Blackbox Identity Testing for Depth-3 Circuits

Nitin Saxena (Hausdorff Center for Mathematics, Bonn)

Joint work with

C. Seshadhri (Sandia National Laboratories, Livermore)

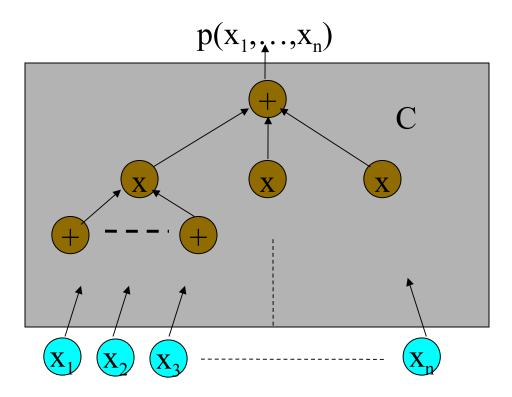
The problem of PIT

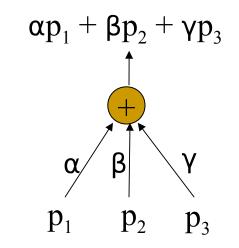
- Polynomial identity testing: given a polynomial p(x₁,x₂,...,x_n) over F, is it identically zero?
 - All coefficients of $p(x_1,...,x_n)$ are zero.
 - □ $(x+y)^2 x^2 y^2 2xy$ is identically zero.
 - So is: $(a^2+b^2+c^2+d^2)(A^2+B^2+C^2+D^2)$
 - $(aA+bB+cC+dD)^2$ $(aB-bA+cD-dC)^2$
 - $(aC-bD-cA+dB)^2$ $(aD-dA+bC-cB)^2$

Euler 1707- 1783

• x(x-1) is NOT identically zero over F_2 .

Circuits: Blackbox or not

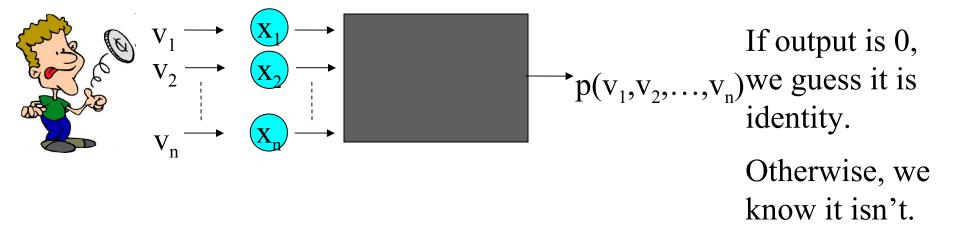




We want algorithm whose running time is polynomial in size of the circuit.

- Non blackbox: can analyze structure of C
- Blackbox: cannot look inside C
 - Feed values and see what you get

A simple, randomized test



- [Schwartz'80, Zippel'79, DeMillo Lipton'78] This is a randomized blackbox poly-time algorithm.
- (Big) open problem: Find a deterministic polynomial time algorithm.
 - □ We would really like a blackbox algorithm, i.e. a *hitting-set*.

- It's a natural algebraic problem!
- [Kabanets Impagliazzo'03] Derandomization implies circuit lower bounds for permanent.
- [Heintz Schnorr'80, Agrawal'05 '06] Hitting-set implies $VP \neq VNP$.
- [Agrawal Kayal S '02] Primality Testing: (x + a)ⁿ-xⁿ-a=0 (mod n).
- [Lovasz'79, Karp Upfal Wigderson'86] Bipartite matching in NC?...
- Many more (in complexity & algorithms).

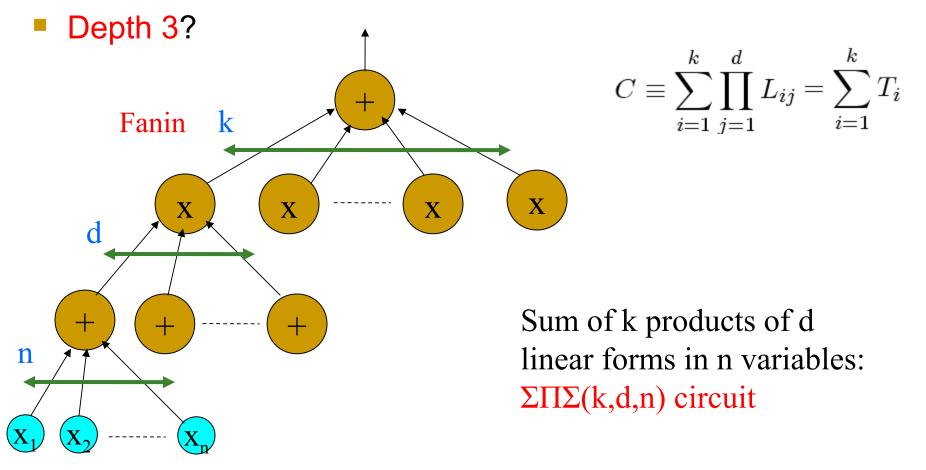
What do we do?

George Pólya 1887-1985

If you can't solve a problem, then there is an easier problem you *can* solve. Find it.

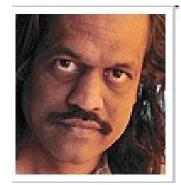
Get shallow results

- Let's restrict the depth and see what we get.
- Depth 2? Non-blackbox trivial!
 - GK'87, BOT'88,...,KS'01, A'05] Polytime & blackbox.

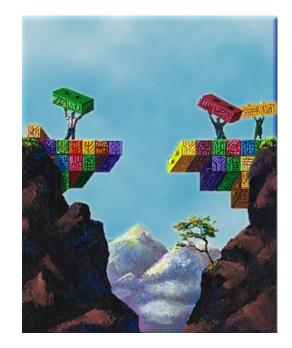


Some good news

M. Agrawal



V. Vinay



- They say...
- [Agrawal Vinay'08] Chasm at Depth 4!
- If you can solve blackbox PIT for depth 4, then you've "solved" it all.
- Build the bridge from depth 3 end!

How do depth 3 identities look like

Over Q

(x+z)(y+z) - xy - z(x+y+z) = 0

 $\begin{aligned} x_1 x_2 x_3 (2y + x_1 + x_2 + x_3) &- (y + x_1)(y + x_2)(y + x_3)(y + x_1 + x_2 + x_3) \\ &+ y(y + x_1 + x_2)(y + x_2 + x_3)(y + x_1 + x_3) = 0 \end{aligned}$

[Kayal S '06] Over F₂

$$\prod_{\substack{\sum_{i} b_{i} \equiv 1 \\ i}} (b_{1}x_{1} + \dots + b_{n}x_{n}) + \prod_{\substack{\sum_{i} b_{i} \equiv 1 \\ i}} (x_{0} + b_{1}x_{1} + \dots + b_{n}x_{n}) + \prod_{\substack{\sum_{i} b_{i} \equiv 0 \\ i}} (x_{0} + b_{1}x_{1} + \dots + b_{n}x_{n}) = 0.$$

• $\Sigma \Pi \Sigma(3,d,n)$ identities could carry substantial structure!

A ΣΠΣ(k,d,n) circuit:

- [Dvir Shpilka'05] Non-blackbox n.2^{(log d)k} algorithm.
- [Kayal S '06] Non-blackbox nd^k algorithm.

The past...

<u>A Tale of four Methods</u>

- [DS'05 + Karnin Shpilka'08] Blackbox, n.2^{(log d)^k time.}
- [S Seshadhri'09] n.d^(k³log d) time.
- [Kayal Saraf '09] n.d^(k^k) time over Q.
- [S Seshadhri'10] n.d^(k²) time over Q.
 - n.d[^](k²log d) time, any field.
- [Us '11] Blackbox, nd^k time, any field.
 - This *exactly* matches the non-blackbox test!

What we did

- We show that for ΣΠΣ(k,d,n) PIT, it is enough to focus on ΣΠΣ(k,d,k) circuits.
- Formally, we design a linear homomorphism Ψ from F[x₁,...,x_n] to F[y₁,...,y_k] in *poly(kdn)* time such that : for any ΣΠΣ(k,d,n) circuit C, C=0 iff Ψ(C)=0.
 - Ψ maps x_i to $a_{i,1}y_1 + ... + a_{i,k}y_k$ for some constants $a_{i,j} \in F$.
 - → Trivially, C=0 implies $\Psi(C)=0$.
- This converts an n-variate question into a k-variate one, without even looking at C !

k-variate is easy

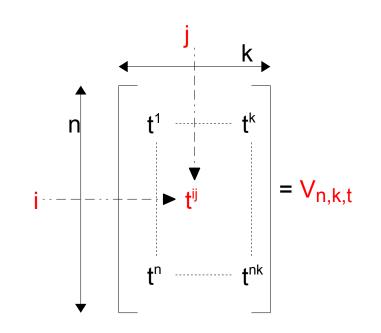
- We have: a k-variate circuit $C':=\Psi(C)$ of degree d.
- A consequence of Schwartz-Zippel, a kind of Combinatorial Nullstellensatz [Alon'99]:

Theorem: Let polynomial $f(y_1,...,y_k)$ be of degree at most d in each variable. Let S_CF of size d+1. Then, $f(s_1,...,s_k)=0$ for all $(s_1,...,s_k)\in S^k$ iff $f(y_1,...,y_k)=0$.

- Using this theorem we see that S^k is a hitting-set for C'.
- Thus, Ψ⁻¹(S^k) is a (d+1)^k sized hitting-set for ΣΠΣ(k,d,n) circuits!

What is this Ψ ?

- Vandermonde matrix V_{n,k,t} is in F(t)^{n x k}.
- In Think of k≤n.
- Classical fact: V_{n,k,t} has rank k.
- [Gabizon Raz'05] showed a stronger property and built an *extractor for affine sources*.



- Theorem [GR'05]: If a matrix A in F^{k×n} has full rank, then A.V_{n,k,t} is an invertible matrix over F(t).
- Thus, det(A.V_{n,k,t}) is a nonzero polynomial of degree at most nk².
- Proof: Do row operations on A and consider the leading term in t.
- We define $\Psi_t : x_i \rightarrow t^{i,1}y_1 + \dots + t^{i,k}y_k$, for all $i=1,\dots,n$.

Ψ_t preserves rank!

- Note $\Psi_t : x_i \rightarrow t^{i,1}y_1 + \dots + t^{i,k}y_k$ maps $F[x_1,\dots,x_n]$ to $F(t)[y_1,\dots,y_k]$.
- By [Gabizon Raz'05] theorem, Ψ_t preserves the rank of any k linear forms in $F[x_1,...,x_n]$.
 - Think of a linear form $a_1x_1 + ... + a_nx_n$ as the vector $(a_1, ..., a_n)$.
 - Ψ_t transforms it to $(a_1,...,a_n)$. $V_{n,k,t}$.
 - → $rk_{F}\{L_{1},...,L_{k}\} = rk_{F(t)}\{\Psi_{t}(L_{1}),...,\Psi_{t}(L_{k})\}$, for all linear forms L_{i} .
- Thus, Ψ_t preserves rank k subspaces.
- The key fact to prove now is: For any ΣΠΣ(k,d,n) circuit C, C≠0 implies Ψ_t(C)≠0.

Certificate for $C \neq 0$

- Is there an easy *explanation* why C≠0 ?
 - One that can hopefully be preserved by Ψ_t ?
- YES! [S Seshadhri'10] showed that there is a low-rank ideal, modulo which C≠0.

Theorem [SS'10]: Let $C=T_1+...+T_k\neq 0$. Then there is an i<k and sub-products $f_1|T_1,...,f_i|T_i$ such that:

- $C \equiv \alpha . T_{i+1} \neq 0 \pmod{f_1, \dots, f_i}$, and
- Rank of the linear forms involved in f_1, \dots, f_i is at most i.
- If we could show $\Psi_t(T_{i+1}) ≠ 0 \pmod{\Psi_t(f_1),...,\Psi_t(f_i)}$ then $\Psi_t(C)≠0$, and we are done!

Existence of the ideal certificate

- We sketch the proof of [S Seshadhri'10] by an example.
- Consider the circuit C (with products T_1 , T_2 and T_3), $C := x_1^2 x_3 x_4 - x_2 (x_2 + 2x_1) (x_3 - x_1) (x_4 + x_2 - x_1) + (x_2 + x_1)^2 (x_3 + 4x_1) (x_4 + x_2)$
- We now build an ideal that certifies C≠0.
 1) Pick f₁ s.t. f₁ involves rank 1 and T₂+T₃≠0 (mod f₁). Say, f₁ := x₁².
 - 2) Pick f_2 s.t. { f_1, f_2 } involve rank ≤ 2 and $T_3 \neq 0 \pmod{f_1, f_2}$. Say, $f_2:=(x_3-x_1)$.
- $C \equiv T_3 \neq 0 \pmod{x_1^2, x_3 x_1}$. Yaay!!
- Warning: The ideal $(x_1^2, x_2(x_2+2x_1))$ does NOT work.

Ψ_{t} is moral: It maintains ideals!

- We have: T_{i+1} ∉ (f₁,...,f_i), certifying C≠0.
- We want: $\Psi_t(T_{i+1}) \notin (\Psi_t(f_1),...,\Psi_t(f_i)).$
- Let S be the span of the linear forms involved in f_1, \dots, f_i .
 - Rank of S is at most i<k.
- Cute Fact 1: Any linear form L|T_{i+1} and ∉S is a nonzerodivisor modulo the ideal.
 - → Thus, $T_{i+1}/L \notin (f_1,...,f_i)$.
- After removing all such L we have $T'_{i+1} \notin (f_1, ..., f_i)$.
- Fact 2: Ψ_t is an isomorphism on algebras F[L,S] (\forall L above).
- Thus, $\Psi_t(T_{i+1}) \notin (\Psi_t(f_1), \dots, \Psi_t(f_i))$. DONE!

At the end...

- We efficiently reduce $\Sigma \Pi \Sigma(k,d,n)$ PIT to $\Sigma \Pi \Sigma(k,d,k)$ PIT.
 - Via an elegant homomorphism.
 - Explains everything when k is small!
- What about large k?
 - Beat the exponential dependence on k?
- What about depth 4, bounded top fanin circuits?
 - Study the action of Ψ_t on them.
 - Nice behavior expected for $\Sigma \Pi \Sigma \Pi_{\delta}(k,d,n)$ with bounded δ,k .

Thank you!