LLOSURE OF ALGEBRAIC CLASSES UNDER FACTORING

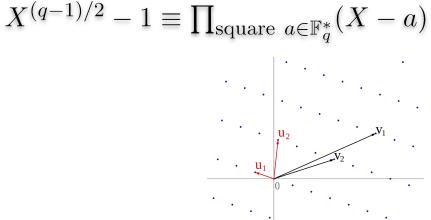
Nitin Saxena

CSE @ IIT Kanpur
[*Based on many works* + *Thanks to the artists*]

8th WACT @ RUB Mar-Apr'25

THE PROBLEM: FACTORING POLYNOMIALS — THE BASE CASE

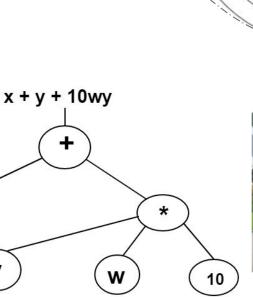
- Question (<u>factor</u>): Given $f \in \mathbb{F}[x]$, find a nontrivial factor g? $x^2 2 \in \mathbb{Q}[x]$ is irreducible, while $x^2 2 \equiv (x 3)(x 4) \mod 7$
 - \triangleright Depends critically on \mathbb{F} .
- \bullet [Cantor, Zassenhaus'81] Given $f \in \mathbb{F}_q[x]$, factor it in randomized poly-time.
 - Clever use of residuosity/ Euclid.
- [Lenstra, Lenstra, Lovasz'82] Given $f \in \mathbb{Q}[x]$, factor in poly-time.
 - Lattice basis reduction.
- \bullet [Cantor, Gordon'00] Given $f \in \mathbb{Q}_p[x]$, factor in randomized poly-time.
 - Newton polytope, p-adic analysis.



$$\sqrt{2} = 3 + 1 \times 7 + 2 \times 7^2 + 6 \times 7^3 + \cdots$$

THE MODEL: ALGEBRAIC CIRCUITS

- Valiant (1977) formalized computation via algebraic circuits.
 - ➤ Giving birth to his VP ≠ VNP question.
 - > Or, algebraic hardness!
- Algebraic circuit has constants, variables, size, depth.
 - ➤ Ignores the size of constants



VNPC

Leslie Valiant (1949-)

FACTORING MULTIVARIATES

- **Qn.** (class): Given $f \in \mathbb{F}[\mathbf{x}] := \mathbb{F}[\mathbf{x}_1,...,\mathbf{x}_n]$ in class \mathcal{C} , find nontrivial factor g in \mathcal{C} ?
 - ➤ Is there an efficient algorithm?
- floor Class $\cal C$ has to be strong enough to afford factoring techniques.
- Circuit of size-s can have exp(s) degree.
 - > Its high-degree factors can be hard.
 - We'll choose our closure questions carefully!

 $(\sum_{i \in [n]} x_i^p) \mod p$ has sparsity n, while its factor $(\sum_{i \in [n]} x_i)^{p-1}$ has sparsity $\approx n^p$.

 $x^{2^s} - 1 = \prod_{i \in [2^s]} (x - \zeta^i)$ has 2^{2^s} factors!

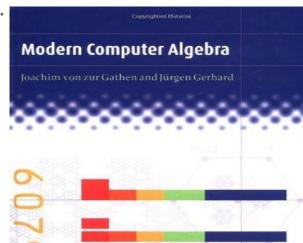
APPLICATIONS OF FACTORING

Binary signal

Computer 1

Computer 2

- ❖ [Sudan'97] Decoding Reed-Solomon codes.
 - ➤ [Guruswami, Sudan'06] List decoding.
- [Kabanets, Impagliazzo'04] Derandomization from hardness.
 - [Kopparty, Saraf, Shpilka'14] Identity testing (PIT) equivalence.
 - [Mulmuley'13] Geometric Complexity Theory.
 - [Forbes, Shpilka, Tzameret, Wigderson'16] Proof Complexity.
- Cryptography.
 - Cryptanalysis,
 - Constructing fields; factoring integers.
- Computer Algebra.
 - > System solvers; Gröbner bases; Numerical methods.
 - Cornerstone problem!



BIG IDEAS
(POLY-DEGREE)

EFFICIENTLY FACTORING VP CIRCUITS

- * [Kaltofen'86] Any factor g of size-s circuit f satisfies: $size_{ckt}(g) \le poly(s, deg(f))$.
 - ➤ [Kaltofen, Trager'91] Blackbox for g can be found efficiently.
- The class VP contains polynomial family $f_n(\mathbf{x}_n)$ of poly(n)-size and poly(n)-degree.
 - > [Kaltofen'86] VP is closed under factoring.
 - Corollary: Any nonzero multiple of hard polynomial (g) is hard!
- ❖ Tools: Hensel lifting and division.
- Preprocessing (monic in x_1): Write $f(y, x_1, x_2,..., x_n) = gh$, where
 - \triangleright g, h mod y are univariate in x_1 and are coprime.
 - \triangleright Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; ...; x_n to $yx_n+(b_nx_1+a_n)$.

EFFICIENTLY FACTORING VP CIRCUITS - HENSELLIFTS

- **Given:** size-s degree-d circuit $f(y, x_1, x_2, ..., x_n)$ as before. Find g, h.
- ***** Hensel lift (1st): $f(0, x_1, x_2, ..., x_n) =: g_1 h_1 \mod y$.
 - \triangleright Use univariate factoring over \mathbb{F} .
- \bullet Hensel lift (2nd): $f(y, x_1, x_2, ..., x_n) =: g_2 h_2 \mod y^2$.
 - ightharpoonup Extract coef(y) in circuit f. Use perturbation formula on g_1 and h_1 .
- \bullet Hensel lift (k-th): $f(y, x_1, x_2, ..., x_n) =: g_k h_k \mod y^k$.
 - ightharpoonup Extract $coef(y^{k-1})$ in circuit f. Use perturbation formula on g_{k-1} and h_{k-1} .
- \bullet Go up to k := d+1.
- ❖ Question: Is g_k factor of f ?

 ➤ Lift is messy: g_k may've extra degree in y,x₁.
- (error-feedback) Perturbation: $f \equiv (g_1 + e \cdot v_1) \cdot (h_1 + e \cdot u_1) \mod y^2$, where $e := (f g_1 \cdot h_1)$ and $1 =: u_1 \cdot g_1 + v_1 \cdot h_1$.

EFFICIENTLY FACTORING VP CIRCUITS - MONIC LIFTS

- **Given** (k=d+1): $f(y, x_1, x_2, ..., x_n) =: g_k h_k \mod y^k$.
- Keep monic [Clean-up]: Since g is monic (in x₁), we can use monic perturbation, at each lift.
 - \triangleright Divide: Reduce ev₁ mod g₁, before adding to g₁, to get g₂. [Strassen'73]
- \bullet g_k , h_k are monic (in x_1).
 - \rightarrow deg_{x 1}(g) = deg_{x 1}(g_k).
- * Fact 1: g_k is circuit of size poly(s,d) .
- Fact 2: g = g_k is actual factor of f!
 QED

Trick Qn:
Without the promise of g, what does gk signify?

(error-feedback) Perturbation: $f \equiv (g_1 + e \cdot v_1) \cdot (h_1 + e \cdot u_1) \mod y^2$, where $e := (f - g_1 \cdot h_1)$ and $1 =: u_1 \cdot g_1 + v_1 \cdot h_1$.

EFFICIENT FACTORING IN VBP

- ⋄ [Sinhababu, Thierauf'21] Any factor g of size-s algebraic branching program (ABP) f satisfies: size_{abp}(g) ≤ poly(s).
 - ➤ ABP is a matrix-product expression, or equivalently, the determinant model.
- \diamond The class VBP contains polynomial family $f_n(\mathbf{x}_n)$ of poly(n)-size ABP.
 - ➤ [Sinhababu, Thierauf'21] VBP is closed under factoring.
 - Corollary: Any nonzero multiple of ABP-hard g is ABP-hard!
- Tools: Fast Hensel-lifting and Linear-system solving.
- Preprocessing (monic in x_1): Write $f(y, x_1, x_2,..., x_n) = gh$, where
 - \triangleright g, h mod y are univariate in x_1 and are coprime.
 - ightharpoonup Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; ...; x_n to $yx_n+(b_nx_1+a_n)$.

EFFICIENT FACTORING IN VBP — FAST HENSEL LIFTS

- \diamond Given: size-s degree<s ABP $f(y, x_1, x_2, ..., x_n)$ as before. Find g, h.
- ***** Hensel lift (1st): $f(0, x_1, x_2, ..., x_n) =: g_1 h_1 \mod y$.
 - \triangleright Use univariate factoring over \mathbb{F} .
- ***** Hensel lift (2nd): $f(y, x_1, x_2, ..., x_n) =: g_2 h_2 \mod y^2$.
 - \succ Extract coef(y) in circuit f. Use perturbation formula on $\mathbf{g_1}$ and $\mathbf{h_1}$.
- \bullet Hensel lift (log₂(D)-th): $f(y, x_1, x_2, ..., x_n) =: g_D h_D \mod y^D$.
- ightharpoonup Extract coef(y^{D-1}) in circuit f. Use perturbation formula on $g_{D/2}$, $h_{D/2}$.
- Go up to $D := (2s^2+1)$. [ABP-size grows 4-times per lift.]
- Question: Is g_D factor of f? \triangleright Lift is messy: Non-monic g_D may've extra degree in y, x_1 .
- (error-feedback) Perturbation: $f \equiv (g_1 + e \cdot v_1) \cdot (h_1 + e \cdot u_1) \mod y^2$, where $e := (f g_1 \cdot h_1)$ and $1 =: u_1 \cdot g_1 + v_1 \cdot h_1$.

EFFICIENT FACTORING IN VBP - LINEAR-SYSTEM

- Given (D=2s²+1) : $f(y, x_1, x_2, ..., x_n) =: g_D h_D \mod y^D$.

 Solve linear-system [Clean-up]: $g' = g_D \ell \mod y^D$, where

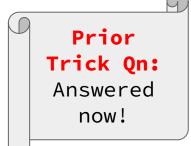
 \[
 \left(\deg_{x_1}(g') \leq \deg_{x_1}(g), \deg_y(g') \leq \deg_y(g),
 \]

 \[
 \left(\deg_{x_1}(\ell) \leq \deg_{x_1}(h_D), \deg_y(\ell) < D.
 \]

 \[
 \]

 It's ABP friendly.
 </pre>
- ❖ Fact 3: g' is ABP of size poly(s) .
 - > So is its leading-coeff (wrt x_1), say $c = c(y, x_2, ..., x_n)$.
- \Rightarrow Fact 4: g = g'/c.
- Eliminating division (merely once!), finishes the proof.

QED



"EFFICIENT" FACTORING IN VNP - WITNESS/FORMULA TRICK

- ❖ Proof similar to factoring in VP. Except,
 ∇ (a) ∇ (b) V(a) and the example of the e
 - $ightharpoonup f(y,x) =: \sum_{\mathbf{w} \in \{0,1\}^n} V(\mathbf{w},y,x)$, where V is verifier-circuit on witness w.
- In VP proof: $f(y, \mathbf{x}) =: g_k h_k \mod y^k$, gives circuit C(f) for $g_k = g$.
- \bullet [Valiant'82] There is small verifier-formula F: $C(f) =: \sum_{\mathbf{w'} \in \{0,1\}^{n}} F(\mathbf{w'}, f)$.
- **Composition gives:** $g = \sum_{(\mathbf{w}, \mathbf{w'}) \in \{0,1\}^{\wedge}(m+m')} F(\mathbf{w'}, V(\mathbf{w}, y, \mathbf{x}))$, thus proving—
- ❖ Fact 5: g in VNP, with size-parameter poly(s,d).
- Chou, Kumar, Solomon'18] VNP is closed under factoring.
 - [Bhargav,Dwivedi,S.'24] made it general.

Overlooked:

need large
field;
characteristic?
OK for coprime

g,h.

QED

FACTORING IN SHALLOW DEPTHS? — INTRODUCING NEWTON

- ♦ [Oliveira'15] Let f has individual-degree r and size-s. In just depth+4, any factor g of f has: $size(g) \le poly(s^r)$.
 - Constant-ind.degree, constant-depth model is closed under factoring.
- ❖ Tools: Newton-iteration.
- **Preprocessing (monic in x_1):** Write $f(y, x_1, x_2, ..., x_n) = (x_1 \phi(yx_2, ..., yx_n)) \cdot h$, where
 - $ightharpoonup \phi$ is power-series in $\mathbb{F}[[yx_2,...,yx_n]]$ and $h(y=0,x_1=\phi)\neq 0$ [coprime].
 - \triangleright Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; ...; x_n to $yx_n+(b_nx_1+a_n)$.
- Requires: one derivation, many compositions.

Newton-iteration specifies the simple-root φ of f.

Newton-iteration: Approximant up to degree m of φ is $\varphi_{m+1} := \varphi_m - f(\varphi_m)/\partial_{x_1} f(\varphi_m(\mathbf{0}))$.

FACTORING IN SHALLOW DEPTHS? — INTRODUCING NEWTON

- Newton-iteration: The coefficients of f are $C_0(y, x_2, ..., x_n)$,..., $C_r(y, x_2, ..., x_n)$.
- \bullet Inductively, ϕ_{m+1} can be written as degree-m function in these.
- Fact 6: ϕ_{m+1} is depth-2 circuit of size m^r , in C_i 's.
- Once we've roots, we've factors!
- Fact 7: g requires depth-4 circuit, of size poly(s^r), on top of f.
 OFD

Newton-iteration: Approximant up to degree m of φ is $\varphi_{m+1} := \varphi_m - f(\varphi_m)/\partial_{x_1} f(\varphi_m(\mathbf{0}))$.

BIG IDEAS
(EXP-DEGREE)

FACTORING EXPONENTIAL DEGREE CIRCUITS? — MORE NEWTON

- \bullet [Dutta,S.,Sinhababu'18] Any factor g of size-s circuit f satisfies: size_{ckt}(g) ≤ poly(s, deg(rad(f))) .
 - \rightarrow Radical rad(f) is the squarefree part. May have deg $> 2^s$!
- ❖ Tools: Modified Newton-iteration.
- **Preprocessing (monic in** x_1 **):** Write $f(y, x_1, x_2, ..., x_n) = \prod_{i \in [k]} (x_1 \phi_i(yx_2, ..., yx_n))^{e_i}$, where
 - \triangleright ϕ_i is power-series in $\mathbb{F}[[yx_2,...,yx_n]]$ and $\phi_i(y=0)$ are distinct [coprime].
 - \triangleright Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; ...; x_n to $yx_n+(b_nx_1+a_n)$.
- Roots are very far from simple.
- Can't run Newton iteration. [Division by 0 !]

Newton-iteration: Approximant up to degree m of φ_i is $\varphi_{i,m+1} := \varphi_{i,m} - f(\varphi_{i,m})/\partial_{x_1} f(\varphi_{i,m}(\mathbf{0}))$.

FACTORING EXPONENTIAL DEGREE CIRCUITS? — MORE NEWTON

- $\ \ \, \ \ \,$ Consider $F:=f+yz\cdot\partial_{_{x}\;1}f$, where z is new. Then,
- \clubsuit F =: $\prod_{i \in [k]} ($ x_1- $\phi_i(yx_2,...,yx_n)$ $)^{e_i-1} \cdot ($ rad(f) + yz·Q) =: u·v , where
 - \succ u, v are coprime, monic and $k = \deg_{x_1}(v) = \deg_{x_1}(rad(f)) > \deg_{x_1}(Q)$.
- Newton-iteration finds (distinct) simple root ψ_i of v in $\mathbb{F}[[yz, yx_2, ..., yx_n]]$.
- \diamond Setting z=0, we get circuit for rad(f).
 - > of size poly(s,k).
 - \succ Though F is very-high deg, we only use its deg(rad(f)) part.

QED

FACTORING APPROXIMATIVELY - INTRODUCING &

- - \triangleright Works over $\mathbb{F}(\varepsilon)$, with $\varepsilon \rightarrow 0$, where precision is exponential!
- * Tools: Perturb by ε , and Newton-iteration over $\mathbb{F}(\varepsilon)$.
- Preprocessing (monic in x_1): Write $f(y, x_1, x_2, ..., x_n) = (x_1 \phi(yx_2, ..., yx_n))^e \cdot h$, where
 - $ightharpoonup \phi$ is power-series in $\mathbb{F}[[yx_2,...,yx_n]]$ and $h(y=0,x_1=\phi)\neq 0$ [coprime].
 - \triangleright Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; ...; x_n to $yx_n+(b_nx_1+a_n)$.
- Root φ is very far from simple, as e is exponential.
 - ➤ Can't run Newton iteration. [Division by 0 !]

Newton-iteration: Approximant up to degree m of φ is $\varphi_{m+1} := \varphi_m - f(\varphi_m)/\partial_{x_1} f(\varphi_m(\mathbf{0}))$.

FACTORING APPROXIMATIVELY - INTRODUCING &

- ***** Consider $F(y, x_1, x_2, ..., x_n) := f(y, x_1 + \epsilon, x_2, ..., x_n) f(0, \phi(y=0) + \epsilon, x_2, ..., x_n)$. Then,
 - $F(y=0, x_1=\phi) = 0$, $F_{s=0} = f$,
 - $> \partial_{y_1} F(y=0, x_1=\phi) = \varepsilon^{e-1} \cdot (e \cdot h(y=0, x_1=\phi) + \varepsilon \cdot \partial_{y_1} h(y=0, x_1=\phi)) \neq 0.$
- * Fact 8: φ is simple root of F(y=0).
- * Initializing: $x_1 \leftarrow \varphi(y=0)$, Newton-iteration finds simple root ψ of F, in $\mathbb{F}(\varepsilon)[[yx_2,...,yx_n]]$.
- ♦ Fact 9: $\psi_{\varepsilon=0} \rightarrow \varphi$ is required root of f.
 - \triangleright No way known to find φ exactly. QE
- ❖ [Bhargav,Dwivedi,S.'24] made it more explicit: "g is in VNP".

Newton-iteration: Approximant up to degree m of ψ is $\psi_{m+1} := \psi_m - F(\psi_m)/\partial_{x_1}F(\psi_m(\mathbf{0}))$.

OPEN QUESTIONS (TRICKY MODELS)

FACTORING 'WEAK' MODELS?

- Question (<u>formula</u>): Factor formulas ?
 - ➤ Is VF closed under factoring?
 - Only known for constant-individual-degree. [Oliveira'15]

- Could sparse-polynomials be factored? No.
 - ➤ Depth-2 not closed under factoring.
- ❖ Question (depth-2): Factor constant-individual-degree depth-2 ?
 - ➤ Partial results known. [Bhargava, Saraf, Volkovich'18] [Bisht, S.'22]

ROOTS IN GENERAL?

- ❖ Given size-s circuit f, apply the random map to see roots:
- Write $f(y, x_1, x_2, ..., x_n) = (x_1 \phi(yx_2, ..., yx_n))^e \cdot h$, where
 - \triangleright ϕ is power-series in $\mathbb{F}[[yx_2,...,yx_n]]$.
- Question (any-root): $size(\phi_m) \le poly(s, m)$?
 - ➤ Implies [Bürgisser'01]'s factor conjecture.
 - \triangleright Is ϕ_m in VNP? [general case is OPEN]
- \diamond Characteristic issues: Say, char(\mathbb{F}) =: p and p|e.
- ❖ VP/VBP/approximative results for bad multiplicity ?
- ❖ Question (<u>inverse-Frobenius</u>): Given g^p , find g?
- Question (non-Fields): Factor mod p^2 , p^3 ,..., p^k ,..., p^∞ ?

