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Integer factoring
Integer factoring (IF) is the problem of finding a nontrivial 
factor of input number n.

Given as log n bits.
Ideally, we want polylog n time algorithm.
Brute-force takes at least      time.

No good algorithms, even heuristics, are known.
RSA cryptosystem is based on it's ``hardness''.
Belief: It's not as hard as SAT, TSP, HamPath.
Because it's a more ``algebraically structured'' problem.

Number field sieve (Lenstra, Lenstra, Manasse, Pollard, STOC'90, et al.): 
exp(2.log1/3 n.loglog2/3 n) time algorithm for IF. 

Sets up a2 = b2 mod n in Q[x]/(f) .
Factorizes smooth numbers in the number ring.

√n

f represents n in some base.
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Integer factoring – related qn.
Primality is the question of testing whether input n is prime.

Test whether Z/n is a field.

It has fast algorithms, based on the Frobenius map 
φ: (Z/n)[x] → (Z/n)[x] ; a(x) ↦ a(x)n .
It's a (ring) homomorphism iff n is prime!
Criterion requires the x.

With this starting point, there are numerous randomized 
polylog n time primality tests.

 (Solovay, Strassen, 1977; Miller, Rabin, 1976; Agrawal, Biswas, 1998)

(Agrawal, Kayal, Saxena, 2002) derandomized this approach to work 
in deterministic poly-time.

Exponentiation
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Revisit AKS'02 test
Frobenius map φ on (Z/n)[x]/(xr-1) ; a(x) ↦ a(x)n .

Consider f
a,n,r

 := a(x)n - a(xn) .

If above is zero, for few linear a(x), then:  
b(x)m = b(xm) in (Z/p)[x]/(xr-1)

 
p is a prime dividing n . 

The above congruences, and finite field properties, are used 
to deduce: n is a power of p .

Latter is easy to test algorithmically.

Arguments exploit the p-Frobenius and the exponentiation by n.

for exponentially many b(x) & m=ni.pj is deduced.
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General questions- composite n  
Compute f

a,e,r
 := a(x)e - a(xe)  in (Z/n)[x]/(xr-1) for several 

a, e, r.
Guaranteed: Most are nonzero polynomials (AKS polynomials).
Could their coefficients factor n?

Qn: Design a,e,r such that f
a,e,r

 gives a zerodivisor ?

Case r=n: (x+1)n - (xn+1) in (Z/n)[x]/(xn-1) has a zerodivisor.

Collect nonzero ones in S := { f
a,e,r

 in (Z/n)[x]/(xr-1) | small 

a,e,r }.

What ring operations on S could lead us to a zerodivisor in 
Z/n ?
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General questions- composite n 

Compute S
r
 := { f

a,e,r
 in (Z/n)[x]/(xr-1) | small a,e }.

One can consider the lattice L
r
 generated by: 

S
r
 and { n, nx, nx2 ,...., nxr-1 } .

Could the properties of L
r
 help in reaching a zerodivisor ?

Eg. apply basis reduction algorithms (Lenstra,Lenstra,Lovász, 1982).

We've done experiments but we've no good conjecture.
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Special case answers
Interesting case: RSA composites n= p.q , where p<q are 
primes.

Fermat method: If we know the difference α := q - p , then 
we can factor in polylog n time.

Qn: What if we know a bivariate f such that f(p,q)=0 ?
Nondegenerate f . We don't want trivial ones, eg. f = xy - n .
Such f of degree d, sparsity γ exists with coefficients ≈ nd/γ.

Using polynomial factoring methods we can find a root of 
f(x,n/x) (Schönhage, 1984).

p is a root.
Takes time d6.log2 n, assuming constant γ.
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Special case answers
Using AKS-type computations, we give an algorithm that is 
linear-time in d.

Proof is conditional on number theory conjectures.
It's simpler than integer polynomial factoring algorithms.

Proof by example: Suppose we know that q = α + βp + γp2 .
Then, n = αp + βp2 + γp3 .
We could guess p mod r, say t (or try all possibilities).

Compute Π:= a(x)n a(xt)-α a(xt^2)-β a(xt^3)-γ in (Z/n)[x]/(xr-1).
Π mod p is a(x)n – α.p – β.p^2 – γ.p^3 ≡ a(x)0 ≡ 1.
Say, t mod r is qe.
Then, Π mod q is a(x)n – α.q^e – β.q^2e – γ.q^3e ≠ 1.
Thus, Π-1 factors n. ▢

With high probability
 for random a(x),r
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At the end …
We give a higher-degree generalization of Fermat method.

Heuristically, faster than known methods.
Exploits the difference in the two Frobenius maps.

(x+1)n mod n contains zerodivisor. Could this be extracted 
efficiently?

Lattice methods, ring operations etc. on exponentials a(x)e 

over extensions of Z/n ?

Thank you!
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