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Motivation

• The Graph Isomorphism problem is to efficiently check
whether two given graphs are isomorphic.

• This is a fundamental problem in computer science and not
even a subexponential time algorithm is known yet.

• In this talk we will display connections of Graph Isomorphism
to the isomorphism problems of basic algebraic structures like
F-algebras and cubic forms.

• The hope is that a better understanding of these algebraic
structures might shed light on the graph isomorphism problem.
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GI is in NP

• Given two graphs G1,G2 and a map π, it is easy to check
whether π is an isomorphism from G1 → G2.

• Thus, GI can be verified in polynomial time or GI ∈ NP.

• Is graph non-isomorphism, i.e. GI, in NP too?

• Whether GI ∈ NP is not known but it can be shown that GI is
verifiable in randomized polynomial time.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

GI is in NP

• Given two graphs G1,G2 and a map π, it is easy to check
whether π is an isomorphism from G1 → G2.

• Thus, GI can be verified in polynomial time or GI ∈ NP.

• Is graph non-isomorphism, i.e. GI, in NP too?

• Whether GI ∈ NP is not known but it can be shown that GI is
verifiable in randomized polynomial time.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

GI is in NP

• Given two graphs G1,G2 and a map π, it is easy to check
whether π is an isomorphism from G1 → G2.

• Thus, GI can be verified in polynomial time or GI ∈ NP.

• Is graph non-isomorphism, i.e. GI, in NP too?

• Whether GI ∈ NP is not known but it can be shown that GI is
verifiable in randomized polynomial time.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

GI is in NP

• Given two graphs G1,G2 and a map π, it is easy to check
whether π is an isomorphism from G1 → G2.

• Thus, GI can be verified in polynomial time or GI ∈ NP.

• Is graph non-isomorphism, i.e. GI, in NP too?

• Whether GI ∈ NP is not known but it can be shown that GI is
verifiable in randomized polynomial time.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

GI is in AM

• Suppose the verifier has two graphs G1,G2 and he wants to
verify whether the graphs are non-isomorphic by querying a
prover.

• The verifier randomly chooses a permutation π on the vertex
set and an i ∈ {1, 2}.

• The verifier sends the graph π(Gi ) to the prover and asks the
prover to send back a j ∈ {1, 2} and an isomorphism
σ : Gj → π(Gi ). The verifier accepts iff j = i .

• Observe that:

G1 6∼= G2 ⇒ Pr[Verifier accepts] = 1

G1
∼= G2 ⇒ Pr[Verifier accepts] ≤ 1

2
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GI “cannot be” NP-hard

• The previous two slides tell us that GI ∈ NP ∩ coAM.

• This means that GI is unlikely to be NP-hard or else
polynomial hierarchy will collapse.
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F-algebras

• Let F be a finite field. F-algebra is a set of elements with
operations of addition and multiplication suitably defined on
the elements.

• For example, Fp[x ]/(x2) is an F-algebra with elements of the
form (a + bx), a, b ∈ Fp. Addition is natural while
multiplication is defined as:
(a + bx)(c + dx) = ac + (ad + bc)x (mod p).

• Let R be an F-algebra such that its elements look like:

(α1b1 + · · ·+ αnbn), α1, . . . , αn ∈ F.
• b1, . . . , bn are called basis elements and R is completely

defined by specifying the products bi · bj .
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Problem Statement

• The F-algebra Isomorphism problem is to check whether two
given F-algebras R1,R2 are isomorphic,

i.e. whether there is a
bijective map from R1 → R2 that preserves the addition and
multiplication operations.

• For example, Fp[x ]/(x2) and Fp[x ]/((x − 1)2) are isomorphic
F-algebras.

• Of course, we want to solve this problem in time polynomial
in the size of the basis representations of R1 and R2.
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Unlikely to be NP-hard

• Clearly, F-algebra Isomorphism is in NP.

• The proof of GI in coAM can be modified to show F-algebra
Isomorphism in coAM.

• The verifier applies random invertible linear transformation on
the basis b1, . . . , bn.

• Thus, F-algebra Isomorphism is in NP ∩ coAM.
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Reduction from Graph Isomorphism

• We will now outline how a solution to F-algebra isomorphism
can solve the graph isomorphism problem too!

• Given a graph G with n vertices and edge set E we construct
the F-algebra: R(G ) := F[x1, . . . , xn]/IG
where, IG is an ideal generated by the polynomials:

{
x2
i

}
i∈[n]

∪

 ∑
(i ,j)∈E

xixj

 ∪ {xixjxk}i ,j ,k∈[n]

• It can be shown that G ∼= G ′ iff R(G ) ∼= R(G ′).
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Cubic Forms

• Cubic Forms are degree 3 homogeneous polynomials over a
field F.

We assume that F is a finite field.

• Given two cubic forms f (x1, . . . , xn), g(x1, . . . , xn) ∈
F[x1, . . . , xn], we say that f is equivalent to g if there is an
invertible linear transformation τ such that:

f (τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

• For example, x3
1 + x2

2 x3 is equivalent to x3
2 − (x1 + x2)2x3.

• Cubic Form Equivalence is the problem of checking whether
two given cubic forms are equivalent in time polynomial in the
size of the cubic forms.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

Cubic Forms

• Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.

• Given two cubic forms f (x1, . . . , xn), g(x1, . . . , xn) ∈
F[x1, . . . , xn], we say that f is equivalent to g if there is an
invertible linear transformation τ such that:

f (τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

• For example, x3
1 + x2

2 x3 is equivalent to x3
2 − (x1 + x2)2x3.

• Cubic Form Equivalence is the problem of checking whether
two given cubic forms are equivalent in time polynomial in the
size of the cubic forms.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

Cubic Forms

• Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.

• Given two cubic forms f (x1, . . . , xn), g(x1, . . . , xn) ∈
F[x1, . . . , xn], we say that f is equivalent to g if there is an
invertible linear transformation τ such that:

f (τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

• For example, x3
1 + x2

2 x3 is equivalent to x3
2 − (x1 + x2)2x3.

• Cubic Form Equivalence is the problem of checking whether
two given cubic forms are equivalent in time polynomial in the
size of the cubic forms.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

Cubic Forms

• Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.

• Given two cubic forms f (x1, . . . , xn), g(x1, . . . , xn) ∈
F[x1, . . . , xn], we say that f is equivalent to g if there is an
invertible linear transformation τ such that:

f (τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

• For example, x3
1 + x2

2 x3 is equivalent to x3
2 − (x1 + x2)2x3.

• Cubic Form Equivalence is the problem of checking whether
two given cubic forms are equivalent in time polynomial in the
size of the cubic forms.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

Cubic Forms

• Cubic Forms are degree 3 homogeneous polynomials over a
field F. We assume that F is a finite field.

• Given two cubic forms f (x1, . . . , xn), g(x1, . . . , xn) ∈
F[x1, . . . , xn], we say that f is equivalent to g if there is an
invertible linear transformation τ such that:

f (τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

• For example, x3
1 + x2

2 x3 is equivalent to x3
2 − (x1 + x2)2x3.

• Cubic Form Equivalence is the problem of checking whether
two given cubic forms are equivalent in time polynomial in the
size of the cubic forms.



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

Outline

Motivation

Complexity of GI

F-algebra Isomorphism
Definitions
The Complexity

Cubic Form Equivalence
Definitions
The Complexity

Conclusion



Motivation Complexity of GI F-algebra Isomorphism Cubic Form Equivalence Conclusion

Unlikely to be NP hard

• Clearly, Cubic Form Equivalence is in NP.

• The proof of GI in coAM can be modified to show Cubic Form
Equivalence in coAM.

• The verifier applies random invertible linear transformation on
the variables x1, . . . , xn.

• Thus, Cubic Form Equivalence is in NP ∩ coAM.
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Reduction from F-algebra Isomorphism

• Interestingly, F-algebra isomorphism reduces to cubic form
equivalence.

• Let R be an F-algebra given by its basis elements b1, . . . , bn

and the multiplication defined as: bi · bj =
∑n

k=1 ai ,j ,kbk

where for all i , j , k ∈ [n], ai ,j ,k ∈ F.

• From R we construct a cubic form fR as:

fR(b, z , y) :=
∑

1≤i≤j≤n

zi ,j

(
bi · bj − y ·

n∑
k=1

ai ,j ,kbk

)

• It can be shown that for two given F-algebras R and R ′ we
have: R ∼= R ′ iff fR ∼ fR′ .
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The Results

• The isomorphism problems of graphs, F-algebras and F-cubic
forms are of intermediate complexity (for finite F).

• These problems satisfy the following relation:

Graph Isomorphism

≤ F− algebra Isomorphism

≤ Cubic Form Equivalence
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Open Problems

We find the following problems of interest:

• Is there a way to solve cubic form equivalence in
subexponential time ?

• Is the cubic form equivalence problem over an infinite field F
decidable ?
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Thank You!

Questions?
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