The border and its demystification

[-- Joint works with Pranjal Dutta, Prateek Dwivedi, CS Bhargav in CCC'21, FOCS'21, FOCS'22, STOC'24]

Nitin Saxena
CSE, IIT Kanpur

June 2024
Waterloo, Canada

Computation, Circuit, VP

\square Computation is what a Turing machine does.
$>$ Computes a language of strings.
> Resources: Time, Space, ...

- Circuit is a relaxed variant.
Finite
control
control
$>$ Boolean vs Algebraic.
$>$ Computes a polynomial $f\left(x_{n}\right)$.
$>$ node $=$ operator $;$ edge $=$ constant $;$ leaf $=$ variable $;$ root $=$ output.
\square size of a circuit $=\#$ nodes + \#edges.
$>$ depth of a circuit = length of longest-path (leaf to root).
$\square \operatorname{size}(f)=$ min size of circuit computing $f\left(\boldsymbol{x}_{n}\right)$.
\square Class $V P$ is set of $f\left(\boldsymbol{x}_{n}\right)$ with $\operatorname{size}(f)+\operatorname{deg}(f)=\operatorname{poly}(n)$. $>f=x_{1}^{2^{n}} x_{2} \cdots x_{n}$ is not in VP.

Branching Program - VBP

\square Determinant $\operatorname{det}_{s}: \operatorname{det}\left(X_{s \times s}\right)=\Sigma_{\sigma} \operatorname{sgn}(\sigma) \cdot X_{1, \sigma(1)} \cdots X_{S, \sigma(s)}$.
\square Iterated matrix multiplication (IMM): = (1,1)-th entry of $M_{1} \cdots M_{d}$, where, M_{i} are $s \times s$ matrices.
\square Theorem [Csanky'76]: Both are in VP!
\square IMM defines the algebraic branching program (ABP) model.
$>M_{i}$ with linear polynomials in \boldsymbol{x}_{n}.
$>$ ABPsize of this ABP is $s^{2} d n$.
$>$ Class $V B P$ is set of $f\left(\boldsymbol{x}_{n}\right)$ with $A B P$ size $(f)=\operatorname{poly}(n)$.
\square Theorem [Mahajan,Vinay'97]: det $\equiv \mathrm{IMM}$, and are in $V B P \subseteq V P$.
\square OPEN: $V B P \neq V P$?
$>$ is Computing harder than Linear-Algebra?

ExpSum circuits - VNP

\square ExpSum circuit: $f\left(\boldsymbol{x}_{n}\right)=\Sigma_{\boldsymbol{a} \in\{0,1\}^{m}} g(\boldsymbol{x}, \boldsymbol{a})$, where verifier $g \in V P$.
$>$ Det, Permanent are of this type. [Count graph matchings]

- ExpSum defines the class VNP. [Explicit polynomials]
$>$ Like NP: $\boldsymbol{a}=$ witness string; $g=$ verifier algorithm.
$>$ VNPsize of this ExpSum is $\operatorname{size}(g) \cdot \operatorname{deg}(g) \cdot n m$.
$>$ Class VNP is set of $f\left(\boldsymbol{x}_{n}\right)$ with VNPsize $(f)=\operatorname{poly}(n)$.
- Theorem: $V B P \subseteq V P \subseteq V N P$.
\square OPEN: $V P \neq V N P$?
> Is ExpSum impractical ?!
$>$ Algebraic version of $P \neq N P$!

\square Valiant's conjecture ('79): There are explicit, hard polynomials?
$>$ is Counting harder than Linear-Algebra? det $\not \approx$ per?

Approximative Circuits: $\overline{\mathrm{VP}}$

\square How to approximate a polynomial?
$>$ Introduce variable ε, say $g(x, \varepsilon)$, and define $f(x):=\lim _{\varepsilon \rightarrow 0} g(x, \varepsilon)$.
$>$ What's the algebraic way? Any field F.

- Approximative circuit : $g(\boldsymbol{x}, \varepsilon)=\sum_{i=0}^{M} g_{i}(\boldsymbol{x}) \cdot \varepsilon^{i}$, of VPsize s, with constants in the function field $F(\varepsilon)$.
$>$ Define $f(\boldsymbol{x}):=\lim _{\varepsilon \rightarrow 0} g(\boldsymbol{x}, \varepsilon):=g_{0}(\boldsymbol{x})$. $>=g(x, 0)$, but edge-constants may be undefined under $\varepsilon=0$.
\square Such $f(x)$ define the class $\overline{V P}$.
$>$ It's the Zariski closure of $V P$. [Border]
$>\overline{\operatorname{size}}(f)$ is $\operatorname{size}(g)$. [Approximative complexity]
\square Theorem [Bürgisser'20]: $M \leq 2^{s^{2}} ; \overline{\operatorname{size}}(f) \leq \operatorname{size}(f) \leq \exp (\overline{\operatorname{size}}(f))$.
\square OPEN: $V P=\overline{V P}$?
$>$ is approximation practical?

Motivating problem in VP

$$
f=x^{2^{s}}-1
$$

\square Circuit factoring: Given $f(x)$ of size-s, find deg- d factor h ? \Rightarrow Degree of $f(x)$ could be 2^{s}. [so we need to restrict the factor degree] $>$ What's the algebraic way? Any field F.
\square OPEN: Is $\operatorname{size}(h)=\operatorname{poly}(s d)$? [Factor Conjecture]
\square Theorem [Bürgisser'04]: $\overline{\operatorname{size}}(h)=\operatorname{poly}(s d)$.

- Trick (perturbed Newton): Bad case is $f=h^{e} q$, e is superpoly(s). $>$ Say, $h=: x_{1}-\alpha \bmod \left\langle x_{2}, \ldots, x_{n}\right\rangle$
$>$ Perturb, say x_{1}, by ε. Factor $f^{\prime}(x, \varepsilon):=f\left(x_{1}+\varepsilon, x_{2}, \ldots\right)-f\left(\alpha+\varepsilon, x_{2}, \ldots\right)$.
$>h$ is a simple factor of $f^{\prime}(\boldsymbol{x}, \varepsilon) \bmod \left\langle x_{2}, \ldots, x_{n}\right\rangle$. [Kaltofen'89]
$>$ Lift to an actual factor in $F(\varepsilon)[x]$ approximatively, i.e. $\varepsilon \rightarrow 0$.
\square Gives $h \in \overline{V P}$, but unknown in $V P$.
> Circuits closed under Factoring?

Where does VP live?

\square OPEN: $\overline{V P} \subseteq V N P$? [deBorder]
$>$ How to present the approximative circuit $g(\boldsymbol{x}, \varepsilon)$, in practice.

- Presentable border: Assume $c_{1}(\varepsilon), c_{2}(\varepsilon)$ to be circuits in ε !
$>\varepsilon$ is an input variable to size- s circuit $g(\boldsymbol{x}, \varepsilon)$.
\Rightarrow Such $f(\boldsymbol{x})$ define the class $\overline{V P}_{\varepsilon}$. [Circuit in ε]
\square Theorem [Bhargav,Dwivedi,S., STOC'24]: $\overline{V P}_{\varepsilon} \subseteq V N P$.
\square Trick (extract coeff): $g(\boldsymbol{x}, \varepsilon)=\varepsilon^{M} f(\boldsymbol{x})+\varepsilon^{M+1} Q(\boldsymbol{x}, \varepsilon), M$ is superpoly(s).
$>$ Interpolate the circuit $g(x, \varepsilon)$, with ε values in finite field $F_{p^{a}}$.
$>p^{a}>M$, write $f(\boldsymbol{x})$ as ExpSum, with verifier g ?
$>g(\boldsymbol{x}, \varepsilon), \varepsilon \in F_{p^{a}}$: move to Boolean circuit and back. [Valiant's criterion]

Where does VP live? Factors?

- Theorem [Bhargav,Dwivedi,S., STOC'24]: $\overline{V P}_{\varepsilon} \subseteq V N P$.
> Presentable is explicit!
- Theorem [BDS'24]: Size-s circuits have deg $\leq s$ factors* in $V N P$.
> *separable [Bürgisser'04 gave presentable factor circuit!]
$>$ Also [BDS’24]: VNP is closed under factoring (over finite fields).
$>$ OPEN: Is $V P$ closed under factoring (over finite fields)?
$>\left[\mathrm{BDSS}^{\prime} 24\right]: \sqrt{f(\boldsymbol{x})} \bmod 2$ is explicit, but is it practical?
\square OPEN: $V P=\overline{V P}_{\varepsilon}=\overline{V P} \neq V N P$?
$>$ Is approximation practical \& ExpSum impractical ?!

Shallow circuits - deeper techniques!

\square Depth-3 circuit, fanin- $k, \Sigma^{k} \Pi \Sigma: g=\Sigma_{i=1}^{k} \Pi_{j=1}^{d} \ell_{i, j}(x)$, where $\ell_{i, j}$ are linear polynomials over field F.

- Border-depth-3 circuit, fanin- $k, \overline{\Sigma^{k} \Pi \Sigma}: g$ as above, but over $F(\varepsilon)$, and then $f(x):=\lim _{\varepsilon \rightarrow 0} g(x, \varepsilon)$.
\square What can $\Sigma^{2} \Pi \Sigma$ and $\overline{\Sigma^{2} \Pi \Sigma}$ compute?
\square Former can't compute $f=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$.
- Theorem [Kumar'20]: $\overline{\Sigma^{2} \Pi \Sigma}$ computes every $f(x)$.
- Trick (Waring form \& rank): Write $f(\boldsymbol{x})=\boldsymbol{\Sigma}_{i=1}^{m} \ell_{i}^{d}$. $>$ Stare at $\sum_{i=1}^{m}\left(1+\varepsilon^{d} \cdot \ell_{i}^{d}\right)$.
$>$ What's it $\bmod \varepsilon^{2 d}$?
$>=1+\varepsilon^{d} \cdot f$

Debordering border-depth-3

$\overline{\Sigma^{k} \Pi \Sigma}:$ Express $g=\Sigma_{i=1}^{k} \boldsymbol{\Pi}_{j=1}^{d} \ell_{i, j}(\boldsymbol{x}, \varepsilon)$, and then $f(\boldsymbol{x}):=\lim _{\varepsilon \rightarrow 0} g(\boldsymbol{x}, \varepsilon)$.
\square What's f exactly?
$>\operatorname{In} V P ? \overline{V P}_{\varepsilon}$? VNP?
\square Theorem [Dutta,Dwivedi,S., FOCS'21]: $\overline{\bar{\Sigma}^{2} \Pi \Sigma} \subseteq V B P$.
\square Trick (induction glorified): $T_{1}+T_{2}=f(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$.
$>T_{1} / T_{2}+1=f / T_{2}+\varepsilon \cdot S / T_{2}$.
$>$ Introduce variable z for derivation. $\operatorname{Map} \varphi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$.
$>g_{1}:=\partial_{z} \varphi\left(T_{1} / T_{2}\right)=\partial_{z} \varphi\left(f / T_{2}\right)+\varepsilon \cdot \partial_{z} \varphi\left(S / T_{2}\right)$.
$>g_{1}=\varphi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog} \varphi\left(T_{1}\right)-\operatorname{dlog} \varphi\left(T_{2}\right)\right) \cdot\left[\operatorname{dlog}(h):=\frac{\partial_{z} h}{h}\right]$

Debordering border-depth-3

- $g_{1}=\varphi\left(T_{1} / T_{2}\right) \cdot\left(\operatorname{dlog} \varphi\left(T_{1}\right)-\operatorname{dlog} \varphi\left(T_{2}\right)\right) \cdot\left[d \log (h):=\frac{\partial_{z} h}{h}\right]$
$>\in \overline{\left(\frac{\pi \Sigma}{\Pi \Sigma}\right) \cdot \Sigma \wedge \Sigma} \quad\left[\operatorname{dlog}(A-z \cdot B)=\frac{-B}{A-z \cdot B}=\left(-\frac{B}{A}\right)\left(1+\frac{z B}{A}+\left(\frac{z B}{A}\right)^{2}+\cdots\right)\right]$
$\Rightarrow \in \frac{A B P}{A B P} \quad$ [border of ROABP]
$>\partial_{z} \varphi\left(\frac{f}{T_{2}}\right) \rightarrow g_{1} \rightarrow \frac{A B P}{A B P}$, gives $f \in A B P$ [by interpolation]
- DiDIL $=$ Divide, Derive, Induct, Limit .

Finer lower bounds inside border-depth-3

$\overline{\Sigma^{k} \Pi \Sigma}$: Express $g=\Sigma_{i=1}^{k} \Pi_{j=1}^{d} \ell_{i, j}(x, \varepsilon)$, and then $f(x):=\lim _{\varepsilon \rightarrow 0} g(x, \varepsilon)$.
\square How do k and $k+1$ compare?
$>$ Remember $\overline{\Sigma^{k} \Pi \Sigma}$ computes every $f\left(x_{n}\right)$!

- Theorem [Dutta,S., FOCS'22]: $\overline{\Sigma^{k} \Pi \Sigma}, \overline{\Sigma^{k+1} \Pi \Sigma}$ are $\exp (n)$ separated.
\square Trick (modify DiDIL): $P_{d}:=x_{1,1} \cdots x_{1, d}+x_{2,1} \cdots x_{2, d}+x_{3,1} \cdots x_{3, d}$.
$>$ Assume $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\varepsilon \cdot S(\boldsymbol{x}, \varepsilon)$.
$>$ Introduce variable z for derivation. Homogenized map $\varphi: x_{i} \mapsto z \cdot x_{i}$.
$>\partial_{z} \varphi\left(\frac{P_{d}}{T_{2}}\right) \rightarrow \overline{\left(\frac{\Pi \Sigma}{\Pi \Sigma}\right) \cdot \Sigma \wedge \Sigma}$
$>x_{1,1} \cdots x_{1, d} \rightarrow \overline{\Sigma \wedge \Sigma} \quad\left[\right.$ coeef of $z^{d} \&$ a trick]
$>$ implies size $\geq 2^{d} \quad$ [Waring rank]

Conclusion

* Special ABP (ROABP) makes Debordering, Lower bounds, and Identity testing possible.
$>$ What about the sum of two ROABPs?
* Strengthen results to $\overline{\Sigma^{k} \Pi \Sigma} \subseteq \Sigma \Pi \Sigma$?
* Is border presentable? Explicit?
- Circuit factoring?
* Details at https://www.cse.iitk.ac.in/users/nitin/

THANK YOU!

Questions?

