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Polynomial Identity Testing



. Multivariate Polynomials

* f(x) € F[xq, ..., x,] f = Z Qs - 1_[ xjej

* degf =d.Then, X;e; <d. e=(eq,...n) jE[n]

* az are field elements.

f(xl,XZ,xg) =1 + X1 + X9 + X3 + X1X9 + X1X3 + X2 X3 + X1X2X3



Polynomials: Ubiquitous object in Computer Science

e Graph Algorithm.

* Coding Theory.

* Cryptography.

* Computational Algebra.
* Circuit Complexity.

* Polynomial method in Combinatorics.



. Natural Operations

Given a polynomial f,

* Evaluateitatx; = aq, ..., x, = a,.

* For some polynomial g, compute f + gand f X g.
* Find the factors of f.

* Forsome polynomial g, test g = f.



. ldentity Testing

For some polynomial g, test g = f. f = Z as -

* Same coefficients, a; = [z

* Alternatively, check if all coefficients g= 2'8 .

are zeroin f — g.

That’s simple, but not efficient.

Number of coefficients = (nzd) ~ EXP(n,d).



. Representing Multivariate Polynomials

e Sparse Representation: ag. f= Z a -
* Intuitive.

 Operations are easy (sum, product, etc)

 Due to exponential many monomials highly non-succinct.

A=) | [ fz=il;[]<xi+1>

Sc[n] ieS



. Representing Multivariate Polynomials

e Algebraic Circuits

]F[xl,xZ] = fl — x% +x22 + lexZ

Natural. Succinct.

Operations are easy.

Algebraic problems naturally fit

. Internal Nodes
into the framework.

Source

Size = Number of gates = 6



. Representing Multivariate Polynomials

e Algebraic Circuits

Intuitive. Succinct.

Operations are easy.

Algebraic problems naturally fit
into the framework.

PIT is efficient with randomness.

Flxy,x,] 2 f1 = x% + x5 + 2x,x,
N
° ° ° Depth =2

WY

Size = Number of gates = 6




. Polynomial Identity Testing

1

PIT

A

J

\_

Given a circuit C over a field T, test if

C =0.

~

Whitebox.
Blackbox.

[F[Xl,xz] = fl — Xlz -I-X% + lexz




. Efficient Randomized algorithm

f[ PIT Lemma ]

Let S be a subset of field. For some randoma € S™

o

* Randomized algorithm: Consider set S of size more than (d + 1).
* Also gives a poly(d™) time deterministic algorithm.

e (Can we do better?



. Why do we care?

e Algorithms

12



. PIT & Perfect Matching

( x;;,if (i,j) € Eand i < j
ij — —Xl],lf(l,]) EEandi>j

Tutte Matrix T is a n X n matrix: \ 0, otherwise

For a graph G(V, E) on n verticies,

3
|

A
’_{ Tutte’s Characterisation J

G has a perfect matching & detT # 0

\_

 Determinantis a polynomial. Then testing detT = 0 is PIT.

* G@Gives arandomized parallel algorithm using PIT Lemma.



. Why do we care?

* Algorithms

 Complexity Theory

Polynomial Identity Testing

* Lower Bounds
e PIT isintrinsically connected to

proving circuit lower bounds.

Strong Lower Bounds




. PIT - Lower Bounds

A
’_[ Kabanets and Impagliazzo (STOC’03) J
PIT € P = Either NEXP is not in P/poly or Permanent is hard.

\_

 “hard” means it requires super polynomial size algebraic circuits.

 Connects derandomizing PIT with Boolean/ Algebraic Lower Bounds.

* Wishful thinking: PIT relates to Permanent hardness?

 Heintz and Schnorr (STOC’80), and later Agrawal (FSTTCS’05),
showed PIT € P implies there is a PSPACE computable polynomials

which is very hard.



State of Affairs



. Status Quo

* Nothing better than exponential known for general algebraic
circuits.

* Constant depth circuits in SUBEXP algorithm.
[Limaye,Srinivasan,Tavenas FOCS'21]

e Efficient algorithm are there for very restricted circuits.

[LST21] Nutan Limaye, Srikanth Srinivasan, Sébastien Tavenas



. Depth-2 circuits: Sparse Polynomials poly
Flxq,...,x,] 2 f = z (monomial);

* Monomials only polynomial in n.

 Whitebox is easy.

* Blackbox is easy as well due to Klivans 5

and Spielman (2001).

)

| sparse PIT (ks, sTOC'01) | y—

For 211 circuit of size-s and sparsity-m
(PITis possible in poly(s, m).




. Depth-3 circuits

e Sum of product of linear terms.

 SUBEXP algorithm due to LST21.

* There is poly-time blackbox PIT
algorithm when k is constant due to

Saxena and Seshadhri (2011).

A

k d
[F[Xl, an] = f — 2 n'gi]
L

top-fanin

’[ >k PIT (SS, STOC'11) J

For a size-s circuit PIT algorithm runs in
_poly(s, d*)

>, — [ Addition Gates ]
N
Variables




. Depth-4 circuits

Flx;
ylkIylel
The restriction is speciall
’{ Agrawal-Vinay (FOCS’'08) J )
XIIXIT PIT is almost as hard as the S ° ° °
\general case. J s —

* Nothing better than SUBEXP is known. ' — [

[AVO8] Manindra Agrawal, V. Vinay



. Depth-4 circuits

ylkIylel

* Promising model.

e Poly (and quasi-poly) time algorithms

are found with various restrictions on

the depth-4 model.

[AVO8] Manindra Agrawal V. Vinay



. PIT on Depth Restricted Circuits

ylkIylel

* Promising model.

e Poly (and quasi-poly) time algorithms
are found with various restrictions on
the depth-4 model.

* One such restriction we consider is

bounded top and bottom fanin.

Paper Restriction PIT
Saxena and
Seshadhri =1 poly(n, d®)
(STOC’11)
Beecken, Mittmann "
and Saxena Bounded trdeg g?rzgfund))
(ICALP’11)
Agarwal, Saha, Bounded top-
Saptharishi and fanin, poly(skz)
Saxena (STOC’12) multilinear
Low individual
. QP(n)
g
Kumar and Saraf
(CCC’16) Bounded local
trdeg and QP(n)
bottom fanin
Peleg and Shpilka k=36=2 poly(n, d)

(STOC’21)




New Developments



. Blackbox PIT of ZIKITIZITI®! circuits

N\

”_[ Theorem 1 [Dutta,Dwivedi,S CCC’21]

For constant k, 0 there is a quasi-poly time blackbox PIT algorithm
\for > KITEIle!l circuits.

0(62°k-10g S) time deterministic

* For size s circuit we give s
algorithm.

* The algorithm is quasi-poly even up to k, § = poly(logs).



. PIT on X XIIX A circuits

Kk
yIKI[IS A Flxy, .., xp] 3 f = Z H(Qm(?ﬁ) + o+ Gijn (X))
iJ

* Sum of product of sum of univariates.

top-fanin

* Deterministic PIT was open since 2013

[Saha,Saptharishi,S, Comp.Compl.13].

[SS513] Chandan Saha, Ramprasad Saptharishi, Nitin Saxena



. Blackbox PIT of ZIKITIZ A circuits

h

”_{ Theorem 2 [Dutta,Dwivedi,S CCC’21] J

For constant k there is a quasi-poly time blackbox PIT algorithm for
»KIMTE A circuits.

-

e For size s circuit we take s9(k109 110G 5) time.

e Similar proof, but faster than our X!*¥ITIZI1%! PIT algo.



. Whitebox PIT on ZI¥ITIZ A circuits

Kk
yIKI[IS A Flxy, .., xp] 3 f = Z H(Qm(?ﬁ) + o+ Gijn (X))
iJ

* Sum of product of sum of univariates.

top-fanin

e k < 2 was already solved in [SSS13].

 But k > 2 was open!

[SS513] Chandan Saha, Ramprasad Saptharishi, Nitin Saxena



. Whitebox PIT of Z*ITIX A circuits

N\

f_[ Theorem 3 [Dutta,Dwivedi,S CCC’21]

For constant k there is a poly time whitebox PIT algorithm for

\Z KITIZ A circuits.

« For size s circuit we take s9(K7%) time.
* Introducing DiDI-technique (Divide Derive Induct).
* Inductive. Top IT = A.
e Robust enough to give blackbox algorithm. But worse time

complexity.



Conclusion



. Conclusion
o

* Introduced PIT and Algebraic Circuits.
e Discussed connection of PIT with algorithms and lower
bounds.

* Three new PIT algorithms: Blackbox PIT of ZKITIZIT®! and
SIKITIE A. And Whitebox PIT of ZIFITIZ A,



. Open Problems

* Design a poly-time algorithm for X A > 111 circuits.

e It will place PIT of ZI¥IT1ZIIlO) in P.

* Solve PIT for ZIKITIZ Al2] - sum of product of sum of bivariate fed
into top product gate.

* Improve the dependence on k for Z¥ITIZ A whitebox PIT. '

O

e Currently it is exponential in k.



Proof Overview
- Now: Jacobian for blackbox PIT

- Monday: Alternate approach (DiDI)



. Recapitulation of XXITIXITI9] blackbox PIT

/[ Problem } \ De5|gn a horioIan[c))Crthlsm
mamfestmg nice property.
Test ”

f=T,+Ty+ T, =0

V" F[x] — F[z]
such that it preserves rank of Jacobian.

Where T; = []; g5 € 2191 of degree at
most d and size s

o ' J

Extend ‘P’ to a falthful map
- IF [z,y,t]

Use PIT Lemma for final Hitting Set of

o(f)

[ lemgxswtably usmg ‘nice’ property J




. Hitting Set

/[ Definition [Hitting Set] ]

A set H which certifies the non-zeroness of class C of
polynomials.
Vf+0E€C, daeH :f(a)#0
\_

* Blackbox PIT « Hitting Set.



. Trivial Hitting Set

f‘[ Lemma [Trivial Hitting Set] }

For a class of n-variate, deg d polynomials, there exists an explicit
\hitting set of size poly(d™)

 Suffices whenn = 0(1).
e Offers a general framework for PIT algorithms.

e Design a variable reducing non-zeroness preserving map.



. Recapitulation of ZIXITIZITI9] blackbox PIT

{

Problem J ™

Test

o

]
f=T,+Ty+ T, =0

Where T; = []; g;j € 2191 of degree at

most d and size s.

J

¥: F[x] - F[x, z]

Design a homomorphism
manifesting nice property.

.

|

W' Flx] - F[z]

Fixing X suitably using ‘nice’ property
such that it preserves rank of Jacobian.

-

Extend W' to a faithful map
®: F[%] - F[z, 7, t]

Use PIT Lemma for final Hitting Set of

o(f)




. Faithful homomorphism

e Set of polynomials T = {Ty, ..., Ty} in F[X] are algebraically
dependent if there is an non-zero annihilator A such that A(T ) = 0.

 Transcendence Degree (trdeg): Size of the largest subset of S € T
which is alg. independent.

e Sis called the Transcendence Basis.



. Faithful homomorphism

f{ Definition [Faithful hom.] J

®: Flix] — F|y] such that
trdegp (T) = trdegIF(Cb(T)).

\

/[ Theorem [Faithful is useful] }

Forany C € Flyq, ..., Yml,
C(T) =0 < c(o(T)) =0.

.




. Recapitulation of ZIXITIZITI9] blackbox PIT

) Design a homomorphism
/[ Problem J ) ¥: F[x] - F[x, z]
manifesting ‘nice’ property.
Test ) l
f=T +Ty+ T, =0
Fixing X suitably using ‘nice’ property
5 ¥ F[x] - F[z]
Where Ti — H] gl] S HZH[ | of degree at such that it preserves rank of Jacobian.
most d and size s. l
N /

Extend W' to a faithful map
®: Flx] - Flz,y,t]

Use PIT Lemma for final Hitting Set of

o(f)




. Jacobian Hits (Again)
e Jacobian Jg(T) is a m X n matrix.
Je(M) = (0(T)) =
mxn

* Linear rank captures the alg. rank.

0, (T1)

0, ()

Ox,, (T1)

0y n(T)

f_[ Theorem [Beecken,Mittmann,Saxena, ICALP’11]

h

J

Jacobian Criterion: For large char F,

N\

trdegp (T) = rankpz Jz(T)




. Jacobian Hits (Again)

e Jacobian offers the recipe of faithful map.

* Let W': F|x] — [F[Z] such that
rankg ) Jz(T) = rankg¥'(Jz(T)).

/{ Theorem [ASSS, STOC’12*] } ~

For large char [F, the map ®: F|x] — [F[z, y, t] defined as

Xi = (2 Vj tU) +W'(x;)

j<k
Qs faithful for Ty, ... T,.

J

*Agarwal, Saha, Saptharishi and Saxena




. Recapitulation of ZIXITIZITI9] blackbox PIT

) Desi '
gn a homomorphism
/[ Problem J ) ¥: F[x] - F[x, z]
manifesting ‘nice’ property.
Test 5 l
f= T1+T2+Tk =O
Fixing X suitably using ‘nice’ property
Where Ti — 1_[] gl] S HZH[S] of degree at such that it preserves rank of Jacobian.
most d and size s.

o )

Extend W' to a faithful map

®: F[x] - Flz, 7, t]

Use PIT Lemma for final Hitting Set of

o(f)

43



. Homomorphism W

o Suppos_e Ty s Ty is t_he tr-basis. Jz(T) := (axf(Ti))
* Let J¢(T) = Det Jx(T),

* To preserve rank, ensure determinant is non-zero.

« L(T) :={g:i; | j}

kxk

J(g1, -5 Gk)

g1€L(Ty),..gx€L(T}) g1 Yk

Je(T) =Ty .. Ty



. Homomorphism W

* Considerana = (aq, ..., a,) S [F" such that g(a) + 0 for all
g € U; L(T;) . Find it using PIT for sparse polynomials.
* Define W:F[x] —» F|x, z | such that

X; » Z-x;+ a.

z qj(]f(gll L gk))

PO(T) = W(Ty . Ti)| ), — g 2

)

F



. Homomorphism W

For inverses--- Define R := F[z]/(zP), where D := k(d — 1) + 1

/[ Claim }

Over R|x],
» Jz(T) =0 & P((T)) = 0.

& Y(J(T) =0 ©F=0.

~

* Wlog assume J(T) # 0, then F # 0 over R[xX].
e ConstructasetH' € [F*: LP(],;(T))‘)E:C_[;& 0,forsomea € H'.

e For this we construct a hitting-set for F.



. Recapitulation of ZIXITIZITI9] blackbox PIT

)

/[ Problem J

Test 5

f= T1+T2+Tk=0

most d and size s.

o

Where T; = []; g;j € 2191 of degree at

J

Design a homomorphism
Y: F[x] - F[x, z]

such that it preserves rank of Jacobian.

Extend W' to a faithful map
®: Flx] - Flz,¥,t]

Use PIT Lemma for final Hitting Set of

o(f)

47



. Towards extending ¥ to W’

/[ Claim [Nice Property] }

Over R[x], F can be computed by T A I8 circuit of size
(s -35)"".
e F:=P(x,2z)/Q ,where Q € IF.

( Degree of P wrt z remains polynomially bounded.

> A XIS - sum of powers of (degree 6) sparse polynomials.



. Towards extending ¥ to W’

« Essentially, H" will be the hitting-set for ‘small’ size 2 A >11lol,

* [Forbes, FOCS'15] gave the hitting set for the class.

e Use that to conclude that H" € IF" such that P(H',z) # 0

| | 2.7
is of size 007 klogs)

e H' fixes X in ¥ and gives ¥'.



. Recapitulation of ZIXITIZITI9] blackbox PIT

/[ Problem J ™
Test

?
f= T1+T2+Tk =O

Where T; = []; g;j € 2191 of degree at

most d and size s.

o )

e Construction of faithful map @ follows from Hitting set of X A
1) circuit.

* Therefore, ®(f) is essentially k + 3 variate polynomial.

Design a homomorphism
Y: F[x] - F[x, z]
manifesting ‘nice’ property.

Fixing X suitably using ‘nice’ property
V' Flx] - F[z]
such that it preserves rank of Jacobian.

Extend W' to a faithful map
©: Flx] - Flz,yq, - Vi, t]

Use PIT Lemma for final Hitting Set of

o(f)

50



. Open Problems

* Design a poly-time algorithm for X A >11L%) circuits?

e It will place PIT of ZI¥IT1ZIIlO) in P.

* Solve PIT for ZIKITIZ Al2] - sum of product of sum of bivariate fed
into top product gate?

* Improve the dependence on k for ZI¥ITIX A whitebox PIT? '

O

e Currently it is exponential in k.



