MOTIVATION COMPLEXITY

F-algebra Isomorphism 000 000 CUBIC FORM EQUIVALENCE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CONCLUSION

ISOMORPHISM PROBLEMS OF GRAPHS, F-ALGEBRAS AND CUBIC FORMS

Manindra Agrawal, Nitin Saxena

IIT Kanpur

IRISS, Jan 2006

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONCLUSION

- The Graph Isomorphism problem is to *efficiently* check whether two given graphs are isomorphic.
- This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.
- In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like *F*-algebras and cubic forms.
- The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONCLUSION

- The Graph Isomorphism problem is to *efficiently* check whether two given graphs are isomorphic.
- This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.
- In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like *F*-algebras and cubic forms.
- The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

CONCLUSION

- The Graph Isomorphism problem is to *efficiently* check whether two given graphs are isomorphic.
- This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.
- In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like F-algebras and cubic forms.
- The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

CONCLUSION

- The Graph Isomorphism problem is to *efficiently* check whether two given graphs are isomorphic.
- This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.
- In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like F-algebras and cubic forms.
- The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.

N											
±ν	÷	Q	+	1	V 2	.7	1.	τ,	9	14	

Complexity of GI

F-algebra Isomorphism 000 000 Cubic Form Equivalence 00 000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusion

- Given two graphs G_1 , G_2 and a map π , it is easy to check whether π is an isomorphism from $G_1 \rightarrow G_2$.
- Thus, GI can be verified in polynomial time or GI \in NP.
- Is graph non-isomorphism, *i.e.* **GI**, in NP too?
- Whether GI ∈ NP is not known but it can be shown that GI is verifiable in randomized polynomial time.

Ν					۲.					
	+	0	+	1		2	Ŧ	1		

Complexity of GI

F-algebra Isomorphism 000 000 CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusion

- Given two graphs G_1 , G_2 and a map π , it is easy to check whether π is an isomorphism from $G_1 \rightarrow G_2$.
- Thus, GI can be verified in polynomial time or GI ∈ NP.
- Is graph non-isomorphism, *i.e.* **GI**, in NP too?
- Whether GI ∈ NP is not known but it can be shown that GI is verifiable in randomized polynomial time.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence 00 000

Conclusion

- Given two graphs G_1 , G_2 and a map π , it is easy to check whether π is an isomorphism from $G_1 \rightarrow G_2$.
- Thus, GI can be verified in polynomial time or GI ∈ NP.
- Is graph non-isomorphism, *i.e.* GI, in NP too?
- Whether GI ∈ NP is not known but it can be shown that GI is verifiable in randomized polynomial time.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence 00 000

CONCLUSION

- Given two graphs G_1 , G_2 and a map π , it is easy to check whether π is an isomorphism from $G_1 \rightarrow G_2$.
- Thus, GI can be verified in polynomial time or $GI \in NP$.
- Is graph non-isomorphism, *i.e.* **GI**, in NP too?
- Whether GI ∈ NP is not known but it can be shown that GI is verifiable in randomized polynomial time.

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

CONCLUSION

$\overline{\mathbf{GI}}$ is in AM

- Suppose the verifier has two graphs G_1 , G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.
- The verifier randomly chooses a permutation π on the vertex set and an i ∈ {1,2}.
- The verifier sends the graph π(G_i) to the prover and asks the prover to send back a j ∈ {1,2} and an isomorphism σ : G_i → π(G_i). The verifier accepts iff j = i.
- Observe that:

 $G_1 \ncong G_2 \Rightarrow \Pr[\text{Verifier accepts}] = 1$ $G_1 \cong G_2 \Rightarrow \Pr[\text{Verifier accepts}] \le \frac{1}{2}$

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE 00 000 Conclusion

$\overline{\mathbf{GI}}$ is in AM

- Suppose the verifier has two graphs G_1 , G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.
- The verifier randomly chooses a permutation π on the vertex set and an i ∈ {1,2}.
- The verifier sends the graph π(G_i) to the prover and asks the prover to send back a j ∈ {1,2} and an isomorphism σ : G_j → π(G_i). The verifier accepts iff j = i.

• Observe that:

 $G_1 \not\cong G_2 \Rightarrow \Pr[\text{Verifier accepts}] = 1$ $G_1 \cong G_2 \Rightarrow \Pr[\text{Verifier accepts}] \le \frac{1}{2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE 00 000

CONCLUSION

$\overline{\mathbf{GI}}$ is in AM

- Suppose the verifier has two graphs G_1 , G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.
- The verifier randomly chooses a permutation π on the vertex set and an i ∈ {1,2}.
- The verifier sends the graph π(G_i) to the prover and asks the prover to send back a j ∈ {1,2} and an isomorphism σ : G_j → π(G_i). The verifier accepts iff j = i.

• Observe that:

 $G_1 \not\cong G_2 \Rightarrow \Pr[\text{Verifier accepts}] = 1$ $G_1 \cong G_2 \Rightarrow \Pr[\text{Verifier accepts}] \le \frac{1}{2}$

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE 00 000

CONCLUSION

$\overline{\mathbf{GI}}$ is in AM

- Suppose the verifier has two graphs G_1 , G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.
- The verifier randomly chooses a permutation π on the vertex set and an i ∈ {1,2}.
- The verifier sends the graph π(G_i) to the prover and asks the prover to send back a j ∈ {1,2} and an isomorphism σ : G_j → π(G_i). The verifier accepts iff j = i.
- Observe that:

$$egin{array}{rcl} G_1
ot\cong G_2 &\Rightarrow & {\sf Pr}[{\sf Verifier\ accepts}] = 1 \ \\ G_1 \cong G_2 &\Rightarrow & {\sf Pr}[{\sf Verifier\ accepts}] \leq rac{1}{2} \end{array}$$

F-ALGEBRA ISOMORPHISM 000 000

CUBIC FORM EQUIVALENCE

Conclusion

GI "CANNOT BE" NP-HARD

• The previous two slides tell us that $GI \in NP \cap coAM$.

• This means that GI is unlikely to be NP-hard or else *polynomial hierarchy will collapse*.

Motivation

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

Conclusion

GI "CANNOT BE" NP-HARD

- The previous two slides tell us that $GI \in NP \cap coAM$.
- This means that GI is unlikely to be NP-hard or else *polynomial hierarchy will collapse*.

Complexity of GI

F-ALGEBRA ISOMORPHISM •OO •OO CUBIC FORM EQUIVALENCE

CONCLUSION

OUTLINE

MOTIVATION

COMPLEXITY OF GI

F-ALGEBRA ISOMORPHISM Definitions

The Complexity

CUBIC FORM EQUIVALENCE

Definitions The Complexity

CONCLUSION

- ◆ ロ > ◆ 個 > ◆ 注 > ◆ 注 > ・ 注 ・ の へ (?)

OTIVATION COMPLEXITY OF (

F-ALGEBRA ISOMORPHISM ○●○ ○○○ CUBIC FORM EQUIVALENCE

- Let \mathbb{F} be a finite field. \mathbb{F} -algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.
- For example, 𝔽_p[x]/(x²) is an 𝔽-algebra with elements of the form (a + bx), a, b ∈ 𝔽_p. Addition is natural while multiplication is defined as: (a + bx)(c + dx) = ac + (ad + bc)x (mod p).
- Let *R* be an \mathbb{F} -algebra such that its elements look like: $(\alpha_1 b_1 + \dots + \alpha_n b_n) \quad \alpha_1 \dots \quad \alpha_n \in \mathbb{F}$
- b_1, \ldots, b_n are called basis elements and R is completely defined by specifying the products $b_i \cdot b_j$.

OTIVATION COMPLEXITY OF G

F-ALGEBRA ISOMORPHISM ○●○ ○○○ CUBIC FORM EQUIVALENCE

Conclusion

- Let F be a finite field. F-algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.
- For example, F_p[x]/(x²) is an F-algebra with elements of the form (a + bx), a, b ∈ F_p. Addition is natural while multiplication is defined as: (a + bx)(c + dx) = ac + (ad + bc)x (mod p).
- Let *R* be an \mathbb{F} -algebra such that its elements look like:
- b₁,..., b_n are called basis elements and R is completely defined by specifying the products b_i · b_j.

F-ALGEBRA ISOMORPHISM ○●○ ○○○ CUBIC FORM EQUIVALENCE

- Let F be a finite field. F-algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.
- For example, F_p[x]/(x²) is an F-algebra with elements of the form (a + bx), a, b ∈ F_p. Addition is natural while multiplication is defined as:
 (a + bx)(c + dx) = ac + (ad + bc)x (mod p).
- Let *R* be an \mathbb{F} -algebra such that its elements look like:
- b_1, \ldots, b_n are called basis elements and R is completely defined by specifying the products $b_i \cdot b_j$.

F-ALGEBRA ISOMORPHISM ○●○ ○○○ CUBIC FORM EQUIVALENCE

- Let F be a finite field. F-algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.
- For example, F_p[x]/(x²) is an F-algebra with elements of the form (a + bx), a, b ∈ F_p. Addition is natural while multiplication is defined as: (a + bx)(c + dx) = ac + (ad + bc)x (mod p).
- Let *R* be an \mathbb{F} -algebra such that its elements look like: $(\alpha_1 b_1 + \cdots + \alpha_n b_n), \ \alpha_1, \ldots, \alpha_n \in \mathbb{F}.$
- b₁,..., b_n are called basis elements and R is completely defined by specifying the products b_i · b_j.

F-ALGEBRA ISOMORPHISM ○●○ ○○○ CUBIC FORM EQUIVALENCE

- Let F be a finite field. F-algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.
- For example, F_p[x]/(x²) is an F-algebra with elements of the form (a + bx), a, b ∈ F_p. Addition is natural while multiplication is defined as: (a + bx)(c + dx) = ac + (ad + bc)x (mod p).
- Let *R* be an \mathbb{F} -algebra such that its elements look like: $(\alpha_1 b_1 + \cdots + \alpha_n b_n), \ \alpha_1, \ldots, \alpha_n \in \mathbb{F}.$
- b_1, \ldots, b_n are called basis elements and R is completely defined by specifying the products $b_i \cdot b_j$.

F-algebra Isomorphism ○○● ○○○ CUBIC FORM EQUIVALENCE

Conclusion

PROBLEM STATEMENT

• The **F**-algebra Isomorphism problem is to check whether two given **F**-algebras *R*₁, *R*₂ are isomorphic,

- For example, $\mathbb{F}_p[x]/(x^2)$ and $\mathbb{F}_p[x]/((x-1)^2)$ are isomorphic \mathbb{F} -algebras.
- Of course, we want to solve this problem in time polynomial in the size of the basis representations of R_1 and R_2 .

F-algebra Isomorphism ○○● ○○○ CUBIC FORM EQUIVALENCE

Conclusion

PROBLEM STATEMENT

- The \mathbb{F} -algebra Isomorphism problem is to check whether two given \mathbb{F} -algebras R_1, R_2 are isomorphic, *i.e.* whether there is a bijective map from $R_1 \rightarrow R_2$ that preserves the addition and multiplication operations.
- For example, 𝔽_p[x]/(x²) and 𝔽_p[x]/((x − 1)²) are isomorphic 𝔽-algebras.
- Of course, we want to solve this problem in time polynomial in the size of the basis representations of *R*₁ and *R*₂.

F-ALGEBRA ISOMORPHISM ○○○ CUBIC FORM EQUIVALENCE

Conclusion

PROBLEM STATEMENT

- The \mathbb{F} -algebra Isomorphism problem is to check whether two given \mathbb{F} -algebras R_1, R_2 are isomorphic, *i.e.* whether there is a bijective map from $R_1 \rightarrow R_2$ that preserves the addition and multiplication operations.
- For example, $\mathbb{F}_p[x]/(x^2)$ and $\mathbb{F}_p[x]/((x-1)^2)$ are isomorphic \mathbb{F} -algebras.
- Of course, we want to solve this problem in time polynomial in the size of the basis representations of *R*₁ and *R*₂.

F-ALGEBRA ISOMORPHISM ○○○ CUBIC FORM EQUIVALENCE

CONCLUSION

PROBLEM STATEMENT

- The \mathbb{F} -algebra Isomorphism problem is to check whether two given \mathbb{F} -algebras R_1, R_2 are isomorphic, *i.e.* whether there is a bijective map from $R_1 \rightarrow R_2$ that preserves the addition and multiplication operations.
- For example, $\mathbb{F}_p[x]/(x^2)$ and $\mathbb{F}_p[x]/((x-1)^2)$ are isomorphic \mathbb{F} -algebras.
- Of course, we want to solve this problem in time polynomial in the size of the basis representations of R_1 and R_2 .

Complexity of GI

F-algebra Isomorphism 000 •00

CUBIC FORM EQUIVALENCE

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

CONCLUSION

OUTLINE

MOTIVATION

COMPLEXITY OF GI

F-ALGEBRA ISOMORPHISM Definitions The Complexity

CUBIC FORM EQUIVALENCE

Definitions The Complexity

CONCLUSION

F-ALGEBRA ISOMORPHISM ○○○ ○●○ CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Unlikely to be NP-hard

- Clearly, **𝔽**-algebra Isomorphism is in NP.
- The proof of GI in coAM can be modified to show 𝔽-algebra Isomorphism in coAM.
 - The verifier applies random invertible linear transformation on the basis b₁,..., b_n.
- Thus, \mathbb{F} -algebra Isomorphism is in NP \cap coAM.

F-ALGEBRA ISOMORPHISM ○○○ ○●○ CUBIC FORM EQUIVALENCE

Conclusion

UNLIKELY TO BE NP-HARD

- Clearly, **𝔽**-algebra Isomorphism is in NP.
- The proof of GI in coAM can be modified to show **F**-algebra Isomorphism in coAM.
 - The verifier applies random invertible linear transformation on the basis *b*₁,..., *b*_n.
- Thus, \mathbb{F} -algebra Isomorphism is in NP \cap coAM.

Motivation

F-ALGEBRA ISOMORPHISM ○○○ ○●○ CUBIC FORM EQUIVALENCE

Conclusion

Unlikely to be NP-hard

- Clearly, **𝔽**-algebra Isomorphism is in NP.
- The proof of GI in coAM can be modified to show **F**-algebra Isomorphism in coAM.
 - The verifier applies random invertible linear transformation on the basis b_1, \ldots, b_n .
- Thus, \mathbb{F} -algebra Isomorphism is in NP \cap coAM.

F-ALGEBRA ISOMORPHISM ○○○ ○●○ CUBIC FORM EQUIVALENCE

CONCLUSION

UNLIKELY TO BE NP-HARD

- Clearly, **𝔽**-algebra Isomorphism is in NP.
- The proof of GI in coAM can be modified to show **F**-algebra Isomorphism in coAM.
 - The verifier applies random invertible linear transformation on the basis *b*₁,..., *b*_n.
- Thus, \mathbb{F} -algebra Isomorphism is in NP \cap coAM.

F-algebra Isomorphism ○○○ ○○● CUBIC FORM EQUIVALENCE

REDUCTION FROM GRAPH ISOMORPHISM

- We will now outline how a solution to **F**-algebra isomorphism can solve the graph isomorphism problem too!
- Given a graph G with n vertices and edge set E we construct the F-algebra: R(G) := F[x₁,...,x_n]/I_G where, I_G is an ideal generated by the polynomials:

$$\left\{x_i^2\right\}_{i\in[n]} \cup \left\{\sum_{(i,j)\in E} x_i x_j\right\} \cup \left\{x_i x_j x_k\right\}_{i,j,k\in[n]}$$

REDUCTION FROM GRAPH ISOMORPHISM

- We will now outline how a solution to **F**-algebra isomorphism can solve the graph isomorphism problem too!
- Given a graph G with n vertices and edge set E we construct the 𝔽-algebra: R(G) := 𝔼[x₁,...,x_n]/𝒯_G where, 𝒯_C is an ideal generated by the polynomials:

$$\left\{x_i^2\right\}_{i\in[n]} \cup \left\{\sum_{(i,j)\in E} x_i x_j\right\} \cup \left\{x_i x_j x_k\right\}_{i,j,k\in[n]}$$

F-algebra Isomorphism ○○○ ○○● CUBIC FORM EQUIVALENCE

REDUCTION FROM GRAPH ISOMORPHISM

- We will now outline how a solution to **F**-algebra isomorphism can solve the graph isomorphism problem too!
- Given a graph G with n vertices and edge set E we construct the F-algebra: R(G) := F[x₁,...,x_n]/I_G where, I_G is an ideal generated by the polynomials:

$$\left\{x_i^2\right\}_{i\in[n]} \cup \left\{\sum_{(i,j)\in E} x_i x_j\right\} \cup \left\{x_i x_j x_k\right\}_{i,j,k\in[n]}$$

F-algebra Isomorphism ○○○ ○○● CUBIC FORM EQUIVALENCE

REDUCTION FROM GRAPH ISOMORPHISM

- We will now outline how a solution to **F**-algebra isomorphism can solve the graph isomorphism problem too!
- Given a graph G with n vertices and edge set E we construct the F-algebra: R(G) := F[x₁,...,x_n]/I_G where, I_G is an ideal generated by the polynomials:

$$\left\{x_i^2\right\}_{i\in[n]} \cup \left\{\sum_{(i,j)\in E} x_i x_j\right\} \cup \left\{x_i x_j x_k\right\}_{i,j,k\in[n]}$$

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

CONCLUSION

OUTLINE

MOTIVATION

COMPLEXITY OF GI

F-ALGEBRA ISOMORPHISM Definitions The Complexity

CUBIC FORM EQUIVALENCE Definitions The Complexity

CONCLUSION

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ \circ$

Conclusion

CUBIC FORMS

- Cubic Forms are degree 3 homogeneous polynomials over a field F.
- Given two cubic forms f(x₁,...,x_n), g(x₁,...,x_n) ∈ F[x₁,...,x_n], we say that f is equivalent to g if there is an invertible linear transformation τ such that:

 $f(\tau(x_1),\ldots,\tau(x_n))=g(x_1,\ldots,x_n).$

- For example, $x_1^3 + x_2^2 x_3$ is equivalent to $x_2^3 (x_1 + x_2)^2 x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ \circ$

CONCLUSION

CUBIC FORMS

- Cubic Forms are degree 3 homogeneous polynomials over a field F. We assume that F is a finite field.
- Given two cubic forms f(x₁,...,x_n), g(x₁,...,x_n) ∈ F[x₁,...,x_n], we say that f is equivalent to g if there is an invertible linear transformation τ such that:

- For example, $x_1^3 + x_2^2 x_3$ is equivalent to $x_2^3 (x_1 + x_2)^2 x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ \circ$

Conclusion

CUBIC FORMS

- Cubic Forms are degree 3 homogeneous polynomials over a field F. We assume that F is a finite field.
- Given two cubic forms f(x₁,...,x_n), g(x₁,...,x_n) ∈ F[x₁,...,x_n], we say that f is equivalent to g if there is an invertible linear transformation τ such that:

- For example, $x_1^3 + x_2^2 x_3$ is equivalent to $x_2^3 (x_1 + x_2)^2 x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ \circ$

Conclusion

CUBIC FORMS

- Cubic Forms are degree 3 homogeneous polynomials over a field F. We assume that F is a finite field.
- Given two cubic forms f(x₁,...,x_n), g(x₁,...,x_n) ∈ F[x₁,...,x_n], we say that f is equivalent to g if there is an invertible linear transformation τ such that:

- For example, $x_1^3 + x_2^2 x_3$ is equivalent to $x_2^3 (x_1 + x_2)^2 x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ \circ$

Conclusion

CUBIC FORMS

- Cubic Forms are degree 3 homogeneous polynomials over a field F. We assume that F is a finite field.
- Given two cubic forms f(x₁,...,x_n), g(x₁,...,x_n) ∈ F[x₁,...,x_n], we say that f is equivalent to g if there is an invertible linear transformation τ such that:

- For example, $x_1^3 + x_2^2 x_3$ is equivalent to $x_2^3 (x_1 + x_2)^2 x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ \circ$ $\circ \circ \circ$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Conclusion

OUTLINE

MOTIVATION

Complexity of GI

F-ALGEBRA ISOMORPHISM Definitions The Complexity

CUBIC FORM EQUIVALENCE Definitions The Complexity

CONCLUSION

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ\circ$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONCLUSION

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x₁,..., x_n.
- Thus, Cubic Form Equivalence is in NP \cap coAM.

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ\circ$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONCLUSION

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x_1, \ldots, x_n .
- Thus, Cubic Form Equivalence is in NP \cap coAM.

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ\circ$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CONCLUSION

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x_1, \ldots, x_n .
- Thus, Cubic Form Equivalence is in NP \cap coAM.

F-ALGEBRA ISOMORPHISM 000 000 Cubic Form Equivalence $\circ\circ$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CONCLUSION

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x_1, \ldots, x_n .
- Thus, Cubic Form Equivalence is in NP ∩ coAM.

Cubic Form Equivalence $\circ\circ$

Reduction from \mathbb{F} -algebra Isomorphism

- Interestingly, **F**-algebra isomorphism reduces to cubic form equivalence.
- Let R be an 𝔽-algebra given by its basis elements b₁,..., b_n and the multiplication defined as: b_i · b_j = ∑ⁿ_{k=1} a_{i,j,k}b_k where for all i, j, k ∈ [n], a_{i,j,k} ∈ 𝔽.
- From R we construct a cubic form f_R as:

$$f_R(\overline{b},\overline{z},y) := \sum_{1 \le i \le j \le n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^n a_{i,j,k} b_k
ight)$$

Cubic Form Equivalence $\circ\circ$

Reduction from \mathbb{F} -algebra Isomorphism

- Interestingly, **𝔽**-algebra isomorphism reduces to cubic form equivalence.
- Let *R* be an \mathbb{F} -algebra given by its basis elements b_1, \ldots, b_n and the multiplication defined as: $b_i \cdot b_j = \sum_{k=1}^n a_{i,j,k} b_k$ where for all $i, j, k \in [n], a_{i,j,k} \in \mathbb{F}$.
- From R we construct a cubic form f_R as:

$$f_R(\overline{b},\overline{z},y) := \sum_{1 \le i \le j \le n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^n a_{i,j,k} b_k
ight)$$

Cubic Form Equivalence $\circ\circ$

Reduction from \mathbb{F} -algebra Isomorphism

- Interestingly, **𝔽**-algebra isomorphism reduces to cubic form equivalence.
- Let *R* be an \mathbb{F} -algebra given by its basis elements b_1, \ldots, b_n and the multiplication defined as: $b_i \cdot b_j = \sum_{k=1}^n a_{i,j,k} b_k$ where for all $i, j, k \in [n], a_{i,j,k} \in \mathbb{F}$.
- From R we construct a cubic form f_R as:

$$f_R(\overline{b},\overline{z},y) := \sum_{1 \le i \le j \le n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^n a_{i,j,k} b_k \right)$$

Cubic Form Equivalence $\circ\circ$

Reduction from \mathbb{F} -algebra Isomorphism

- Interestingly, **𝔽**-algebra isomorphism reduces to cubic form equivalence.
- Let *R* be an \mathbb{F} -algebra given by its basis elements b_1, \ldots, b_n and the multiplication defined as: $b_i \cdot b_j = \sum_{k=1}^n a_{i,j,k} b_k$ where for all $i, j, k \in [n], a_{i,j,k} \in \mathbb{F}$.
- From R we construct a cubic form f_R as:

$$f_R(\overline{b},\overline{z},y) := \sum_{1 \le i \le j \le n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^n a_{i,j,k} b_k \right)$$

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONCLUSION

The Results

- The isomorphism problems of graphs, **F**-algebras and **F**-cubic forms are of intermediate complexity (for finite **F**).
- These problems satisfy the following relation:

Graph Isomorphism

- \leq $\mathbb{F}-$ algebra lsomorphism
- Subic Form Equivalence

VATION COMPLEXITY OF (

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

CONCLUSION

The Results

- The isomorphism problems of graphs, **F**-algebras and **F**-cubic forms are of intermediate complexity (for finite **F**).
- These problems satisfy the following relation:

 $\begin{array}{l} \mbox{Graph Isomorphism} \\ \leq \quad \mathbb{F} - \mbox{algebra Isomorphism} \end{array}$

 \leq Cubic Form Equivalence

VATION COMPLEXITY OF (

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

CONCLUSION

The Results

- The isomorphism problems of graphs, **F**-algebras and **F**-cubic forms are of intermediate complexity (for finite **F**).
- These problems satisfy the following relation:

 $\begin{array}{l} \mbox{Graph Isomorphism} \\ \leq \quad \mathbb{F} - \mbox{algebra Isomorphism} \end{array}$

 \leq Cubic Form Equivalence

VATION COMPLEXITY OF (

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

CONCLUSION

The Results

- The isomorphism problems of graphs, **F**-algebras and **F**-cubic forms are of intermediate complexity (for finite **F**).
- These problems satisfy the following relation:

 $\begin{array}{l} \mbox{Graph Isomorphism} \\ \leq \quad \mathbb{F} - \mbox{algebra Isomorphism} \end{array}$

 \leq Cubic Form Equivalence

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

CONCLUSION

OPEN PROBLEMS

We find the following problems of interest:

- Is there a way to solve cubic form equivalence in subexponential time ?
- Is the cubic form equivalence problem over an infinite field F decidable ?

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

CONCLUSION

OPEN PROBLEMS

We find the following problems of interest:

• Is there a way to solve cubic form equivalence in subexponential time ?

 Is the cubic form equivalence problem over an infinite field F decidable ?

F-ALGEBRA ISOMORPHISM 000 000 CUBIC FORM EQUIVALENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

CONCLUSION

OPEN PROBLEMS

We find the following problems of interest:

- Is there a way to solve cubic form equivalence in subexponential time ?
- Is the cubic form equivalence problem over an infinite field F decidable ?

Complexity of GI

F-ALGEBRA ISOMORPHISM 000 000

CUBIC FORM EQUIVALENCE

CONCLUSION

THANK YOU!

QUESTIONS?