Algebra powers computation

Nitin Saxena
CSE@IITK

IASc Meet @ IISc Bengaluru July 2023

What's computing?

* Alan Turing (1936) postulated a simple, most general, mathematical model for computing - Turing machine (TM).
* Algorithm = TM is very much like a program.

```
    > TM is a real computer - highly iterative & trivial steps.
```

* How about an electronic circuit?

$$
\begin{aligned}
& >\text { Algebraically, it's a neater model } \\
& \text { to capture real computation. }
\end{aligned}
$$

Valiant: Algebraic circuits

* Valiant (1977) formalized computation \& resources using algebraic circuits.
> Giving birth to his VP \neq VNP question.
> Or, the algebraic hardness question!
- Or, the algeraic hardness question

* Algebraic circuit has constants/variables, size, depth.
* My work: Study circuit problems and their properties.
> Develop the relevant mathematics.

lero or nonzero: Pit

$$
\begin{aligned}
& \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right) \\
& \quad=\left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right)^{2}+\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2} \\
& \quad \quad+\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right)^{2}+\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right)^{2} .
\end{aligned}
$$

* Question: Test whether a given circuit is zero.
> Polynomial identity testing (PIT).
* OPEN Qn: Is PIT in deterministic polynomial time?
* Motivates new tools to study algebraic computation.
* Primality testing.
* Blackbox algorithms/ > Lower bounds (for certain models).
* Incidence-geometry in identities, over all fields.
> Higher-dimension rank concepts.
* Duality in circuits.
> Diagonal depth-3 or 4.
* Bootstrapping in circuits.
> Tiny circuits
> Sum-of-squares.

$(X+1)^{n} \equiv X^{n}+1 \bmod n$

Algebraic Algorithms

Computational Algebra

* All-roots Newton iteration
> Non-simple roots?
* Factoring polynomials.
> Mod primes, prime-powers, p-adics
> Circuit models
> Approximative circuits
* Algebraic dependence criteria
* Morphism problems in algebras, graphs
* Roots counting
* Compute Zeta function analogs
$x=0=x \cdot y-1$ has root $=(\epsilon \rightarrow 0,1 / \epsilon \rightarrow \infty)$

$$
\zeta(s)=\sum_{\substack{n=1 \\ \text { with } s \in \mathbb{C}}}^{\infty} \frac{1}{n^{s}}=0
$$

Hardest question on earth since 1859 .

Engineering

Crypto \& Learning

Elliptic Curve Cryptography

* Cryptography uses algebra extensively. > Number theory, Curves, Multivariate systems
* AI/Machine Learning do decision-making using circuits.
> Artificial Neural Networks (ANN).
* ANN is a specialized algebraic circuit.

A choice for public-key-cryptography based on elliptic curves over finite fields
-6

* A Center @IITK to solve practical problems using AI methods.
* Visit (Center for Developing Intelligent Systems) www.iitk.ac.in/cdis/
> www.cse.iitk.ac.in/users/nitin/

