# DIAGONAL CIRCUIT IDENTITY TESTING AND LOWER BOUNDS

Nitin Saxena

Hausdorff Center for Mathematics Bonn, Germany

> ICALP 2008 Reykjavik

1/20



#### OUTLINE

# IDENTITY TESTING General Problem

Special Cases

#### **DEPTH 4** CIRCUITS

The Problem Handling Diagonal Depth-4

CONCLUSION



# The Problem

• Arithmetic circuits, over a field **F**, compute a polynomial.



• Identity testing is the problem of checking whether a given circuit is zero or not.



## The Problem

• Arithmetic circuits, over a field  $\mathbb{F}$ , compute a polynomial.



• Identity testing is the problem of checking whether a given circuit is zero or not.



## The Problem

• Arithmetic circuits, over a field  $\mathbb{F}$ , compute a polynomial.



• Identity testing is the problem of checking whether a given circuit is zero or not.



- It is a natural algebraic problem but no efficient algorithm is known.
- Identity testing is instrumental in many results: Parallel algorithms for matching problems (Lovasz '79), PSPACE=IP (Shamir '92), PCP theorem (Arora-Safra '97) and primality testing (AKS '02).
- (Schwartz '80, Zippel '79) gave a randomized algorithm for identity testing.
- (Impagliazzo-Kabanets '03) showed that derandomizing identity testing would mean proving lower bounds for either NEXP or Permanent.



- It is a natural algebraic problem but no efficient algorithm is known.
- Identity testing is instrumental in many results: Parallel algorithms for matching problems (Lovasz '79), PSPACE=IP (Shamir '92), PCP theorem (Arora-Safra '97) and primality testing (AKS '02).
- (Schwartz '80, Zippel '79) gave a randomized algorithm for identity testing.
- (Impagliazzo-Kabanets '03) showed that derandomizing identity testing would mean proving lower bounds for either NEXP or Permanent.



- It is a natural algebraic problem but no efficient algorithm is known.
- Identity testing is instrumental in many results: Parallel algorithms for matching problems (Lovasz '79), PSPACE=IP (Shamir '92), PCP theorem (Arora-Safra '97) and primality testing (AKS '02).
- (Schwartz '80, Zippel '79) gave a randomized algorithm for identity testing.
- (Impagliazzo-Kabanets '03) showed that derandomizing identity testing would mean proving lower bounds for either NEXP or Permanent.



- It is a natural algebraic problem but no efficient algorithm is known.
- Identity testing is instrumental in many results: Parallel algorithms for matching problems (Lovasz '79), PSPACE=IP (Shamir '92), PCP theorem (Arora-Safra '97) and primality testing (AKS '02).
- (Schwartz '80, Zippel '79) gave a randomized algorithm for identity testing.
- (Impagliazzo-Kabanets '03) showed that derandomizing identity testing would mean proving lower bounds for either NEXP or Permanent.

LIDENTITY TESTING

#### OUTLINE

・ロト ・回ト ・ヨト ・ヨト

3

5/20

#### IDENTITY TESTING General Problem Special Cases

#### DEPTH 4 CIRCUITS

The Problem Handling Diagonal Depth-4

CONCLUSION



# Special Cases of Identity Testing

- Non-commutative formulas: (Raz & Shpilka '04) gave a deterministic polynomial time identity test.
- Circuits of depth 3 with bounded top fanin: (Kayal & Saxena '06) gave a deterministic polynomial time identity test.



## Special Cases of Identity Testing

- Non-commutative formulas: (Raz & Shpilka '04) gave a deterministic polynomial time identity test.
- Circuits of depth 3 with bounded top fanin: (Kayal & Saxena '06) gave a deterministic polynomial time identity test.

Depth 4 Circuits

#### OUTLINE

・ロト ・回ト ・ヨト ・ヨト

3

7/20

#### **IDENTITY TESTING**

General Problem Special Cases

#### ${\rm Depth}~4~{\rm Circuits}$

The Problem Handling Diagonal Depth-4

CONCLUSION



- For identity testing, wlog we can assume that a depth 4 circuit has a + gate at the top.
- Thus, a depth 4 circuit is a "sum of product of sparse polynomials" (ΣΠΣΠ circuit).
- Explicitly, a depth-4 circuit C over a field F will look like: C(x<sub>1</sub>,...,x<sub>n</sub>) = T<sub>1</sub> + ··· + T<sub>k</sub> where, T<sub>i</sub> is a product of polynomials L<sub>i,1</sub>,..., L<sub>i,d</sub> where, L<sub>i,j</sub>(x) = ∑<sub>i</sub> a<sub>i,i,i</sub>x<sup>i</sup>, a's ∈ F.



- For identity testing, wlog we can assume that a depth 4 circuit has a + gate at the top.
- Thus, a depth 4 circuit is a "sum of product of sparse polynomials" (ΣΠΣΠ circuit).
- Explicitly, a depth-4 circuit C over a field F will look like: C(x<sub>1</sub>,...,x<sub>n</sub>) = T<sub>1</sub> + ··· + T<sub>k</sub> where, T<sub>i</sub> is a product of polynomials L<sub>i,1</sub>,..., L<sub>i,d</sub> where, L<sub>i,j</sub>(x) = ∑<sub>i</sub> a<sub>i,i,i</sub>x<sup>i</sup>, a's ∈ F.



- For identity testing, wlog we can assume that a depth 4 circuit has a + gate at the top.
- Thus, a depth 4 circuit is a "sum of product of sparse polynomials" (ΣΠΣΠ circuit).
- Explicitly, a depth-4 circuit  ${\mathcal C}$  over a field  ${\mathbb F}$  will look like:

 $\mathcal{C}(x_1, \ldots, x_n) = T_1 + \cdots + T_k$ where,  $T_i$  is a product of polynomials  $L_{i,1}, \ldots, L_{i,d}$ where,  $L_{i,j}(\overline{x}) = \sum_{\overline{\ell}} a_{i,j,\overline{\ell}} \overline{x}^{\overline{\ell}}$ , a's  $\in \mathbb{F}$ .



- For identity testing, wlog we can assume that a depth 4 circuit has a + gate at the top.
- Thus, a depth 4 circuit is a "sum of product of sparse polynomials" (ΣΠΣΠ circuit).
- Explicitly, a depth-4 circuit *C* over a field **F** will look like:

 $\begin{aligned} \mathcal{C}(x_1,\ldots,x_n) &= T_1 + \cdots + T_k \\ \text{where, } T_i \text{ is a product of polynomials } L_{i,1},\ldots,L_{i,c} \\ \text{where, } L_{i,j}(\overline{x}) &= \sum_{\overline{\ell}} a_{i,j,\overline{\ell}} \overline{x}^{\overline{\ell}}, \text{ a's } \in \mathbb{F}. \end{aligned}$ 



- For identity testing, wlog we can assume that a depth 4 circuit has a + gate at the top.
- Thus, a depth 4 circuit is a "sum of product of sparse polynomials" (ΣΠΣΠ circuit).
- Explicitly, a depth-4 circuit C over a field F will look like: C(x<sub>1</sub>,...,x<sub>n</sub>) = T<sub>1</sub> + ··· + T<sub>k</sub> where, T<sub>i</sub> is a product of polynomials L<sub>i,1</sub>,..., L<sub>i,d</sub> where, L<sub>i,j</sub>(x̄) = ∑<sub>ℓ̄</sub> a<sub>i,j,ℓ̄</sub>x̄<sup>ℓ̄</sup>, a's ∈ F.



- For identity testing, wlog we can assume that a depth 4 circuit has a + gate at the top.
- Thus, a depth 4 circuit is a "sum of product of sparse polynomials" (ΣΠΣΠ circuit).
- Explicitly, a depth-4 circuit C over a field F will look like: C(x<sub>1</sub>,...,x<sub>n</sub>) = T<sub>1</sub> + ··· + T<sub>k</sub> where, T<sub>i</sub> is a product of polynomials L<sub>i,1</sub>,..., L<sub>i,d</sub> where, L<sub>i,j</sub>(x̄) = ∑<sub>ℓ</sub> a<sub>i,j,ℓ</sub> x̄<sup>ℓ</sup>, a's ∈ F.



### PECULIARITY OF DEPTH-4

#### • Depth-4 is not just another circuit restriction!

- Agrawal & Vinay (FOCS 2008) show that proving exponential lower bounds for depth-4 circuits imply exponential lower bounds for unrestricted depth circuits.
- Also, a black-box derandomization of identity testing for depth-4 circuits implies a *nearly* complete derandomization of general identity testing.



#### PECULIARITY OF DEPTH-4

- Depth-4 is not just another circuit restriction!
- Agrawal & Vinay (FOCS 2008) show that proving exponential lower bounds for depth-4 circuits imply exponential lower bounds for unrestricted depth circuits.
- Also, a black-box derandomization of identity testing for depth-4 circuits implies a *nearly* complete derandomization of general identity testing.



#### PECULIARITY OF DEPTH-4

- Depth-4 is not just another circuit restriction!
- Agrawal & Vinay (FOCS 2008) show that proving exponential lower bounds for depth-4 circuits imply exponential lower bounds for unrestricted depth circuits.
- Also, a black-box derandomization of identity testing for depth-4 circuits implies a *nearly* complete derandomization of general identity testing.



- Here we look at the case of depth-4 when the inputs to the multiplication gates are just sums of univariates.
- A diagonal depth-4 circuit C over a field F looks like: C(x<sub>1</sub>,...,x<sub>n</sub>) = T<sub>1</sub> + ··· + T<sub>k</sub> where, T<sub>i</sub> is a product of polynomials L<sub>i,1</sub>,...,L<sub>i,d</sub> where, L<sub>i,j</sub>(x) = ∑<sub>i=1</sub><sup>n</sup> g<sub>i,i,ℓ</sub>(x<sub>ℓ</sub>)
- Newton's identities are of this form:  $(x_1 + x_2 + x_3)^3 + 2(x_1^3 + x_2^3 + x_3^3) - 3(x_1 + x_2 + x_3)(x_1^2 + x_2^2 + x_3^2) - 6x_1x_2x_3 = 0$



- Here we look at the case of depth-4 when the inputs to the multiplication gates are just sums of univariates.
- A *diagonal* depth-4 circuit *C* over a field **𝔅** looks like:

 $C(x_1, \dots, x_n) = I_1 + \dots + I_k$ where,  $T_i$  is a product of polynomials  $L_{i,1}, \dots, L_{i,d}$ where,  $L_{i,j}(\overline{x}) = \sum_{\ell=1}^n g_{i,j,\ell}(x_\ell)$ 



- Here we look at the case of depth-4 when the inputs to the multiplication gates are just sums of univariates.
- A *diagonal* depth-4 circuit *C* over a field **F** looks like:

 $\mathcal{C}(\mathbf{x}_1, \dots, \mathbf{x}_n) = T_1 + \dots + T_k$ where,  $T_i$  is a product of polynomials  $L_{i,1}, \dots, L_{i,k}$ where,  $L_{i,i}(\overline{\mathbf{x}}) = \sum_{\ell=1}^n g_{i,i,\ell}(\mathbf{x}_\ell)$ 



- Here we look at the case of depth-4 when the inputs to the multiplication gates are just sums of univariates.
- A *diagonal* depth-4 circuit *C* over a field **F** looks like:

 $\mathcal{C}(x_1, \dots, x_n) = T_1 + \dots + T_k$ where,  $T_i$  is a product of polynomials  $L_{i,1}, \dots, L_{i,d}$ where,  $L_{i,j}(\overline{x}) = \sum_{\ell=1}^n g_{i,j,\ell}(x_\ell)$ 



- Here we look at the case of depth-4 when the inputs to the multiplication gates are just sums of univariates.
- A *diagonal* depth-4 circuit *C* over a field **F** looks like:

 $C(x_1, \dots, x_n) = T_1 + \dots + T_k$ where,  $T_i$  is a product of polynomials  $L_{i,1}, \dots, L_{i,d}$ where,  $L_{i,j}(\overline{x}) = \sum_{\ell=1}^n g_{i,j,\ell}(x_\ell)$ 



- Here we look at the case of depth-4 when the inputs to the multiplication gates are just sums of univariates.
- A *diagonal* depth-4 circuit *C* over a field **F** looks like:

 $C(x_1, \dots, x_n) = T_1 + \dots + T_k$ where,  $T_i$  is a product of polynomials  $L_{i,1}, \dots, L_{i,d}$ where,  $L_{i,j}(\overline{x}) = \sum_{\ell=1}^n g_{i,j,\ell}(x_\ell)$ 

• Newton's identities are of this form:  $(x_1 + x_2 + x_3)^3 + 2(x_1^3 + x_2^3 + x_3^3) - 3(x_1 + x_2 + x_3)(x_1^2 + x_2^2 + x_3^2) - 6x_1x_2x_3 = 0$ 

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

Depth 4 Circuits

# OUTLINE

#### IDENTITY TESTING

General Problem Special Cases

# ${\rm Depth}~4~{\rm Circuits}$

The Problem Handling Diagonal Depth-4

CONCLUSION



- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \cdots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.



- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \cdots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.



- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \dots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.



- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \dots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.



- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \dots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.



- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \dots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.



- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \dots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.


### THE FOUR IDEAS

We transform a diagonal circuit C to a form that is easier to handle. The main ideas are:

- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \dots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.



### THE FOUR IDEAS

We transform a diagonal circuit C to a form that is easier to handle. The main ideas are:

- (1) We note that the multiplication gate  $L_1^{e_1} \dots L_s^{e_s}$  appears in the power series of  $exp(zz_1L_1 + \dots + zz_sL_s)$ .
- (2) We evaluate  $exp(zz_1L_1 + \dots + zz_sL_s)$  for various values of z and extract  $L_1^{e_1} \dots L_s^{e_s}$  by interpolation.
- (3) We transform each multiplication gate to the form above and then stitch them to get a dual form of C: a sum of product of univariates over an algebra.
- (4) The above transformation needs a slight modification in the case when the field is of prime characteristic.

- We embed a multiplication gate  $L_1^{e_1} \cdots L_s^{e_s}$ , where  $L_i = \sum_{j=1}^n g_{i,j}(x_j)$ , in a power series:
- where,  $e = (e_1 + \dots + e_s)$  and  $E_e$  is the truncated  $\exp(x)$ :  $1 + x + \dots + \frac{x^e}{e!}$ .

- We embed a multiplication gate  $L_1^{e_1} \cdots L_s^{e_s}$ , where  $L_i = \sum_{j=1}^n g_{i,j}(x_j)$ , in a power series:  $(e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} = [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(zz_1 L_1) \cdots \exp(zz_s L_s)$
- where,  $e = (e_1 + \dots + e_s)$  and  $E_e$  is the truncated  $\exp(x)$ :  $1 + x + \dots + \frac{x^e}{e!}$ .

- We embed a multiplication gate  $L_1^{e_1} \cdots L_s^{e_s}$ , where  $L_i = \sum_{j=1}^n g_{i,j}(x_j)$ , in a power series:  $(e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} = [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(zz_1 L_1) \cdots \exp(zz_s L_s)$  $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(\sum_{i=1}^s zz_i L_i)$
- where,  $e = (e_1 + \dots + e_s)$  and  $E_e$  is the truncated  $\exp(x)$ :  $1 + x + \dots + \frac{x^e}{e!}$ .

- We embed a multiplication gate  $L_1^{e_1} \cdots L_s^{e_s}$ , where  $L_i = \sum_{j=1}^n g_{i,j}(x_j)$ , in a power series:  $(e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} = [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(zz_1 L_1) \cdots \exp(zz_s L_s)$   $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(\sum_{i=1}^s zz_i L_i)$  $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \prod_{j=1}^n \exp((z_1g_{1,j} + \cdots + z_sg_{s,j})z)$
- where,  $e = (e_1 + \dots + e_s)$  and  $E_e$  is the truncated  $\exp(x)$ :  $1 + x + \dots + \frac{x^e}{e!}$ .

- We embed a multiplication gate  $L_1^{e_1} \cdots L_s^{e_s}$ , where  $L_i = \sum_{j=1}^n g_{i,j}(x_j)$ , in a power series:  $(e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} = [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(zz_1 L_1) \cdots \exp(zz_s L_s)$   $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(\sum_{i=1}^s zz_i L_i)$   $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \prod_{j=1}^n \exp((z_1g_{1,j} + \cdots + z_sg_{s,j})z)$  $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \prod_{i=1}^n E_e((z_1g_{1,j} + \cdots + z_sg_{s,j})z)$
- where,  $e = (e_1 + \dots + e_s)$  and  $E_e$  is the truncated  $\exp(x)$ :  $1 + x + \dots + \frac{x^e}{e!}$ .

- We embed a multiplication gate  $L_1^{e_1} \cdots L_s^{e_s}$ , where  $L_i = \sum_{j=1}^n g_{i,j}(x_j)$ , in a power series:  $(e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} = [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(zz_1 L_1) \cdots \exp(zz_s L_s)$   $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(\sum_{i=1}^s zz_i L_i)$   $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \prod_{j=1}^n \exp((z_1g_{1,j} + \cdots + z_sg_{s,j})z)$  $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \prod_{i=1}^n E_e((z_1g_{1,j} + \cdots + z_sg_{s,j})z)$
- where,  $e = (e_1 + \dots + e_s)$  and  $E_e$  is the truncated  $\exp(x)$ :  $1 + x + \dots + \frac{x^e}{e!}$ .

- We embed a multiplication gate  $L_1^{e_1} \cdots L_s^{e_s}$ , where  $L_i = \sum_{j=1}^n g_{i,j}(x_j)$ , in a power series:  $(e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} = [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(zz_1 L_1) \cdots \exp(zz_s L_s)$   $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \exp(\sum_{i=1}^s zz_i L_i)$   $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \prod_{j=1}^n \exp((z_1g_{1,j} + \cdots + z_sg_{s,j})z)$  $= [z^e z_1^{e_1} \cdots z_s^{e_s}] \prod_{i=1}^n E_e((z_1g_{1,j} + \cdots + z_sg_{s,j})z)$
- where,  $e = (e_1 + \dots + e_s)$  and  $E_e$  is the truncated  $\exp(x)$ :  $1 + x + \dots + \frac{x^e}{e!}$ .

- We will now extract the degree *e* part from the above expression.
- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, ..., z_s]/(z_1^{e_1+1}, ..., z_s^{e_s+1})$ :
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

We will now extract the degree *e* part from the above expression.
 (α | u α |)<sup>-1</sup> / <sup>e</sup> u / <sup>e</sup> = [τ<sup>e</sup> τ<sup>e</sup> u τ<sup>e</sup>] Π<sup>n</sup> = Ε ((τ α u + u + τ α))

 $(e_{1}!\cdots e_{s}!)^{-1}\cdot L_{1}^{e_{1}}\cdots L_{s}^{e_{s}} = [z^{e}z_{1}^{e_{1}}\cdots z_{s}^{e_{s}}]\prod_{i=1}^{n} E_{e}((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})z)$ 

- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, ..., z_s]/(z_1^{e_1+1}, ..., z_s^{e_s+1})$ :
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

• We will now extract the degree *e* part from the above expression.

 $\begin{aligned} (\mathbf{e}_{1}!\cdots\mathbf{e}_{s}!)^{-1}\cdot L_{1}^{\mathbf{e}_{1}}\cdots L_{s}^{\mathbf{e}_{s}} &= [z^{e}z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}]\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})z\right) \\ &= [z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}]\sum_{j=1}^{ne+1}\beta_{j}\cdot\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})\alpha_{j}\right) \end{aligned}$ 

- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, \ldots, z_s]/(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$ :
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

• We will now extract the degree *e* part from the above expression.

 $\begin{aligned} (\mathbf{e}_{1}!\cdots\mathbf{e}_{s}!)^{-1} \cdot L_{1}^{\mathbf{e}_{1}}\cdots L_{s}^{\mathbf{e}_{s}} &= [z^{e}z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}] \prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})z\right) \\ &= [z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}] \sum_{j=1}^{ne+1} \beta_{j} \cdot \prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})\alpha_{j}\right) \end{aligned}$ 

- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, \ldots, z_s]/(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$ :
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

• We will now extract the degree *e* part from the above expression.

 $\begin{aligned} (\mathbf{e}_{1}!\cdots\mathbf{e}_{s}!)^{-1} \cdot L_{1}^{\mathbf{e}_{1}}\cdots L_{s}^{\mathbf{e}_{s}} &= [z^{e}z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}] \prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})z\right) \\ &= [z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}] \sum_{j=1}^{ne+1} \beta_{j} \cdot \prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})\alpha_{j}\right) \end{aligned}$ 

- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, \ldots, z_s]/(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$ :
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

• We will now extract the degree *e* part from the above expression.

 $\begin{aligned} (\mathbf{e}_{1}!\cdots\mathbf{e}_{s}!)^{-1}\cdot L_{1}^{\mathbf{e}_{1}}\cdots L_{s}^{\mathbf{e}_{s}} &= [z^{e}z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}]\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})z\right) \\ &= [z_{1}^{\mathbf{e}_{1}}\cdots z_{s}^{\mathbf{e}_{s}}]\sum_{j=1}^{ne+1}\beta_{j}\cdot\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})\alpha_{j}\right) \end{aligned}$ 

- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, \ldots, z_s]/(z_1^{e_1+1}, \ldots, z_s^{e_s+1}):$  $\sum_{j=1}^{ne+1} \beta_j \cdot \prod_{i=1}^n E_e((z_1g_{1,i} + \cdots + z_sg_{s,i})\alpha_j)$
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

• We will now extract the degree *e* part from the above expression.

 $\begin{aligned} (\mathbf{e}_{1}!\cdots\mathbf{e}_{s}!)^{-1}\cdot L_{1}^{\mathbf{e}_{1}}\cdots L_{s}^{\mathbf{e}_{s}} &= [z^{e}z_{1}^{e_{1}}\cdots z_{s}^{e_{s}}]\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})z\right) \\ &= [z_{1}^{e_{1}}\cdots z_{s}^{e_{s}}]\sum_{j=1}^{ne+1}\beta_{j}\cdot\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})\alpha_{j}\right) \end{aligned}$ 

- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, \dots, z_s]/(z_1^{e_1+1}, \dots, z_s^{e_s+1}):$   $\sum_{j=1}^{ne+1} \beta_j \cdot \prod_{i=1}^n E_e((z_1g_{1,i} + \dots + z_sg_{s,i})\alpha_j)$  $= (e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} \cdot z_1^{e_1} \cdots z_s^{e_s}$
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

• We will now extract the degree *e* part from the above expression.

 $\begin{aligned} (\mathbf{e}_{1}!\cdots\mathbf{e}_{s}!)^{-1}\cdot L_{1}^{\mathbf{e}_{1}}\cdots L_{s}^{\mathbf{e}_{s}} &= [z^{e}z_{1}^{e_{1}}\cdots z_{s}^{e_{s}}]\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})z\right) \\ &= [z_{1}^{e_{1}}\cdots z_{s}^{e_{s}}]\sum_{j=1}^{ne+1}\beta_{j}\cdot\prod_{i=1}^{n} E_{e}\left((z_{1}g_{1,i}+\cdots+z_{s}g_{s,i})\alpha_{j}\right) \end{aligned}$ 

- If we look at the above sum modulo the ideal  $(z_1^{e_1+1}, \ldots, z_s^{e_s+1})$  then the surviving monomial in  $\overline{z}$  is exactly  $z_1^{e_1} \cdots z_s^{e_s}$ .
- Thus, over the algebra  $R := \mathbb{F}[z_1, \dots, z_s]/(z_1^{e_1+1}, \dots, z_s^{e_s+1}):$   $\sum_{j=1}^{ne+1} \beta_j \cdot \prod_{i=1}^n E_e((z_1g_{1,i} + \dots + z_sg_{s,i})\alpha_j)$  $= (e_1! \cdots e_s!)^{-1} \cdot L_1^{e_1} \cdots L_s^{e_s} \cdot z_1^{e_1} \cdots z_s^{e_s}$
- Thus, we expressed the diagonal depth-4 multiplication gate as a sum-of-product-of-univariates.

# IDEA 3: DUAL FORM

- Given a diagonal depth-4 circuit  $C(\overline{x}) = T_1 + \cdots + T_k$ , where  $T_i = \prod_{j=1}^s L_{i,j}^{e_{i,j}}$ .
- The last two ideas allow us to write *T<sub>i</sub>* as a sum-of-product-of-univariates:
- The third idea is to *stitch* these k algebras  $R_i$  to an algebra R of dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s})$ .
- Such that over *R*, *C* is a sum-of-product-of-univariates:

# IDEA 3: DUAL FORM

- Given a diagonal depth-4 circuit  $C(\overline{x}) = T_1 + \cdots + T_k$ , where  $T_i = \prod_{j=1}^s L_{i,j}^{e_{i,j}}$ .
- The last two ideas allow us to write *T<sub>i</sub>* as a sum-of-product-of-univariates:
- The third idea is to *stitch* these k algebras  $R_i$  to an algebra R of dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s})$ .
- Such that over *R*, *C* is a sum-of-product-of-univariates:

#### IDEA 3: DUAL FORM

- Given a diagonal depth-4 circuit  $C(\overline{x}) = T_1 + \cdots + T_k$ , where  $T_i = \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- The last two ideas allow us to write  $T_i$  as a sum-of-product-of-univariates:  $T_{i} = \sum_{i=1}^{e_{i,1}} \sum_{j=1}^{e_{i,2}} \sum_{j=1}^{t_i} \sum_{j=1}^{t_i}$

 $T_i \cdot z_{i,1}^{e_{i,1}} \cdots z_{i,s}^{e_{i,s}} = \sum_{j_1=1}^{t_i} f_{i,j_1,1}(x_1) \cdots f_{i,j_1,n}(x_n)$  over  $R_i$ 

- The third idea is to *stitch* these k algebras  $R_i$  to an algebra R of dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s})$ .
- Such that over *R*, *C* is a sum-of-product-of-univariates:

#### IDEA 3: DUAL FORM

- Given a diagonal depth-4 circuit  $C(\overline{x}) = T_1 + \cdots + T_k$ , where  $T_i = \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- The last two ideas allow us to write *T<sub>i</sub>* as a sum-of-product-of-univariates:

 $T_i \cdot z_{i,1}^{e_{i,1}} \cdots z_{i,s}^{e_{i,s}} = \sum_{j_1=1}^{t_i} f_{i,j_1,1}(x_1) \cdots f_{i,j_1,n}(x_n) \text{ over } R_i$ where,  $t_i = n(e_{i,1} + \cdots + e_{i,s}) + 1$  and  $R_i := \mathbb{F}[z_{i,1}, \dots, z_{i,s}]/(z_{i,1}^{e_{i,1}}, \dots, z_{i,s}^{e_{i,s}+1})$ 

- The third idea is to *stitch* these k algebras  $R_i$  to an algebra R of dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s})$ .
- Such that over *R*, *C* is a sum-of-product-of-univariates:

#### IDEA 3: DUAL FORM

- Given a diagonal depth-4 circuit  $C(\overline{x}) = T_1 + \cdots + T_k$ , where  $T_i = \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- The last two ideas allow us to write *T<sub>i</sub>* as a sum-of-product-of-univariates:

 $T_i \cdot z_{i,1}^{e_{i,1}} \cdots z_{i,s}^{e_{i,s}} = \sum_{j_1=1}^{t_i} f_{i,j_1,1}(x_1) \cdots f_{i,j_1,n}(x_n) \text{ over } R_i$ where,  $t_i = n(e_{i,1} + \cdots + e_{i,s}) + 1$  and  $R_i := \mathbb{F}[z_{i,1}, \dots, z_{i,s}]/(z_{i,1}^{e_{i,1}}, \dots, z_{i,s}^{e_{i,s}+1})$ 

- The third idea is to *stitch* these k algebras  $R_i$  to an algebra R of dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s})$ .
- Such that over *R*, *C* is a sum-of-product-of-univariates:

#### IDEA 3: DUAL FORM

- Given a diagonal depth-4 circuit  $C(\overline{x}) = T_1 + \cdots + T_k$ , where  $T_i = \prod_{j=1}^s L_{i,j}^{e_{i,j}}$ .
- The last two ideas allow us to write *T<sub>i</sub>* as a sum-of-product-of-univariates:

 $T_i \cdot z_{i,1}^{e_{i,1}} \cdots z_{i,s}^{e_{i,s}} = \sum_{j_1=1}^{t_i} f_{i,j_1,1}(x_1) \cdots f_{i,j_1,n}(x_n) \text{ over } R_i$ where,  $t_i = n(e_{i,1} + \cdots + e_{i,s}) + 1$  and  $R_i := \mathbb{F}[z_{i,1}, \dots, z_{i,s}]/(z_{i,1}^{e_{i,1}+1}, \dots, z_{i,s}^{e_{i,s}+1})$ 

- The third idea is to *stitch* these k algebras  $R_i$  to an algebra R of dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s})$ .
- Such that over *R*, *C* is a sum-of-product-of-univariates:

#### IDEA 3: DUAL FORM

- Given a diagonal depth-4 circuit  $C(\overline{x}) = T_1 + \cdots + T_k$ , where  $T_i = \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- The last two ideas allow us to write  $T_i$  as a sum-of-product-of-univariates:

 $T_i \cdot z_{i,1}^{e_{i,1}} \cdots z_{i,s}^{e_{i,s}} = \sum_{j_1=1}^{t_i} f_{i,j_1,1}(x_1) \cdots f_{i,j_1,n}(x_n)$  over  $R_i$ 

where,  $t_i = n(e_{i,1} + \dots + e_{i,s}) + 1$  and  $R_i := \mathbb{F}[z_{i,1}, \dots, z_{i,s}]/(z_{i,1}^{e_{i,1}+1}, \dots, z_{i,s}^{e_{i,s}+1})$ 

- The third idea is to *stitch* these k algebras  $R_i$  to an algebra R of dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s})$ .
- Such that over R, C is a sum-of-product-of-univariates:  $C(x_1, \ldots, x_n) \cdot z_{1,1}^{e_{1,1}} \cdots z_{1,s}^{e_{1,s}} = \sum_{i=1}^k \sum_{j_i=1}^{t_i} f_{i,j_1,1}(x_1) \cdots f_{i,j_1,n}(x_n)$

#### • This sum-of-product-of-univariates circuit is vulnerable!

- We attack it by generalizing the results of Raz & Shpilka (CCC '04) to general commutative algebras.
- THM 1: Let R be an algebra over a field  $\mathbb{F}$ . Given a sum-of-productof-univariates circuit  $C(x_1, \ldots, x_n)$  over R we can verify deterministically in poly(size(C), dim(R)) field operations whether C is zero.

- This sum-of-product-of-univariates circuit is vulnerable!
- We attack it by generalizing the results of Raz & Shpilka (CCC '04) to general commutative algebras.
- THM 1: Let R be an algebra over a field  $\mathbb{F}$ . Given a sum-of-productof-univariates circuit  $C(x_1, \ldots, x_n)$  over R we can verify deterministically in poly(size(C), dim(R)) field operations whether C is zero.

- This sum-of-product-of-univariates circuit is vulnerable!
- We attack it by generalizing the results of Raz & Shpilka (CCC '04) to general commutative algebras.

THM 1: Let R be an algebra over a field  $\mathbb{F}$ . Given a sum-of-productof-univariates circuit  $C(x_1, \ldots, x_n)$  over R we can verify deterministically in poly(size(C), dim(R)) field operations whether C is zero.

- This sum-of-product-of-univariates circuit is vulnerable!
- We attack it by generalizing the results of Raz & Shpilka (CCC '04) to general commutative algebras.
- THM 1: Let R be an algebra over a field  $\mathbb{F}$ . Given a sum-of-productof-univariates circuit  $C(x_1, \ldots, x_n)$  over R we can verify deterministically in poly(size(C), dim(R)) field operations whether C is zero.

# FINAL CALCULATION

• Let the given diagonal depth-4 circuit be  $C(x_1, \ldots, x_n)$ =  $\sum_{i=1}^{k} \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .

- Our transformation is over a base algebra R with dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s}).$
- This gives us the following results:

THM 1: We can deterministically test C for zeroness in  $poly(size(C), max_i\{(1 + e_{i,1}) \cdots (1 + e_{i,s})\})$  field operations. THM 2: If C expresses the determinant (or permanent) of a formal  $m \times m$  matrix then either  $s = \Omega\left(\frac{m}{\log m}\right)$  or  $k = 2^{\Omega(m)}$ .

# FINAL CALCULATION

- Let the given diagonal depth-4 circuit be  $C(x_1, \ldots, x_n)$ =  $\sum_{i=1}^{k} \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- Our transformation is over a base algebra R with dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s}).$
- This gives us the following results:

THM 1: We can deterministically test *C* for zeroness in  $poly(size(C), max_i\{(1 + e_{i,1}) \cdots (1 + e_{i,s})\})$  field operations. THM 2: If *C* expresses the determinant (or permanent) of a formal  $m \times m$  matrix then either  $c = O\left(\frac{m}{2}\right)$  or  $k = 2^{\Omega(m)}$ 

> ・ロ ・ ・ 日 ・ ・ 目 ・ く 目 ・ う へ で 17 / 20

# FINAL CALCULATION

- Let the given diagonal depth-4 circuit be  $C(x_1, \ldots, x_n)$ =  $\sum_{i=1}^{k} \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- Our transformation is over a base algebra R with dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s}).$
- This gives us the following results:

THM 1: We can deterministically test C for zeroness in  $poly(size(C), max_i\{(1 + e_{i,1}) \cdots (1 + e_{i,s})\})$  field operations. THM 2: If C expresses the determinant (or permanent) of a formal  $m \times m$  matrix then either  $s = \Omega\left(\frac{m}{\log m}\right)$  or  $k = 2^{\Omega(m)}$ .

# FINAL CALCULATION

- Let the given diagonal depth-4 circuit be  $C(x_1, \ldots, x_n)$ =  $\sum_{i=1}^{k} \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- Our transformation is over a base algebra R with dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s}).$
- This gives us the following results:

THM 1: We can deterministically test *C* for zeroness in  $poly(size(C), max_i\{(1 + e_{i,1}) \cdots (1 + e_{i,s})\})$  field operations. THM 2: If *C* expresses the determinant (or permanent) of a formal  $m \times m$  matrix then either  $s = \Omega\left(\frac{m}{\log m}\right)$  or  $k = 2^{\Omega(m)}$ .

# FINAL CALCULATION

- Let the given diagonal depth-4 circuit be  $C(x_1, \ldots, x_n)$ =  $\sum_{i=1}^{k} \prod_{j=1}^{s} L_{i,j}^{e_{i,j}}$ .
- Our transformation is over a base algebra R with dimension  $\sum_{i=1}^{k} (1 + e_{i,1}) \cdots (1 + e_{i,s}).$
- This gives us the following results:
- THM 1: We can deterministically test *C* for zeroness in  $poly(size(C), max_i\{(1 + e_{i,1}) \cdots (1 + e_{i,s})\})$  field operations. THM 2: If *C* expresses the determinant (or permanent) of a formal

 $m \times m$  matrix then either  $s = \Omega\left(\frac{m}{\log m}\right)$  or  $k = 2^{\Omega(m)}$ .

# IDEA 4: PRIME CHARACTERISTIC

- The circuit transformation we showed had terms like  $\frac{1}{e_1}$ , so we need to be careful when the field is of a prime characteristic  $p \ge 2$ .
- The basic idea is to do the transformation treating the constants as rationals and then clear away *p* from the denominators.
- This gives us a dual form of C in the form:
   p<sup>b</sup> · C(x<sub>1</sub>,...,x<sub>n</sub>) · z<sup>e<sub>1,1</sub><sub>1,1</sub> · · · z<sup>e<sub>1,s</sub><sub>1,s</sub> is a sum-of-product-of-univariates over a ring R of characteristic p<sup>b+1</sup>.
  </sup></sup>
- All our results carry over to even rings above  $\mathbb{Z}/(p^{b+1}\mathbb{Z})$ .

# IDEA 4: PRIME CHARACTERISTIC

- The circuit transformation we showed had terms like  $\frac{1}{e_1}$ , so we need to be careful when the field is of a prime characteristic  $p \ge 2$ .
- The basic idea is to do the transformation treating the constants as rationals and then clear away *p* from the denominators.
- This gives us a dual form of C in the form:
   p<sup>b</sup> · C(x<sub>1</sub>,...,x<sub>n</sub>) · z<sup>e<sub>1,1</sub><sub>1,1</sub> · · · z<sup>e<sub>1,s</sub><sub>1,s</sub> is a sum-of-product-of-univariates over a ring R of characteristic p<sup>b+1</sup>.
  </sup></sup>
- All our results carry over to even rings above  $\mathbb{Z}/(p^{b+1}\mathbb{Z})$ .

# IDEA 4: PRIME CHARACTERISTIC

- The circuit transformation we showed had terms like  $\frac{1}{e_1}$ , so we need to be careful when the field is of a prime characteristic  $p \ge 2$ .
- The basic idea is to do the transformation treating the constants as rationals and then clear away *p* from the denominators.
- This gives us a dual form of *C* in the form:  $p^b \cdot C(x_1, \ldots, x_n) \cdot z_{1,1}^{e_{1,1}} \cdots z_{1,s}^{e_{1,s}}$  is a sum-of-product-ofunivariates over a ring *R* of characteristic  $p^{b+1}$ .
- All our results carry over to even rings above  $\mathbb{Z}/(p^{b+1}\mathbb{Z})$ .
# IDEA 4: PRIME CHARACTERISTIC

- The circuit transformation we showed had terms like  $\frac{1}{e_1}$ , so we need to be careful when the field is of a prime characteristic  $p \ge 2$ .
- The basic idea is to do the transformation treating the constants as rationals and then clear away *p* from the denominators.
- This gives us a dual form of *C* in the form:  $p^b \cdot C(x_1, \ldots, x_n) \cdot z_{1,1}^{e_{1,1}} \cdots z_{1,s}^{e_{1,s}}$  is a sum-of-product-ofunivariates over a ring *R* of characteristic  $p^{b+1}$ .
- All our results carry over to even rings above  $\mathbb{Z}/(p^{b+1}\mathbb{Z})$ .

#### OVER ANY COMMUTATIVE RING

- Suppose we are given a diagonal depth-4 circuit over any commutative ring. Say, the ring is specified in the input in basis form.
- Our identity test and lower bounds also hold for such circuits.

#### OVER ANY COMMUTATIVE RING

- Suppose we are given a diagonal depth-4 circuit over any commutative ring. Say, the ring is specified in the input in basis form.
- Our identity test and lower bounds also hold for such circuits.



- For a diagonal depth-4 circuit C of the form
   ∑<sub>i=1</sub><sup>k</sup> L<sub>i,1</sub><sup>e<sub>i,s</sub> ··· L<sub>i,s</sub><sup>e<sub>i,s</sub></sup> having *small s*, we gave an identity test and
   proved lower bounds.
  </sup>
- The main idea was to define a dual form of such circuits.
- Is the dual form useful even when *s* is variable?

QUESTIONS?



- For a diagonal depth-4 circuit C of the form  $\sum_{i=1}^{k} L_{i,1}^{e_{i,1}} \cdots L_{i,s}^{e_{i,s}}$  having *small s*, we gave an identity test and proved lower bounds.
- The main idea was to define a dual form of such circuits.
- Is the dual form useful even when *s* is variable?

QUESTIONS?



- For a diagonal depth-4 circuit C of the form  $\sum_{i=1}^{k} L_{i,1}^{e_{i,1}} \cdots L_{i,s}^{e_{i,s}}$  having *small s*, we gave an identity test and proved lower bounds.
- The main idea was to define a dual form of such circuits.
- Is the dual form useful even when *s* is variable?

QUESTIONS?

20/20



- For a diagonal depth-4 circuit C of the form  $\sum_{i=1}^{k} L_{i,1}^{e_{i,1}} \cdots L_{i,s}^{e_{i,s}}$  having *small s*, we gave an identity test and proved lower bounds.
- The main idea was to define a dual form of such circuits.
- Is the dual form useful even when *s* is variable?

QUESTIONS?