COMBINATORIAL SCHEMES IN ALGEBRAIC
ALGORITHMS

Nitin Saxenal

(with Manuel Arora, Gabor Ivanyos and Marek Karpinski)

LIndian Institute of Technology
Kanpur, India

MTAGT Conference 2014
Villanova, PA



L COMBINATORIAL SCHEMES
L Derinrrions

OUTLINE

COMBINATORIAL SCHEMES
Definitions

)



L COMBINATORIAL SCHEMES
L Derinrrions

INVARIANT PARTITION

e The combinatorial objects in this talk are just partitions of
[n](m).



L COMBINATORIAL SCHEMES
L Derinrrions

INVARIANT PARTITION

e The combinatorial objects in this talk are just partitions of
[n](m).

o Where [n](™ is {(i1,...,in)| distinct i1, ..., in € [n]}.



L COMBINATORIAL SCHEMES
- DEFINITIONS

INVARIANT PARTITION

e The combinatorial objects in this talk are just partitions of
[n](m).

o Let P be a partition of [n](™). The elements of P are colors.



L COMBINATORIAL SCHEMES
- DEFINITIONS

INVARIANT PARTITION

e The combinatorial objects in this talk are just partitions of
[n](m).

o Let P be a partition of [n](™). The elements of P are colors.

e Foreg. {{(1,2),(2,3),(3,1)},{(1,3),(2,1),(3,2)}} is a

partition of [3](®) with two colors.



L COMBINATORIAL SCHEMES
- DEFINITIONS

INVARIANT PARTITION

The combinatorial objects in this talk are just partitions of
[n](m).

For eg. {{(1,2),(2,3),(3,1)},{(1,3),(2,1),(3,2)}} is a

partition of [3](®) with two colors.

e P is invariant if for every color P € P, Vo € Symm,,,,
P? e P.

Let P be a partition of [n](™). The elements of P are colors.
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e Suppose we have an invariant partition P of [n](*), for
1<s<m.

o Define projection m; : [n]) — [n]*~1) to be the map that
drops the i-th coordinate.

e We call Ps compatible if P € Ps = 7i(P) € Ps_1.

e We call Ps regular if VP € Ps: the number of preimages of
any tuple of 7;(P) in P is the same, i.e. |P|/|m;(P)|. This can
be thought of as a subdegree of color P.

e The collection {P1,...,Pn} is an m-scheme (on [n]) if all the
m partitions are invariant, compatible and regular.

e Foreg. P1:={[3]} and

P2 :=1{{(1,2),(2,3),(3,1)},{(1,3),(2,1),(3,2)} } comprise a
2-scheme on [3].
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e Examples of m-schemes are abundant in algebraic-
combinatorics.

e A regular connected graph (V/, E) is a 2-scheme on V.

e A strongly regular connected graph (V/, E) is a 3-scheme on
V. Define P3 with 8 colors each corresponding to the set of
triples (u, v, w) € V) with (u,v), (u,w) and (v, w) being
edges or non-edges.
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CLASSsIC EXAMPLES

Examples of m-schemes are abundant in algebraic-
combinatorics.

A regular connected graph (V, E) is a 2-scheme on V.

A strongly regular connected graph (V, E) is a 3-scheme on
V.

e A permutation group G < Symm,, gives an m-scheme on [n].

The colors of P are the various orbits of G acting on [n](®).

5/21
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e We are interested in more special m-schemes:

An m-scheme is homogeneous if |P1| = 1, i.e. P1 = {[n]}.

An m-scheme is antisymmetric if VP € Ps and o # id:
P £ P.
For eg. P1:={[3]} and

Po = {{(17 2)7 (27 3)7 (3a 1)}a {(17 3)a (27 1)7 (37 2)}} comprise a
homogeneous and antisymmetric 2-scheme on [3].
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SCHEMES CONJECTURE

e We expect that the antisymmetry condition forces the
subdegree to drop rapidly with m.

e To formalize this, we call a color P € Ps, in a m-scheme, a
matching if |P|/|m;(P)| = 1 and 7;(P) = 7;(P) for some
i #J.
e Schemes Conjecture: Every homogeneous, antisymmetric
4-scheme has a matching.
e We have proved this conjecture for the only such schemes we
currently know: orbit schemes.
e ... using Seress (1996) result: Primitive solvable permutation
groups have bases of size < 3.
e We do not know of a general proof even with the relaxation

|PI/|mi(P)| = o(n).

21
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1.

Every homogeneous, antisymmetric m-scheme on [n] has a
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TOWARDS THE CONJECTURE

e It is easy to see that the subdegree of certain colors gets
halved at each level due to antisymmetricity. But the
conjecture asks for much more!

e We have the following partial results:

1. Every homogeneous, antisymmetric m-scheme on [n] has a
matching if n is prime and (n— 1) has a /large m-smooth factor.

2. Every homogeneous, antisymmetric m-scheme on [n] has a
matching if m = [ log, n].

e Result (1) uses recent representation theory results of Hanaki &
Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes
(esp. prime association schemes).

e Result (2) follows by a matrix calculation.
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PoLYNOMIAL FACTORING OVER FINITE FIELDS

e Given a polynomial f(x) € Fg4[x] we want a nontrivial factor.

e It is not only a fundamental problem but also has practical
applications: coding theory, integer factoring algorithms,
computer algebra, ...

e Berlekamp (1967) showed that the problem reduces in

deterministic polynomial time to the problem of: factoring a
degree n polynomial with n distinct roots in a prime field .

21
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PoLYNOMIAL FACTORING METHODS

e Let f(x) be the input polynomial of degree n with distinct n
roots in IFp.

e The really useful algorithms - Berlekamp (1970), Cantor &
Zassenhaus (1981), von zur Gathen & Shoup (1992), Kaltofen
& Shoup (1995) - are all randomized and take poly(nlog p)
time.

e It is an open question to derandomize them.

12 /21
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RIEMANN HYPOTHESIS & POLYNOMIAL FACTORING

e Generalized Riemann Hypothesis (GRH) has been useful in
understanding the deterministic complexity of polynomial
factoring, albeit only in special cases.

e There are results based on GRH and combinatorial tricks, a

degree n polynomial f(x) can be nontrivially factored in
deterministic:

e poly(log p,n") time if r|n (Rényai 1987);
e poly(log p, n'°8") time (Evdokimov 1994).
e We greatly generalize the combinatorial object associated with
these polynomial factoring algorithms

e ...and homogeneous, antisymmetric m-schemes appear
naturally in the analysis.
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TENSOR POWERS

Let the input be f(x) € F,[x] of degree n having distinct
roots ai,...,a, € Fp.

We have a natural associated algebra A := k[X]/(f(X)).

A®s, for s € [m], is the s-th tensor power of A.

e Lemma: These tensor powers can be computed (in basis
form over k) in deterministic poly(log p,n™) time.
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INITIATION & REFINEMENTS

e Intend to decompose the tensor powers A®*, for all s € [m],
into ideals.

o Auty(A®®) contains Symm,.

e These nontrivial automorphisms of A®¢ (when s > 1) help
decompose these algebras under GRH (Rényai 1992).

e Thus, we can compute mutually orthogonal ideals /s ; of A®*
st A% =1+ + sy,

e Next try out quite natural refinements to either get a factor of
f(x) or a stable ideal decomposition.
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THE UNDERLYING SCHEME

Let the stable tensor power decomposition into orthogonal
nonzero ideals be: A% = [;1 + -+ + s, for all s € [m].

Let V :={aa,...,an} be the roots of f(x).

Lemma: The ideal Is; implicitly defines a subset of V()
Supp(ls,;) = {v € V) | Ja € Is;,a(7) # 0}

Thus, a decomposition of A®* induces a partition Ps of V().

Each ideal corresponds to a color!

The refinements are such that these Ps comprise a
homogeneous, antisymmetric m-scheme with no matching.

Truly stuck @
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INVOKING THE CONJECTURE

e If each homogeneous, antisymmetric m-scheme has a
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INVOKING THE CONJECTURE

e If each homogeneous, antisymmetric m-scheme has a
matching then the above algorithm leads to factoring f(x).

e Thus, the conjecture implies a deterministic polynomial time
factoring under GRH. (Assuming m small.)

e Applying the recent algebraic-combinatorics machinery we get

a partial result:
poly(log p, n™) time factoring under GRH if n is prime and
(n—1) has a large m-smooth factor.
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CONCLUSION

We introduced a natural class of partitions of [n]™ with an
algebraic feel!

We showed how it appears naturally in polynomial factoring
algorithms.

We proposed the schemes conjecture that holds true in all the
currently known homogeneous, antisymmetric 4-schemes.

Other examples of homogeneous, antisymmetric 4-schemes?

Further development of representation theory for 4-schemes?

Thanks!
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