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The Problem

• Arithmetic circuits, over a field F, compute a polynomial.
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• Identity testing is the problem of checking whether a given
circuit is zero or not.
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Identity Testing

General Problem

Motivation

• It is a natural algebraic problem but no efficient algorithm is
known.

• Identity testing is instrumental in many results: Parallel
algorithms for matching problems (Lovasz ’79), PSPACE=IP
(Shamir ’92), PCP theorem (Arora-Safra ’97) and primality
testing (AKS ’02).

• (Schwartz ’80, Zippel ’79) gave a randomized algorithm for
identity testing.

• (Impagliazzo-Kabanets ’03) showed that derandomizing
identity testing would mean proving lower bounds for either
NEXP or Permanent.
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Identity Testing

Special Cases

Special Cases of Identity Testing

• Non-commutative formulas: (Raz & Shpilka ’04) gave a
deterministic polynomial time identity test.

• Circuits of depth 3 with bounded top fanin:
(Kayal & Saxena ’06) gave a deterministic polynomial time
identity test.
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Depth 4 Circuits

The Problem

The Notation

• For identity testing, wlog we can assume that a depth 4
circuit has a + gate at the top.

• Thus, a depth 4 circuit is a “sum of product of sparse
polynomials” (ΣΠΣΠ circuit).

• Explicitly, a depth-4 circuit C over a field F will look like:
C(x1, . . . , xn) = T1 + · · ·+ Tk

where, Ti is a product of polynomials Li ,1, . . . , Li ,d

where, Li ,j(x) =
∑

` ai ,j ,`x
`, a’s ∈ F.
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Depth 4 Circuits

The Problem

Peculiarity of Depth-4

• Depth-4 is not just another circuit restriction!

• Agrawal & Vinay (FOCS 2008) show that proving exponential
lower bounds for depth-4 circuits imply exponential lower
bounds for unrestricted depth circuits.

• Also, a black-box derandomization of identity testing for
depth-4 circuits implies a nearly complete derandomization of
general identity testing.
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Depth 4 Circuits

The Problem

Diagonal Depth-4 Circuits

• Here we look at the case of depth-4 when the inputs to the
multiplication gates are just sums of univariates.

• A diagonal depth-4 circuit C over a field F looks like:
C(x1, . . . , xn) = T1 + · · ·+ Tk

where, Ti is a product of polynomials Li ,1, . . . , Li ,d

where, Li ,j(x) =
∑n

`=1 gi ,j ,`(x`)

• Newton’s identities are of this form:
(x1 + x2 + x3)

3 + 2(x3
1 + x3

2 + x3
3 )− 3(x1 + x2 + x3)(x

2
1 + x2

2 + x2
3 )− 6x1x2x3 = 0
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Depth 4 Circuits

Handling Diagonal Depth-4

The Four Ideas

We transform a diagonal circuit C to a form that is easier to
handle. The main ideas are:

(1) We note that the multiplication gate Le1
1 . . . Les

s appears in the
power series of exp(zz1L1 + · · ·+ zzsLs).

(2) We evaluate exp(zz1L1 + · · ·+ zzsLs) for various values of z
and extract Le1

1 . . . Les
s by interpolation.

(3) We transform each multiplication gate to the form above and
then stitch them to get a dual form of C: a sum of product of
univariates over an algebra.

(4) The above transformation needs a slight modification in the
case when the field is of prime characteristic.
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Depth 4 Circuits

Handling Diagonal Depth-4

Idea 1: Power Series

• We embed a multiplication gate Le1
1 · · · Les

s , where
Li =

∑n
j=1 gi ,j(xj), in a power series:

• where, e = (e1 + · · ·+ es) and Ee is the truncated exp(x):
1 + x + · · ·+ xe

e! .
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Depth 4 Circuits

Handling Diagonal Depth-4

Idea 2: Interpolation

• We will now extract the degree e part from the above
expression.

• If we look at the above sum modulo the ideal
(ze1+1

1 , . . . , zes+1
s ) then the surviving monomial in z is exactly

ze1
1 · · · zes

s .

• Thus, over the algebra R := F[z1, . . . , zs ]/(ze1+1
1 , . . . , zes+1

s ):

• Thus, we expressed the diagonal depth-4 multiplication gate
as a sum-of-product-of-univariates.
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Depth 4 Circuits

Handling Diagonal Depth-4

Idea 3: Dual Form

• Given a diagonal depth-4 circuit C (x) = T1 + · · ·+ Tk , where
Ti =

∏s
j=1 L

ei,j

i ,j .

• The last two ideas allow us to write Ti as a
sum-of-product-of-univariates:

• The third idea is to stitch these k algebras Ri to an algebra R
of dimension

∑k
i=1(1 + ei ,1) · · · (1 + ei ,s).

• Such that over R, C is a sum-of-product-of-univariates:
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Depth 4 Circuits

Handling Diagonal Depth-4

A Generalization of the Known Results

• This sum-of-product-of-univariates circuit is vulnerable!

• We attack it by generalizing the results of Raz & Shpilka
(CCC ’04) to general commutative algebras.

Thm 1: Let R be an algebra over a field F. Given a sum-of-product-
of-univariates circuit C (x1, . . . , xn) over R we can verify
deterministically in poly(size(C ), dim(R)) field operations
whether C is zero.

Thm 2: Let R be an algebra over a field F, r ∈ R \ {0} and r ′ ∈ R. If
det((xi ,j)) · r − r ′ can be expressed as a sum-of-k-products-
of-univariates circuit, then k · dim(R) = 2Ω(n).
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Depth 4 Circuits

Handling Diagonal Depth-4

Final Calculation

• Let the given diagonal depth-4 circuit be C (x1, . . . , xn)
=

∑k
i=1

∏s
j=1 L

ei,j

i ,j .

• Our transformation is over a base algebra R with dimension∑k
i=1(1 + ei ,1) · · · (1 + ei ,s).

• This gives us the following results:

Thm 1: We can deterministically test C for zeroness in
poly(size(C ),maxi{(1 + ei ,1) · · · (1 + ei ,s)}) field operations.

Thm 2: If C expresses the determinant (or permanent) of a formal

m ×m matrix then either s = Ω
(

m
log m

)
or k = 2Ω(m).
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Depth 4 Circuits

Handling Diagonal Depth-4

Idea 4: Prime Characteristic

• The circuit transformation we showed had terms like 1
e1

, so we
need to be careful when the field is of a prime characteristic
p ≥ 2.

• The basic idea is to do the transformation treating the
constants as rationals and then clear away p from the
denominators.

• This gives us a dual form of C in the form:
pb · C (x1, . . . , xn) · z

e1,1

1,1 · · · ze1,s

1,s is a sum-of-product-of-

univariates over a ring R of characteristic pb+1.

• All our results carry over to even rings above Z/(pb+1Z).

18 / 20



Depth 4 Circuits

Handling Diagonal Depth-4

Idea 4: Prime Characteristic

• The circuit transformation we showed had terms like 1
e1

, so we
need to be careful when the field is of a prime characteristic
p ≥ 2.

• The basic idea is to do the transformation treating the
constants as rationals and then clear away p from the
denominators.

• This gives us a dual form of C in the form:
pb · C (x1, . . . , xn) · z

e1,1

1,1 · · · ze1,s

1,s is a sum-of-product-of-

univariates over a ring R of characteristic pb+1.

• All our results carry over to even rings above Z/(pb+1Z).

18 / 20



Depth 4 Circuits

Handling Diagonal Depth-4

Idea 4: Prime Characteristic

• The circuit transformation we showed had terms like 1
e1

, so we
need to be careful when the field is of a prime characteristic
p ≥ 2.

• The basic idea is to do the transformation treating the
constants as rationals and then clear away p from the
denominators.

• This gives us a dual form of C in the form:
pb · C (x1, . . . , xn) · z

e1,1

1,1 · · · ze1,s

1,s is a sum-of-product-of-

univariates over a ring R of characteristic pb+1.

• All our results carry over to even rings above Z/(pb+1Z).

18 / 20



Depth 4 Circuits

Handling Diagonal Depth-4

Idea 4: Prime Characteristic

• The circuit transformation we showed had terms like 1
e1

, so we
need to be careful when the field is of a prime characteristic
p ≥ 2.

• The basic idea is to do the transformation treating the
constants as rationals and then clear away p from the
denominators.

• This gives us a dual form of C in the form:
pb · C (x1, . . . , xn) · z

e1,1

1,1 · · · ze1,s

1,s is a sum-of-product-of-

univariates over a ring R of characteristic pb+1.

• All our results carry over to even rings above Z/(pb+1Z).

18 / 20



Depth 4 Circuits

Handling Diagonal Depth-4

Over any commutative ring

• Suppose we are given a diagonal depth-4 circuit over any
commutative ring. Say, the ring is specified in the input in
basis form.

• Our identity test and lower bounds also hold for such circuits.
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Conclusion

In Conclusion

• For a diagonal depth-4 circuit C of the form∑k
i=1 L

ei,1

i ,1 · · · Lei,s

i ,s having small s, we gave an identity test and
proved lower bounds.

• The main idea was to define a dual form of such circuits.

• Is the dual form useful even when s is variable?

Questions?
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