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Sum-of-Squares (SOS) Representation

s For a polynomial f over |, the SOS representation is:
- f=cf°+..+cf° wherece ", fe I'[x,. x].

~ Size is number of monomials 3, || .
+ Denote the minimal size by support-sum S(f).

s It's a complete model, if char I'= 2 .
~ Trivially, S(f) = 4-[f] .

s For simplicity, consider univariate SOS representations (n=1).

s Example: For deg<d univariate f(x), simply use monomials
{x', x| O0=<i<vd } .
= (Agrawal'20) t= 2-vd many squares suffice for any f.
= Qverall, expect S(f)= 2vd-2vd = 4d .
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SOS Representation

s Does there exist degree-d f(x) with S(f)= Q(d) ?
= By dimension-argument it exists!
<+ Assume ['= C.

s To be of any help in complexity theory, we have to study SOS
for polynomials that are explicit.
~ We would work with several definitions.
-~ Eg. (x+1)%s “explicit".
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SOS Representation — History

s (1770) Lagrange's 4-squares thm: Integer as SOS of 4 squares.
+~ Several such examples in number theory (Ramanujan 1917).
+ Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares

s (1900) Hilbert's 17" Problem: Positive Real polynomials as SOS of
rational functions?

- Note: C.= 1.

s (1990s) SOS constraints in convex optimization.
+~ Lasserre hierarchy of relaxatlons in SDP (based on deg)
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SOS Hardness

+ Defn: A degree-d f(x) is explicit if it's coefficient-function
coef(x')(f) is "easy"
= Given (i,j) the j-th bit of coef(x')(f) is polylog(d)-time.

= Or, ...isin #P/poly.
= Or, ...isin CH.

s SOS-hard: There's an explicit f and £>0 with S(f)> d**°~.
= £=0 trivial. Existentially, much stronger property holds.

s There are numerous candidates for f(x):

- (x+1)°
Ay extremely small
- 2 N2 i o ) .
. ' circuit complexity! =0 Vil
- IT (x+1) —
1 >,2'x" is not a candidate!
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SOS Hardness — Comparisons

s Concept is quite weak/ incomparable to earlier ones about
uni/multi-variate polynomials. As they needed sum-of
unbounded-powers (or "power'ful):

+ (AV'08)..(GKKS'13)..(AGS'18) Hardness for special depth-4/3.

+ (Koiran'10) Tau-conjecture about roots of depth-4 expressions.

+ (KPTT'15) Newton-polygon-Tau-conjecture for sum-of
unbounded-powers.

+ (Raz'08) Super-poly-elusive functions eluding degree-2 maps.

s (x+1)? good candidate for SOS-hardness. Not so, for the
earlier conjectures.

s SOS-hard (n-variate): There's explicit f(x,,...,x ) and €>0

with S(f)> {n+d choose n}**°~ .
= Constant n.
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Algebraic Circuits

+ Circuit has addition/multiplication gates; connected by wires.
-~ Input variables at leaves are x_,...,x_; output £(x).

Achieved for

+ size(f) is minimum graph-size of such a circuit. constant-depth
circuits!
s (1979) Valiant's Conjecture: VP = VNP . [LST21]

+ VP — polynomial-families, poly(n)-degree, poly(n)-size.
+ VNP — exp.sum over a VP polynomial-family.

s Reduces to highly-specialized depth-4,3/width-2 questions.
+ _.(VSBR'83)...(AV'08)(R'08)(R'10)...(S55'09)...(K'11)...(GKKS'13)...(KPTT'15)
(KKPS'15)...(AGS'18)...
+~ Qn: Does it reduce to a model as weak as SOS(1-var)?

s Goal: Squash circuit to SOS(n-var) with nontrivial property.
+~ Else, it won't lift to proving circuit lower bounds.
-~ Hint: Few squares, Low-degrees.
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Algebraic Circuits — to SOS(n-var)

s (VSBR'83) deg(f)=d , size(f)=s can be rewritten:
+ Exists circuit C' of size poly(sd) and depth log d.
~ Exists formula F of size s°"°¢ % and depth log d.
~ Exists ABP B of size s°"9?; Jayers-d homogeneous.

s Cut at the d/2 layer to get:
- = EEIBI f t._,where deg(fij)s d/2.

s Usedf f = (f1+f2)2 - (fl—fz)2 to derive:

s Theorem.1: deg(f)=d, size(f)=s implies f = 3> _ _f*
+ where s'< s°0*9%Y and deg(f) = d/2 .
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SOS hardness => Circuit hardness
3 Theorem.2: SOS-hard implies VP = VNP.

s Pfidea: Consider SOS-hard f(x). Define (k-1)® = 6. Convert f to
multilinear, kn-variate, degree-n polynomial F(y).
=~ Monomial x'in f(x) maps to @(x') :=

I1{ V, | I-'K'! contributes place-value in base (i) } .

k" = d+1 > (k-1)". So, n:= O(e-log d). F is kn-variate.

L

b=
(log d -loglog d
> w(1/ elog d)

S(F)=< (d"n)°"9™. fkn + n/2 choose n/2}
< do®lgn. (g(k-1))?

B B

)-0.5

Suppose size(F) = d". Thm.1 gives SOS s.t.
j

< do(a) . (k_l)(1+s)n/2 < do(s)+(1+€)/2 < d0.5

S(f)= S(pf)= S(F)= d**° contradicts SOS-hardness.
Thus, F € VNP & > d" = (kn)“" hard.
<+ Finally, F € VNP \ VP . ]

¢

¢

¢
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Blackbox poly.id.testing (PIT)

s Given circuit C(x1 ,..., Xp) of size s, whether it is zero?
+ In poly(s) many bit operations?
+ Only [¥ = finite field, rationals.
+ Brute-force expansion is as expensive as ss.

s Randomization gives a practical, blackbox solution.
-~ Evaluate C(x1 ,..., Xp) atarandom pointin ['". [P.I.Lemma]
= (Ore 1922), (DeMillo & Lipton 1978), (Zippel 1979), (Schwartz 1980).

s Blackbox PIT is equivalent to designing hitting-set H C ",
-~ H contains non-root of each C(x1,..., Xp) of size s.

s Appears in many CS contexts (both algos/lower bounds):

= _..(Lovasz'79)(Heintz,Schnorr'79)(Blum,et.al'80)(Babai,et.al'90)(Clausen,et.al'91)(AKS'02)
(KI'04)(A'05,'06)(Klivans, Shpilka'06)(DSY'09)(SV'10)(Mulmuley'11,'12,'17)(Kopparty,Saraf,
Shpilka'14)(Pandey,S,Sinhababu'16)(Guo,S, Sinhababu'18)....<many more>
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Blackbox poly.id.testing (PI'T)

s Deterministic PIT algos known only for restricted models.
= Too diverse to list here...

SUBEXP PIT for

- . constant-depth
s PIT exhibits some amazing phenomena: circuits!

+~ Specific hitting-sets => VP # VNP. (A'"11)(K'11,KP'11). [LST21]
= Hitting-sets strongly bootstrap. (AGS'18)(KST'19)(GKSS'19)

= Exp.hardness => Hitting-sets in QuasiP (s°°9%). (kro4)
+~ Recall ...reduces to highly-specialized depth-4,3/width-2.

s Qn: Could SOS-hardness imply complete PIT? Give only log-var
+ Up to QuasiP implied by Thm.2. reduction, not O(1)-var
+ |ssue with older conjectures that imply VP = VNP.

s We don't know.... [Thm.2/1 are "'weak': #Vars? Deg in SOS?]
<+ Modify Thm.2/1's proof to connect SOC (sum-of-cubes).
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Sum-of-Cubes (SOC) Hardness

s For a polynomial f over -/, the SOC representation is:
-~ = Cl°f13 .k ct-ft3 ,where c€ I, f€ I'[x,...x ].

~ Support-union is distinct monomials U. supp(f) .
+ Denote the minimal size by support-union U(f,t).

s S0C-hard: There's poly(d)-time-explicit f and constant
e'<1/2 with U(f,d®*)= Q(d).
+ Seems false over "= C, R. [dim.argument]

+ |nstead fix "= @Q — natural choice for PIT.
- (AgrawaI'20.' False’ Ifgl 21/2) X2+y2=3: R-roots; but no Q-root.

s Again, numerous candidates for f(x):
- (x+1)¢, EiZiAZ)(i , TL (x+i) , ...

exp(x)_, := Edi= 0Xi/i!
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SOC Hardness => Blackbox PIT

s Theorem.3: SOC-hard implies blackbox-PIT in P.

s Pfidea: Consider SOC-hard f(x) : U(f,d*) = 6-d. Convert f to k-
variate, ind-degree-n polynomial F(y).

=

s

=

=

Monomial x' in f(x) maps to @(x') :=

I1{ yj1 | I:(n+1)"" contributes place-value in base (i) }.
(n+1) = d+1 > n*. So, n:= O(d'¥). F is k-variate.
Let size(F) = d". Thm.1(SOC), gives (d"-kn)° cubes of 4/11-th

degree : | .
U(F, d®*¥¢)y < {k + 4kn/11 choose k} Ensure ‘;/E : ELIH /k),
< (e+ 4en/11)¥ < n®- (10.9/11)F = 6-d =

Contradicts U(f,d®) = 6-d .

=> F is k=0O(1)-variate, ideg-n, poly(n*)-time-explicit, and
hardness d* = n** > deg(F)".

Apply (GKSS'19) for complete PIT. ]
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At the end ...

= Largish SOS strong enough for circuit lower bounds.
- deg(fi)'s restricted below O(d).

s SOS falls a bit short of derandomization. But, SOC suffices.
+ Could we improve this part?

s Qn: Is SOC-hardness heuristically true (over F= Q) ?
~ Hybrid-Qn for SOS: £'<1/2<g with U(f,d*) > d*?
< => Thm.2 works as well!

s Prove: there's sub-constant € with S((x+1)9)> d**°>, over F'=

-

Thank you!

Sum of Squares 22



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

