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MOTIVATION

e The Graph Isomorphism problem is to efficiently check
whether two given graphs are isomorphic.
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MOTIVATION

The Graph Isomorphism problem is to efficiently check
whether two given graphs are isomorphic.

This is a fundamental problem in computer science and not
even a subexponential time algorithm is known yet.

In this talk we will display connections of Graph Isomorphism
to the isomorphism problems of basic algebraic structures like
[F-algebras and cubic forms.

The hope is that a better understanding of these algebraic
structures might shed light on the graph isomorphism problem.



MOTIVATION COMPLEXITY OF GI F-ALGEBRA ISOMORPHISM CuBic FORM EQUIVALENCH CONCLUSION
000 00
000 000

Gl 1s IN NP

e Given two graphs Gi, G and a map m, it is easy to check
whether 7 is an isomorphism from G; — Go.
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Gl 1s IN NP

Given two graphs Gi, Go and a map T, it is easy to check
whether 7 is an isomorphism from G; — Go.

Thus, Gl can be verified in polynomial time or GI € NP.

Is graph non-isomorphism, i.e. GI, in NP too?
Whether GI € NP is not known but it can be shown that Gl is
verifiable in randomized polynomial time.
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e Suppose the verifier has two graphs Gi, G, and he wants to
verify whether the graphs are non-isomorphic by querying a
prover.

e The verifier randomly chooses a permutation 7 on the vertex
set and an i € {1,2}.

e The verifier sends the graph 7(G;) to the prover and asks the
prover to send back a j € {1,2} and an isomorphism
o : Gj — m(G;). The verifier accepts iff j = /.
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GI1s IN AM

Suppose the verifier has two graphs Gi, G and he wants to
verify whether the graphs are non-isomorphic by querying a
prover.

The verifier randomly chooses a permutation m on the vertex
set and an i € {1,2}.

The verifier sends the graph 7(G;) to the prover and asks the
prover to send back a j € {1,2} and an isomorphism
o : Gj — m(G;). The verifier accepts iff j = /.
Observe that:
G1 2 Go = Pr|[Verifier accepts] = 1

. 1
G1 = Gy = Pr|[Verifier accepts] < 3
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GI “cANNOT BE” NP-HARD

e The previous two slides tell us that Gl € NP N coAM.
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GI “cANNOT BE” NP-HARD

e The previous two slides tell us that Gl € NP N coAM.

e This means that Gl is unlikely to be NP-hard or else
polynomial hierarchy will collapse.

CONCLUSION
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F-ALGEBRA ISOMORPHISM
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[F-ALGEBRAS

Let IF be a finite field. [F-algebra is a set of elements with
operations of addition and multiplication suitably defined on
the elements.
For example, F,[x]/(x?) is an F-algebra with elements of the
form (a+ bx), a, b € F,. Addition is natural while
multiplication is defined as:
(a+ bx)(c + dx) = ac + (ad + bc)x (mod p).
Let R be an F-algebra such that its elements look like:

(ibr + -+ 4+ apbp), a1,...,a, € F.

by,..., b, are called basis elements and R is completely
defined by specifying the products b; - b;.
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e

PROBLEM STATEMENT

e The F-algebra Isomorphism problem is to check whether two
given F-algebras Ry, Ry are isomorphic, i.e. whether there is a
bijective map from R; — R» that preserves the addition and
multiplication operations.

e For example, F[x]/(x?) and F,[x]/((x — 1)?) are isomorphic
F-algebras.

e Of course, we want to solve this problem in time polynomial
in the size of the basis representations of R; and R».
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e The proof of Gl in coAM can be modified to show [F-algebra
Isomorphism in coAM.

e The verifier applies random invertible linear transformation on
the basis by, ..., b.
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e We will now outline how a solution to F-algebra isomorphism
can solve the graph isomorphism problem too!
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REDUCTION FROM GRAPH ISOMORPHISM

e We will now outline how a solution to F-algebra isomorphism
can solve the graph isomorphism problem too!

e Given a graph G with n vertices and edge set E we construct
the F-algebra: R(G) = F[xi,...,xn]/Zc
where, Z¢ is an ideal generated by the polynomials:

(e U8 D0 %% ¢ U D05t ke
(ij)eE

e It can be shown that G = G’ iff R(G) = R(G’).
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CuBic ForMS

e Cubic Forms are degree 3 homogeneous polynomials over a
field F.
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e Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.
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CuBic ForMS

e Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.

e Given two cubic forms f(x1,...,x5), g(x1,...,xn) €
Flxi,...,xn], we say that f is equivalent to g if there is an
invertible linear transformation 7 such that:

f(T(X1)7 s T(Xn)) = g(X17 ce. 7Xn)~
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CuBic ForMS

e Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.

e Given two cubic forms f(xi,...,x,), g(x1,...,x,) €
Flxi,...,xn], we say that f is equivalent to g if there is an
invertible linear transformation 7 such that:

f(r(x1),...,7(xn)) = g(x1, ..., Xn).

o For example, xi + x3x3 is equivalent to x5 — (x1 + x2)x3.

CONCLUSION
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CuBic ForMS

Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.

Given two cubic forms f(xi, ..., %), g(x1,...,Xxy) €
Flxi,...,xn], we say that f is equivalent to g if there is an
invertible linear transformation 7 such that:

f(r(x1),...,7(xn)) = g(x1,- -, Xn)-
For example, X13 + X22X3 is equivalent to XS’ — (x1 + x2)%x3.
Cubic Form Equivalence is the problem of checking whether

two given cubic forms are equivalent in time polynomial in the
size of the cubic forms.
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e The proof of Gl in coAM can be modified to show Cubic Form
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e The verifier applies random invertible linear transformation on
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e The proof of Gl in coAM can be modified to show Cubic Form
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REDUCTION FROM F-ALGEBRA [ISOMORPHISM

e Interestingly, F-algebra isomorphism reduces to cubic form
equivalence.

e Let R be an F-algebra given by its basis elements by, ..., b,
and the multiplication defined as: b; - bj = >} _; a; j kb
where for all i,j, k € [n], ajji € F.
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REDUCTION FROM F-ALGEBRA [ISOMORPHISM

e Interestingly, F-algebra isomorphism reduces to cubic form
equivalence.

e Let R be an F-algebra given by its basis elements by, ..., b,
and the multiplication defined as: b; - bj = >} _; a; j kb
where for all i,j, k € [n], ajji € F.

e From R we construct a cubic form fg as:

fr(b,z,y) = >z, (bi b -y auuk‘?k)
k=1

1<i<j<n
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REDUCTION FROM F-ALGEBRA [ISOMORPHISM

e Interestingly, F-algebra isomorphism reduces to cubic form
equivalence.

e Let R be an F-algebra given by its basis elements by, ..., b,
and the multiplication defined as: b; - bj = >} _; a; j kb
where for all i,j, k € [n], ajji € F.

e From R we construct a cubic form fg as:

fr(b,z,y) = > zj (bi b=y auuk‘?k)

1<i<j<n k=1

e It can be shown that for two given F-algebras R and R’ we
have: R = R iff fr ~ fgr.
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THE RESULTS

e The isomorphism problems of graphs, F-algebras and [F-cubic
forms are of intermediate complexity (for finite ).
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F — algebra Isomorphism

Cubic Form Equivalence
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We find the following problems of interest:

e |s there a way to solve cubic form equivalence in
subexponential time ?
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OPEN PROBLEMS

We find the following problems of interest:

e |s there a way to solve cubic form equivalence in
subexponential time ?

e Is the cubic form equivalence problem over an infinite field
decidable ?
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