Combinatorial Schemes in Algebraic Algorithms

Nitin Saxena¹ (with Manuel Arora, Gábor Ivanyos and Marek Karpinski)

¹Indian Institute of Technology Kanpur, India

MTAGT Conference 2014 Villanova, PA

OUTLINE

COMBINATORIAL SCHEMES Definitions

Conjecture

Polynomial Factoring

The Problem GRH Connection

OUR ALGORITHM

Tensor Powers Schemes

- The combinatorial objects in this talk are just partitions of $[n]^{(m)}$.
- Where $[n]^{(m)}$ is $\{(i_1,\ldots,i_m)|$ distinct $i_1,\ldots,i_m \in [n]\}$.
- Let \mathcal{P} be a partition of $[n]^{(m)}$. The elements of \mathcal{P} are colors.
- For eg. $\{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ is a partition of $[3]^{(2)}$ with two colors.
- \mathcal{P} is invariant if for every color $P \in \mathcal{P}$, $\forall \sigma \in \text{Symm}_m$, $P^{\sigma} \in \mathcal{P}$.

- The combinatorial objects in this talk are just partitions of $[n]^{(m)}$.
- Where $[n]^{(m)}$ is $\{(i_1, \ldots, i_m) | \text{ distinct } i_1, \ldots, i_m \in [n]\}$.
- Let \mathcal{P} be a partition of $[n]^{(m)}$. The elements of \mathcal{P} are colors.
- For eg. $\{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ is a partition of $[3]^{(2)}$ with two colors.
- \mathcal{P} is invariant if for every color $P \in \mathcal{P}$, $\forall \sigma \in \text{Symm}_m$, $P^{\sigma} \in \mathcal{P}$.

- The combinatorial objects in this talk are just partitions of $[n]^{(m)}$.
- Where $[n]^{(m)}$ is $\{(i_1,\ldots,i_m)|$ distinct $i_1,\ldots,i_m \in [n]\}$.
- Let \mathcal{P} be a partition of $[n]^{(m)}$. The elements of \mathcal{P} are colors.
- For eg. $\{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ is a partition of $[3]^{(2)}$ with two colors.
- \mathcal{P} is invariant if for every color $P \in \mathcal{P}$, $\forall \sigma \in \text{Symm}_m$, $P^{\sigma} \in \mathcal{P}$.

- The combinatorial objects in this talk are just partitions of $[n]^{(m)}$.
- Where $[n]^{(m)}$ is $\{(i_1, ..., i_m) | \text{ distinct } i_1, ..., i_m \in [n]\}.$
- Let \mathcal{P} be a partition of $[n]^{(m)}$. The elements of \mathcal{P} are colors.
- For eg. $\{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ is a partition of $[3]^{(2)}$ with two colors.
- \mathcal{P} is invariant if for every color $P \in \mathcal{P}$, $\forall \sigma \in \text{Symm}_m$, $P^{\sigma} \in \mathcal{P}$.

- The combinatorial objects in this talk are just partitions of $[n]^{(m)}$.
- Where $[n]^{(m)}$ is $\{(i_1, ..., i_m) | \text{ distinct } i_1, ..., i_m \in [n]\}.$
- Let \mathcal{P} be a partition of $[n]^{(m)}$. The elements of \mathcal{P} are colors.
- For eg. $\{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ is a partition of $[3]^{(2)}$ with two colors.
- \mathcal{P} is invariant if for every color $P \in \mathcal{P}$, $\forall \sigma \in \operatorname{Symm}_m$, $P^{\sigma} \in \mathcal{P}$.

- Suppose we have an invariant partition \mathcal{P}_s of $[n]^{(s)}$, for $1 \leq s \leq m$.
- Define projection π_i: [n]^(s) → [n]^(s-1) to be the map that drops the *i*-th coordinate.
- We call \mathcal{P}_s compatible if $P \in \mathcal{P}_s \Rightarrow \pi_i(P) \in \mathcal{P}_{s-1}$.
- We call P_s regular if ∀P ∈ P_s: the number of preimages of any tuple of π_i(P) in P is the same, i.e. |P|/|π_i(P)|. This can be thought of as a subdegree of color P.
- The collection {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_m\$}\$ is an *m*-scheme (on [*n*]) if all the *m* partitions are invariant, compatible and regular.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a 2-scheme on [3].

- Suppose we have an invariant partition \mathcal{P}_s of $[n]^{(s)}$, for $1 \leq s \leq m$.
- Define projection π_i: [n]^(s) → [n]^(s-1) to be the map that drops the *i*-th coordinate.
- We call \mathcal{P}_s compatible if $P \in \mathcal{P}_s \Rightarrow \pi_i(P) \in \mathcal{P}_{s-1}$.
- We call P_s regular if ∀P ∈ P_s: the number of preimages of any tuple of π_i(P) in P is the same, i.e. |P|/|π_i(P)|. This can be thought of as a subdegree of color P.
- The collection {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_m\$}\$ is an *m*-scheme (on [*n*]) if all the *m* partitions are invariant, compatible and regular.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a 2-scheme on [3].

Invariant + compatible + regular = m-SCHEME

- Suppose we have an invariant partition \mathcal{P}_s of $[n]^{(s)}$, for $1 \leq s \leq m$.
- Define projection π_i: [n]^(s) → [n]^(s-1) to be the map that drops the *i*-th coordinate.
- We call \mathcal{P}_s compatible if $P \in \mathcal{P}_s \Rightarrow \pi_i(P) \in \mathcal{P}_{s-1}$.
- We call P_s regular if ∀P ∈ P_s: the number of preimages of any tuple of π_i(P) in P is the same, i.e. |P|/|π_i(P)|. This can be thought of as a subdegree of color P.
- The collection {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_m\$}\$ is an *m*-scheme (on [*n*]) if all the *m* partitions are invariant, compatible and regular.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a 2-scheme on [3].

- Suppose we have an invariant partition \mathcal{P}_s of $[n]^{(s)}$, for $1 \leq s \leq m$.
- Define projection π_i: [n]^(s) → [n]^(s-1) to be the map that drops the *i*-th coordinate.
- We call \mathcal{P}_s compatible if $P \in \mathcal{P}_s \Rightarrow \pi_i(P) \in \mathcal{P}_{s-1}$.
- We call P_s regular if ∀P ∈ P_s: the number of preimages of any tuple of π_i(P) in P is the same, i.e. |P|/|π_i(P)|. This can be thought of as a subdegree of color P.
- The collection {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_m\$}\$ is an *m*-scheme (on [*n*]) if all the *m* partitions are invariant, compatible and regular.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a 2-scheme on [3].

- Suppose we have an invariant partition \mathcal{P}_s of $[n]^{(s)}$, for $1 \leq s \leq m$.
- Define projection π_i: [n]^(s) → [n]^(s-1) to be the map that drops the *i*-th coordinate.
- We call \mathcal{P}_s compatible if $P \in \mathcal{P}_s \Rightarrow \pi_i(P) \in \mathcal{P}_{s-1}$.
- We call P_s regular if ∀P ∈ P_s: the number of preimages of any tuple of π_i(P) in P is the same, i.e. |P|/|π_i(P)|. This can be thought of as a subdegree of color P.
- The collection {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_m\$}\$ is an *m*-scheme (on [*n*]) if all the *m* partitions are invariant, compatible and regular.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a 2-scheme on [3].

- Suppose we have an invariant partition \mathcal{P}_s of $[n]^{(s)}$, for $1 \leq s \leq m$.
- Define projection π_i: [n]^(s) → [n]^(s-1) to be the map that drops the *i*-th coordinate.
- We call \mathcal{P}_s compatible if $P \in \mathcal{P}_s \Rightarrow \pi_i(P) \in \mathcal{P}_{s-1}$.
- We call P_s regular if ∀P ∈ P_s: the number of preimages of any tuple of π_i(P) in P is the same, i.e. |P|/|π_i(P)|. This can be thought of as a subdegree of color P.
- The collection {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_m\$}\$ is an *m*-scheme (on [*n*]) if all the *m* partitions are invariant, compatible and regular.
- For eg. \$\mathcal{P}_1 := {[3]} and \$\mathcal{P}_2 := {{(1,2), (2,3), (3,1)}, {(1,3), (2,1), (3,2)}} comprise a 2-scheme on [3].

- Suppose we have an invariant partition \mathcal{P}_s of $[n]^{(s)}$, for $1 \leq s \leq m$.
- Define projection π_i: [n]^(s) → [n]^(s-1) to be the map that drops the *i*-th coordinate.
- We call \mathcal{P}_s compatible if $P \in \mathcal{P}_s \Rightarrow \pi_i(P) \in \mathcal{P}_{s-1}$.
- We call P_s regular if ∀P ∈ P_s: the number of preimages of any tuple of π_i(P) in P is the same, i.e. |P|/|π_i(P)|. This can be thought of as a subdegree of color P.
- The collection {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_m\$}\$ is an *m*-scheme (on [*n*]) if all the *m* partitions are invariant, compatible and regular.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a 2-scheme on [3].

- Examples of *m*-schemes are abundant in algebraic-combinatorics.
- A regular connected graph (V, E) is a 2-scheme on V. Take
 P₁ = {V} and P₂ = {E, E}.
- A strongly regular connected graph (V, E) is a 3-scheme on V. Define P₃ with 8 colors each corresponding to the set of triples (u, v, w) ∈ V⁽³⁾ with (u, v), (u, w) and (v, w) being edges or non-edges.
- A permutation group G ≤ Symm_n gives an m-scheme on [n]. The colors of P_s are the various orbits of G acting on [n]^(s).

- Examples of *m*-schemes are abundant in algebraic-combinatorics.
- A regular connected graph (V, E) is a 2-scheme on V. Take
 \$\mathcal{P}_1 = {V}\$ and \$\mathcal{P}_2 = {E, \overline{E}\$}\$.
- A strongly regular connected graph (V, E) is a 3-scheme on V. Define P₃ with 8 colors each corresponding to the set of triples (u, v, w) ∈ V⁽³⁾ with (u, v), (u, w) and (v, w) being edges or non-edges.
- A permutation group G ≤ Symm_n gives an m-scheme on [n]. The colors of P_s are the various orbits of G acting on [n]^(s).

- Examples of *m*-schemes are abundant in algebraic-combinatorics.
- A regular connected graph (V, E) is a 2-scheme on V. Take $\mathcal{P}_1 = \{V\}$ and $\mathcal{P}_2 = \{E, \overline{E}\}$.
- A strongly regular connected graph (V, E) is a 3-scheme on V. Define P₃ with 8 colors each corresponding to the set of triples (u, v, w) ∈ V⁽³⁾ with (u, v), (u, w) and (v, w) being edges or non-edges.
- A permutation group G ≤ Symm_n gives an m-scheme on [n]. The colors of P_s are the various orbits of G acting on [n]^(s).

- Examples of *m*-schemes are abundant in algebraic-combinatorics.
- A regular connected graph (V, E) is a 2-scheme on V. Take
 \$\mathcal{P}_1 = {V}\$ and \$\mathcal{P}_2 = {E, \overline{E}\$}\$.
- A strongly regular connected graph (V, E) is a 3-scheme on V. Define P₃ with 8 colors each corresponding to the set of triples (u, v, w) ∈ V⁽³⁾ with (u, v), (u, w) and (v, w) being edges or non-edges.
- A permutation group G ≤ Symm_n gives an m-scheme on [n]. The colors of P_s are the various orbits of G acting on [n]^(s).

- Examples of *m*-schemes are abundant in algebraic-combinatorics.
- A regular connected graph (V, E) is a 2-scheme on V. Take
 \$\mathcal{P}_1 = {V}\$ and \$\mathcal{P}_2 = {E, \overline{E}\$}\$.
- A strongly regular connected graph (V, E) is a 3-scheme on V. Define P₃ with 8 colors each corresponding to the set of triples (u, v, w) ∈ V⁽³⁾ with (u, v), (u, w) and (v, w) being edges or non-edges.
- A permutation group G ≤ Symm_n gives an m-scheme on [n]. The colors of P_s are the various orbits of G acting on [n]^(s).

- Examples of *m*-schemes are abundant in algebraic-combinatorics.
- A regular connected graph (V, E) is a 2-scheme on V. Take
 \$\mathcal{P}_1 = {V}\$ and \$\mathcal{P}_2 = {E, \overline{E}\$}\$.
- A strongly regular connected graph (V, E) is a 3-scheme on V. Define P₃ with 8 colors each corresponding to the set of triples (u, v, w) ∈ V⁽³⁾ with (u, v), (u, w) and (v, w) being edges or non-edges.
- A permutation group G ≤ Symm_n gives an *m*-scheme on [n]. The colors of P_s are the various orbits of G acting on [n]^(s).

- Examples of *m*-schemes are abundant in algebraic-combinatorics.
- A regular connected graph (V, E) is a 2-scheme on V. Take
 \$\mathcal{P}_1 = {V}\$ and \$\mathcal{P}_2 = {E, \overline{E}\$}\$.
- A strongly regular connected graph (V, E) is a 3-scheme on V. Define P₃ with 8 colors each corresponding to the set of triples (u, v, w) ∈ V⁽³⁾ with (u, v), (u, w) and (v, w) being edges or non-edges.
- A permutation group G ≤ Symm_n gives an m-scheme on [n]. The colors of P_s are the various orbits of G acting on [n]^(s).

- We are interested in more special *m*-schemes:
- An *m*-scheme is homogeneous if $|\mathcal{P}_1| = 1$, i.e. $\mathcal{P}_1 = \{[n]\}$.
- An *m*-scheme is antisymmetric if $\forall P \in \mathcal{P}_s$ and $\sigma \neq id$: $P^{\sigma} \neq P$.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a homogeneous and antisymmetric 2-scheme on [3].

- We are interested in more special *m*-schemes:
- An *m*-scheme is homogeneous if $|\mathcal{P}_1| = 1$, i.e. $\mathcal{P}_1 = \{[n]\}$.
- An *m*-scheme is antisymmetric if $\forall P \in \mathcal{P}_s$ and $\sigma \neq id$: $P^{\sigma} \neq P$.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a homogeneous and antisymmetric 2-scheme on [3].

- We are interested in more special *m*-schemes:
- An *m*-scheme is homogeneous if $|\mathcal{P}_1| = 1$, i.e. $\mathcal{P}_1 = \{[n]\}$.
- An *m*-scheme is antisymmetric if $\forall P \in \mathcal{P}_s$ and $\sigma \neq id$: $P^{\sigma} \neq P$.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a homogeneous and antisymmetric 2-scheme on [3].

- We are interested in more special *m*-schemes:
- An *m*-scheme is homogeneous if $|\mathcal{P}_1| = 1$, i.e. $\mathcal{P}_1 = \{[n]\}$.
- An *m*-scheme is antisymmetric if $\forall P \in \mathcal{P}_s$ and $\sigma \neq id$: $P^{\sigma} \neq P$.
- For eg. $\mathcal{P}_1 := \{[3]\}$ and $\mathcal{P}_2 := \{\{(1,2), (2,3), (3,1)\}, \{(1,3), (2,1), (3,2)\}\}$ comprise a homogeneous and antisymmetric 2-scheme on [3].

OUTLINE

Combinatorial Schemes

Conjecture

Polynomial Factoring

The Problem GRH Connection

OUR ALGORITHM

Tensor Powers Schemes

- We expect that the antisymmetry condition forces the subdegree to drop *rapidly* with *m*.
- To formalize this, we call a color P ∈ P_s, in a m-scheme, a matching if |P|/|π_i(P)| = 1 and π_i(P) = π_j(P) for some i ≠ j.
- **Schemes Conjecture:** Every homogeneous, antisymmetric 4-scheme has a matching.
 - We have proved this conjecture for the only such schemes we currently know: *orbit schemes*.
 - ... using Seress (1996) result: Primitive solvable permutation groups have bases of size ≤ 3.
 - We do not know of a general proof even with the relaxation $|P|/|\pi_i(P)| = o(n).$

- We expect that the antisymmetry condition forces the subdegree to drop *rapidly* with *m*.
- To formalize this, we call a color P ∈ P_s, in a m-scheme, a matching if |P|/|π_i(P)| = 1 and π_i(P) = π_j(P) for some i ≠ j.
- **Schemes Conjecture:** *Every homogeneous, antisymmetric* 4-*scheme has a matching.*
 - We have proved this conjecture for the only such schemes we currently know: orbit schemes.
 - ... using Seress (1996) result: Primitive solvable permutation groups have bases of size ≤ 3.
 - We do not know of a general proof even with the relaxation $|P|/|\pi_i(P)| = o(n).$

- We expect that the antisymmetry condition forces the subdegree to drop *rapidly* with *m*.
- To formalize this, we call a color P ∈ P_s, in a m-scheme, a matching if |P|/|π_i(P)| = 1 and π_i(P) = π_j(P) for some i ≠ j.
- **Schemes Conjecture:** *Every homogeneous, antisymmetric* 4-*scheme has a matching.*
 - We have proved this conjecture for the only such schemes we currently know: orbit schemes.
 - ... using Seress (1996) result: Primitive solvable permutation groups have bases of size ≤ 3.
 - We do not know of a general proof even with the relaxation $|P|/|\pi_i(P)| = o(n).$

- We expect that the antisymmetry condition forces the subdegree to drop *rapidly* with *m*.
- To formalize this, we call a color P ∈ P_s, in a m-scheme, a matching if |P|/|π_i(P)| = 1 and π_i(P) = π_j(P) for some i ≠ j.
- Schemes Conjecture: Every homogeneous, antisymmetric 4-scheme has a matching.
 - We have proved this conjecture for the only such schemes we currently know: *orbit schemes*.
 - ... using Seress (1996) result: Primitive solvable permutation groups have bases of size ≤ 3.
 - We do not know of a general proof even with the relaxation $|P|/|\pi_i(P)| = o(n)$.

- We expect that the antisymmetry condition forces the subdegree to drop *rapidly* with *m*.
- To formalize this, we call a color P ∈ P_s, in a m-scheme, a matching if |P|/|π_i(P)| = 1 and π_i(P) = π_j(P) for some i ≠ j.
- Schemes Conjecture: Every homogeneous, antisymmetric 4-scheme has a matching.
 - We have proved this conjecture for the only such schemes we currently know: *orbit schemes*.
 - ... using Seress (1996) result: Primitive solvable permutation groups have bases of size ≤ 3 .
 - We do not know of a general proof even with the relaxation $|P|/|\pi_i(P)| = o(n)$.

- We expect that the antisymmetry condition forces the subdegree to drop *rapidly* with *m*.
- To formalize this, we call a color P ∈ P_s, in a m-scheme, a matching if |P|/|π_i(P)| = 1 and π_i(P) = π_j(P) for some i ≠ j.
- Schemes Conjecture: Every homogeneous, antisymmetric 4-scheme has a matching.
 - We have proved this conjecture for the only such schemes we currently know: *orbit schemes*.
 - ... using Seress (1996) result: Primitive solvable permutation groups have bases of size ≤ 3 .
 - We do not know of a general proof even with the relaxation $|P|/|\pi_i(P)| = o(n).$

- We expect that the antisymmetry condition forces the subdegree to drop *rapidly* with *m*.
- To formalize this, we call a color P ∈ P_s, in a m-scheme, a matching if |P|/|π_i(P)| = 1 and π_i(P) = π_j(P) for some i ≠ j.
- Schemes Conjecture: Every homogeneous, antisymmetric 4-scheme has a matching.
 - We have proved this conjecture for the only such schemes we currently know: *orbit schemes*.
 - ... using Seress (1996) result: Primitive solvable permutation groups have bases of size ≤ 3 .
 - We do not know of a general proof even with the relaxation $|P|/|\pi_i(P)| = o(n)$.

TOWARDS THE CONJECTURE

- It is easy to see that the subdegree of certain colors gets *halved* at each level due to antisymmetricity. But the conjecture asks for much more!
- We have the following partial results:
 - 1. Every homogeneous, antisymmetric *m*-scheme on [n] has a matching if *n* is prime and (n-1) has a *large m*-smooth factor
 - 2. Every homogeneous, antisymmetric *m*-scheme on [*n*] has a matching if $m = \lceil \frac{2}{3} \log_2 n \rceil$.
- Result (1) uses recent *representation theory* results of Hanaki & Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes (esp. prime association schemes).
- Result (2) follows by a matrix calculation.

TOWARDS THE CONJECTURE

- It is easy to see that the subdegree of certain colors gets *halved* at each level due to antisymmetricity. But the conjecture asks for much more!
- We have the following partial results:
 - 1. Every homogeneous, antisymmetric *m*-scheme on [n] has a matching if *n* is prime and (n-1) has a *large m*-smooth factor.
 - 2. Every homogeneous, antisymmetric *m*-scheme on [*n*] has a matching if $m = \lceil \frac{2}{3} \log_2 n \rceil$.
- Result (1) uses recent *representation theory* results of Hanaki & Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes (esp. prime association schemes).
- Result (2) follows by a matrix calculation.

TOWARDS THE CONJECTURE

- It is easy to see that the subdegree of certain colors gets *halved* at each level due to antisymmetricity. But the conjecture asks for much more!
- We have the following partial results:
 - 1. Every homogeneous, antisymmetric *m*-scheme on [n] has a matching if *n* is prime and (n-1) has a *large m*-smooth factor.
 - 2. Every homogeneous, antisymmetric *m*-scheme on [*n*] has a matching if $m = \lceil \frac{2}{3} \log_2 n \rceil$.
- Result (1) uses recent *representation theory* results of Hanaki & Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes (esp. prime association schemes).
- Result (2) follows by a matrix calculation.

TOWARDS THE CONJECTURE

- It is easy to see that the subdegree of certain colors gets *halved* at each level due to antisymmetricity. But the conjecture asks for much more!
- We have the following partial results:
 - 1. Every homogeneous, antisymmetric *m*-scheme on [n] has a matching if *n* is prime and (n-1) has a *large m*-smooth factor.
 - 2. Every homogeneous, antisymmetric *m*-scheme on [*n*] has a matching if $m = \lceil \frac{2}{3} \log_2 n \rceil$.
- Result (1) uses recent *representation theory* results of Hanaki & Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes (esp. prime association schemes).
- Result (2) follows by a matrix calculation.

TOWARDS THE CONJECTURE

- It is easy to see that the subdegree of certain colors gets *halved* at each level due to antisymmetricity. But the conjecture asks for much more!
- We have the following partial results:
 - 1. Every homogeneous, antisymmetric *m*-scheme on [n] has a matching if *n* is prime and (n-1) has a *large m*-smooth factor.
 - 2. Every homogeneous, antisymmetric *m*-scheme on [*n*] has a matching if $m = \lceil \frac{2}{3} \log_2 n \rceil$.
- Result (1) uses recent *representation theory* results of Hanaki & Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes (esp. prime association schemes).
- Result (2) follows by a matrix calculation.

TOWARDS THE CONJECTURE

- It is easy to see that the subdegree of certain colors gets *halved* at each level due to antisymmetricity. But the conjecture asks for much more!
- We have the following partial results:
 - 1. Every homogeneous, antisymmetric *m*-scheme on [n] has a matching if *n* is prime and (n-1) has a *large m*-smooth factor.
 - 2. Every homogeneous, antisymmetric *m*-scheme on [*n*] has a matching if $m = \lceil \frac{2}{3} \log_2 n \rceil$.
- Result (1) uses recent *representation theory* results of Hanaki & Uno (2006), Muzychuk & Ponomarenko (2012) about 3-schemes (esp. prime association schemes).
- Result (2) follows by a matrix calculation.

Polynomial Factoring

OUTLINE

COMBINATORIAL SCHEMES Definitions Conjecture

POLYNOMIAL FACTORING The Problem

GRH Connection

Our Algorithm

Tensor Powers Schemes

POLYNOMIAL FACTORING OVER FINITE FIELDS

• Given a polynomial $f(x) \in \mathbb{F}_q[x]$ we want a nontrivial factor.

- It is not only a fundamental problem but also has practical applications: coding theory, integer factoring algorithms, computer algebra, ...
- Berlekamp (1967) showed that the problem reduces in deterministic polynomial time to the problem of: factoring a degree n polynomial with n distinct roots in a prime field F_p.

POLYNOMIAL FACTORING OVER FINITE FIELDS

- Given a polynomial $f(x) \in \mathbb{F}_q[x]$ we want a nontrivial factor.
- It is not only a fundamental problem but also has practical applications: coding theory, integer factoring algorithms, computer algebra, ...
- Berlekamp (1967) showed that the problem reduces in deterministic polynomial time to the problem of: *factoring a* degree n polynomial with n distinct roots in a prime field F_p.

POLYNOMIAL FACTORING OVER FINITE FIELDS

- Given a polynomial $f(x) \in \mathbb{F}_q[x]$ we want a nontrivial factor.
- It is not only a fundamental problem but also has practical applications: coding theory, integer factoring algorithms, computer algebra, ...
- Berlekamp (1967) showed that the problem reduces in deterministic polynomial time to the problem of: *factoring a* degree n polynomial with n distinct roots in a prime field 𝔽_p.

Polynomial Factoring Methods

- Let f(x) be the input polynomial of degree n with distinct n roots in 𝔽_p.
- The really useful algorithms Berlekamp (1970), Cantor & Zassenhaus (1981), von zur Gathen & Shoup (1992), Kaltofen & Shoup (1995) are all *randomized* and take *poly*(*n* log *p*) time.
- It is an open question to derandomize them.

POLYNOMIAL FACTORING METHODS

- Let f(x) be the input polynomial of degree n with distinct n roots in 𝔽_p.
- The really useful algorithms Berlekamp (1970), Cantor & Zassenhaus (1981), von zur Gathen & Shoup (1992), Kaltofen & Shoup (1995) are all *randomized* and take *poly(n log p)* time.
- It is an open question to derandomize them.

POLYNOMIAL FACTORING METHODS

- Let f(x) be the input polynomial of degree n with distinct n roots in 𝔽_p.
- The really useful algorithms Berlekamp (1970), Cantor & Zassenhaus (1981), von zur Gathen & Shoup (1992), Kaltofen & Shoup (1995) are all *randomized* and take *poly*(*n* log *p*) time.
- It is an open question to derandomize them.

└─Polynomial Factoring └─GRH Connection

OUTLINE

Combinatorial Schemes

Definitions

POLYNOMIAL FACTORING

The Problem GRH Connection

OUR ALGORITHM

Tensor Powers Schemes

- Generalized Riemann Hypothesis (GRH) has been useful in understanding the deterministic complexity of polynomial factoring, albeit only in special cases.
- There are results based on GRH and combinatorial tricks, a degree *n* polynomial *f*(*x*) can be nontrivially factored in deterministic:
 - poly(log p, n^r) time if r|n (Rónyai 1987);
 - poly(log p, n^{log n}) time (Evdokimov 1994).
- We greatly generalize the combinatorial object associated with these polynomial factoring algorithms
- ...and homogeneous, antisymmetric *m*-schemes appear naturally in the analysis.

- Generalized Riemann Hypothesis (GRH) has been useful in understanding the deterministic complexity of polynomial factoring, albeit only in special cases.
- There are results based on GRH and combinatorial tricks, a degree n polynomial f(x) can be nontrivially factored in deterministic:
 - $poly(\log p, n^r)$ time if r|n (Rónyai 1987);
 - $poly(\log p, n^{\log n})$ time (Evdokimov 1994).
- We greatly generalize the combinatorial object associated with these polynomial factoring algorithms
- ...and homogeneous, antisymmetric *m*-schemes appear naturally in the analysis.

- Generalized Riemann Hypothesis (GRH) has been useful in understanding the deterministic complexity of polynomial factoring, albeit only in special cases.
- There are results based on GRH and combinatorial tricks, a degree n polynomial f(x) can be nontrivially factored in deterministic:
 - $poly(\log p, n^r)$ time if r|n (Rónyai 1987);
 - $poly(\log p, n^{\log n})$ time (Evdokimov 1994).
- We greatly generalize the combinatorial object associated with these polynomial factoring algorithms
- ...and homogeneous, antisymmetric *m*-schemes appear naturally in the analysis.

- Generalized Riemann Hypothesis (GRH) has been useful in understanding the deterministic complexity of polynomial factoring, albeit only in special cases.
- There are results based on GRH and combinatorial tricks, a degree n polynomial f(x) can be nontrivially factored in deterministic:
 - $poly(\log p, n^r)$ time if r|n (Rónyai 1987);
 - $poly(\log p, n^{\log n})$ time (Evdokimov 1994).
- We greatly generalize the combinatorial object associated with these polynomial factoring algorithms
- ...and homogeneous, antisymmetric *m*-schemes appear naturally in the analysis.

- Generalized Riemann Hypothesis (GRH) has been useful in understanding the deterministic complexity of polynomial factoring, albeit only in special cases.
- There are results based on GRH and combinatorial tricks, a degree n polynomial f(x) can be nontrivially factored in deterministic:
 - $poly(\log p, n^r)$ time if r|n (Rónyai 1987);
 - $poly(\log p, n^{\log n})$ time (Evdokimov 1994).
- We greatly generalize the combinatorial object associated with these polynomial factoring algorithms
- ...and homogeneous, antisymmetric *m*-schemes appear naturally in the analysis.

OUTLINE

Combinatorial Schemes

Definitions Conjecture

POLYNOMIAL FACTORING

The Problem GRH Connection

OUR ALGORITHM Tensor Powers Schemes

- Let the input be f(x) ∈ 𝔽_p[x] of degree n having distinct roots α₁,..., α_n ∈ 𝔽_p.
- We have a natural associated algebra A := k[X]/(f(X)). A is isomorphic to kⁿ, the direct sum of n copies of the algebra k.
- A^{⊗s}, for s ∈ [m], is the s-th tensor power of A. A^{⊗s} is isomorphic to k^{n^s}.
- Lemma: These tensor powers can be computed (in basis form over k) in deterministic poly(log p, n^m) time.

- Let the input be f(x) ∈ 𝔽_p[x] of degree n having distinct roots α₁,..., α_n ∈ 𝔽_p.
- We have a natural associated algebra A := k[X]/(f(X)). A is isomorphic to kⁿ, the direct sum of n copies of the algebra k.
- A^{⊗s}, for s ∈ [m], is the s-th tensor power of A. A^{⊗s} is isomorphic to k^{n^s}.
- **Lemma:** These tensor powers can be computed (in basis form over k) in deterministic poly(log p, n^m) time.

- Let the input be f(x) ∈ 𝔽_p[x] of degree n having distinct roots α₁,..., α_n ∈ 𝔽_p.
- We have a natural associated algebra A := k[X]/(f(X)). A is isomorphic to kⁿ, the direct sum of n copies of the algebra k.
- A^{⊗s}, for s ∈ [m], is the s-th tensor power of A. A^{⊗s} is isomorphic to k^{n^s}.
- **Lemma:** These tensor powers can be computed (in basis form over k) in deterministic poly(log p, n^m) time.

- Let the input be f(x) ∈ 𝔽_p[x] of degree n having distinct roots α₁,..., α_n ∈ 𝔽_p.
- We have a natural associated algebra A := k[X]/(f(X)). A is isomorphic to kⁿ, the direct sum of n copies of the algebra k.
- A^{⊗s}, for s ∈ [m], is the s-th tensor power of A. A^{⊗s} is isomorphic to k^{n^s}.
- **Lemma:** These tensor powers can be computed (in basis form over k) in deterministic poly(log p, n^m) time.

- Let the input be f(x) ∈ 𝔽_p[x] of degree n having distinct roots α₁,..., α_n ∈ 𝔽_p.
- We have a natural associated algebra A := k[X]/(f(X)). A is isomorphic to kⁿ, the direct sum of n copies of the algebra k.
- $\mathcal{A}^{\otimes s}$, for $s \in [m]$, is the *s*-th tensor power of \mathcal{A} . $\mathcal{A}^{\otimes s}$ is isomorphic to k^{n^s} .
- Lemma: These tensor powers can be computed (in basis form over k) in deterministic poly(log p, n^m) time.

- Let the input be f(x) ∈ 𝔽_p[x] of degree n having distinct roots α₁,..., α_n ∈ 𝔽_p.
- We have a natural associated algebra A := k[X]/(f(X)). A is isomorphic to kⁿ, the direct sum of n copies of the algebra k.
- A^{⊗s}, for s ∈ [m], is the s-th tensor power of A. A^{⊗s} is isomorphic to k^{n^s}.
- Lemma: These tensor powers can be computed (in basis form over k) in deterministic poly(log p, n^m) time.

- Intend to decompose the tensor powers A^{⊗s}, for all s ∈ [m], into ideals.
- Aut_k(A^{⊗s}) contains Symm_s. For σ ∈ Symm_s the corresponding algebra automorphism action is: (b_i ⊗ · · · ⊗ b_i)^σ = b_h_σ ⊗ · · · ⊗ b_h_σ.
- These nontrivial automorphisms of $\mathcal{A}^{\otimes s}$ (when s > 1) help decompose these algebras under GRH (Rónyai 1992).
- Thus, we can compute mutually orthogonal ideals *I_{s,i}* of *A*^{⊗s} s.t. *A*^{⊗s} = *I_{s,1}* + · · · + *I_{s,ts}*.
- Next try out quite natural refinements to either get a factor of f(x) or a stable ideal decomposition.

- Intend to decompose the tensor powers A^{⊗s}, for all s ∈ [m], into ideals.
- Aut_k(A^{⊗s}) contains Symm_s. For σ ∈ Symm_s the corresponding algebra automorphism action is: (b_{i1} ⊗ · · · ⊗ b_{is})^σ = b_{i1σ} ⊗ · · · ⊗ b_{isσ}.
- These nontrivial automorphisms of $\mathcal{A}^{\otimes s}$ (when s > 1) help decompose these algebras under GRH (Rónyai 1992).
- Thus, we can compute mutually orthogonal ideals *I_{s,i}* of *A*^{⊗s} s.t. *A*^{⊗s} = *I_{s,1}* + · · · + *I_{s,ts}*.
- Next try out quite natural refinements to either get a factor of f(x) or a stable ideal decomposition.

- Intend to decompose the tensor powers A^{⊗s}, for all s ∈ [m], into ideals.
- Aut_k(A^{⊗s}) contains Symm_s. For σ ∈ Symm_s the corresponding algebra automorphism action is: (b_{i1} ⊗ · · · ⊗ b_{is})^σ = b_{i1σ} ⊗ · · · ⊗ b_{isσ}.
- These nontrivial automorphisms of $\mathcal{A}^{\otimes s}$ (when s > 1) help decompose these algebras under GRH (Rónyai 1992).
- Thus, we can compute mutually orthogonal ideals *I_{s,i}* of *A*^{⊗s} s.t. *A*^{⊗s} = *I_{s,1}* + · · · + *I_{s,ts}*.
- Next try out quite natural refinements to either get a factor of f(x) or a stable ideal decomposition.

- Intend to decompose the tensor powers A^{⊗s}, for all s ∈ [m], into ideals.
- Aut_k(A^{⊗s}) contains Symm_s. For σ ∈ Symm_s the corresponding algebra automorphism action is: (b_{i1} ⊗ · · · ⊗ b_{is})^σ = b_{i1σ} ⊗ · · · ⊗ b_{isσ}.
- These nontrivial automorphisms of $\mathcal{A}^{\otimes s}$ (when s > 1) help decompose these algebras under GRH (Rónyai 1992).
- Thus, we can compute mutually orthogonal ideals *I_{s,i}* of *A*^{⊗s} s.t. *A*^{⊗s} = *I_{s,1}* + · · · + *I_{s,ts}*.
- Next try out quite natural refinements to either get a factor of f(x) or a stable ideal decomposition.

- Intend to decompose the tensor powers A^{⊗s}, for all s ∈ [m], into ideals.
- Aut_k(A^{⊗s}) contains Symm_s. For σ ∈ Symm_s the corresponding algebra automorphism action is: (b_{i1} ⊗ · · · ⊗ b_{is})^σ = b_{i1σ} ⊗ · · · ⊗ b_{isσ}.
- These nontrivial automorphisms of $\mathcal{A}^{\otimes s}$ (when s > 1) help decompose these algebras under GRH (Rónyai 1992).
- Thus, we can compute mutually orthogonal ideals *I_{s,i}* of *A*^{⊗s} s.t. *A*^{⊗s} = *I_{s,1}* + · · · + *I_{s,ts}*.
- Next try out quite natural refinements to either get a factor of f(x) or a stable ideal decomposition.

- Intend to decompose the tensor powers A^{⊗s}, for all s ∈ [m], into ideals.
- Aut_k(A^{⊗s}) contains Symm_s. For σ ∈ Symm_s the corresponding algebra automorphism action is: (b_{i1} ⊗ · · · ⊗ b_{is})^σ = b_{i1σ} ⊗ · · · ⊗ b_{isσ}.
- These nontrivial automorphisms of $\mathcal{A}^{\otimes s}$ (when s > 1) help decompose these algebras under GRH (Rónyai 1992).
- Thus, we can compute mutually orthogonal ideals *I_{s,i}* of *A*^{⊗s} s.t. *A*^{⊗s} = *I_{s,1}* + · · · + *I_{s,ts}*.
- Next try out quite natural refinements to either get a factor of f(x) or a stable ideal decomposition.

OUTLINE

Combinatorial Schemes

Definitions Conjecture

POLYNOMIAL FACTORING

The Problem GRH Connection

Our Algorithm Tensor Powers

Schemes

- Let the stable tensor power decomposition into orthogonal nonzero ideals be: A^{⊗s} = I_{s,1} + · · · + I_{s,ts}, for all s ∈ [m].
- Let $V := \{\alpha_1, \ldots, \alpha_n\}$ be the roots of f(x).
- Lemma: The ideal l_{s,i} implicitly defines a subset of V^(s): Supp(l_{s,i}) := { v ∈ V^(s) | ∃a ∈ l_{s,i}, a(v) ≠ 0}
- Thus, a decomposition of A^{⊗s} induces a partition P_s of V^(s). Each ideal corresponds to a color!
- The refinements are such that these P_s comprise a homogeneous, antisymmetric *m*-scheme with no matching.

- Let the stable tensor power decomposition into orthogonal nonzero ideals be: A^{⊗s} = I_{s,1} + · · · + I_{s,ts}, for all s ∈ [m].
- Let $V := \{\alpha_1, \ldots, \alpha_n\}$ be the roots of f(x).
- Lemma: The ideal l_{s,i} implicitly defines a subset of V^(s): Supp(l_{s,i}) := { v ∈ V^(s) | ∃a ∈ l_{s,i}, a(v) ≠ 0}
- Thus, a decomposition of A^{⊗s} induces a partition P_s of V^(s). Each ideal corresponds to a color!
- The refinements are such that these P_s comprise a homogeneous, antisymmetric *m*-scheme with no matching.

- Let the stable tensor power decomposition into orthogonal nonzero ideals be: A^{⊗s} = I_{s,1} + · · · + I_{s,ts}, for all s ∈ [m].
- Let $V := \{\alpha_1, \ldots, \alpha_n\}$ be the roots of f(x).
- Lemma: The ideal I_{s,i} implicitly defines a subset of V^(s): Supp(I_{s,i}) := { v ∈ V^(s) | ∃a ∈ I_{s,i}, a(v) ≠ 0}
- Thus, a decomposition of A^{⊗s} induces a partition P_s of V^(s). Each ideal corresponds to a color!
- The refinements are such that these P_s comprise a homogeneous, antisymmetric *m*-scheme with no matching.

- Let the stable tensor power decomposition into orthogonal nonzero ideals be: A^{⊗s} = I_{s,1} + · · · + I_{s,ts}, for all s ∈ [m].
- Let $V := \{\alpha_1, \ldots, \alpha_n\}$ be the roots of f(x).
- Lemma: The ideal $I_{s,i}$ implicitly defines a subset of $V^{(s)}$: $\operatorname{Supp}(I_{s,i}) := \{ \overline{v} \in V^{(s)} \mid \exists a \in I_{s,i}, a(\overline{v}) \neq 0 \}$
- Thus, a decomposition of A^{⊗s} induces a partition P_s of V^(s). Each ideal corresponds to a color!
- The refinements are such that these P_s comprise a homogeneous, antisymmetric *m*-scheme with no matching.

- Let the stable tensor power decomposition into orthogonal nonzero ideals be: A^{⊗s} = I_{s,1} + · · · + I_{s,ts}, for all s ∈ [m].
- Let $V := \{\alpha_1, \ldots, \alpha_n\}$ be the roots of f(x).
- Lemma: The ideal $I_{s,i}$ implicitly defines a subset of $V^{(s)}$: $\operatorname{Supp}(I_{s,i}) := \{ \overline{v} \in V^{(s)} \mid \exists a \in I_{s,i}, a(\overline{v}) \neq 0 \}$
- Thus, a decomposition of A^{⊗s} induces a partition P_s of V^(s). Each ideal corresponds to a color!
- The refinements are such that these P_s comprise a homogeneous, antisymmetric *m*-scheme with no matching.

- Let the stable tensor power decomposition into orthogonal nonzero ideals be: A^{⊗s} = I_{s,1} + · · · + I_{s,ts}, for all s ∈ [m].
- Let $V := \{\alpha_1, \ldots, \alpha_n\}$ be the roots of f(x).
- Lemma: The ideal $I_{s,i}$ implicitly defines a subset of $V^{(s)}$: $\operatorname{Supp}(I_{s,i}) := \{ \overline{v} \in V^{(s)} \mid \exists a \in I_{s,i}, a(\overline{v}) \neq 0 \}$
- Thus, a decomposition of A^{⊗s} induces a partition P_s of V^(s). Each ideal corresponds to a color!
- The refinements are such that these P_s comprise a homogeneous, antisymmetric *m*-scheme with no matching.

The underlying Scheme

- Let the stable tensor power decomposition into orthogonal nonzero ideals be: A^{⊗s} = I_{s,1} + · · · + I_{s,ts}, for all s ∈ [m].
- Let $V := \{\alpha_1, \ldots, \alpha_n\}$ be the roots of f(x).
- Lemma: The ideal $I_{s,i}$ implicitly defines a subset of $V^{(s)}$: $\operatorname{Supp}(I_{s,i}) := \{ \overline{v} \in V^{(s)} \mid \exists a \in I_{s,i}, a(\overline{v}) \neq 0 \}$
- Thus, a decomposition of A^{⊗s} induces a partition P_s of V^(s). Each ideal corresponds to a color!
- The refinements are such that these P_s comprise a homogeneous, antisymmetric *m*-scheme with no matching.

Truly stuck 🔅

- If each homogeneous, antisymmetric *m*-scheme has a matching then the above algorithm leads to factoring *f*(*x*).
- Thus, the conjecture implies a deterministic polynomial time factoring under GRH. (Assuming *m small*.)
- Applying the recent algebraic-combinatorics machinery we get a partial result:

poly(log p, n^m) time factoring under GRH if n is prime and (n-1) has a large m-smooth factor.

- If each homogeneous, antisymmetric *m*-scheme has a matching then the above algorithm leads to factoring *f*(*x*).
- Thus, the conjecture implies a deterministic polynomial time factoring under GRH. (Assuming *m small*.)
- Applying the recent algebraic-combinatorics machinery we get a partial result:

poly(log p, n^m) time factoring under GRH if n is prime and (n-1) has a large m-smooth factor.

- If each homogeneous, antisymmetric *m*-scheme has a matching then the above algorithm leads to factoring *f*(*x*).
- Thus, the conjecture implies a deterministic polynomial time factoring under GRH. (Assuming *m small*.)
- Applying the recent algebraic-combinatorics machinery we get a partial result:

 $poly(\log p, n^m)$ time factoring under GRH if *n* is prime and (n-1) has a large *m*-smooth factor.

- If each homogeneous, antisymmetric *m*-scheme has a matching then the above algorithm leads to factoring *f*(*x*).
- Thus, the conjecture implies a deterministic polynomial time factoring under GRH. (Assuming *m small*.)
- Applying the recent algebraic-combinatorics machinery we get a partial result:

 $poly(\log p, n^m)$ time factoring under GRH if *n* is prime and (n-1) has a large *m*-smooth factor.

- We introduced a natural class of partitions of $[n]^m$ with an algebraic feel!
- We showed how it appears naturally in polynomial factoring algorithms.
- We proposed the schemes conjecture that holds true in all the currently known homogeneous, antisymmetric 4-schemes.
- Other examples of homogeneous, antisymmetric 4-schemes?
- Further development of representation theory for 4-schemes?

Thanks!

イロト イポト イヨト イヨト

- We introduced a natural class of partitions of $[n]^m$ with an algebraic feel!
- We showed how it appears naturally in polynomial factoring algorithms.
- We proposed the schemes conjecture that holds true in all the currently known homogeneous, antisymmetric 4-schemes.
- Other examples of homogeneous, antisymmetric 4-schemes?
- Further development of representation theory for 4-schemes?

Thanks!

- We introduced a natural class of partitions of $[n]^m$ with an algebraic feel!
- We showed how it appears naturally in polynomial factoring algorithms.
- We proposed the schemes conjecture that holds true in all the currently known homogeneous, antisymmetric 4-schemes.
- Other examples of homogeneous, antisymmetric 4-schemes?
- Further development of representation theory for 4-schemes?

Thanks!

- We introduced a natural class of partitions of $[n]^m$ with an algebraic feel!
- We showed how it appears naturally in polynomial factoring algorithms.
- We proposed the schemes conjecture that holds true in all the currently known homogeneous, antisymmetric 4-schemes.
- Other examples of homogeneous, antisymmetric 4-schemes?
- Further development of representation theory for 4-schemes?

Thanks!

- We introduced a natural class of partitions of $[n]^m$ with an algebraic feel!
- We showed how it appears naturally in polynomial factoring algorithms.
- We proposed the schemes conjecture that holds true in all the currently known homogeneous, antisymmetric 4-schemes.
- Other examples of homogeneous, antisymmetric 4-schemes?
- Further development of representation theory for 4-schemes?

Thanks!

- We introduced a natural class of partitions of $[n]^m$ with an algebraic feel!
- We showed how it appears naturally in polynomial factoring algorithms.
- We proposed the schemes conjecture that holds true in all the currently known homogeneous, antisymmetric 4-schemes.
- Other examples of homogeneous, antisymmetric 4-schemes?
- Further development of representation theory for 4-schemes?

Thanks!