Integer factoring using small algebraic dependencies

Nitin Saxena (IIT Kanpur, India)

(joint work with Manindra Agrawal and Shubham S. Srivastava)

2016, **MFCS**, Kraków

- Integer factoring
- Revisit AKS'02 test
- General questions
- Special case answers
- Conclusion

Integer factoring

- Integer factoring (IF) is the problem of finding a nontrivial factor of input number n.
 - Given as $\log n$ bits.
 - Ideally, we want polylog n time algorithm.
 - Brute-force takes at least \sqrt{n} time.
- No good algorithms, even heuristics, are known.
 - RSA cryptosystem is based on it's ``hardness".
 - Belief: It's not as hard as SAT, TSP, HamPath.
 - Because it's a more ``algebraically structured" problem.
- Number field sieve (Lenstra, Lenstra, Manasse, Pollard, STOC'90, et al.): exp(2.log^{1/3} n.loglog^{2/3} n) time algorithm for IF.
 - Sets up $a^2 = b^2 \mod n$ in Q[x]/(f).
 - Factorizes smooth numbers in the number ring.

f represents n in some base.

Integer factoring – related qn.

Primality is the question of testing whether input n is prime.

- Test whether Z/n is a field.
- It has fast algorithms, based on the Frobenius map
 - φ : $(Z/n)[x] \rightarrow (Z/n)[x]$; $a(x) \mapsto a(x)^n >$
 - It's a (ring) homomorphism iff n is prime!

Exponentiation

- Criterion requires the x.
- With this starting point, there are numerous randomized polylog n time primality tests.
 - Solovay, Strassen, 1977; Miller, Rabin, 1976; Agrawal, Biswas, 1998
- (Agrawal, Kayal, Saxena, 2002) derandomized this approach to work in deterministic poly-time.

- Integer factoring
- Revisit AKS'02 test
- General questions
- Special case answers
- Conclusion

Revisit AKS'02 test

- Frobenius map φ on $(Z/n)[x]/(x^r-1)$; $a(x) \mapsto a(x)^n$.
- Consider $f_{a,n,r} := a(x)^n a(x^n)$.
- If above is zero, for few linear a(x), then: b(x)^m = b(x^m) in (Z/p)[x]/(x^r-1) for exponentially many b(x) & m=nⁱ.p^j is deduced.
 - \bullet p is a prime dividing n .
- The above congruences, and finite field properties, are used to deduce: n is a power of p.
 - Latter is easy to test algorithmically.
- Arguments exploit the p-Frobenius and the exponentiation by n.

- Integer factoring
- Revisit AKS'02 test
- General questions
- Special case answers
- Conclusion

General questions- composite n

- Compute f_{a,e,r} := a(x)^e a(x^e) in (Z/n)[x]/(x^r-1) for several a, e, r.
 - Guaranteed: Most are nonzero polynomials (AKS polynomials).
 - Could their coefficients factor n?
- Qn: Design a,e,r such that f_{a.e.r} gives a zerodivisor ?

• Case $r=n: (x+1)^n - (x^n+1)$ in $(Z/n)[x]/(x^n-1)$ has a zerodivisor.

- Collect nonzero ones in S := { f_{a,e,r} in (Z/n)[x]/(x^r-1) | small a,e,r }.
- What ring operations on S could lead us to a zerodivisor in Z/n ?

General questions- composite n

- Compute $S_r := \{ f_{a,e,r} \text{ in } (Z/n)[x]/(x^r-1) \mid \text{small } a,e \}.$
- One can consider the lattice L_r generated by: S_r and { n, nx, nx²,..., nx^{r-1} }.
- Could the properties of L, help in reaching a zerodivisor ?
- Eg. apply basis reduction algorithms (Lenstra, Lenstra, Lovász, 1982).
- We've done experiments but we've no good conjecture.

- Integer factoring
- Revisit AKS'02 test
- General questions
- Special case answers
- Conclusion

Special case answers

- Interesting case: RSA composites n = p.q , where p < q are primes.</p>
- Fermat method: If we know the difference $\alpha := q p$, then we can factor in polylog n time.
- Qn: What if we know a bivariate f such that f(p,q)=0 ?
 - Nondegenerate f . We don't want trivial ones, eg. f = xy n.
 - Such f of degree d, sparsity γ exists with coefficients $\approx n^{d/\gamma}$.
- Using polynomial factoring methods we can find a root of f(x,n/x) (Schönhage, 1984).
 - ✤ p is a root.
 - Takes time $d^6 \cdot log^2 n$, assuming constant γ .

Special case answers

- Using AKS-type computations, we give an algorithm that is 2 linear-time in d
 - Proof is conditional on number theory conjectures.
 - It's simpler than integer polynomial factoring algorithms.
- *Proof by example*: Suppose we know that $q = \alpha + \beta p + \gamma p^2$.
 - Then, $n = \alpha p + \beta p^2 + \gamma p^3$.
 - We could guess p mod r, say t (or try all possibilities).
- Compute $\Pi := a(x)^n a(x^t)^{-\alpha} a(x^{t^2})^{-\beta} a(x^{t^3})^{-\gamma}$ in $(Z/n)[x]/(x^r-1)$.

 - If mod p is a(x)<sup>n-α.p-β.p²-γ.p³ = a(x)⁰ = 1
 Say, t mod r is q^e.
 Then, If mod q is a(x)<sup>n-α.q^e-β.q²e-γ.q³e</sub> ≠ 1
 </sup></sup>
 - Thus, Π -1 factors **n**.

With high probability

- Integer factoring
- Revisit AKS'02 test
- General questions
- Special case answers
- Conclusion

At the end ...

- We give a <u>higher-degree generalization</u> of Fermat method.
 - Heuristically, faster than known methods.
 - Exploits the *difference* in the two Frobenius maps.
- (x+1)ⁿ mod n contains zerodivisor. Could this be extracted <u>efficiently</u>?
- Lattice methods, ring operations etc. on <u>exponentials</u> a(x)^e over extensions of Z/n ?

