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THE PROBLEM

e Arithmetic circuits, over a field IF, compute a polynomial.
C: C(x.y)

e |dentity testing is the problem of checking whether a given
circuit is zero or not.
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MOTIVATION

e It is a natural algebraic problem but no efficient algorithm is
known.

e |dentity testing is instrumental in many results: Parallel
algorithms for matching problems (Lovasz '79), PSPACE=IP
(Shamir '92), PCP theorem (Arora-Safra '97) and primality
testing (AKS '02).

e (Schwartz '80, Zippel '79) gave a randomized algorithm for
identity testing.

¢ (Impagliazzo-Kabanets '03) showed that derandomizing

identity testing would mean proving lower bounds for either
NEXP or Permanent.
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SPECIAL CASES OF IDENTITY TESTING

e Non-commutative formulas: (Raz & Shpilka '04) gave a
deterministic polynomial time identity test.

e Circuits of depth 3 with bounded top fanin:
(Kayal & Saxena '06) gave a deterministic polynomial time
identity test.
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PECULIARITY OF DEPTH-4

e Depth-4 is not just another circuit restriction!

e Agrawal & Vinay (FOCS 2008) show that proving exponential
lower bounds for depth-4 circuits imply exponential lower
bounds for unrestricted depth circuits.

e Also, a black-box derandomization of identity testing for
depth-4 circuits implies a nearly complete derandomization of
general identity testing.
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DIAGONAL DEPTH-4 CIRCUITS

e Here we look at the case of depth-4 when the inputs to the
multiplication gates are just sums of univariates.

e A diagonal depth-4 circuit C over a field F looks like:
C(Xl,...,Xn): Ti+---4+ Ty
where, T; is a product of polynomials L;1,...,L; 4
where, L;j(X) = >27_1 &ij.e(x)

e Newton's identities are of this form:
(x1+x0 +x3)3 + 206 + 53 +x3) — 3(x1 + x2 + x3) (3 + X2 + x2) — bx130x3 =0
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IDEA 1: POWER SERIES

e We embed a multiplication gate L'

1o LE, where
Li =371 & j(x), in a power series
(el eyt L5t

L& = 28z - 28] exp(zz1ly) - - - exp(zzsLs)
ez 28] exp(NL, L)

= [z 2] [N exp (2181 + - + 2085)2)

= [ 2] 1L Ee((zig1) + - + 2685))2)
e where, e =

+
1+x+-- -
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IDEA 1: POWER SERIES

e We embed a multiplication gate L'

L= ZJ” 1 8ij(xj), in a power series:
(ell es) 1 Lel

- LS, where

L& = 28z - 28] exp(zz1ly) - - - exp(zzsLs)
= [z°z] - z&) exp(Di_4 zzili)
= [z2°27 - 28] TIiLy exp (2181 + -+ + 285.)2)
= [z57 2] TILy Ee (2181 + - + 2585,)2)
e where, e = (e1 + - -+ + &) and E. is the truncated exp(x):
14 x+- +i
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o We will now extract the degree e part from the above
expression.
(el ores) oL ke = [z 28] TTLy Ee (21810 + - + 2585.1)2)
= [z 22] 776 1T Ee (g + -+ + 2:85.0)a))

e |f we look at the above sum modulo the ideal
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e Thus, over the algebra R := F|z1, ..., z]/(z; atl L zestly:
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= (el -egl) L LSS g

e Thus, we expressed the diagonal depth-4 multiplication gate
as a sum-of-product-of-univariates.



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

IDEA 3: DUAL FORM

e Given a diagonal depth-4 circuit C(x) = T1 +
Ti=T1I, L7

-+ Ty, where

15 /20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

IDEA 3: DUAL FORM

e Given a diagonal depth-4 circuit C(x) = T1 + -+ - + Tk, where
€ij
Ti = Hjs':1 LiJJ'
e The last two ideas allow us to write T; as a
sum-of-product-of-univariates:

15 /20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

IDEA 3: DUAL FORM

e Given a diagonal depth-4 circuit C(X) = T1 + -+ - + Tk, where
Ti = Hj’:l Li//

e The last two ideas allow us to write T; as a
sum-of-product-of-univariates:

Tz ozd = Sy fipa(a)  fijn(xa) over Ri

15 /20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

IDEA 3: DUAL FORM

e Given a diagonal depth-4 circuit C(X) = Ty + - -+ + Tx, where
Ti =11, Li'J:f_
e The last two ideas allow us to write T; as a
sum-of-product-of-univariates:
Ti- z,e'l1 .- zﬁis‘s = ZE:l fijia(x1) - fijin(xn) over R;
e 1+1 e;,5+l)

where, tj = n(ej1 + - +es)+1and R :=Fz1,....z5]/(z] ...,z

' “is

15 /20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

IDEA 3: DUAL FORM

e Given a diagonal depth-4 circuit C(X) = Ty + - -+ + Tx, where
s €ij
T, = szl LY.
e The last two ideas allow us to write T; as a
sum-of-product-of-univariates:
T,' . Zi'il s Zﬁ;’s = ZE:I f,-yjl’l(xl) s fi,jl,n(Xn) over R,'
where, tj = n(ej1+---+eis) +1and R :==Fzj1,..., z,g,s]/(z,-e’"l'ﬁl7 .. ,zf;5+l)
e The third idea is to stitch these k algebras R; to an algebra R
of dimension Zf-;l(l +ei1)--(1+es).

15 /20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

IDEA 3: DUAL FORM

Given a diagonal depth-4 circuit C(X) = Ty + - -+ + Tk, where
e,-y-

T, = Hj’:l LI.JJ.

The last two ideas allow us to write T; as a

sum-of-product-of-univariates:

Tiozii -z = Sy fipa(a) - fijyn(xa) over Ri
i1 sl
where, ti =n(ej1+---+es)+1and R :==F[z,..., Z,“’s]/(Zi’iNL e ,zf’_:+ )

The third idea is to stitch these k algebras R; to an algebra R
of dimension Zf-;l(l +ei1)--(1+es).
Such that over R, C is a sum-of-product-of-univariates:

15 /20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

IDEA 3: DUAL FORM

Given a diagonal depth-4 circuit C(x) = T1 + - - - + T, where
el
H_/ 1 J
The last two |deas allow us to write T; as a
sum-of-product-of-univariates:
Ti Z:erll ’ Z:elss = Z_Il 1 fija(xa) - fijin(xa) over R;
e s+l

where, t; = n(ej1 + - +eis)+1and R :=F[z1,...,24]/(z e’ IH ezl

The third idea is to stitch these k algebras R; to an algebra R
of dimension 52K (1 +e1)---(1+ es).
Such that over R, C is a sum- of—product—of—univariates:

C(Xl,...,Xn).zle}I’ . zflss = Z —1 Jl 1 IJ11(X1) 'fi,j1,n(Xn)

15 /20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

A GENERALIZATION OF THE KNOWN RESULTS

e This sum-of-product-of-univariates circuit is vulnerable!

5 / 20



L Depri 4 Circurrs
L HANDLING DIAGONAL DEPTH-4

A GENERALIZATION OF THE KNOWN RESULTS

e This sum-of-product-of-univariates circuit is vulnerable!

e We attack it by generalizing the results of Raz & Shpilka
(CCC '04) to general commutative algebras.

5 /20



L Depri 4 Circurrs

L HANDLING DIAGONAL DEPTH-4

A GENERALIZATION OF THE KNOWN RESULTS

e This sum-of-product-of-univariates circuit is vulnerable!

e We attack it by generalizing the results of Raz & Shpilka
(CCC '04) to general commutative algebras.

THM 1: Let R be an algebra over a field F. Given a sum-of-product-
of-univariates circuit C(xq,...,x,) over R we can verify
deterministically in poly(size(C), dim(R)) field operations
whether C is zero.

20



L Depri 4 Circurrs
LH.\Nm.l\!c, DIAGONAL DEPTH-4

A GENERALIZATION OF THE KNOWN RESULTS

e This sum-of-product-of-univariates circuit is vulnerable!

e We attack it by generalizing the results of Raz & Shpilka
(CCC '04) to general commutative algebras.

THM 1: Let R be an algebra over a field F. Given a sum-of-product-
of-univariates circuit C(xq,...,x,) over R we can verify
deterministically in poly(size(C), dim(R)) field operations
whether C is zero.

THM 2: Let R be an algebra over a field F, r € R\ {0} and r' € R. If
det((x;j)) - r — r' can be expressed as a sum-of-k-products-
of-univariates circuit, then k - dim(R) = 2(),
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L HANDLING DIAGONAL DEPTH-4

THuM 1:

THM 2:

FINAL CALCULATION

Let the given diagonal depth-4 circuit be C(x1,...,x,)

_ k s Lei,j

=2 im1 [ lj=1 ij-

Our transformation is over a base algebra R with dimension
k

Yimi(l+ein) - (1+eis).

This gives us the following results:

We can deterministically test C for zeroness in

poly(size(C), maxi{(1 + ei1)--- (1 + eis)}) field operations.

If C expresses the determinant (or permanent) of a formal

m X m matrix then either s = Q (Io’g”m> or k = 2%(m).
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IDEA 4: PRIME CHARACTERISTIC

e The circuit transformation we showed had terms like % SO we
need to be careful when the field is of a prime characteristic
p>2.

e The basic idea is to do the transformation treating the
constants as rationals and then clear away p from the
denominators.

e This gives us a dual form of C in the form:
pP - C(x1,...,xn) 2,7 -2 < is a sum-of-product-of-
univariates over a ring R of characteristic p*1.

o All our results carry over to even rings above Z/(p*17).
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OVER ANY COMMUTATIVE RING

e Suppose we are given a diagonal depth-4 circuit over any
commutative ring. Say, the ring is specified in the input in
basis form.
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L HANDLING DIAGONAL DEPTH-4

OVER ANY COMMUTATIVE RING

e Suppose we are given a diagonal depth-4 circuit over any
commutative ring. Say, the ring is specified in the input in
basis form.

e Our identity test and lower bounds also hold for such circuits.
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L concrLusion

IN CONCLUSION

e For a diagonal depth-4 circuit C of the form
Sk L5+ LS having small s, we gave an identity test and
proved lower bounds.
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L concrLusion

IN CONCLUSION

e For a diagonal depth-4 circuit C of the form
SR LT L having small s, we gave an identity test and
proved lower bounds.

e The main idea was to define a dual form of such circuits.

e |s the dual form useful even when s is variable?

QUESTIONS?
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