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Combinatorial Schemes

Definitions

Invariant Partition

• The combinatorial objects in this talk are just partitions of
[n](m).

• Where [n](m) is {(i1, . . . , im)| distinct i1, . . . , im ∈ [n]}.
• Let P be a partition of [n](m). The elements of P are colors.

• For eg. {{(1, 2), (2, 3), (3, 1)}, {(1, 3), (2, 1), (3, 2)}} is a
partition of [3](2) with two colors.

• P is invariant if for every color P ∈ P, ∀σ ∈ Symmm,
Pσ ∈ P.
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Combinatorial Schemes

Definitions

Invariant + compatible + regular = m-scheme

• Suppose we have an invariant partition Ps of [n](s), for
1 ≤ s ≤ m.

• Define projection πi : [n](s) → [n](s−1) to be the map that
drops the i-th coordinate.

• We call Ps compatible if P ∈ Ps ⇒ πi (P) ∈ Ps−1.

• We call Ps regular if ∀P ∈ Ps : the number of preimages of
any tuple of πi (P) in P is the same, i.e. |P|/|πi (P)|. This can
be thought of as a subdegree of color P.

• The collection {P1, . . . ,Pm} is an m-scheme (on [n]) if all the
m partitions are invariant, compatible and regular.

• For eg. P1 := {[3]} and
P2 := {{(1, 2), (2, 3), (3, 1)}, {(1, 3), (2, 1), (3, 2)}} comprise a
2-scheme on [3].
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Combinatorial Schemes

Definitions

Classic Examples

• Examples of m-schemes are abundant in algebraic-
combinatorics.

• A regular connected graph (V ,E ) is a 2-scheme on V . Take
P1 = {V } and P2 = {E ,E}.

• A strongly regular connected graph (V ,E ) is a 3-scheme on
V . Define P3 with 8 colors each corresponding to the set of
triples (u, v ,w) ∈ V (3) with (u, v), (u,w) and (v ,w) being
edges or non-edges.

• A permutation group G ≤ Symmn gives an m-scheme on [n].
The colors of Ps are the various orbits of G acting on [n](s).
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Combinatorial Schemes

Definitions

... + Homogeneous + Antisymmetric

• We are interested in more special m-schemes:

• An m-scheme is homogeneous if |P1| = 1, i.e. P1 = {[n]}.
• An m-scheme is antisymmetric if ∀P ∈ Ps and σ 6= id :
Pσ 6= P.

• For eg. P1 := {[3]} and
P2 := {{(1, 2), (2, 3), (3, 1)}, {(1, 3), (2, 1), (3, 2)}} comprise a
homogeneous and antisymmetric 2-scheme on [3].
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Combinatorial Schemes

Conjecture

Schemes Conjecture

• We expect that the antisymmetry condition forces the
subdegree to drop rapidly with m.

• To formalize this, we call a color P ∈ Ps , in a m-scheme, a
matching if |P|/|πi (P)| = 1 and πi (P) = πj(P) for some
i 6= j .

• Schemes Conjecture: Every homogeneous, antisymmetric
4-scheme has a matching.

• We have proved this conjecture for the only such schemes we
currently know: orbit schemes.

• ... using Seress (1996) result: Primitive solvable permutation
groups have bases of size ≤ 3.

• We do not know of a general proof even with the relaxation
|P|/|πi (P)| = o(n).
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Combinatorial Schemes

Conjecture

Towards the Conjecture

• It is easy to see that the subdegree of certain colors gets
halved at each level due to antisymmetricity. But the
conjecture asks for much more!

• We have the following partial results:

1. Every homogeneous, antisymmetric m-scheme on [n] has a
matching if n is prime and (n− 1) has a large m-smooth factor.

2. Every homogeneous, antisymmetric m-scheme on [n] has a
matching if m = d 23 log2 ne.

• Result (1) uses recent representation theory results of Hanaki &

Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes

(esp. prime association schemes).

• Result (2) follows by a matrix calculation.
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Polynomial Factoring

The Problem
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Polynomial Factoring

The Problem

Polynomial Factoring over Finite Fields

• Given a polynomial f (x) ∈ Fq[x ] we want a nontrivial factor.

• It is not only a fundamental problem but also has practical
applications: coding theory, integer factoring algorithms,
computer algebra, ...

• Berlekamp (1967) showed that the problem reduces in
deterministic polynomial time to the problem of: factoring a
degree n polynomial with n distinct roots in a prime field Fp.
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Riemann Hypothesis & Polynomial Factoring

• Generalized Riemann Hypothesis (GRH) has been useful in
understanding the deterministic complexity of polynomial
factoring, albeit only in special cases.

• There are results based on GRH and combinatorial tricks, a
degree n polynomial f (x) can be nontrivially factored in
deterministic:

• poly(log p, nr ) time if r |n (Rónyai 1987);
• poly(log p, nlog n) time (Evdokimov 1994).

• We greatly generalize the combinatorial object associated with
these polynomial factoring algorithms

• ...and homogeneous, antisymmetric m-schemes appear
naturally in the analysis.
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Our Algorithm

Tensor Powers

Tensor Powers

• Let the input be f (x) ∈ Fp[x ] of degree n having distinct
roots α1, . . . , αn ∈ Fp.

• We have a natural associated algebra A := k[X ]/(f (X )). A is
isomorphic to kn, the direct sum of n copies of the algebra k.

• A⊗s , for s ∈ [m], is the s-th tensor power of A. A⊗s is
isomorphic to kn

s
.

• Lemma: These tensor powers can be computed (in basis
form over k) in deterministic poly(log p, nm) time.
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Our Algorithm

Tensor Powers

Initiation & Refinements

• Intend to decompose the tensor powers A⊗s , for all s ∈ [m],
into ideals.

• Autk(A⊗s) contains Symms . For σ ∈ Symms the
corresponding algebra automorphism action is:
(bi1 ⊗ · · · ⊗ bis )

σ = bi1σ ⊗ · · · ⊗ bisσ .

• These nontrivial automorphisms of A⊗s (when s > 1) help
decompose these algebras under GRH (Rónyai 1992).

• Thus, we can compute mutually orthogonal ideals Is,i of A⊗s

s.t. A⊗s = Is,1 + · · ·+ Is,ts .

• Next try out quite natural refinements to either get a factor of
f (x) or a stable ideal decomposition.
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Our Algorithm

Schemes

The underlying Scheme

• Let the stable tensor power decomposition into orthogonal
nonzero ideals be: A⊗s = Is,1 + · · ·+ Is,ts , for all s ∈ [m].

• Let V := {α1, . . . , αn} be the roots of f (x).

• Lemma: The ideal Is,i implicitly defines a subset of V (s):
Supp(Is,i ) := {v̄ ∈ V (s) | ∃a ∈ Is,i , a(v̄) 6= 0}

• Thus, a decomposition of A⊗s induces a partition Ps of V (s).
Each ideal corresponds to a color!

• The refinements are such that these Ps comprise a
homogeneous, antisymmetric m-scheme with no matching.

Truly stuck /
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Our Algorithm

Schemes

Invoking the Conjecture

• If each homogeneous, antisymmetric m-scheme has a
matching then the above algorithm leads to factoring f (x).

• Thus, the conjecture implies a deterministic polynomial time
factoring under GRH. (Assuming m small.)

• Applying the recent algebraic-combinatorics machinery we get
a partial result:
poly(log p, nm) time factoring under GRH if n is prime and
(n − 1) has a large m-smooth factor.
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Our Algorithm

Schemes

Conclusion

• We introduced a natural class of partitions of [n]m with an
algebraic feel!

• We showed how it appears naturally in polynomial factoring
algorithms.

• We proposed the schemes conjecture that holds true in all the
currently known homogeneous, antisymmetric 4-schemes.

• Other examples of homogeneous, antisymmetric 4-schemes?

• Further development of representation theory for 4-schemes?

Thanks!
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