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Brief History of Primes

Prime Numbers

Fig: Euclid

An integer n > 1 is prime if its divisors are only 1 and n.

They are the building blocks of numbers and this means,
as Euclid demonstrated in 300 B.C., primes are infinitely
many.

Not only are they pervasive in Mathematics but also
appear in practice eg. Cryptography, Communication, ....

So how do we check and find primes?
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Brief History of Primes

Eratosthenes Sieve

“Sift the Twos and sift the Threes, The Sieve of Eratosthenes. When the
multiples sublime, The numbers that remain are Prime.”

This is the high school method to test primes, attributed to
Eratosthenes 200 B.C.

For a number n, it is sufficient to divide by numbers upto
√
n.

Thus, it takes around O(
√
n) steps. For a 100-bit number this means

250 steps!
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Brief History of Primes

Fermat & his Little Theorem

Fig: Fermat

Theorem (Fermat, 1660s)

If n is prime then for every a, an = a (mod n).

It is easy to compute an(mod n) using repeated
squaring (i.e. compute sequentially a(mod n),
a2(mod n), a4(mod n),...) this takes time log2 n,
which for a 100-bit number is only 1002 steps.

Can we ascertain the primality of n by checking
an = a (mod n) for few magical a?

No! Even if we check it for most a (Carmichael, 1910).

But Fermat gives a starting point!
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Brief History of Primes

Prime Number Estimates

Fig: Gauss

For any real x > 1, let π(x) be the number of primes
p ≤ x .

By looking at the tables of primes Legendre and Gauss
(independently) conjectured in 1796 that:

π(x) might be appoximated by x
ln x .
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Brief History of Primes

Prime Number Theorem

Fig: Chebyshev

This conjectured estimate was proved by Chebyshev in
1848.

He found explicit constants c , d around 1 such that:

cx

ln x
≤ π(x) ≤ dx

ln x

Interestingly, using this he was able to show that there is
always a prime between n and 2n, for any n ≥ 2.
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Primality testing

Defining Efficiency

Fig: Gödel

Kurt Gödel was probably the first to define the question
of primality testing, and with it a notion of
computational efficiency itself.

In 1956, he asked in a letter to John von Neumann: Can
we check whether n is a prime in time polynomial in
log n.

This gave the modern question: Is there a polynomial
time algorithm for primality?
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Primality testing

Can’t decide? Toss a coin!

Theorem (Solovay-Strassen, 1977)

An odd number n is prime iff for most a, a
n−1
2 =

(
a
n

)
(mod n).

Jacobi symbol
(
a
n

)
is computable in time O∼(log2 n).

We check the above equation for a random a.

This gives a randomized test that takes time O∼(log2 n).

It errs with probability at most 1
2 .

Thus, repeating this process 100 times makes the error probability
1

2100
.
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Primality testing

Primality: A Practical Solution

Theorem (Miller-Rabin, 1980)

An odd number n = 1 + 2s · t (odd t) is prime iff for most a ∈ Zn, the
sequence a2

s−1·t , a2
s−2·t , . . . , at has either a −1 or all 1’s.

We check the above condition for a random a.

This gives a randomized test that takes time O∼(log2 n).

It errs with probability at most 1
4 .

The most popular primality test!
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Derandomization?

Determinism and Randomness: Different?

Fig: Riemann

Can we select the random bits carefully in a randomized
algorithm such that there is no error?

For example, if we assume generalized Riemann
Hypothesis (GRH) then the first (2 log2 n) a’s suffice to
test primality of n in Solovay-Strassen and Miller-Rabin
tests.

Can we derandomize any randomized polynomial time
algorithm?

Is BPP=P? or

“God does not play dice....”??
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Derandomization?

Determinism and Randomness: Hardness
Enters

In the 1990s it was observed that if there are hard problems
then they can be used to derandomize.

Specifically, Impagliazzo & Wigderson showed in 1997 that BPP=P
if E has exponentially hard functions.

But proving hardness has always been a hard problem!

Some hoped that Primality might have an easier proof. After all,
there were several intermediate results in that direction.
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Circuits

Primality Testing & Circuits

Finally, the answer came forth by a rephrasal of primality testing in
terms of an arithmetic circuit.

A circuit C over a ring R is a directed acyclic graph with inputs at the
leaves, output at the root, + and ∗ as internal nodes, and constants
from R at the edges.

C(x , y)

+

∗ ∗ ∗

+ +
x y

x y x y

−
1

−
1
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Circuits

Primality & Zero Circuits

For any integers n > 0 and 1 ≤ a ≤ n define a circuit
Cn,a(x) := (x + a)n − (xn + a) (mod n).

Note that, using repeated squaring, circuit Cn,a can be expressed as a
directed acyclic graph of size O(log n).

It is a simple property of binomial coefficients that:

n is prime iff Cn,1(x) = 0.

It can be viewed as a generalization of Fermat’s little theorem.

It was used by Agrawal & Biswas (1999) to give a new kind of
randomized primality test.
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Primality Derandomized

Outline
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Primality Derandomized

The Idea

Although Cn,a(x) := (x + a)n − (xn + a) (mod n) is a O(log n) sized
circuit, checking it for zeroness seems to require computing all the n
terms in the expansion of (x + a)n.

However, if r is “small” we can check Cn,a(x) = 0 (mod x r − 1)
efficiently.

Does checking this for few different a & r imply Cn,1(x) = 0 ?

Agrawal, Kayal & Saxena (2002) showed that a, r below (log n)5 will
do!

It was the first unconditional, deterministic and polynomial time
primality test.
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Primality Derandomized

Agrawal-Kayal-S Test

1 If n is ab (b > 1), it is composite.

2 Select an r such that ordr (n) > 4 log2 n and work in the ring
R := Zn[x ]/(x

r − 1).

3 For each a, 1 ≤ a ≤ ℓ := ⌈2
√
r log n⌉, check if (x + a)n = (xn + a).

4 If yes then n is prime else composite.
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Primality Derandomized

AKS Test: The Proof

Suppose all the congruences hold and p is a prime factor of n.

The group I := ⟨n, p (mod r)⟩. t := #I ≥ ordr (n) ≥ 4 log2 n.

The group J := ⟨(x + 1), . . . , (x + ℓ) (mod p, h(x))⟩ where h(x) is an
irreducible factor of x r−1

x−1 modulo p.

#J ≥ 2min{t,ℓ} > 22
√
t log n ≥ n2

√
t .

Proof: Let f (x), g(x) be two different products of (x + a)’s, having
degree < t. Suppose f (x) = g(x) (mod p, h(x)).

▶ The test tells us that f (xn
i ·pj

) = g(xn
i ·pj

) (mod p, h(x)).
▶ But this means that f (z)− g(z) has atleast t roots in the field

Fp[x ]/(h(x)), which is a contradiction.
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Primality Derandomized

AKS Test: The Proof

The Two Groups

Group I := ⟨n, p (mod r)⟩ is of size t > 4 log2 n.

Group J := ⟨(x + 1), . . . , (x + ℓ) (mod p, h(x))⟩ is of size > n2
√
t .

There exist tuples (i , j) ̸= (i ′, j ′) such that 0 ≤ i , j , i ′, j ′ ≤
√
t and

ni · pj ≡ ni
′ · pj ′ (mod r).

The test tells us that for all f (x) ∈ J, f (x)n
i ·pj = f (xn

i ·pj ) and

f (x)n
i′ ·pj′ = f (xn

i′ ·pj′ ).

Thus, for all f (x) ∈ J, f (x)n
i ·pj = f (x)n

i′ ·pj′ .

As J is a cyclic group: ni · pj ≡ ni
′ · pj ′ (mod #J).

As #J is large, ni · pj = ni
′ · pj ′ . Hence, n = p a prime.
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i′ ·pj′ = f (xn

i′ ·pj′ ).

Thus, for all f (x) ∈ J, f (x)n
i ·pj = f (x)n

i′ ·pj′ .

As J is a cyclic group: ni · pj ≡ ni
′ · pj ′ (mod #J).

As #J is large, ni · pj = ni
′ · pj ′ . Hence, n = p a prime.
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Primality Derandomized

AKS Test: Time Complexity

Recall that r is the least number such that ordr (n) > 4 log2 n.

Prime number theorem gives r = O(log5 n) and the algorithm takes
time O∼(log10.5 n).

Lenstra and Pomerance (2003) further reduced the time complexity
to O∼(log6 n).
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Questions

Questions

The AKS primality test solves a long-standing open question but
cannot compete with the randomized tests used in practice.

However, several modifications have been suggested to AKS test that
are faster than the original proposal.

Can we reduce the number of a for which the test is performed? Here
is a conjecture that can bring down the complexity to O∼(log3 n):

Conjecture: (Bhattacharjee-Pandey 2001; AKS 2004)

Let r > log n be a prime number that does not divide (n3 − n). Then
(x − 1)n ≡ (xn − 1) (mod n, x r − 1) iff n is prime.
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Questions

Questions

An even more interesting question is that of Polynomial Identity
Testing (PIT).

Given a circuit C (x1, . . . , xn), determine whether it is the zero circuit
in time polynomial in the size of C ??

Note that AKS primality test solved this question for the special
circuit C (x) = (x + 1)n − (xn + 1) (mod n).

There has been some progress but the big question of PIT is very
much open.

It has also been shown that PIT is related to the “holy-grail” of
complexity theory: proving lower bounds.
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