathcal{M} .

• $C(z_1, ..., z_n) = 0$ iff for all $i \in [s]$, $C = 0 \pmod{p_i}$ and lexicographically largest monomial of C has zero coefficient.

- For a fixed *i*: transform ℓ_i → z₁ by an invertible linear transformation τ_i on z₁,..., z_n and, thus,
 p_i → (z₁ + m_{i,1}) · · · (z₁ + m_{i,d_i})
- Then $C = 0 \pmod{p_i}$ iff

$$au_i(\mathcal{C}) = 0 \pmod{(z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})}.$$

- This entails checking $\tau_i(T_2) + \cdots + \tau_i(T_k) = 0$ over the local ring $R[z_1]/((z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i}))$.
- Thus, we can recursively check whether $C = 0 \pmod{p_i}$.

・ロン ・四マ ・ヨン ・ヨン

• $C(z_1, \ldots, z_n) = 0$ iff for all $i \in [s]$, $C = 0 \pmod{p_i}$ and

lexicographically largest monomial of $\mathcal C$ has zero coefficient.

- For a fixed *i*: transform $\ell_i \mapsto z_1$ by an invertible linear transformation τ_i on z_1, \ldots, z_n and, thus, $\rho_i \mapsto (z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})$
- Then $C = 0 \pmod{p_i}$ iff

 $au_i(\mathcal{C}) = 0 \pmod{(z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})}.$

- This entails checking $\tau_i(T_2) + \cdots + \tau_i(T_k) = 0$ over the local ring $R[z_1]/((z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i}))$.
- Thus, we can recursively check whether $C = 0 \pmod{p_i}$.

・ロン ・四マ ・ヨン ・ヨン

•
$$C(z_1, \ldots, z_n) = 0$$
 iff
for all $i \in [s]$, $C = 0 \pmod{p_i}$
and

lexicographically largest monomial of $\mathcal C$ has zero coefficient.

- For a fixed *i*: transform $\ell_i \mapsto z_1$ by an invertible linear transformation τ_i on z_1, \ldots, z_n and, thus, $p_i \mapsto (z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})$
- Then $C = 0 \pmod{p_i}$ iff

 $au_i(\mathcal{C}) = 0 \pmod{(z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})}.$

- This entails checking $\tau_i(T_2) + \cdots + \tau_i(T_k) = 0$ over the local ring $R[z_1]/((z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i}))$.
- Thus, we can recursively check whether $C = 0 \pmod{p_i}$.

(日) (四) (日) (日) (日)

•
$$\mathcal{C}(z_1,\ldots,z_n)=0$$
 iff

for all $i \in [s]$, $C = 0 \pmod{p_i}$ and

lexicographically largest monomial of ${\mathcal C}$ has zero coefficient.

- For a fixed *i*: transform $\ell_i \mapsto z_1$ by an invertible linear transformation τ_i on z_1, \ldots, z_n and, thus, $p_i \mapsto (z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})$
- Then $C = 0 \pmod{p_i}$ iff

$$au_i(\mathcal{C}) = 0 \pmod{(z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})}.$$

- This entails checking $\tau_i(T_2) + \cdots + \tau_i(T_k) = 0$ over the local ring $R[z_1]/((z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i}))$.
- Thus, we can recursively check whether $C = 0 \pmod{p_i}$.

•
$$\mathcal{C}(z_1,\ldots,z_n)=0$$
 iff

for all
$$i \in [s]$$
, $C = 0 \pmod{p_i}$
and

lexicographically largest monomial of $\mathcal C$ has zero coefficient.

- For a fixed *i*: transform $\ell_i \mapsto z_1$ by an invertible linear transformation τ_i on z_1, \ldots, z_n and, thus, $p_i \mapsto (z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})$
- Then $C = 0 \pmod{p_i}$ iff

$$au_i(\mathcal{C}) = 0 \pmod{(z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})}.$$

• This entails checking $\tau_i(T_2) + \cdots + \tau_i(T_k) = 0$ over the local ring $R[z_1]/((z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i}))$.

• Thus, we can recursively check whether $C = 0 \pmod{p_i}$.

・ロット (四) (日) (日) (日) (日)

•
$$\mathcal{C}(z_1,\ldots,z_n)=0$$
 iff

for all
$$i \in [s]$$
, $C = 0 \pmod{p_i}$

lexicographically largest monomial of $\mathcal C$ has zero coefficient.

- For a fixed *i*: transform $\ell_i \mapsto z_1$ by an invertible linear transformation τ_i on z_1, \ldots, z_n and, thus, $p_i \mapsto (z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})$
- Then $C = 0 \pmod{p_i}$ iff

$$au_i(\mathcal{C}) = 0 \pmod{(z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i})}.$$

- This entails checking $\tau_i(T_2) + \cdots + \tau_i(T_k) = 0$ over the local ring $R[z_1]/((z_1 + m_{i,1}) \cdots (z_1 + m_{i,d_i}))$.
- Thus, we can recursively check whether $C = 0 \pmod{p_i}$.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅつ

• Note that in each recursive call:

- 1. Fanin k reduces by atleast 1
- 2. Dimension of the base ring increases at most d times.
- The computations that we do are on rings of dimension atmost *d^k*.
- Identity testing for depth 3 circuits over n variables, total degree d and top fanin k can be done in time poly(d^k, n).

• Note that in each recursive call:

- 1. Fanin k reduces by atleast 1
- 2. Dimension of the base ring increases atmost d times.
- The computations that we do are on rings of dimension atmost *d^k*.
- Identity testing for depth 3 circuits over n variables, total degree d and top fanin k can be done in time poly(d^k, n).

- Note that in each recursive call:
 - 1. Fanin k reduces by atleast 1
 - 2. Dimension of the base ring increases at most d times.
- The computations that we do are on rings of dimension atmost *d^k*.
- Identity testing for depth 3 circuits over n variables, total degree d and top fanin k can be done in time poly(d^k, n).

- Note that in each recursive call:
 - 1. Fanin k reduces by atleast 1
 - 2. Dimension of the base ring increases atmost d times.
- The computations that we do are on rings of dimension atmost d^k.
- Identity testing for depth 3 circuits over n variables, total degree d and top fanin k can be done in time poly(d^k, n).

- Note that in each recursive call:
 - 1. Fanin k reduces by atleast 1
 - 2. Dimension of the base ring increases at most d times.
- The computations that we do are on rings of dimension atmost d^k.
- Identity testing for depth 3 circuits over n variables, total degree d and top fanin k can be done in time poly(d^k, n).

OUTLINE

Motivation

Identity Testing

Constant Depth Circuits

CONCLUSION

・ロ ・ ・ 一 ・ ・ 注 ・ く 注 ・ ・ 注 ・ 今 へ ペ 25 / 26

• Depth 3 Identity testing for bounded top fanin is in P.

- Open Problem: Identity testing for general depth 3 circuits ?
- "Easier" Open Problem: Identity testing for a *diagonalized* ΣΠΣ circuit, i.e.,

$C(x_1,\ldots,x_n) = L_1^d + \cdots + L_k^d$

where, L_1, \ldots, L_k are linear functions.

QUESTIONS?

- Depth 3 Identity testing for bounded top fanin is in P.
- Open Problem: Identity testing for general depth 3 circuits ?
- "Easier" Open Problem: Identity testing for a *diagonalized* ΣΠΣ circuit, i.e.,

$C(x_1,\ldots,x_n) = L_1^d + \cdots + L_k^d$

where, L_1, \ldots, L_k are linear functions.

QUESTIONS?

26/26

- Depth 3 Identity testing for bounded top fanin is in P.
- Open Problem: Identity testing for general depth 3 circuits ?
- "Easier" Open Problem: Identity testing for a *diagonalized* ΣΠΣ circuit, i.e.,

$C(x_1,\ldots,x_n) = L_1^d + \cdots + L_k^d$

where, L_1, \ldots, L_k are linear functions.

QUESTIONS?

- Depth 3 Identity testing for bounded top fanin is in P.
- Open Problem: Identity testing for general depth 3 circuits ?
- "Easier" Open Problem: Identity testing for a *diagonalized* ΣΠΣ circuit, i.e.,

$$C(x_1,\ldots,x_n) = L_1^d + \cdots + L_k^d$$

where, L_1, \ldots, L_k are linear functions.

QUESTIONS?

- Depth 3 Identity testing for bounded top fanin is in P.
- Open Problem: Identity testing for general depth 3 circuits ?
- "Easier" Open Problem: Identity testing for a *diagonalized* ΣΠΣ circuit, i.e.,

$$C(x_1,\ldots,x_n) = L_1^d + \cdots + L_k^d$$

where, L_1, \ldots, L_k are linear functions.

QUESTIONS?

- Depth 3 Identity testing for bounded top fanin is in P.
- Open Problem: Identity testing for general depth 3 circuits ?
- "Easier" Open Problem: Identity testing for a *diagonalized* ΣΠΣ circuit, i.e.,

$$C(x_1,\ldots,x_n) = L_1^d + \cdots + L_k^d$$

where, L_1, \ldots, L_k are linear functions.

QUESTIONS?