A largish sum-of-squares implies circuit hardness (& derandomization)

Nitin Saxena (CSE@IIT Kanpur, India)

(ITCS'21, with Pranjal Dutta & Thomas Thierauf)

July 2021, IISER Pune (virtually)

- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

Sum-of-Squares (SOS) Representation

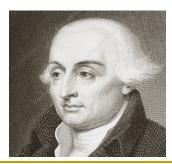
- For a polynomial f over F, the SOS representation is:
 - $f = c_1 \cdot f_1^2 + ... + c_t \cdot f_t^2$, where $c_i \in \mathbb{F}$, $f_i \in \mathbb{F}[x_1, ..., x_n]$.
 - Size is number of monomials $\sum_{i} |f_{i}|_{0}$.
 - Denote the minimal size by support-sum S(f).
- It's a complete model, if char F≠ 2.
 - Trivially, $S(f) \le 4 \cdot |f|_0$.
- For simplicity, consider univariate SOS representations (n=1).
- **Example:** For deg<d univariate f(x), simply use monomials $\{x^i, x^{i \vee d} \mid 0 \le i < \sqrt{d}\}$.
 - **→** (Agrawal'20) $t = 2 \cdot \sqrt{d}$ many squares suffice for any f.
 - **→** Overall, expect $S(f) \ge 2\sqrt{d} \cdot 2\sqrt{d} = 4d$.

SOS Representation

- Does there exist degree-d f(x) with $S(f) \ge Ω(d)$?
 - By dimension-argument it exists!
 - \bullet Assume $\mathbb{F} = \mathbb{C}$.
- To be of any help in complexity theory, we have to study SOS for polynomials that are explicit.
 - We would work with several definitions.
 - ightharpoonup Eg. $(x+1)^d$ is `explicit'.

SOS Representation – History

- (1770) Lagrange's 4-squares thm: Integer as SOS of 4 squares.
 - Several such examples in number theory (Ramanujan 1917).
 - Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares
- (1900) Hilbert's 17th Problem: Positive Real polynomials as SOS of rational functions?
 - Note: $c_i = 1$.
- (1990s) SOS constraints in convex optimization.
 - Lasserre hierarchy of relaxations in SDP (based on deg).



- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

SOS Hardness

- Defn: A degree-d f(x) is explicit if it's coefficient-function $coef(x^i)(f)$ is `easy':
 - Given (i,j) the j-th bit of $coef(x^i)(f)$ is polylog(d)-time.
 - Or, ...is in #P/poly.
 - Or, ...is in CH.

Sub-constant/ vanishing fn?

- SOS-hard: There's an explicit f and $\varepsilon > 0$ with $S(f) > d^{\varepsilon + 0.5}$.
 - ε=0 trivial. Existentially, much stronger property holds.
- There are numerous candidates for f(x):
 - $\begin{array}{c} \bullet \quad (x+1)^d \\ \bullet \quad \sum_i 2^{i^2} x^i \\ \bullet \quad \prod_i (x+i) \\ \end{array} \begin{array}{c} \text{extremely small} \\ \text{circuit complexity!} \\ \end{array} \begin{array}{c} \text{Yet useful?} \\ \text{Yet useful?} \\ \end{array} \begin{array}{c} \bullet \\ \text{exp(x)}_{\leq d} := \sum_{i=0}^d x^i/i! \\ \end{array}$

SOS Hardness – Comparisons

- Concept is quite weak/ incomparable to earlier ones about uni/multi-variate polynomials. As they needed sum-of unbounded-powers (or `power'ful):
 - * (AV'08)..(GKKS'13)..(AGS'18) Hardness for special depth-4/3.
 - → (Koiran'10) Tau-conjecture about roots of depth-4 expressions.
 - (KPTT'15) Newton-polygon-Tau-conjecture for sum-of unbounded-powers.
 - (Raz'08) <u>Super-poly</u>-elusive functions eluding degree-2 maps.
- (x+1)^d good candidate for SOS-hardness. Not so, for the earlier conjectures.
- SOS-hard (n-variate): There's explicit $f(x_1,...,x_n)$ and $\varepsilon>0$ with $S(f)>\{n+d \text{ choose } n\}^{\varepsilon+0.5}$.
 - Constant n.

- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

Algebraic Circuits

- Circuit has addition/multiplication gates; connected by wires.
 - → Input variables at *leaves* are $x_1,...,x_n$; output $f(\overline{x})$.
 - size(f) is minimum graph-size of such a circuit.

Achieved for constant-depth circuits!
[LST21]

- (1979) Valiant's Conjecture: VP ≠ VNP.
 - ▼ VP polynomial-families, poly(n)-degree, poly(n)-size.
 - VNP exp.sum over a VP polynomial-family.
- Reduces to highly-specialized depth-4,3/width-2 questions.
 - ...(VSBR'83)...(AV'08)(R'08)(R'10)...(SSS'09)...(K'11)...(GKKS'13)...(KPTT'15) (KKPS'15)...(AGS'18)...
 - → Qn: Does it reduce to a model as weak as SOS(1-var)?
- Goal: Squash circuit to SOS(n-var) with nontrivial property.
 - Else, it won't lift to proving circuit lower bounds.
 - Hint: Few squares, Low-degrees.

Algebraic Circuits – to SOS(n-var)

- **VSBR'83**) deg(f) ≤ d, size(f) ≤ s can be rewritten:
 - Exists <u>circuit</u> C' of size poly(sd) and depth log d.
 - → Exists formula F of size s^{O(log d)} and depth log d.
 - → Exists ABP B of size s^{O(log d)}; layers-d homogeneous.
- Cut at the d/2 layer to get:
 - $f = \sum_{i \le |B|} f_{i,1} f_{i,2}$, where $deg(f_{i,j}) \le d/2$.
- Use $4f_1 f_2 = (f_1 + f_2)^2 (f_1 f_2)^2$ to derive:
- Theorem.1: $deg(f) \le d$, $size(f) \le s$ implies $f = \sum_{i \le s'} f_i^2$
 - → where $s' \le s^{O(\log d)}$ and $deg(f_i) \le d/2$.

- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

SOS hardness => Circuit hardness

- Theorem.2: SOS-hard implies VP ≠ VNP.
- Pf idea: Consider SOS-hard f(x). Define $(k-1)^{\epsilon} \ge 6$. Convert f to multilinear, kn-variate, degree-n polynomial F(y).
 - Monomial x^i in f(x) maps to $\phi(x^i) :=$
 - $\Pi \{ y_{i,l} \mid l \cdot k^{j-1} \text{ contributes } place-value \text{ in } base_k(i) \}$.
 - * $k^n \ge d+1 > (k-1)^n$. So, $n := \Theta(\epsilon \cdot \log d)$. F is kn-variate.
 - → Suppose size(F) \leq d^μ. Thm.1 gives SOS s.t.
 - ► $S(F) \le (d^{\mu}n)^{O(\log n)} \cdot \{kn + n/2 \text{ choose } n/2\}$
 - $\leq d^{O(\mu \log n)} \cdot (6(k-1))^{n/2}$
 - $\leq d^{o(\epsilon)} \cdot (k-1)^{(1+\epsilon)n/2} \leq d^{o(\epsilon)+(1+\epsilon)/2} < d^{0.5+\epsilon}$

 - Thus, $F \in VNP \& > d^{\mu} = (kn)^{\omega(1)}$ hard.
 - → Finally, $F \in VNP \setminus VP$.

(log d·loglog d)^{-0.5}

 $> \omega(1/ \epsilon \cdot \log d)$

- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

Blackbox poly.id.testing (PIT)

- Given circuit $C(x_1,...,x_n)$ of size s, whether it is zero?
 - In poly(s) many bit operations?
 - Only F = finite field, rationals.
 - Brute-force expansion is as expensive as s^s.
- Randomization gives a practical, blackbox solution.
 - Evaluate $C(x_1,...,x_n)$ at a random point in \mathbb{F}^n . [P.I.Lemma]
 - (Ore 1922), (DeMillo & Lipton 1978), (Zippel 1979), (Schwartz 1980).
- Blackbox PIT is equivalent to designing hitting-set $H \subset \mathbb{F}^n$.
 - H contains non-root of each $C(x_1,...,x_n)$ of size s.
- Appears in many CS contexts (both algos/lower bounds):
 - ...(Lovász'79)(Heintz,Schnorr'79)(Blum,et.al'80)(Babai,et.al'90)(Clausen,et.al'91)(AKS'02) (Kl'04)(A'05,'06)(Klivans, Shpilka'06)(DSY'09)(SV'10)(Mulmuley'11,'12,'17)(Kopparty,Saraf, Shpilka'14)(Pandey,S,Sinhababu'16)(Guo,S, Sinhababu'18)....<many more>

Blackbox poly.id.testing (PIT)

- Deterministic PIT algos known only for restricted models.
 - Too diverse to list here...
- PIT exhibits some amazing phenomena:
 - \rightarrow Specific hitting-sets => VP ≠ VNP. (A'11)(K'11,KP'11).
 - → Hitting-sets strongly bootstrap. (AGS'18)(KST'19)(GKSS'19)
 - * Exp.hardness => Hitting-sets in QuasiP ($s^{O(\log s)}$). (KI'04)
 - Recall ...reduces to highly-specialized depth-4,3/width-2.
- Qn: Could SOS-hardness imply complete PIT?
 - Up to QuasiP implied by Thm.2.
 - Issue with older conjectures that imply VP ≠ VNP.

Give only log-var reduction, not O(1)-var

SUBEXP PIT for

constant-depth

circuits!

[LST21]

- We don't know.... [Thm.2/1 are `weak': #Vars? Deg in SOS?]
 - Modify Thm.2/1's proof to connect SOC (sum-of-cubes).

- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

Sum-of-Cubes (SOC) Hardness

- For a polynomial f over F, the SOC representation is:
 - $f = c_1 \cdot f_1^3 + ... + c_t \cdot f_t^3$, where $c_i \in \mathbb{F}$, $f_i \in \mathbb{F}[x_1, ..., x_n]$.
 - **Support-union** is distinct monomials $\bigcup_i supp(f_i)$.
 - Denote the minimal size by support-union U(f,t).
- **SOC-hard:** There's poly(d)-time-*explicit* f and constant ϵ' <1/2 with U(f,d ϵ')≥ Ω (d).
 - → Seems false over $\mathbb{F} = \mathbb{C}$, \mathbb{R} . [dim.argument]
 - Instead fix F= Q natural choice for PIT.
 - → (Agrawal'20: False, if ε' \ge 1/2.)

 $x^2+y^2=3$: \mathbb{R} -roots; but no \mathbb{Q} -root.

- Again, numerous candidates for f(x):
 - $(x+1)^d$, $\sum_i 2^{i^2} x^i$, $\prod_i (x+i)$,

 $\mathbf{exp(x)}_{\leq \mathbf{d}} := \sum_{i=0}^{d} x^i / i!$

- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

SOC Hardness => Blackbox PIT

- Theorem.3: SOC-hard implies blackbox-PIT in P.
- Pf idea: Consider SOC-hard f(x): $U(f,d^{ε'}) ≥ δ·d$. Convert f to k-variate, ind-degree-n polynomial F(y).
 - Monomial x^i in f(x) maps to $\phi(x^i) :=$
 - $\Pi\{y_j^1 \mid l \cdot (n+1)^{j-1} \text{ contributes } place-value \text{ in } base_{n+1}(i) \}$.
 - $(n+1)^k \ge d+1 > n^k$. So, $n := O(d^{1/k})$. F is k-variate.
 - Let size(F) $\leq d^{\mu}$. Thm.1(SOC), gives $(d^{\mu} \cdot kn)^{c}$ cubes of 4/11-th degree:

 Ensure $\epsilon'/c > (\mu+1/k)$,
 - → U(F, $d^{(\mu+1/k)c}$) ≤ {k + 4kn/11 choose k}
 - $\leq (e + 4e \cdot n/11)^k < n^k \cdot (10.9/11)^k \leq \delta \cdot d$
 - **The Contradicts** $U(f,d^{ε'}) ≥ δ·d$.
 - \rightarrow => F is k=O(1)-variate, ideg-n, poly(n^k)-time-explicit, and
 - → hardness $d^{\mu} \ge n^{\mu k} > \deg(F)^3$.
 - Apply (GKSS'19) for complete PIT.

 $\mu \cdot k \geq 4$

- Sum-of-Squares (SOS) Representation
- SOS hardness
- Algebraic Circuits
- SOS hardness => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) hardness
- SOC hardness => Blackbox PIT
- Conclusion

At the end ...

- Largish SOS strong enough for circuit lower bounds.
 - \rightarrow deg(f_i)'s restricted below $\tilde{O}(d)$.
- SOS falls a bit short of derandomization. But, SOC suffices.
 - Could we <u>improve</u> this part?
- Qn: Is SOC-hardness heuristically true (over $\mathbb{F} = \mathbb{Q}$)?
 - → Hybrid-Qn for SOS: ε'<1/2<ε with $U(f,d^{ε'})>d^ε$?
 - → => Thm.2 works as well!
- Prove: there's sub-constant ε with $S((x+1)^d) > d^{\varepsilon+0.5}$, over $\mathbb{F} = \mathbb{C}$.

Thank you!