HOW TO FACTOR OBJECTS?

Nitin Saxena
 CSE@IITK

ITMSc@60, Chennai
 January 2023

Base cases

Integers

* Integer n factors uniquely into prime numbers.
$>$ Eg. $1092=2^{2} * 3 * 7 * 13$

* Given n, can you factor it?
> Input n in binary
$>2^{\wedge}\left\{(\log n)^{0.3}\right\}$ time not good enough
> Number Field Sieve (1990s)
factors via $x^{2}=y^{2} \bmod n$
* Hardness used in cryptosystems.
> RSA, HTTPS, SSh, SFTP, Diffie-Hellman,

Prime Numbers
 Eratosthenes'(ehr-uh-TAHS-thuh-neez)
 Sieve

 - Eratosthenes was a Greek mathematician, astronomer, geographer, and librarian at Alexandria, Egypt in 200 B.C. - He invented a method for finding prime numbers that is still used today.
 -This method is called Eratosthenes' Sieve.

Univariate over integers

* Given polynomial $f(x) \in \mathbb{Z}[x]$, factor it.
$>f=x^{5}-x^{4}-4 x^{2}+x-2$ factors
> Roots have no formula
> Irreducibility testing?

* [Lenstra,Lenstra,Lovász'82] solved this completely.
$>$ Factor mod $2,2^{2}, 2^{4}, 2^{8}, \ldots$
> Lift to integral factor using lattice theory
> Useful in many post-quantum cryptosystems

Univariate Over finite fillds

* Galois field GF(pe) of size p^{e} and char = prime p.
* Given polynomial $f(x) \in G F(p)[x]$, factor it. $\Rightarrow f=x^{2}-2$ factors mod 7 $\Rightarrow \sqrt{ } 2=3 \bmod 7$!
> Irreducibility testing?

* [Berlekamp'67; Cantor-Zassenhaus'81] solved this practically.
> Use Galois automorphism
$>$ Compute gcd of $f(x)$ with $x^{p-x}, x^{p^{\wedge} 2}-x, x^{p^{\wedge} 3-x}, \ldots$
> Useful in crypto, coding theory, and computational algebra

Univariate over Galois rings

* Galois ring GR(pke) of size $p^{k e}$ and characteristic = prime-power p^{k}.
* Given polynomial $f(x) \in G R\left(p^{k e}\right)[x]$, factor it. $>f=x^{2}-2$ factors $\bmod 7^{2}$
$>\sqrt{ } 2=10 \bmod 7^{2}$!
> Irreducibility testing?
* This problem is OPEN.
* [Dwivedi,Mittal,s.'19] solved for $k=4$.
$>$ Factor $f(x) \bmod p, p^{2}, p^{3}, p^{4}$.
> Lifting from one to the next precision is nontrivial.
$>$ Eg. $f=x^{2}-p \bmod p^{2}$ vs $f=x^{2}-p x \bmod p^{2}$

Univariate over p-adic numbers

* Hensel (1897) defined p-adic numbers Z_{p}.

$$
>1+2 p+3 p^{2}+4 p^{3}+5 p^{4}+\ldots \text { converges to a number! }
$$

* Given polynomial $f(x) \in Z_{p}[x]$, factor it.
$\Rightarrow f=x^{2}-2$ factors in 7-adic
$>\sqrt{ } 2=3+1 * 7+2 * 7^{2}+6 * 7^{3}+\ldots$ in infinite digits!
> Irreducibility testing?

* [Chistov'90; Cantor,Gordon'00] solved it efficiently.
$>$ Newton polytope of $f(x)$,
> coupled with p -adic metric,
> reduces to mod p factoring.
> Useful in computational number theory.

Mulivariates

Mulitivariate sparse polynomials

Multivariate

Univariate

* [Bhargava,Saraf,Volkovich'18] showed a quasipoly bound.
* [Bisht,S.'22] showed a poly bound for symmetric factors.
$>$ Newton polytope of $f(\mathbf{x})$
> Relation between \#vertices \& \#internal points.
> Fast algorithm, by reducing to the base cases

IN FORMULA MODEL

* Given polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F[x]$, factor it.
> Input: is a formula of size s.
> Output: is a formula of size =?

* Only quasipoly bound known.
* Poly bound is OPEN.
* Open: Could Newton iteration be done inside the model?

In circuiit model

* Given polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F[x]$, factor it.
> Input: is a circuit of size s.
> Output: is a circuit of size =?
* [Kaltofen'87] showed a poly bound. > degree not too `high’
* Corollary: Newton iteration is doable inside circuits.

In a ‘tougher' circuit model

* Given polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F[x]$, factor it.
> Input: is a circuit of size s and degree $2^{\text {s. }}$
> Output: a factor of degree poly(s) of size =?
* It's an open question.
* [Dutta,S.,Sinhababu'18] showed a poly bound, when $>$ degree of the radical of f is not too ‘high'.
* Corollary: all-roots-Newton-iteration is doable inside circuits.

Conclude with open problems

* Question 1: Fast integer factoring?
* Question 2: Fast polynomial factoring mod p^{k} ?
* Question 3: General formula \& circuit factoring?
* Question 4: Derandomization?

