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The problem

The Problem

Given an integer n, test whether it is prime.

Easy Solution: Divide n by all numbers between 2 and (n − 1).

What is the deal about primality testing then ??
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The problem

Efficiently Solving a Problem

Given n we want a polynomial time primality test, one that runs in
atmost (log n)c steps.

Note that practically (log n)log log log n steps is efficient enough for the
prime numbers we encounter in real life!

Nevertheless, the notion of polynomial time elegantly captures the
theoretical complexity of a problem.

Notation:

(log n) is logarithm base 2. Natural log is (ln n).

Õ(logc n) denotes logc n · (log log n)O(1).
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The high school method

Eratosthenes Sieve

Proposed by Eratosthenes (ca. 300 BC).

1 List all numbers from 2 to n in a
sequence.

2 Take the smallest uncrossed number
and cross out all its multiples (except
itself).

3 At the end all the uncrossed numbers
are primes.
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The high school method

Time Complexity

To test primality
√
n many steps would be enough.

Not efficient by our standards!
As input size is O(log n).
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Prime generation & testing

Density of primes

Suppose we want a prime number close to n.

Eratosthenes sieve is a way to generate it. But it’s slow.

Fortunately, the primes are abundant in nature. If π(x) is the number
of primes below x then precise estimates on π(x)/x are known.

Rosser (1941)

showed that 1
ln x+2 <

π(x)
x < 1

ln x−4 , for x ≥ 55.

Thus, if we randomly pick a (log n)-bit number N, then with high
probability it will be prime!
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Prime generation & testing

Ring based primality tests

All the advanced primality tests associate a ring R to n and study its
properties.

The favorite rings are:
1 Zn – Integers modulo n.
2 Zn[

√
3] – Quadratic extensions.

3 Zn[x , y ]/(y2 − x3 − ax − b) – Elliptic curves.
4 Zn[x ]/(x r − 1) – Cyclotomic rings.
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Studying integers modulo n

Fermat’s Little Theorem (FLT)

Theorem (Fermat, 1660s)

If n is prime then for every a, an = a (mod n).

Basically, for all a ∈ Z∗n, an−1 = 1.

This property is not sufficient for primality (Carmichael, 1910).

But it is the starting point!

Eg. 561 = 3× 11× 17.
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Studying integers modulo n

Lucas Test

Theorem (Lucas, 1876)

n is prime iff ∃a ∈ Zn such that an−1 = 1 and a
n−1
p 6= 1 for all primes

p|(n − 1).

Suppose (n − 1) is smooth and we know its prime factors.

Do the above test for a random a.

Algebraic fact: For prime n, the group Z∗n is cyclic and of size n − 1.
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Studying integers modulo n

Pocklington-Lehmer Test

Theorem (Pocklington, 1914)

If ∃a ∈ Zn such that an−1 = 1 and gcd(a
n−1
pi − 1, n) = 1 for any distinct

primes p1, . . . , pt |(n − 1). Then any divisor of n is of the form
1 + kp1 · · · pt .

Suppose
∏t

i=1 pt ≥
√
n and we have them.

The above test is done for a random a.
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Studying integers modulo n

Solovay-Strassen: First randomized test

Theorem (Strengthening FLT)

An odd number n is prime iff for all a ∈ Zn, a
n−1
2 =

(
a
n

)
.

Jacobi symbol
(
a
n

)
is computable in time Õ(log2 n).

Solovay-Strassen (1977) check the above equation for a random a.

This gives a randomized test that takes time Õ(log2 n).

It errs with probability atmost 1
2 .

Algebraic fact: Quadratic residuosity in finite fields.
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Studying integers modulo n

Pépin’s Test

This is a test specialized for Fermat numbers Fk = 22
k

+ 1.

Theorem (Pépin, 1877)

Fk is prime iff 3
Fk−1

2 = −1 (mod Fk).

This yields a deterministic polynomial time primality test for Fermat
numbers.
Algebraic fact: In the prime case 3 is a generator!
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Studying integers modulo n

Miller-Rabin: Practical test

Strengthening FLT further [Miller, 1975]

An odd number n = 1 + 2s · t (odd t) is prime iff for all a ∈ Zn, the
sequence a2

s−1·t , a2
s−2·t , . . . , at has either a −1 or all 1’s.

We check the above equation for a random a.

This gives a randomized test that takes time Õ(log2 n).

It errs with probability atmost 1
4 .

The most popular primality test!

Algebraic fact: Over a field there are at most two square-roots.
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Studying integers modulo n

Riemann Hypothesis and Primality

Generalized Riemann Hypothesis [Piltz, 1884]

Let Dirichlet L-function be the analytic continuation of
L(χ, s) =

∑∞
n=1

χ(n)
ns . For every Dirichlet character χ and every complex

number s with L(χ, s) = 0: if Re(s) ∈ (0, 1] then Re(s) = 1
2 .

By taking χ to be the character modulo n it can be shown: the GRH
implies that there exists an a ≤ 2 log2 n such that

(
a
n

)
6= 1

(Ankeny 1952; Miller 1975; Bach 1980s).

This magical small a would be a witness of the compositeness of n.

Thus, GRH derandomizes both Solovay-Strassen and Miller-Rabin
primality tests.

This a also factors Carmichael numbers!
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Studying quadratic extensions mod n

Lucas-Lehmer Test

This is a test specialized for Mersenne primes Mk = 2k − 1.

Theorem (Lucas-Lehmer, 1930)

Mk is prime iff (2 +
√

3)
Mk+1

2 = −1 in (Z/Mk)[
√

3].

This yields a deterministic polynomial time primality test for
Mersenne primes. On 21-Dec-2018 GIMPS found largest known

prime 282,589,933 − 1.

Generalization: Whenever (n + 1) has small prime factors one can
test n for primality by working in Zn[

√
D] where

(
D
n

)
= −1.

More generalization: Whenever (n2 ± n + 1) has small prime factors
one can test n for primality. But then we have to go to cubic
extensions (Williams 1978).
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Studying elliptic curves mod n

Elliptic Curve Based Tests

An elliptic curve over Zn is the set of points:

Ea,b(Zn) =
{

(x , y) ∈ Z2
n | y2 = x3 + ax + b

}
When n is prime: Ea,b(Zn) is an abelian group.

#Ea,b(Zn) can be computed in deterministic polynomial time
(Schoof 1985).

When n is prime: number of points on a random elliptic curve is
uniformly distributed in the interval [(

√
n − 1)2, (

√
n + 1)25]

(Lenstra 1987).
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Studying elliptic curves mod n

Goldwasser-Kilian Test
1 Pick a random elliptic curve E over Zn and a random point A ∈ E .
2 Compute #E (Zn). If #E (Zn) is odd then output COMPOSITE.
3 Let #E (Zn) =: 2q. Prove the primality of q recursively.
4 If q is prime and q · A = O then output PRIME else output

COMPOSITE.

Proof of Correctness:

Firstly, note that conjecturally there are ”many” numbers between
[(
√
n − 1)2, (

√
n + 1)2] that are twice a prime and for a random E ,

#E (Zn) will hit such numbers whp when n is prime.

Suppose n is composite with a prime factor p ≤
√
n but the Step 4

condition holds.

Since #E (Zp) ≤ (p + 1 + 2
√
p) < n+1−2

√
n

2 ≤ q we get that:

q is prime and q · A = O ⇒ A = O in E (Zp)

Thus, A will factor n.
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Goldwasser-Kilian Test
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Studying elliptic curves mod n

Goldwasser-Kilian Test

This is the first randomized test that never errs when n is composite
(1986).

Time complexity (Atkin-Morain 1993): Õ(log4 n).

But its proof assumed a conjecture about the density of primes in the

interval
[
n+1−2

√
n

2 , n+1+2
√
n

2

]
.

Currently, it is not even known if there is always a prime between m2

and (m + 1)2 (Legendre’s conjecture).
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Studying elliptic curves mod n

Adleman-Huang Test

Using hyperelliptic curves they made Goldwasser-Kilian test
unconditional (1992).

Time complexity: O(logc n) where c > 30 !
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Studying cyclotomic extensions mod n

Outline

1 The problem

2 The high school method

3 Prime generation & testing

4 Studying integers modulo n

5 Studying quadratic extensions mod n

6 Studying elliptic curves mod n

7 Studying cyclotomic extensions mod n

8 Questions
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Studying cyclotomic extensions mod n

Adleman-Pomerance-Rumeli Test

Recall how Lucas-Lehmer-Williams tested n for primality when
(n − 1), (n + 1), (n2 − n + 1) or (n2 + n + 1) was smooth.

What can we do when (nm − 1) is smooth? Maybe go to some m-th
extension of Zn ?

This question inspired the APR test (1980). Speeded up by Cohen
and Lenstra (1981).

Deterministic algorithm with time complexity logO(log log log n) n.

Is conceptually the most complex algorithm of all.

Attempts to find a prime factor of n using higher reciprocity laws in
cyclotomic extensions of Zn.
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Studying cyclotomic extensions mod n

Agrawal-Kayal-S (AKS) Test

Theorem (A Generalization of FLT)

If n is a prime then for all a ∈ Zn, (x + a)n = (xn + a) (mod n, x r − 1).

This was the basis of the AKS test proposed in 2002.

It was the first unconditional, deterministic and polynomial time
primality test.
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Studying cyclotomic extensions mod n

AKS Test

1 If n is a prime power, it is composite.

2 Select an r such that ordr (n) > 4 log2 n and work in the ring
R := Zn[x ]/(x r − 1).

3 For each a, 1 ≤ a ≤ ` := d2
√
r log ne, check if (x + a)n = (xn + a).

4 If yes then n is prime else composite.
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Studying cyclotomic extensions mod n

AKS Test: The Proof

Suppose all the congruences hold and p is a prime factor of n.

The group I := 〈n, p (mod r)〉. t := #I ≥ ordr (n) ≥ 4 log2 n.

The group J := 〈(x + 1), . . . , (x + `) (mod p, h(x))〉 where h(x) is an
irreducible factor of x r−1

x−1 modulo p.

#J ≥ 2min{t,`} > 22
√
t log n ≥ n2

√
t .

Proof: Let f (x), g(x) be two different products of (x + a)’s, having
degree < t. Suppose f (x) = g(x) (mod p, h(x)).

The test tells us that f (xn
i ·pj ) = g(xn

i ·pj ) (mod p, h(x)).

But this means that f (z)− g(z) has atleast t roots in the field
Fp[x ]/(h(x)), which is a contradiction.
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Studying cyclotomic extensions mod n

AKS Test: The Proof

The Two Groups

Group I := 〈n, p (mod r)〉 is of size t > 4 log2 n.

Group J := 〈(x + 1), . . . , (x + `) (mod p, h(x))〉 is of size > n2
√
t .

There exist tuples (i , j) 6= (i ′, j ′) such that 0 ≤ i , j , i ′, j ′ ≤
√
t and

ni · pj ≡ ni
′ · pj ′ (mod r).

The test tells us that for all f (x) ∈ J, f (x)n
i ·pj = f (xn

i ·pj ) and

f (x)n
i′ ·pj′ = f (xn

i′ ·pj′ ).

Thus, for all f (x) ∈ J, f (x)n
i ·pj = f (x)n

i′ ·pj′ .

As J is a cyclic group: ni · pj ≡ ni
′ · pj ′ (mod #J).

As #J is large, ni · pj = ni
′ · pj ′ . Hence, n = p a prime.
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i′ ·pj′ ).

Thus, for all f (x) ∈ J, f (x)n
i ·pj = f (x)n

i′ ·pj′ .

As J is a cyclic group: ni · pj ≡ ni
′ · pj ′ (mod #J).

As #J is large, ni · pj = ni
′ · pj ′ . Hence, n = p a prime.
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Studying cyclotomic extensions mod n

AKS Test: Time Complexity

Each congruence (x + a)n = (xn + a) (mod n, x r − 1) can be tested
in time Õ(r log2 n).

The algorithm takes time Õ(r
3
2 · log3 n).

Recall that r is the least number such that ordr (n) > 4 log2 n.

Prime number theorem gives r = O(log5 n) and thus, time
Õ(log10.5 n).

Proof: Stare at the product:

Π := (n − 1)(n2 − 1) · · · (nb4 log
2 nc − 1)
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in time Õ(r log2 n).

The algorithm takes time Õ(r
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Studying cyclotomic extensions mod n

AKS Test: Better Time Complexity

Theorem (Fouvry 1985)

#
{

prime p ≤ x | ∃ prime q ≥ p
2
3 , q|(p − 1)

}
∼ x

log x .

Fouvry’s theorem gives r = O(log3 n) and thus, time Õ(log7.5 n).

Proof: A “Fouvry prime” r = Õ(log3 n) with ordr (n) ≤ 4 log2 n has
to divide the product:

Π′ := (n − 1)(n2 − 1) · · · (nO(log n) − 1)

But we can find a “Fouvry prime” r = Õ(log3 n) not dividing Π′.

Thus, there is a “Fouvry prime” r = Õ(log3 n) satisfying
ordr (n) > 4 log2 n.
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ordr (n) > 4 log2 n.

Nitin Saxena (cse@IITK) Primality & Prime Generation NWCNS’19 34 / 37



Studying cyclotomic extensions mod n

AKS Test: Better Time Complexity

Theorem (Fouvry 1985)

#
{

prime p ≤ x | ∃ prime q ≥ p
2
3 , q|(p − 1)

}
∼ x

log x .

Fouvry’s theorem gives r = O(log3 n) and thus, time Õ(log7.5 n).
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Studying cyclotomic extensions mod n

AKS Test: Variants

Original AKS test took time Õ(log12 n). The above improvement
used ideas from Hendrik Lenstra Jr.

Lenstra and Pomerance (2003) further reduced the time complexity
to Õ(log6 n).
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Questions

Questions

Can we reduce the number of a’s for which the test is performed?

Conjecture: (Bhattacharjee-Pandey 2001; AKS 2004)

Let r > log n be a prime number that does not divide (n3 − n). Then
(x − 1)n ≡ (xn − 1) (mod n, x r − 1) iff n is prime.

Evidence:

Even for r = 5 the above conjecture holds for all n ≤ 1011.

The above conjecture holds for all primes r ≤ 100 and n ≤ 1010.

Could this test be used for factoring integers? (Agrawal, S, Srivastava,
MFCS 2016)

Thank you!
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