HOW TO FACTOR OBJECTS?

Nitin Saxena CSE@IITK

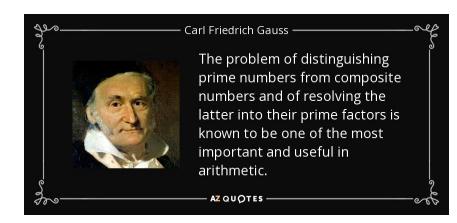
SUUU Indore December 2025

BASE CASES

INTEGERS

- Integer n factors uniquely into prime numbers.
 - \triangleright Eg. 1092 = $2^2 \times 3 \times 7 \times 13$

- ❖ Given n, can you factor it?
 - Input n in binary
 - ➤ 2[^]{(log n)^{0.3}} time not good enough
 - Number Field Sieve (1990s) factors via x² = y² mod n
- Hardness used in cryptosystems.
 - RSA, HTTPS, SSh, SFTP, Diffie-Hellman, Banks, Whatsapp, ...



Prime Numbers Eratosthenes'(ehr-uh-TAHS-thuh-neez) Sieve

- •Eratosthenes was a Greek mathematician, astronomer, geographer, and librarian at Alexandria, Egypt in 200 B.C. •He invented a method for finding prime numbers that is still used today.
- This method is called Eratosthenes' Sieve.

276 BC - 194 BC

3

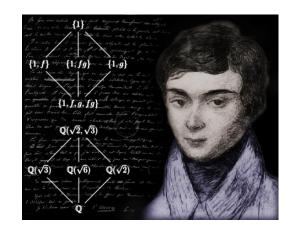
UNIVARIATE OVER INTEGERS

- \diamond Given polynomial $f(x) \in \mathbb{Z}[x]$, factor it.
 - \rightarrow f = $x^5-x^4-4x^2+x-2$ factors
 - > Roots have no formula
 - Irreducibility testing?

- [Lenstra, Lenstra, Lovász'82] solved this completely.
 - ightharpoonup Factor mod 2, 2², 2⁴, 2⁸,...
 - ➤ Lift to integral factor using lattice theory
 - Useful in many post-quantum cryptosystems

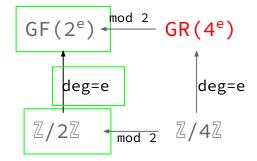
UNIVARIATE OVER FINITE FIELDS

- Galois field GF(pe) of size pe and char =
 prime p.
- \bullet Given polynomial $f(x) \in GF(p)[x]$, factor it.
 - \rightarrow f = x^2-2 factors mod 7
 - $> \sqrt{2} = 3 \mod 7$!
 - > Irreducibility testing?
- [Berlekamp'67; Cantor-Zassenhaus'81] solved this practically.
 - Use Galois automorphism
 - \triangleright Compute gcd of f(x) with $x^{p}-x$, $x^{p^{2}}-x$, $x^{p^{3}}-x$,...
 - Useful in crypto, coding theory, computational algebra, arithmetic-geometry, ...



UNIVARIATE OVER GALOIS RINGS

- Galois ring GR(p^{ke}) of size p^{ke} and characteristic = prime-power p^k.
- ❖ Given polynomial $f(x) ∈ GR(p^{ke})[x]$, factor it.
 - \rightarrow f = x^2-2 factors mod 7^2
 - $> \sqrt{2} = 10 \mod 7^2$!
 - > Irreducibility testing?

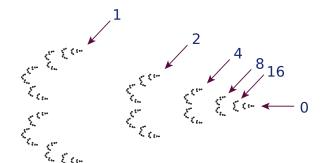


- This problem is OPEN.
- ♦ [Dwivedi, Mittal, S.'19] solved for k=4.
 - \triangleright Factor $f(x) \mod p$, p^2 , p^3 , p^4 .
 - Lifting from one to the next precision is nontrivial.
 - \triangleright Eg. f = x^2 -p mod p² vs f = x^2 -px mod p²

UNIVARIATE OVER P-ADIC NUMBERS

- - > 1+2p+3p²+4p³+5p⁴+... converges to a number!
- ❖ Given polynomial $f(x) ∈ Z_p[x]$, factor it.
 - \rightarrow f = x^2 -2 factors in 7-adic
 - $> \sqrt{2} = 3 + 1*7 + 2*7^2 + 6*7^3 + \dots$ in infinite digits!
 - Irreducibility testing?

- [Chistov'90; Cantor, Gordon'00] solved it efficiently.
 - \triangleright Newton polytope of f(x),
 - ➤ coupled with p-adic metric,
 - ➤ reduces to mod p factoring.
 - > Useful in computational number theory.

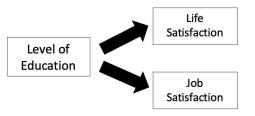


MULTIVARIATES

MULTIVARIATE SPARSE POLYNOMIALS

- Given polynomial $f(x_1, x_2, ..., x_n) \in F[x]$, factor it.
 - \rightarrow f = $(x_1^d-1)...(x_n^d-1)$ factors into
 - \Rightarrow g = $(x_1^{d-1} + ... + x_1 + 1) ... (x_n^{d-1} + ... + x_n + 1)$.
 - \triangleright Sparsity s:=2ⁿ blows-up to dⁿ.
 - > => Factors can be very large!
- ❖ What if individual-degree d is constant?
- [Bisht,S.'22] showed a poly bound for symmetric factors.
 - \triangleright Newton polytope of f(x)
 - > Relation between #vertices & #internal points.
 - Fast algorithm, by reducing to the base cases

Multivariate

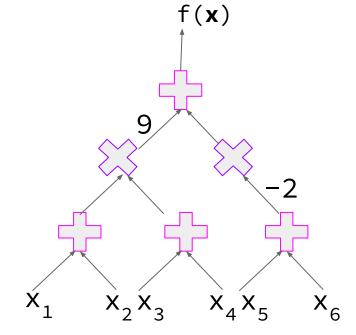


Univariate

IN FORMULA MODEL

- ♦ Given polynomial $f(x_1, x_2, ..., x_n) ∈ F[x]$, factor it.
 - > Input: is a formula of size s.
 - > Output: is a formula of size =?
- Only quasipoly bound known till 2024.
- ♦ [BKRRSS'25] prove Poly bound in 2025.

Idea: Use an expression for the roots given by Lagrange Inversion formula of analytic functions.



Lagrange Inversion Theorem.

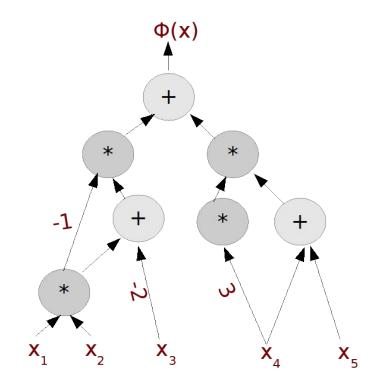
If a GF
$$g(z) = \sum_{n \ge 1} g_n z^n$$
 satisfies the equation $z = f(g(z))$ with $f(0) = 0$ and $f'(0) \ne 0$ then $g_n = \frac{1}{n} [u^{n-1}] \left(\frac{u}{f(u)}\right)^n$.

IN CIRCUIT MODEL

- ❖ Given polynomial $f(x_1, x_2, ..., x_n) ∈ F[x]$, factor it.
 - ➤ Input: is a circuit of size s.
 - ➤ Output: is a circuit of size =?

- [Kaltofen'87] showed a poly bound.
 - degree not too `high'

- ❖ Idea: Same as formula.
 - ➤ Works with constant-depth circuits!

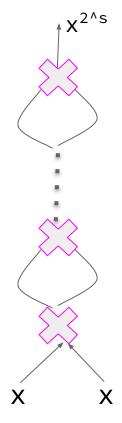


IN A 'TOUGHER' CIRCUIT MODEL

- ♦ Given polynomial $f(x_1, x_2, ..., x_n) \in F[x]$, factor it.
 - ➤ Input: is a circuit of size s and degree 2^s.
 - > Output: a factor of degree poly(s) of size =?

- It's an open question.
- * [Dutta,S.,Sinhababu'18] showed a poly bound, when
 - degree of the radical of f is not too `high'.

Idea: all-roots-Newton-iteration is doable inside circuits.



CONCLUDE WITH OPEN PROBLEMS

- Question 1: Fast integer factoring?
- ❖ Question 2: Fast polynomial factoring mod p^k?

- Question 3: General circuit factoring?
- Question 4: Derandomization?

