The border and its demystification

[-- Joint works with Pranjal Dutta, Prateek Dwivedi, CS Bhargav in CCC'21, FOCS'21, FOCS'22, STOC'24]

Nitin Saxena

CSE, IIT Kanpur

June 2024 Waterloo, Canada

Computation, Circuit, VP

- □ Computation is what a Turing machine does.
 - ➤ Computes a language of strings.
 - Resources: Time, Space, ...
- □ Circuit is a *relaxed* variant.
 - ➤ Boolean vs Algebraic.
 - \triangleright Computes a polynomial $f(x_n)$.
 - \triangleright node = operator; edge = constant; leaf = variable; root = output.
- \square size of a circuit = #nodes + #edges.
 - ➤ depth of a circuit = length of longest-path (leaf to root).
- \square size(f) = min size of circuit computing $f(x_n)$.
- \square Class VP is set of $f(x_n)$ with size(f) + deg(f) = poly(n).
 - $ightharpoonup f = x_1^{2^n} x_2 \cdots x_n \text{ is } \mathbf{not} \text{ in VP}.$

Branching Program - VBP

- □ Iterated matrix multiplication (IMM): = (1,1)-th entry of $M_1 \cdots M_d$, where, M_i are $s \times s$ matrices.
- □ **Theorem** [Csanky'76]: Both are in *VP*!
- □ IMM defines the algebraic branching program (ABP) model.
 - $\triangleright M_i$ with *linear* polynomials in x_n .
 - ightharpoonup ABP size of this ABP is $s^2 dn$.
 - \triangleright Class *VBP* is set of $f(x_n)$ with *ABPsize*(f) = poly(n).
- □ Theorem [Mahajan, Vinay'97]: det ≡ IMM, and are in $VBP \subseteq VP$.
- \square OPEN: $VBP \neq VP$?
 - ➤ is Computing **harder** than Linear-Algebra?

ExpSum circuits - VNP

- \square ExpSum circuit: $f(x_n) = \sum_{a \in \{0,1\}^m} g(x, a)$, where verifier $g \in VP$.
 - ➤ Det, Permanent are of this type. [Count graph matchings]
- □ ExpSum defines the class *VNP*. [*Explicit* polynomials]
 - \triangleright Like NP: a = witness string; g = verifier algorithm.
 - ightharpoonup VNPsize of this ExpSum is $size(g) \cdot deg(g) \cdot nm$.
 - \triangleright Class *VNP* is set of $f(x_n)$ with VNPsize(f) = poly(n).
- □ Theorem: $VBP \subseteq VP \subseteq VNP$.
- \square OPEN: $VP \neq VNP$?
 - ➤ Is ExpSum *impractical* ?!
 - \triangleright Algebraic version of $P \neq NP$!

Leslie Valiant (1949-)

- □ <u>Valiant's conjecture ('79)</u>: There are *explicit*, **hard** polynomials?
 - ➤ is Counting **harder** than Linear-Algebra? **det** ≈ **per**?

Approximative Circuits: VP

- How to *approximate* a polynomial?
 - \triangleright Introduce variable ε , say $g(x, \varepsilon)$, and define $f(x) := \lim_{\varepsilon \to 0} g(x, \varepsilon)$.
 - \triangleright What's the *algebraic* way? *Any* field *F*.
- □ Approximative circuit: $g(\mathbf{x}, \varepsilon) = \sum_{i=0}^{M} g_i(\mathbf{x}) \cdot \varepsilon^i$, of *VPsize s*, with constants in the function field $F(\varepsilon)$.
- - $\triangleright = g(x,0)$, but edge-constants may be undefined under $\varepsilon = 0$.
- \square Such f(x) define the class \overline{VP} .
 - \triangleright It's the Zariski closure of VP. [Border]
 - $ightharpoonup \overline{size}(f)$ is size(g). [Approximative complexity]
- □ Theorem [Bürgisser'20]: $M \le 2^{s^2}$; $\overline{size}(f) \le size(f) \le exp(\overline{size}(f))$.
- \square OPEN: $VP = \overline{VP}$?
 - ➤ is approximation **practical**?

Motivating problem in VP

$$f=x^{2^s}-1$$

- \square Circuit factoring: Given f(x) of size-s, find deg-d factor h?
 - \triangleright Degree of f(x) could be 2^s . [so we need to restrict the factor degree]
 - \triangleright What's the *algebraic* way? *Any* field *F*.
- \square OPEN: Is size(h) = poly(sd)? [Factor Conjecture]
- □ **Theorem** [Bürgisser'04]: $\overline{size}(h) = poly(sd)$.
- \square Trick (perturbed Newton): Bad case is $f = h^e q$, e is superpoly(s).
 - \triangleright Say, $h =: x_1 \alpha \mod \langle x_2, ..., x_n \rangle$.
 - **Perturb**, say x_1 , by ε. Factor $f'(x, ε) := f(x_1 + ε, x_2, ...) f(α + ε, x_2, ...)$.
 - \triangleright h is a simple factor of $f'(x, \varepsilon) \mod \langle x_2, ..., x_n \rangle$. [Kaltofen'89]
 - \triangleright Lift to an actual factor in $F(\varepsilon)[x]$ approximatively, i.e. $\varepsilon \to 0$.
- □ Gives $h \in \overline{VP}$, but **unknown** in VP.
 - Circuits closed under Factoring?

Where does VP live?

- \square OPEN: $\overline{VP} \subseteq VNP$? [deBorder]
 - \triangleright How to present the approximative circuit $g(x, \varepsilon)$, in practice.
- \square Presentable border: Assume $c_1(\varepsilon)$, $c_2(\varepsilon)$ to be circuits in ε !
 - \triangleright ε is an *input* variable to size-s circuit $g(x, \varepsilon)$.
 - \triangleright Such f(x) define the class $\overline{VP}_{\varepsilon}$. [Circuit in ε]
- □ Theorem [Bhargav,Dwivedi,S., STOC'24]: $\overline{VP}_{\varepsilon} \subseteq VNP$.
- \square Trick (extract coeff): $g(\mathbf{x}, \varepsilon) = \varepsilon^M f(\mathbf{x}) + \varepsilon^{M+1} Q(\mathbf{x}, \varepsilon)$, M is superpoly(s).
 - ▶ Interpolate the circuit $g(x, \varepsilon)$, with ε values in finite field F_{p^a} .
 - $ightharpoonup p^a > M$, write f(x) as ExpSum, with verifier g?
 - $ightharpoonup g(x, \varepsilon)$, $\varepsilon \in F_{p^a}$: move to Boolean circuit and back. [Valiant's criterion]

Where does VP live? Factors?

- □ Theorem [Bhargav, Dwivedi, S., STOC'24]: $\overline{VP}_{\varepsilon} \subseteq VNP$.
 - ➤ Presentable is *explicit*!
- □ **Theorem** [BDS'24]: Size-s circuits have $\deg \leq s$ factors* in VNP.
 - ➤ *separable [Bürgisser'04 gave *presentable* factor circuit!]
 - ➤ Also [BDS'24]: VNP is **closed** under factoring (over finite fields).
 - ➤ OPEN: Is *VP* closed under factoring (over finite fields)?
 - ▶ [BDS'24]: $\sqrt{f(x)}$ mod 2 is explicit, but is it *practical*?

- \square OPEN: $VP = \overline{VP}_{\varepsilon} = \overline{VP} \neq VNP$?
 - ➤ Is approximation *practical* & ExpSum *impractical* ?!

Shallow circuits - deeper techniques!

- □ Depth-3 circuit, fanin-k, $\Sigma^k \Pi \Sigma : g = \Sigma_{i=1}^k \Pi_{j=1}^d \ell_{i,j}(x)$, where $\ell_{i,j}$ are linear polynomials over field F.
- □ Border-depth-3 circuit, fanin-k, $\overline{\Sigma^k \Pi \Sigma}$: g as above, but over $F(\varepsilon)$, and then $f(x) \coloneqq \lim_{\varepsilon \to 0} g(x, \varepsilon)$.
- \square What can $\Sigma^2 \Pi \Sigma$ and $\overline{\Sigma^2 \Pi \Sigma}$ compute?
- □ Former can't compute $f = x_1x_2 + x_3x_4 + x_5x_6$.
- □ Theorem [Kumar'20]: $\overline{\Sigma^2 \Pi \Sigma}$ computes every f(x).
- \square Trick (Waring form & rank): Write $f(\mathbf{x}) = \mathbf{\Sigma}_{i=1}^m \ell_i^d$.
 - \triangleright Stare at $\Sigma_{i=1}^m (1 + \varepsilon^d \cdot \ell_i^d)$.
 - \triangleright What's it mod ε^{2d} ?
 - $\triangleright = 1 + \varepsilon^d \cdot f$.

Debordering border-depth-3

- $\square \overline{\Sigma^k \Pi \Sigma} : \text{Express } g = \Sigma_{i=1}^k \Pi_{j=1}^d \ell_{i,j}(\mathbf{x}, \varepsilon), \text{ and then } f(\mathbf{x}) \coloneqq \lim_{\varepsilon \to 0} g(\mathbf{x}, \varepsilon).$
- \square What's f exactly?
 - ightharpoonup In VP? $\overline{VP}_{\varepsilon}$? VNP?
- □ Theorem [Dutta,Dwivedi,S., FOCS'21]: $\Sigma^2\Pi\Sigma \subseteq VBP$.
- \square Trick (induction glorified): $T_1 + T_2 = f(x) + \varepsilon \cdot S(x, \varepsilon)$.
 - $> T_1/T_2 + 1 = f/T_2 + \varepsilon \cdot S/T_2$.
 - \triangleright Introduce variable z for derivation. Map $\varphi: x_i \mapsto z \cdot x_i + \alpha_i$.

 - $\geqslant g_1 = \varphi(T_1/T_2) \cdot (dlog\varphi(T_1) dlog\varphi(T_2)) \cdot [dlog(h) := \frac{\partial_z h}{h}]$

Debordering border-depth-3

$$\geq \overline{\left(\frac{\Pi\Sigma}{\Pi\Sigma}\right) \cdot \Sigma \wedge \Sigma} \qquad [dlog(A - z \cdot B) = \frac{-B}{A - z \cdot B} = \left(-\frac{B}{A}\right) \left(1 + \frac{zB}{A} + \left(\frac{zB}{A}\right)^2 + \cdots\right)]$$

- $\triangleright \in \frac{ABP}{ABP}$ [border of **ROABP**]
- $\triangleright \partial_z \varphi\left(\frac{f}{T_2}\right) \rightarrow g_1 \rightarrow \frac{ABP}{ABP}$, gives $f \in ABP$ [by interpolation]
- > **DiDIL** = Divide, Derive, Induct, Limit.

Theorem [Dutta,Dwivedi,S., FOCS'21]: $\overline{\Sigma^2 \Pi \Sigma} \subseteq VBP$. $\overline{\Sigma^k \Pi \Sigma} \subseteq VBP$.

Finer lower bounds inside border-depth-3

- $\square \overline{\Sigma^k \Pi \Sigma} : \text{Express } g = \Sigma_{i=1}^k \Pi_{j=1}^d \ell_{i,j}(\mathbf{x}, \varepsilon), \text{ and then } f(\mathbf{x}) \coloneqq \lim_{\varepsilon \to 0} g(\mathbf{x}, \varepsilon).$
- \square How do k and k + 1 compare?
 - \triangleright Remember $\Sigma^k \Pi \Sigma$ computes every $f(x_n)!$
- □ Theorem [Dutta,S., FOCS'22]: $\Sigma^k\Pi\Sigma$, $\Sigma^{k+1}\Pi\Sigma$ are exp(n) separated.
- □ Trick (modify DiDIL): $P_d := x_{1,1} \cdots x_{1,d} + x_{2,1} \cdots x_{2,d} + x_{3,1} \cdots x_{3,d}$.
 - ightharpoonup Assume $T_1 + T_2 = P_d(x) + \varepsilon \cdot S(x, \varepsilon)$.
 - \triangleright Introduce variable z for derivation. Homogenized map $\varphi: x_i \mapsto z \cdot x_i$.

 - $ightharpoonup \chi_{1,1} \cdots \chi_{1,d} o \overline{\Sigma \wedge \Sigma}$ [coef of z^d & a trick]
 - ightharpoonup implies $size \ge 2^d$ [Waring rank]

Conclusion

- ❖ Special ABP (ROABP) makes *Debordering*, *Lower bounds*, and *Identity testing* possible.
 - ➤ What about the sum of two ROABPs?
- ❖ Strengthen results to $\overline{\Sigma^k \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$?
- ❖ Is border presentable? Explicit?
- Circuit factoring?
- ❖ Details at https://www.cse.iitk.ac.in/users/nitin/

Questions?

