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ABSTRACT
Newton iteration (NI) is an almost 350 years old recursive formula

that approximates a simple root of a polynomial quite rapidly. We

generalize it to a matrix recurrence (allRootsNI) that approximates

all the roots simultaneously. In this form, the process yields a better

circuit complexity in the case when the number of roots r is small

but the multiplicities are exponentially large. Our method sets up

a linear system in r unknowns and iteratively builds the roots as

formal power series. For an algebraic circuit f (x1, . . . ,xn ) of size
s we prove that each factor has size at most a polynomial in: s
and the degree of the squarefree part of f . Consequently, if f1 is a

2
Ω(n)

-hard polynomial then any nonzero multiple

∏
i f

ei
i is equally

hard for arbitrary positive ei ’s, assuming that

∑
i deg( fi ) is at most

2
O (n)

.

It is an old open question whether the class of poly(n)-sized
formulas (resp. algebraic branching programs) is closed under fac-

toring. We show that given a polynomial f of degree nO (1)
and

formula (resp. ABP) size nO (logn)
we can find a similar size formula

(resp. ABP) factor in randomized poly(nlogn )-time. Consequently,

if determinant requires nΩ(logn)
size formula, then the same can

be said about any of its nonzero multiples.

As part of our proofs, we identify a new property of multivari-

ate polynomial factorization. We show that under a random linear

transformation τ , f (τx ) completely factors via power series roots.
Moreover, the factorization adapts well to circuit complexity anal-

ysis. This with allRootsNI are the techniques that help us make

progress towards the old open problems; supplementing the large

body of classical results and concepts in algebraic circuit factoriza-

tion (eg. Zassenhaus, J.NT 1969; Kaltofen, STOC 1985-7 & Bürgisser,

FOCS 2001).

CCS CONCEPTS
• Theory of computation → Algebraic complexity theory;
Problems, reductions and completeness; • Computing methodolo-
gies→Algebraic algorithms;Hybrid symbolic-numericmeth-
ods; • Mathematics of computing→ Combinatoric problems;
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1 INTRODUCTION
Algebraic circuits provide a way, alternate to Turing machines, to

study computation. Here, the complexity classes contain (multi-

variate) polynomial families instead of languages. It is a natural

question whether an algebraic complexity class is closed under

factors. This is also a useful, and hence, a very well studied ques-

tion both from the point of view of practice and theory. We study

the following two questions related to multivariate polynomial fac-

torization: (1) Let { fn (x1, . . . ,xn )}n be a polynomial family in an

algebraic complexity class C (egs. VP, VF, VBP, VNP or VP etc.).

Let дn be an arbitrary factor of fn . Can we say that {дn }n ∈ C?
Equivalently, is the class C closed under factoring? (2) Can we de-

sign an efficient, i.e. randomized poly(n)-time, algorithm to output

the factor дn with a representation in C? (Uniformity)
Different classes give rise to new challenges for the closure ques-

tions. Before discussing further, we give a brief overview of the

algebraic complexity classes relevant for our paper. For more details,

see [13, 52, 66].

Algebraic circuit is a natural model to represent a polynomial

compactly. An algebraic circuit has the structure of a layered di-

rected acyclic graph. It has leaf nodes labelled as input variables

x1, . . . ,xn and constants from the underlying field F. All the other
nodes are labelled as addition and multiplication gates. It has a root

node that outputs the polynomial computed by the circuit. Some of

the complexity parameters of a circuit are size (number of edges

and nodes), depth (number of layers), syntactic degree (the maxi-

mum degree polynomial computed by any node), fan-in (maximum

number of inputs to a node) and fan-out. An algebraic formula is
a circuit whose underlying graph is a directed tree. In a formula,

the fan-out of the nodes is at most one, i.e. ‘reuse’ of intermediate

computation is not allowed.

The class VP (resp. VF) contains the families of n-variate poly-

nomials of degree nO (1)
over F, computed by nO (1)

-sized circuits

(resp. formulas). The class VF is sometimes denoted as VPe , for

it collects ‘expressions’ which is another name for formulas. Sim-

ilarly, one can define VQP (resp. VQF) which contains the fami-

lies of n-variate polynomials of degree nO (1)
over F, computed by
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2
poly(logn)

-sized circuits (resp. formulas). If we relax the condition

on the degree in the definition of VP, by allowing the degree to be

possibly exponential, then we define the class VPnb . Such circuits

can compute constants of exponential bit-size (unlike VP).

Algebraic branching program (ABP) is another model for com-

puting polynomials [66]. The class VBP contains the families of

polynomials computed by nO (1)
-sized ABPs. We have the easy con-

tainments: VF ⊆ VBP ⊆ VP ⊆ VQP = VQF [5, 73].

Finally, we give an overview of the class VNP, which can be

seen as a non-deterministic analog of the class VP. A family of

polynomials { fn }n over F is in VNP if there exist polynomials

t (n),s (n) and a family {дn }n in VP such that for every n, fn (x ) =∑
w ∈{0,1}t (n ) дn (x ,w1, . . . ,wt (n) ). Here, witness size is t (n) and veri-

fier circuitдn has size s (n). VP is contained in VNP and it is believed
that this containment is strict (Valiant’s Hypothesis [71]).

Newton iteration based numerical methods are very popular

in engineering [8, 25, 58]. This work introduces a new process

to approximate all the roots of a circuit assuming that they are

few and their multiplicites are known. This is based on a matrix

recurrence, which in turn is derived from a new identity (Claim 6).

Based on the process (called allRootsNI in Section 1.3) we get several
consequences in very high-degree circuit factoring (eg. Theorem

1):

Every factor of a given circuit C has size polynomial in: size(C)
and the degree of the squarefree part of C (note that it may be expo-

nentially smaller than deg(C)).

and in factoring other poly-degree algebraic models (eg. Theorems

3, 14 & 15):

Each factor of a degree-d polynomial with VF (resp. VBP, VNP)
complexity s , has VF (resp. VBP, VNP) complexity poly(s,d logd ). The

latter is poly(s) if degree d = 2
O (
√
log s )

.

Now, we briefly discuss the state of the art on the closure ques-

tions for various algebraic complexity classes. To cover more depth

and breadth, see [21, 37, 38].

1.1 Previously Known Closure Results
Famously, Kaltofen [33–36] showed that VP is uniformly closed

under factoring, i.e. for a given d degree n variate polynomial f
of circuit size s , there exists a randomized poly(snd )-time algo-

rithm that outputs its factor as a circuit whose size is bounded by

poly(snd ). This fundamental result has several applications such as

‘hardness versus randomness’ in algebraic complexity [2, 3, 19, 32],

derandomization of Noether Normalization Lemma [53], in the

problem of circuit reconstruction [40, 67], and polynomial equiva-

lence testing [41]. In general, multivariate polynomial factoring has

several applications including decoding of Reed-Solomon, Reed-

Muller codes [29, 69], integer factoring [50], primary decomposition

of polynomial ideals [24] and algebra isomorphism [30, 42].

It is natural to ask whether Kaltofen’s VP factoring result can

be extended to VPnb which allows degree of the polynomials to

be exponentially high. It is known that not every factor of a high

degree polynomial has a small sized circuit. For example, the poly-

nomial x2
s
− 1 can be computed in size s , but it has factors over

C that require circuit size Ω
(
2
s/2/
√
s
)
[51, 64]. It is conjectured

[12, Conj.8.3] that low degree factors of high degree small-sized

circuits have small circuits. Partial results towards it are known. It

was shown in [35] that if polynomial f given by a circuit of size s
factors as дeh, where д and h are coprime, then д can be computed

by a circuit of size poly(e,deg(д),s ). The question left open is to

remove the dependency on e . In the special case where f = дe , it
was established that д has circuit size poly(deg(д),size( f )). On the

other hand, several algorithmic problems are NP-hard, eg. comput-

ing the degree of the squarefree part, gcd, or lcm; even in the case

of supersparse univariate polynomials [62].

Now, we discuss the closure results for classes more restrictive

than VP (such as VF, VBP etc.). Unfortunately, Kaltofen’s technique

[36] for VF will give a superpolynomial-sized factor formula; as it

heavily reuses intermediate computations while workingwith linear

algebra and Euclid gcd. The same holds for the class VBP. In contrast,

extending the idea of [19], Oliveira [57] showed that an n-variate
polynomial with bounded individual degree and computed by a

formula of size s , has factors of formula size poly(n,s ). Furthermore,

it was established that for a given n-variate individual-degree-r
polynomial, computed by a circuit (resp. formula) of size s and
depth ∆, there exists a poly(nr ,s )-time randomized algorithm that

outputs any factor of f computed by a circuit (resp. formula) of

depth ∆ + 5 and size poly(nr ,s ). We are not aware of any work

specifically on VBP factoring, except a special case in [39]—it dealt

with the elimination of a single division gate from skew circuits—

and another special case result in [31] that was weakened later

owing to proof errors.

Going beyond VP we can ask about the closure of VNP. Bür-

gisser conjectured [12, Conj.2.1] that VNP is closed under factoring.

Kaltofen’s technique [36] for factoring VP circuits does not yield

the closure of VNP. After our paper, Chou, Kumar and Solomon

[14] have confirmed that VNP is indeed closed under factors.

Looking at the Border. Recently, approximative algebraic com-

plexity classes like VP [27] have become objects of interest, es-

pecially in the context of the geometric complexity program [26,

54, 55], but also in the framework that yields the fastest matrix

multiplication algorithms ([48] surveys the recent developments).

Interestingly, [53, Thm.4.9] shows that the following three funda-

mental concepts are tightly related mainly due to circuit factoring

results: 1) efficient blackbox polynomial identity testing (PIT) for

VP, 2) strong lower bounds against VP, and 3) efficiently comput-

ing an ‘explicit system of parameters’ for the invariant ring of an

explicit variety with a given group action.

The related algorithmic questions, including factorization of VP

circuits, have been recently put in PSPACE [22, 28]. This is the best

uniform derandomization result known currently.

VP contains families of polynomials of degree poly(n) that can
be approximated (infinitesimally closely) by poly(n)-sized circuits.

Bürgisser [9–11] discusses approximative complexity of factors,

proving that low degree factors of high degree circuits have small

approximative complexity. In particular, VP is closed under factor-

ing [9, Thm.4.1]. Like the standard versions, closure of VF resp. VBP

is an open question. Recently, it has been shown that VF = width-

2-VBP [7] while classically it is false [4]. The new methods that

we present extend nicely to approximative classes because of their

analytic nature (Theorem 14).

We conclude by stating a few reasons why closure results under

factoring are interesting and non-trivial. First, there are classes that
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are not closed under factors. For example, the class of sparse poly-

nomials; as a factor’s sparsity may blowup super-polynomially [75].

Closure under factoring indicates the robustness of an algebraic

complexity class, as, it proves that all nonzero multiples of a hard
polynomial remain hard. For this reason, closure results are also

important for proving lower bounds on the power of some algebraic

proof systems [23].

Finally, factoring is the key reason why PIT, for VP, can be

reduced to very special cases, and gets tightly related to circuit lower

bound questions (like VP,VNP?). See [32, Thm.4.1] for whitebox

PIT connection and [2] for blackbox PIT. One of the central reasons

is: Suppose a polynomial f (y) is such that for a nonzero size-s
circuit C , C ( f (y)) = 0. Then, using factoring results for low degree

C , one deduces that f also has circuit size poly(s ). This gives us the
connection: If we picked a “hard” polynomial f then f (y) would be a
hitting-set generator (hsg) for C [32, Thm.7.7]. Our work is strongly

motivated by the open question of proving such a result for size-s

circuitsC that have high degree (i.e. sω (1)
). Our first factoring result

(Theorem 1) implies such a ‘hardness to hitting-set’ connection for

arbitrarily high degree circuitsC assuming that: the squarefree part

C
sqfree

of C has low degree. In such a case we only have to find a

hitting-set forC
sqfree

which, as our result proves, has low algebraic

circuit complexity.

1.2 Our Results
Before stating the results, we describe some of the assumptions and

notations used throughout the paper. Set [n] refers to {1,2, . . . ,n}.
Logarithms are wrt base 2. For a polynomial f , size( f ) refers to
the smallest size of circuits computing f ; it is the algebraic circuit
complexity of f .

Field. We denote the underlying field as F and assume that it

is of characteristic 0 and algebraically closed. For eg. complex C,

algebraic numbersQ or algebraicp-adicsQp . All the results partially
hold for other fields (such asR,Q,Qp or finite fields of characteristic

>degree of the input polynomial). For a brief discussion on this

issue, see Section 5.

Ideal.We denote the variables (x1, . . . ,xn ) as x . The ideal I :=
⟨x⟩ of the polynomial ring will be of special interest, and its power

ideal Id , whose generators are all degreed monomials in n variables.

Often we will reduce the polynomial ring modulo Id (inspired from

Taylor series of an analytic function around 0 [70]).
Radical. For a polynomial f =

∏
i f

ei
i , with fi ’s coprime irre-

ducible nonconstant polynomials and multiplicity ei > 0, we define

the squarefree part as the radical rad( f ) :=
∏

i fi .
What can we say about these fi ’s if f has a circuit of size s? Our

main result gives a good circuit size bound when rad( f ) has small

degree. A more general formulation (with u0) is:

Theorem 1. If f = u0u1 is a nonzero product in the polynomial
ring F[x], with size( f ) + size(u0) ≤ s , then every factor of u1 has a
circuit of size poly(s + deg(rad(u1))).

Note that Kaltofen’s proof technique in the VP factoring paper

[36] does not extend to the exponential degree regime (even when

degree of rad( f ) is small) because it requires solving equations

with degxi ( f ) many unknowns for some xi , where degxi ( f ) de-
notes individual degree of xi in f , which can be very high. Also,

basic operations like ‘determining the coefficient of a univariate

monomial’ become #P-hard in the exponential-degree regime [72].

The proof technique in Kaltofen’s single factor Hensel lifting paper

[35, Thm.2] works only in the perfect-power case of f = дe . It can
be seen that rad( f ) “almost” equals f / gcd( f , ∂xi ( f )), but the gcd
itself can be of exponential-degree and so one cannot hope to use

[35, Thm.4] to compute the gcd either. Univariate high-degree gcd

computation is NP-hard [61, 62].

Interestingly, our result when combined with [35, Thm.3] implies

that every factor д of f has a circuit of size polynomial in: size( f ),
deg(д) and min{deg(rad( f )),size(rad( f ))}. We leave it as an open

question whether the latter expression is polynomially related to

size( f ).
Theorem 1 shows an interesting way to create hard polyno-

mials. In the theorem statement let the size concluded be (s +
deg(rad(u1)))

e
, for some constant e . Suppose, f1 (x1, . . . ,xn ) that

is 2
cn
-hard, then any nonzero f :=

∏
i f

ei
i is also 2

Ω(n)
-hard for

arbitrary positive ei ’s, as long as

∑
i deg( fi ) ≤ 2

cn
e −1.

In general, for a high degree circuit f , rad( f ) can be of high

degree (exponential in size of the circuit). Ideally, we would like

to show that every degree d factor of f has poly(size( f ),d )-size
circuit. The next theorem reduces the above question to a special

kind of modular division, where the denominator polynomial may

not be invertible but the quotient is well-defined (eg. x2/x mod x ).
All that remains is to somehow eliminate this kind of non-unit
division operator (which we leave as an open question). Consider

‘random’ elements αi ,βi ∈r F and the corresponding random linear

map τ : xi 7→ αiy + xi + βi , i ∈ [n], where y is a new variable apart

from x1, . . . ,xn .

Theorem 2. If nonzero f ∈ F[x] can be computed by a circuit
of size s , then any degree d factor of f (τx ) is of the form A/B mod

⟨x⟩d+1 where polynomials A,B have circuits of size poly(sd ).

Note that in Theorem 2, B may be non-invertible in F[x]/⟨x⟩d+1

and may have a high degree (eg. 2
s
). So, we cannot use the famous

trick of Strassen to do division elimination here [68].

We prove uniform closure results, under factoring, for the al-

gebraic complexity classes defined below. Let s : N −→ N be

a function. Define the class VF(s ) to contain families { fn }n such

that n-variate fn can be computed by an algebraic formula of size

poly(s (n)) and has degree poly(n). Similarly, VBP(s ) contains fami-

lies { fn }n such that fn can be computed by anABP of size poly(s (n))
and has degree poly(n). Finally, VNP(s ) denotes the class of families

{ fn }n such that fn has witness size poly(s (n)), verifier circuit size
poly(s (n)), and has degree poly(n).

Theorem 3. The classes VF(nlogn ),VBP(nlogn ),VNP(nlogn ) are
all closed under factoring.

Moreover, there exists a randomized poly(nlogn )-time algorithm
that: for a given nO (logn) sized formula (resp. ABP) f of poly(n)-
degree, outputs nO (logn) sized formula (resp. ABP) of a nontrivial
factor of f (if one exists).

Remark. The “time-complexity” in the algorithmic part makes

sense only in certain cases. For example, when F ∈ {Q,Qp ,Fq }, or
when one allows computation in the BSS-model [6]. In the former

case our algorithm takes poly(nlogn ) bit operations (assuming that

the characteristic is zero or larger than the degree; see Theorem 15

in Section 5.2).
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It is important to note that Theorem 3 does not follow by in-

voking Kaltofen circuit factoring [36] and VSBR transformation

[73] from circuit to log-depth formula. Formally, if we are given

a formula (resp. ABP) of size nO (logn)
and degree poly(n), then it

has factors which can be computed by a circuit of size nO (logn)
and

depth O (logn). If one converts the factor circuit to a formula (resp.

ABP), one would get the size upper bound of the factor formula to

be a much larger (nO (logn) )logn = nO (log2 n)
. Moreover, Kaltofen’s

methods crucially rely on the circuit representation to do linear

algebra, division with remainder, and Euclid gcd in an efficient way;

a nice overview of the implementation level details to keep in mind

is [45, Sec.3].

Our proofs extend to the approximative versions C (nlogn ) for

C ∈ {VF,VBP,VNP} as well (Theorem 14).

As before, Theorem 3 has an interesting lower bound conse-

quence: If f has VF (resp. VBP resp. VNP) complexity nω (logn)
then

any nonzero f д has similar hardness (for deg(д) ≤ poly(n)).
In fact, the method of Theorem 3 yields a formula factor of size

sed2 logd for a given degree-d size-s formula (e is a constant). This

means— If determinant detn requiresna logn
size formula, for a > 2,

then any nonzero degree-O (n) multiple of detn requires nΩ(logn)

size formula.

Similarly, if we conjecture that a VP-complete polynomial fn
(say the homomorphism polynomial in [17, Thm.19]) has na logn

ABP complexity, for a > 4, then any nonzero degree-O (n) multiple

of fn has nΩ(logn)
ABP complexity.

1.3 Proof Techniques
We begin by describing the new techniques that we have developed.

Since they also give a new viewpoint on classic properties, they may

be of independent interest. The techniques are analytic at heart ([46]
has a good historical perspective). The way they appear in algebra is

through the formal power series ring F[[x1, . . . ,xn]]. The elements

of this ring are multivariate formal power series, with degree as

precision. So, an element f is written as f =
∑∞
i=0 f

=i
, where f =i

is the homogeneous part of degree i of f . In algebra texts it is also

called the completion of F[x1, . . . ,xn] wrt the ideal ⟨x1, . . . ,xn⟩ (see
[43, Chap.13]). The truncation f ≤d , i.e. homogeneous parts up to

degreed , can be obtained by reducingmodulo the ideal ⟨x⟩d+1. Here
d is seen as the precision parameter of the respective approximation

of f . First, we introduce a factorization pattern of a polynomial f ,
over the power series ring, under a random linear transformation.

Next, we discuss how this factorization helps us to bound the size

of factors of the original polynomial.

Power Series Complete Split.We are interested in the complete
factorization pattern of a polynomial f (x1, . . . ,xn ). We can view

f as a univariate polynomial in one variable, say xn , with coeffi-

cients coming from F[x1, . . . ,xn−1]. It is easy to see the connection

between linear factors and the roots: xn − д is a factor of f iff

f (x1, . . . ,xn−1,д(x1, . . . ,xn−1)) = 0.

Of course, one should not expect that a polynomial always has a

factor which is linear in one variable. But, if one works with an alge-

braically closed field, then a univariate polynomial completely splits

into linear factors (also see the fundamental theorem of algebra [15,
§2.5.4]). So, if we go to the algebraic closure of F(x1, . . . ,xn−1), any
multivariate polynomial which is monic in xn will split into factors

all linear in xn . A representation of the elements of F(x1, . . . ,xn−1)
as a finite circuit is impossible (eg.

√
x1). On the other hand, we

show in this work that all the roots (wrt a new variable y) are
actually elements from F[[x1, . . . ,xn]], after a random linear trans-

formation on the variables, τ : x 7→ x +αy + β , is applied (Theorem
4). Note– By a random choice α ∈r F we will mean that choose

randomly from a fixed finite set S ⊆ F of appropriate size (namely

> deg( f )). This will be in the spirit of [65].

Our proof of the existence of power series roots is constructive,
as it also gives an algorithm to find approximation of the roots up

to any precision, using formal power series version of the Newton

iteration method (see [13, Thm.2.31]). We try to explain the above

idea using the following example. Consider f = (y2 − x3) ∈ F[x ,y].
Does it have a factor of the formy−дwhereд ∈ F[[x]] ? The answer

is clearly ‘no’ as x3/2 does not have any power series representation
in F[[x]]. But, what if we shift x randomly? For example, if we

use the shift y 7→ y,x 7→ x + 1. Then, by Taylor series around

1, we see that (x + 1)3/2 has a power series expansion, namely

1 + 3

2
x + 3/2×1/2

2!
x2 + . . ..

Formally, Theorem 4 shows that under a random τ : x 7→ x +

αy + β where α ,β ∈r F
n
, polynomial f can be factored as f (τx ) =∏d0

i=1 (y − дi )
γi
, where дi ∈ F[[x]] with the constant terms дi (0)

being distinct, d0 := deg(rad( f )) and γi > 0.

Reducing Factoring toComputingPower SeriesRootApprox-
imations. Using the split Theorem 4, we show that multivariate

polynomial factoring reduces to power series root finding up to

certain precision. Following the above notation f splits as f (τx ) =∏d0
i=1 (y − дi )

γi
. For all t ≥ 0, it is easy to see that f (τx ) ≡∏d0

i=1 (y − д≤ti )γi mod I t+1, where I := ⟨x1, . . . ,xn⟩. Note that

there is a one-one correspondence, induced by τ , between the poly-

nomial factors of f and f (τx ) (∵ τ is invertible and f is y-free).
We remark that the leading-coefficient of f (τx ) wrt y is a nonzero

element in F; so, we call itmonic (Lemma 23). Next, we show case by

case how to find a polynomial factor of f (τx ) from the approximate

power series roots.

Case 1- Computing a Linear Factor of the Form y−д(x ). If the degree
of the input polynomial is d , all the non-trivial factors have degree
≤ (d − 1). So, if we compute the approximations of all the power

series roots (wrt y) up to precision of degree t = d − 1, then we can

recover all the factors of the formy−д(x1, . . . ,xn ). Technically, this
is supported by the uniqueness of the power series factorization

(Proposition 1).

Case 2- Computing a Monic Non-linear Factor. Assume that a factor

д of total degree t is of the form yk + ck−1y
k−1 + ... + c1y + c0,

where for all i , ci ∈ F[x]. Now this factor д also splits into linear

(in y) factors above F[[x]] and obviously these linear factors are

also linear factors of the original polynomial f (τx ). So we have to

take the right combination of some k power series roots, with their

approximations (up to the degree t wrt x), and take the product

mod I t+1. Note that if we only want to give an existential proof

of the size bound of the factors, we need not find the combination

of the power series roots forming a factor algorithmically. Doing

it through brute-force search takes exponential time (

(d
k

)
choices).

Interestingly, using a classical (linear algebra) idea due to Kaltofen,
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it can be done in randomized polynomial time. We will spell out

the ideas later, while discussing the algorithm part of Theorem 3.

Once we are convinced that looking at approximate (power se-

ries) roots is enough, we need to investigate methods to compute

them. We will now sketch two methods. The first one approximates

all the roots simultaneously up to precision δ . The next ones ap-
proximate the roots one at a time. In the latter, multiplicity of the

root plays an important role.

Recursive Root Finding via Matrices (allRootsNI). We simul-
taneously find the approximations of all the power series roots дi of
f (τx ). At each recursive step we get a better precision wrt degree.

We show that knowing approximationsд<δi , ofдi up to degree δ−1,
is enough to (simultaneously for all i) calculate approximations of

дi up to degree δ . This new technique, of finding approximations

of the power series roots, is at the core of Theorem 1.

First, let us introduce a nice identity. From now on we assume

f (x ,y) =
∏

i (y−дi )
γi

(i.e. relabel f (τx )). By applying the derivative
operator ∂y , we get a classic identity (which we call logarithmic
derivative identity): (∂y f )/f =

∑
i γi/(y − дi ) . Reduce the above

identity modulo Iδ+1 and define µi := дi (0) ≡ дi mod I . This gives
us (see Claim 6):

∂y f

f
=

d0∑
i=1

γi
y − дi

≡

d0∑
i=1

γi

y − д<δi

+

d0∑
i=1

γi · д
=δ
i

(y − µi )2
mod Iδ+1.

In terms of the d0 unknowns д
=δ
i , the above is a linear equation.

(Note- We treat γi ,µi ’s as known.) As y is a free variable above, we

can fix it tod0 “random” elements ci in F, i ∈ [d0]. Onewould expect
these fixings to give a linear system with a unique solution for the

unknowns.We can express the system of linear equations succinctly

in the following matrix representation: M · vδ = Wδ mod Iδ+1.
Here M is a d0 × d0 matrix; each entry is denoted by M (i, j ) :=

γi
(ci−µ j )2

. Vector vδ resp.Wδ is a d0 × 1 matrix where each entry

is denoted by vδ (i ) := д
=δ
i resp.Wδ (i ) :=

∂y f
f

���y=ci −Gi,δ , where

Gi,δ :=
∑d0
k=1 γk/(ci − д

<δ
k ) . We ensure that {ci ,µi | i ∈ [d0]} are

distinct, and show that the determinant ofM is non-zero (Lemma

24). So, by knowing approximations up to δ − 1, we can recover

δ -th part by solving the above system as vδ = M−1Wδ mod Iδ+1.
An important point is that the random ci ’s will ensure: all the

reciprocals involved in the calculation above do exist mod Iδ+1.
Self-correction property: Does the above recursive step need an

exact д<δi ? We show the self correcting behavior of this process of

root finding, i.e. in this iterative process there is no need to filter

out the “garbage” terms of degree ≥ δ in each step. If one has

recovered дi correct up to degree δ − 1, i.e. say we have calculated

д′i,δ−1 ∈ F(x ) such that д′i,δ−1 ≡ д<δi mod Iδ , and say we solve

Mṽδ = W̃δ exactly, where W̃δ (i ) :=
∂y f
f

���y=ci − G̃i,δ , and G̃i,δ :=∑d0
k=1 γk/(ci −д

′
k,δ−1). Still, we can show that д′i,δ := д′i,δ−1 +ṽδ (i )

≡ д≤δi mod Iδ+1 (Claim 7). So, we made progress in terms of the

precision (wrt degree).

Rapid Newton Iteration with Multiplicity.We show that from

allRootsNI, we can derive a formula that finds д<2
t+1

1
using only

д<2
t

1
, i.e. the process has quadratic convergence and it does not

involve roots other than д1. Rewrite ∂y f /f =
∑d0
i=1 γi/(y − дi ) =

(1+ L1)γ1/(y −д1), where L1 :=
∑
1<i≤d0

γi
y−дi ·

y−д1
γ1 . This implies

f /∂y f = (1 + L1)
−1 · (y − д1)/γ1. Now, if we put y = yt := д<2

t

1
,

thenyt −дi = д
<2t

1
−дi is a unit in F[[x]] for i , 1 (∵ it is a nonzero

constant mod I ). Also, yt − д1 = д
<2t

1
− д1 ≡ 0 mod I2

t
, implying

L1 |y=yt ≡ 0 mod I2
t
. Thus, (L1 · (y − д1))

���y=yt ≡ 0 mod I2
t+1

.

Hence, f /∂y f
���y=yt = (yt − д1)/γ1 mod I2

t+1
.

This shows that, if f (x ,y) = (y − д)eh, where h |y=д , 0 mod I
and e > 0, then the power series for д can be approximated by the

recurrence:

yt+1 := yt − e ·
f

∂y f

�����y=yt
(1)

where yt ≡ д mod I2
t
. This we call a generalized Newton Iteration

formula, as it works with any multiplicity e > 0.

In fact, when e = 1, д is called a simple root of f ; the above is an
alternate proof of the classical Newton Iteration (NI) [56] that finds

a simple root in a recursive way (see Lemma 22). When all the roots
are simple there are numerical methods to simultaneously approxi-

mate them [1, 18, 20, 44]. However, it is well known that NI fails
to approximate the roots that repeat (see [49]). In that case either

NI is used on the function f /∂y f or, though less frequently, the

generalized NI is used in numerical methods (see [16, Eqn.6.3.13]).

There is a technical point about our Eqn.1 when e ≥ 2. The

denominator ∂y f |y=yt is zero mod I , thus, its reciprocal does not

exist! However, the ratio ( f /∂y f )
���y=yt does exist in F[[x]]. On the

other hand, if e = 1 then the denominator ∂y f |y=yt is nonzero

mod I , thus, it is invertible in F[[x]] and that is necessary for fast

algebraic circuit computation (esp. division elimination).

We can compare the NI formula with the recurrence formula

(which we call slow Newton Iteration) used in [19, Eqn.5], [57,

Lem.4.1] for root finding. The slow NI formula is Yt+1 = Yt −
f (x,Yt )
∂y f (0,Y1 )

, where Yt ≡ д mod I t . The rate of convergence of this

iteration is linear, as it takes δ many steps (instead of logδ ) to
get precision up to degree δ . One can also compare NI with other

widespread processes like multifactor Hensel lifting [74, Sec.15.5],

[77] and the implicit function theorem paradigm [46, Sec.1.3], [47,

59]; however, we would not like to digress too much here as the

latter concept covers a whole lot of ground in mathematics.

1.4 Proof Overview
In all our proofs, we use the reduction of factoring to power series

root approximation, and then find the latter using various tech-

niques described before.

Proof Idea of Theorem 1. We use the technique of allRootsNI

to find the approximations of all the power series roots of f (τx ).
As we already discussed how to find a polynomial factor д of u1
(that divides f ) from the roots of f (τx ), what remains is to analyze

the size bound for power series roots that we get from allRootsNI

process. We note a few crucial points that help to prove the size

bound.

Let d0 be the degree of rad(u1). The number of distinct power

series roots, of u1 (τx ) wrt y, is d0. It suffices to approximate the

power series roots up to degree d0, as any nontrivial polynomial
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factor of rad(u1 (τx )) has degree less than d0. Also, a size bound
on these factors of the radical directly gives a size bound on the

polynomial factor д.
The logarithmic derivative satisfies:

∂y log f (τx ) = ∂y logu0 (τx ) + ∂y logu1 (τx ).

Since we have size s circuits for both f andu0, andy is later fixed to

random ci ’s in F, we can approximate the first two logarithmic de-

rivative circuits modulo Id0+1. This approximates ∂yu1 (τx )/u1 (τx ).
On this, allRootsNI process is used to approximate the power

series roots of u1 (τx ) up to degree d0. The self correcting behav-

ior of the allRootsNI is crucial in the size analysis. If one had to

truncate modulo Id0+1 at each recursive step, there would have

been a multiplicative blowup (by d0) in each step, which would end

up with an exponential blow up in the size of the roots. The self

correcting property allows to complete allRootsNI process, with

division gates and partially correct roots д′i,δ , to get a circuit of

size poly(sd0). The truncation modulo Id0+1, to get a root of degree
≤ d0, is performed only once in the end. See Section 4.1.

The steps in the proof of Theorem 1 are constructive. However, to

claim that we have an efficient algorithm we will need, in advance,

the multiplicity of each of the d0 roots. It is not clear how to find

them efficiently, even in the univariate casen = 1, as themultiplicity

could be exponentially large.

Proof Idea of Theorem 2. The main technique used is NI with

multiplicity. The main barrier in resolving high degree case is han-

dling roots with high multiplicities (i.e. super-polynomial in size

s). If all the roots of the polynomial have multiplicity equal to one,

then we can use classical Newton iteration. If the multiplicity of

a root is low (up to poly(s)), we can differentiate and bring down

the multiplicity to one. In Theorem 1, we handled the case of high

multiplicity by assuming that the radical has small degree.

So, the only remaining case is when both the number of roots,

and their multiplicities, are high. Newton iteration with multiplicity

helps here. Note that we need to know the multiplicity of the root

exactly to apply NI with multiplicity; here, we will simply guess

them non-uniformly. In the end, the process gives a circuit of size

poly(sd ) with division gates, giving the root mod Id+1. By using a

standard method the division gates can all be pushed “out” to the

root. See Section 4.2.

Proof Idea of Theorem 3. Here, we show that the algebraic com-

plexity classes VF (nlogn ),VBP (nlogn ),VNP (nlogn ) are closed un-

der factoring. In fact, we also give randomized nO (logn)
-time algo-

rithm to output the factors as formula (resp. algebraic branching

program). The key technique here is the classical Newton Iteration.

The crucial advantage of NI over other approaches of power series

root finding is that NI requires only logd steps to get precision up

to degree d , whereas allRootsNI, [19, Eqn.5] or [57, Lem.4.1] require

d steps. This leads to a slower size blow up in the case of restricted

models like formula or ABP.

In a formula resp. ABP, we cannot reuse intermediate compu-

tations. So each recursive step of NI incurs a blow up by d2, as
one needs to substitute yt in a degree d polynomial f (y) which
may require that many copies of yt -powers. But, as the NI pro-

cess has only logd steps, ultimately, we get d2 logd blow up in the

size bound. This is the main idea of the existential results in The-

orem 3. Moreover, an interesting by-product is that VF, VBP and

VNP are closed under factors if we only consider polynomials with

individual degree constant (also see [57]).

All the steps in the proof of the existential result are algorith-

mically efficient except for one. We are recovering all the power

series roots and multiplying a few of them to get a non-trivial factor.

How do we choose the right combination of the roots which gives

a non-trivial factor? If we search for the right combination in a

brute-force way, it would need exponential (like 2
d
) time complex-

ity. Here, linear algebra saves us; the idea dates back to Kaltofen’s

algorithm for bivariate factoring. Our contribution lies in the care-

ful analysis of the different steps, coming up with a new algorithm

for computing gcd, and making sure that everything works with

formulas resp. ABPs.

Consider the transformed polynomial f (τx ) that is monic and

degree d in y. It will help us if we think of this polynomial as a

bivariate (i.e. in y and a new degree-counter T ). This somewhat

reduces the problem to a two-dimensional case and makes the

modular computations feasible (see [45, Sec.1.2.2]). So, we need

to apply the map x 7→ Tx , where T is a new formal variable; call

the resulting polynomial
˜f (x ,T ,y). This map preserves the power

series roots; in fact, we can get the roots of f (τx ) by putting T = 1.

Now comes the most important idea in the algorithm. Approximate

a root дi up to large enough precision (say k := 2d2). Solve the

system of linear equations u = (y − д≤ki (Tx )) · v mod T k+1 for
monic polynomials u,v . Then, u will give a non-trivial factor when

we compute gcdy (u,
˜f ). Intuitively, the gcd gives us the irreducible

polynomial factor whose root is the power series дi that we had
earlier computed by NI.

Note that a modified gcd computation is needed to actually get

a factor as a formula resp. ABP. If one uses the classical Euclidean

algorithm, there are d recursive steps to execute; at each step there

would be a blow up ofd (as for formula or ABP, we cannot reuse any

intermediate computation). So, in this approach (eg. the one used

in [45]), gcd of the two formulas will be of exponential size. The

way we achieve a better bound is by first using NI to approximate

all the power series roots of u and
˜f . Subsequently, we filter the

ones that appear in both to learn the gcd. There is an alternate way

as well based on our Claim 11. See Section 4.3.

2 PRELIMINARIES
In our proofs we will need some basic results about formulas, ABPs

and circuits. In particular, we can efficiently eliminate a division

gate, we can extract a homogeneous part, and we can compute a

(first-order) derivative. Also, see [45, Sec.2].

Determinant is in VBP and is computable by a nO (logn)
size

formula.

We will use properties of gcd(f ,д) and a related determinant

polynomial called resultant.
To save space we have moved the well known details to Sec. A.

3 POWER SERIES FACTORIZATION OF
POLYNOMIALS

Instead of looking into the factorization over F[x], we look into the
factorization pattern of a polynomial over F[[x1, . . . ,xn]], namely,

1157



Discovering the Roots STOC’18, June 25–29, 2018, Los Angeles, CA, USA

formal power series of n-variables over field F. To talk about fac-

torization, we need the notion of uniqueness which the following

proposition ensures.

Proposition 1. [76, Chap.VII] Power series ring F[[x1, . . . ,xn]]
is a unique factorization domain (UFD), and so is F[[x]][y].

As discussed before, we need to first apply a random linear map,

that will make sure that the resulting polynomial splits completely

over the ring F[[x]]. (Recall: F is algebraically closed.)

Theorem 4 (Power Series Complete Split). Let f ∈ F[x] with
deg(rad( f )) =: d0 > 0. Consider αi ,βi ∈r F and the map τ : xi 7→
αiy + xi + βi , i ∈ [n], where y is a new variable.

Then, over F[[x]], f (τx ) = k ·
∏

i ∈[d0] (y − дi )
γi , where k ∈ F∗,

γi > 0, and дi (0) := µi . Moreover, µi ’s are distinct nonzero field
elements.

Proof. Let the irreducible factorization of f be

∏
i ∈[m]

f eii . We

apply a random τ so that f , thus all its factors, become monic in

y (Lemma 23). The monic factors
˜fi := fi (τx ) remain irreducible

(∵ τ is invertible). Also,
˜fi (0,y) = fi (αy + β ) and ∂y ˜fi (0,y) remain

coprime (∵ β is random). In other words,
˜fi (0,y) is square free.

In particular, one can write
˜f1 (0,y) as

∏deg(f1 )
i=1 (y − µ1,i ) for dis-

tinct nonzero field elements µ1,i (ignoring the constant which is the

coefficient of the highest degree of y in
˜f1). Using classical Newton

Iteration (see Lemma 22 or [13, Thm.2.31]), one can write
˜f1 (x ,y)

as a product of power series

∏deg(f1 )
i=1 (y − д1,i ), with д1,i (0) := µ1,i .

Thus, each fi (τx ) can be factored into linear factors in F[[x]][y].
As fi ’s are irreducible coprime polynomials, one can deduce that

˜fi (0,y), i ∈ [m], are mutually coprime. In other words, µ j,i are
distinct and they are

∑
i deg( fi ) = d0 many. Hence, f (τx ) can be

completely factored as

∏
i ∈[m]

fi (τx )
ei =
∏

i ∈[d0] (y − дi )
γi
, with

γi > 0 and the field constants дi (0) being distinct. □

Corollary 5. Suppose д is a polynomial factor of f . As before let
f (τx ) =

∏
i ∈[m]

fi (τx )
ei = k ·

∏
i ∈[d0] (y − дi )

γi . As д(τx ) | f (τx )
we deduce that д(τx ) = k ′

∏
(y − дi )

ci with 0 ≤ ci ≤ γi .
Moreover, we can get back д by applying τ−1 on the resulting

polynomial д(τx ).

4 MAIN RESULTS
This section proves Theorems 1–3. The proofs are self contained

and we assume for the sake of simplicity that the underlying field

F is algebraically closed and has characteristic 0. When this is not

the case, we discuss the corresponding theorems in Section 5.

4.1 Factors of a Circuit with Low-degree
Radical: Proof of Theorem 1

In this section, we use Theorem 4 and allRootsNI to partially solve

the case of circuits with exponential degree (stated in [34] and

studied in [11, 35]).

Proof of Theorem 1. From the hypothesis f = u0u1. Define
deg( f ) =: d . Suppose u1 = he1

1
. . .hemm , where hi ’s are coprime

irreducible polynomials. Let d0 be the degree of rad(u1) =
∏

i hi .

Note that deg(hi ),m ≤ d0 and the multiplicity ei ≤ d ≤ sO (s )
,

where s is the size bound of the input circuit. Thus, to get the size

bound of any factor of u1, it is enough to show that for each i , hi
has a circuit of size poly(sd0).

Using Theorem 4, we have
˜f (x ,y) := f (τx ) = k · u0 (τx ) ·∏

i ∈[d0] (y − дi )
γi
, with дi (0) := µi being distinct. From Corollary

5 we deduce that hi (τx ) = ki
∏

i ∈[d0] (y −д
≤d0
i )δi mod Id0+1, with

ideal I := ⟨x1, . . . ,xn⟩, exponent δi ∈ {0,1} and nonzero ki ∈ F. We

can get hi by applying τ−1. Hence, it is enough to bound the size

of д≤d0i .

Let ũ0 := u0 (τx ). From the repeated applications of Leibniz rule

of the derivative ∂y , we deduce, ∂y ˜f / ˜f = ∂yũ0/ũ0 +
∑d0
i=1 γi/(y −

дi ). (Recall: ∂y (FG ) = (∂yF )G + F (∂yG ).)
At this point we move to the formal power series, so that the

reciprocals can be approximated as polynomials. Note that y − дi
is invertible in F[[x]] when y is assigned any value ci ∈ F which

is not equal to µi . We intend to find дi mod Iδ inductively, for all

δ ≥ 1. We assume that µi ’s and γi ’s are known. Suppose, we have

recovered up to дi mod Iδ and we want to recover дi mod Iδ+1.
The relevant recurrence, for δ ≥ 1, is:

Claim 6 (Recurrence).

∑d0
i=1 γi · д

=δ
i /(y − µi )

2 ≡ ∂y ˜f / ˜f −

∂yũ0/ũ0 −
∑
i γi/(y − д

<δ
i ) mod Iδ+1.

Proof of Claim 6. Using a power series calculation (Lemma 25), we

have
1

y−дi ≡
1

y−
(
д<δ
i +д

=δ
i

) ≡ 1

y−д<δ
i
+

д=δi
(y−µi )2

mod Iδ+1. Multiply-

ing by γi and summing over i ∈ [d0], the claim follows. □

By knowing approximation up to the δ − 1 homogeneous parts

of дi , we want to find the δ -th part by solving a linear system. For

concreteness, assume that we have a rational function д′i,δ−1 :=

Ci,δ−1/Di,δ−1 such that д′i,δ−1 ≡ д
<δ
i mod Iδ . Next, we show how

to compute д≤δi .

We recall the process as outlined in allRootsNI (Section 1.3). In

the free variable y, we plug-in d0 random field value ci ’s and get

the following system of linear equations:M · vδ =Wδ , whereM is

a d0×d0 matrix with (i, j )-th entry,M (i, j ) := γj/(ci − µ j )
2
. Column

vδ resp.Wδ is a d0 × 1 matrix whose i-th entry is denoted vδ (i )

resp. (∂y ˜f / ˜f − ∂yũ0/ũ0) |y=ci − G̃i,δ , where G̃i,δ :=
∑d0
j=1 γj/(ci −

д′j,δ−1). Think of the solution vδ as being both in F(x )d0 and in

F[[x]]d0 ; both the views help.

Now we will prove two interesting facts. First, M is invertible

(Lemma 24). Second, define д′i,0 := µi and, for δ ≥ 1, д′i,δ :=

д′i,δ−1 +vδ (i ). Then, д
′
i,δ approximates дi well:

Claim 7 (Self-correction). Let i ∈ [d0] and δ ≥ 0. Then, д′i,δ ≡

д≤δi mod Iδ+1.

Proof of Claim 7. We prove this by induction on δ . It is true for
δ = 0 by definition. Suppose it is true for δ − 1. This means we have

д′i,δ−1 ≡ д
<δ
i mod Iδ for all i . Let us write д′i,δ−1 =: д

<δ
i +Ai,δ +

A′i,δ , whereA
′
i,δ ≡ 0 mod Iδ+1 andAi,δ is homogeneous of degree

δ . Hence, for i ∈ [d0], the linear constraint is:
∑d0
j=1 γj · vδ (j )/(ci −

µ j )
2 ≡ ∂y ˜f / ˜f − ∂yũ0/ũ0 −

∑
j γj/(ci − д

′
j,δ−1) mod Iδ+1.
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The “garbage” term Aj,δ in RHS can be isolated using Lemma

25 as: 1/(ci −д
′
j,δ−1) ≡

1

ci−
(
д<δ
j +Aj,δ

) ≡ 1/(ci −д
<δ
j ) + Aj,δ /(ci −

µ j )
2
mod Iδ+1. So, under modulo Iδ+1, we get:

d0∑
j=1

γj · vδ (j )

(ci − µ j )2
≡
∂y ˜f

˜f
−
∂yũ0

ũ0
−

d0∑
j=1

*.
,

γj

ci − д
<δ
j

−
γj · Aj,δ

(ci − µ j )2
+/
-

Rewriting this, using Claim 6, we get:

d0∑
j=1

γj

(ci − µ j )2

(
vδ (j ) +Aj,δ

)
≡

d0∑
j=1

γj

(ci − µ j )2
· д=δj mod Iδ+1 .

Thus,

∑d0
j=1 γj · (vδ (j )+Aj,δ − д

=δ
j )/(ci−µ j )

2 ≡ 0 mod Iδ+1. As

we vary i ∈ [d0] we deduce, by Lemma 24, thatvδ (j )+Aj,δ −д
=δ
j ≡

0 mod Iδ+1. Hence, д′j,δ = д
′
j,δ−1 +vδ (j ) ≡ (д<δj +Aj,δ ) + (д

=δ
j −

Aj,δ ) = д≤δj mod Iδ+1. This proves it for all j ∈ [d0]. □

Size Analysis: Here we give the overall process of finding fac-
tors using allRootsNI technique and analyze the circuit size needed

at each step to establish the size bound of the factors. As discussed

before, we need to analyze only the power series root approximation

д≤δi or д′i,δ .

At the (δ − 1)-th step of allRootsNI process, we have a multi-

output circuit (with division gates) computing д′i,δ−1 as a rational

function, for all i ∈ [d0]. Specifically, let us assume that д′i,δ−1 =:

Ci,δ−1/Di,δ−1, where Di,δ−1 is invertible in F[[x]]. So, the cir-

cuit computing д′i,δ−1 has a division gate at the top that outputs

Ci,δ−1/Di,δ−1. We would eliminate this division gate only in the

end (see the standard Lemma 20). Now we show how to construct

the circuit for д′i,δ , given the circuits for д′i,δ−1.

From vδ = M−1Wδ , it is clear that ∃βi j such that vδ (i ) =∑d0
j=1 βi jWδ (j ) =

∑d0
j=1 βi j

(
(∂y ˜f / ˜f − ∂yũ0/ũ0) |y=c j − G̃ j,δ

)
.

Initially we precompute, for all j ∈ [d0], (∂y ˜f / ˜f − ∂yũ0/ũ0) |y=c j :

Note that ∂y ˜f has poly(s ) size circuit (high degree of the circuit

does not matter, see Lemma 21). Invertibility of
˜f |y=c j and ũ0 |y=c j

follows from the fact that we chose c j ’s randomly. In particular,

˜f (0,y), and so ũ0 (0,y), have roots in F which are distinct from c j ,

j ∈ [d0]. Thus, ˜f (x ,c j ) and ũ0 (x ,c j ) have non-zero constants and so
are invertible in F[[x]]. Similarly, γℓ/(c j − д

′
ℓ,δ−1) exists in F[[x]].

Thus, the matrix recurrence allows us to calculate the poly-

nomials Ci,δ and Di,δ , given their δ − 1 analogues, by adding

poly(d0) many wires and nodes. The precomputations costed us

size poly(s,δ ). Hence, both Ci,δ and Di,δ has poly(s,δ ,d0) sized
circuit.

We can assume we have only one division gate at the top, as for

each gate G we can keep track of numerator and denominator of

the rational function computed at G, and simulate all the algebraic

operations easily in this representation. When we reach precision

δ = d0, we can eliminate the division gate at the top. As Di,d0 is

a unit, we can compute its inverse using the power series inverse

formula and approximate only up to degree d0 (Lemma 19). Finally,

the circuit for the polynomial д≤d0i ≡ Ci,d0/Di,d0 mod Id0+1, for all
i ∈ [d0], has size poly(s,d0).

Altogether, it implies that any factor of u1 has a circuit of size
poly(s,d0). □

4.2 Low Degree Factors of General Circuits:
Proof of Theorem 2

Here, we introduce an approach to handle the general case when

rad( f ) has exponential degree. We show that allowing a special

kind of modular division gate gives a small circuit for any low

degree factor of f .
The modular division problem is to show that if f /д has a repre-

sentative in F[[x]], where polynomials f and д can be computed

by a circuit of size s , then f /д mod ⟨xd ⟩ can be computed by a

circuit of size poly(sd ). Note that if д is invertible in F[[x]], then
the question of modular division can be solved using Strassen’s

trick of division elimination [68]. But, in our case д is not invertible

in F[[x]] (though f /д is well-defined).

Proof of Theorem 2. As discussed before, to show size bound

for an arbitrary factor (with low degree) of f , it is enough to show

the size bound for the approximations of power series roots. From

Theorem 4,
˜f (x ,y) = f (τx ) = k ·

∏d0
i=1 (y − дi )

γi
, with дi (0) := µi

being distinct.

Fix an i from now on. To calculateд≤δi , we iteratively use Newton

iteration with multiplicity (as described in Section 1.3) for logδ + 1
many times. We know that there are rational functions д̂i,t such

that д̂i,t+1 := д̂i,t − γi ·
˜f

∂y ˜f
���y=д̂i,t and д̂i,t ≡ дi mod ⟨x⟩2

t
. We

compute д̂i,t ’s incrementally, 0 ≤ t ≤ logδ + 1, by a circuit with

division gates. As before,
˜f and ∂y ˜f have poly(s) size circuits.

If д̂i,t has St size circuit with division, then St+1 = St + O (1).
Hence, д̂i,lg δ+1 has poly(s, logδ ) size circuit with division.

By keeping track of numerator and denominator of the ratio-

nal function computed at each gate, we can assume that the only

division gate is at the top. As the size of д̂i,log δ+1 was initially

poly(s, logδ ) with intermediate division gates, it is easy to see that

when division gates are pushed at the top, it computes A/B with

size of both A and B still poly(s, logδ ).
Finally, a degree δ polynomial factor h | f will require us to esti-

mate д≤δi for that many i’s. Thus, such a factor has poly(sδ ) size
circuit, using a single modular division. □

4.3 Closure of Restricted Complexity Classes:
Proof of Theorem 3

This subsection is dedicated towards proving closure results for

certain algebraic complexity classes. In fact, for “practical" fields

like Q,Qp , or Fq for prime-power q, we give efficient randomized

algorithm to output the complete factorization of polynomials be-

longing to that class (stated as Theorem 15). We use the notation

д | | f to denote that д divides f but д2 does not divide f . Again,
we denote I := ⟨x1, . . . ,xn⟩

Proof of Theorem 3. There are essentially two parts in the

proof. The first part talks only about the existential closure results.

In the second part, we discuss the algorithm.

Proof of closure: Given f of degree d , we randomly shift by τ :

xi 7→ xi +yαi + βi . From Theorem 4 we have that
˜f (x ,y) := f (τx )

splits like
˜f =
∏d0

i=1 (y −дi )
γi
, with дi (0) =: µi being distinct. Here
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is the detailed size analysis of the factors of polynomials represented

by various models of our interest.

Size Analysis for Formula: Suppose f has nO (logn)
size formula.

To show size bound for all the factors, it is enough to show that

the approximations of the power series roots, i.e. д≤di has size

nO (logn)
size formula. This follows from the reduction of factoring

to approximations of power series roots.

We differentiate
˜f wrt y, (γi − 1) many times, so that the mul-

tiplicity of the root we want to recover becomes exactly one. The

differentiation would keep the size poly(nlogn ) (Lemma 21). Now,

we have (y −дi ) | | ˜f
(γi−1)

and we can apply classical Newton itera-

tion formula (Section 1.3). For all 0 ≤ t ≤ logd + 1, we compute At
and Bt such that At /Bt ≡ дi mod I2

t
. Moreover, Bt is invertible in

F[[x]] (∵ дi is a simple root of
˜f (γi−1) ).

To implement this iteration using the formula model, each time

there would be a blow up of d2. Note that in a formula, there can

be many copies of the same variable in the leaf nodes and if we

want to feed something in that variable, we have to make equally

many copies. That means we may need to make s (= size( f )) many

copies at each step. One can show that it can be reduced to only

d2 many copies by pre-computing (with blow up at most poly(sd))

all the coefficients C0, . . . ,Cd wrt y, given the formula of
˜f =:

C0 +C1y + . . .+Cdy
d
using interpolation (see [63, Lem.5.3]). Using

interpolation, we can convert the formula of
˜f and its derivative to

the formC0 +C1y + . . . +Cdy
d
. In this modified formula, there are

O (d2) many leaves labelled as y. So in the modified formula of the

polynomial
˜f and in its derivative, we are computing and plugging

in (for y) d2 copies of д<2
t

i to get д<2
t+1

i . This leads to d2 blow up

at each step of the iteration.

As Bt ’s are invertible, we can keep track of the division gates

across iterations and, in the end, eliminate them causing a one-time

size blow up of poly(sd ) (Lemma 20).

Now, assume that size(At ,Bt ) ≤ St . Then we have St+1 ≤
O (d2St ) + poly(sd ). Finally, we have Slogd+1 = poly(sd ) ·d2 logd =

poly(nlogn ).

Hence, д≤di ≡ A
logd+1/Blogd+1 mod Id+1 has poly(nlogn ) size

formula, and so does every polynomial factor of f after applying

τ−1.

Size Analysis for ABP: This analysis is similar to that of the

formula model.

Size Analysis for VNP: Suppose f can be computed by a verifier

circuit of size, and witness size, nO (logn)
. We call both the verifier

circuit size and witness size as size parameter. Now, our given

polynomial
˜f has nO (logn)

size parameters. As before, it is enough

to show that д≤di has nO (logn)
size parameters.

For the preprocessing (taking γi − 1-th derivative of
˜f wrt y), the

blow up in the size parameters is only poly(nlogn ). Now we analyze

the blow up due to classical Newton iteration. We compute At and

Bt such that At /Bt ≡ дi mod I2
t
. Using the closure properties of

VNP (discussed in Section C.1), we see that each time there is a blow

up of d4. The main reason for this blow up is due to the composition
operation, as we are feeding a polynomial into another polynomial.

Assume that the verifier circuit size(At ,Bt ) ≤ St and witness

size ≤Wt . Then we have St+1 ≤ O (d4St ) + poly(n
logn ). So, finally

we have S
logd+1 = poly(sd ) · d4 logd = poly(nlogn ). It is clear that

д≤di ≡ A
logd+1/Blogd+1 mod Id+1 has poly(nlogn ) size verifer cir-

cuit. Same analysis works forWt and witness size remains nO (logn)
.

Moreover, we get the corresponding bounds for every polynomial

factor of f after applying τ−1.
Remark. Recently in a follow-up paper, Chou, Kumar and Solomon

[14] have improved our result on VNP, showing that VNP is closed

under factors. Their proof uses the reduction of polynomial factor-

ing to power series root approximation. To avoid division gates,

they use the slow variant of Newton iteration (as done in [19, Eqn.5],

[57, Lem.4.1]) and use it to compute the circuit of an approximator
polynomial. An approximator polynomial is a polynomial function

of the coefficients (w.r.t one variable, say y) of the circuit that gives
the power series roots (w.r.t y) approximated up to certain degree.

It can be proved that the approximator polynomial has a small

sized circuit. To get the approximate power series roots, one has to

compose this circuit with the coefficients of the given polynomial.

To finish the proof, use Valiant’s lemma [72] showing VNP is closed

under composition.

The same idea does not solve the VF and VBP closure under

factoring questions as it is not clear if there is an approximator

polynomial that has a small sized formula or ABP. If one wants to

use the slow Newton iteration iteratively, in each step there would

be multiplicative blow-up, as in formula and ABP, we have to make

copies of the same computation.

The next claim talks about computing gcd of two polynomials

in different models.

Claim 8 (Computing formula gcd). Given two polynomials
f ,д ∈ F[x] of degree d and computed by a formula (resp. ABP) of
size s . One can compute a formula (resp. ABP) for gcd( f ,д), of size
poly(s,d logd ), in randomized poly(s,d logd ) time.

Proof of Claim 8. Suppose, gcd( f ,д) =: h is of degree d > 0, then we

will compute h(τx ) for a random map τ as in Theorem 4. We know

wlog that
˜f := f (τx ) =

∏
i (y−Ai )

ai
and д̃ :=д(τx ) =

∏
i (y−Bi )

bi
,

where Ai ,Bi ∈ F[[x]]. Since F[x] ⊂ F[[x]] are UFDs (Proposition

1), we could say wlog that h(τx ) =
∏

i ∈S (y −Ai )
min(ai ,bi )

, where

S = {i | Ai = Bi } after possible rearrangement. Now, as τ is a

random invertible map, we can assume that, for i , j, Ai , Bj and

that Ai (0) , Bj (0). So, it is enough to compute A≤di and B≤dj and

compare them using evaluation at 0. If indeed Ai = Bi , then A
≤d
i =

B≤di . If they are not, they mismatch at the constant term itself!

Hence, we know the set S and so we are done once we have the

power series roots with repetition. Using univariate factoring, wrty,
we get all the multiplicities, of the roots, ai and bi ’s, additionally we
get the corresponding starting points of classical Newton iteration,

i.e. Ai (0) and Bi (0)’s.

Size analysis: We compute A≤di and B≤di by NI, (possibly) af-

ter making the corresponding multiplicity one by differentiation.

A detailed analysis would show that each approximate root has

poly(s,d logd ) size formula (resp. ABP). This directly implies that

gcd( ˜f ,д̃) has poly(s,d logd ) size formula (resp. ABP). By taking the

product of the linear factors, truncating to degree d , and applying

τ−1, we can compute the polynomial gcd( f ,д).
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Randomization is needed for τ and possibly for the univariate

factoring over F. Also, it is important to note that F may not be

algebraically closed. Then one has to go to an extension, do the

algebraic operations and return back to F. For details, see Section
5.2. □

Randomized Algorithm. We give the broad steps of our algo-

rithm below. We are given f ∈ F[x], of degree d > 0, as input.

(1) Choose α ,β ∈r F
n
and apply τ : xi → xi + αiy + βi . Denote

the transformed polynomial f (τx ) by ˜f (x ,y). Wlog, from

Theorem 4,
˜f has factorization of the form

∏d0
i=1 (y − дi )

γi
,

where µi := дi (0) are distinct.

(2) Factorize
˜f (0,y) over F[y]. This will give γi and µi ’s.

(3) Fix i = i0. Differentiate ˜f , wrty, (γi0 −1) many times to make

дi0 a simple root.

(4) Apply Newton iteration (NI), on the differentiated polyno-

mial, for k := ⌈log(2d2 + 1)⌉ iterations; starting with the

approximation µi0 (mod I ). We get д<2
k

i0 at the end of the

process (mod I2
k
).

(5) Apply the transformation xi 7→ Txi (T acts as a degree-

counter). Consider д̃i0 := д<2
k

i0 (Tx ). Solve the following

homogeneous linear system of equations, over F[x], in the

unknowns ui j and vi j ’s,∑
0≤i+j<d

ui j · y
iT j = (y − д̃i0 ) ·

∑
0≤i<d
0≤j<2k

vi j · y
iT j

mod T 2
k
.

Solve this system, using Lemma 18, to get a nonzero polyno-

mial (if one exists) u :=
∑
0≤i+j<d ui j · y

iT j
.

(6) If there is no solution, return “f is irreducible”.

(7) Otherwise, find the minimal solution wrt degy (u) by brute

force (try all possible degrees wrt y; it is in [d − 1]).

(8) ComputeG (x ,y,T ) := gcdy (u (x ,y,T ),
˜f (Tx ,y)) using Claim

8.

(9) Compute G (x ,y,1) and transform it by τ−1 : xi 7→ xi −
αiy − βi , i ∈ [n], and y 7→ y. Output this as an irreducible

polynomial factor of f .

The details of correctness and size-bound of the roots can be

proved via a series of lemmas and claims stated below ( for the

proof of those claims, see the full version)

Claim 9 (Existence). If f is reducible, then the linear system
(Step 5) has a non-trivial solution.

Claim 10 (Step 8’s success). If the linear system (Step 5) has a
non-trivial solution, then 0 < degy G ≤ degy u < d .

Next we show that if one takes the minimal solution u (wrt

degree of y), then it will correspond to an irreducible factor of f .
We will use the same notation as above.

Claim 11 (Irred. factor). Suppose y − дi0 |
˜f1 and f1 is an

irreducible factor of f . Then, G = c · ˜f1 (Tx ,y), for c ∈ F∗, and
degy (G ) = degy (u) = degy ( f1) in Step 8.

Alternative to Claim 8: The above proof (Claim 11) suggests

that the gcd question of Step 8 is rather special: One can just

write u as

∑
0≤i≤d1 ci (x ,T )y

i
and then compute the polynomial

G =
∑
0≤i≤d1 (ci/cd1 ) · y

i
as a formula (resp. ABP), by eliminating

division (Lemma 19).

Once we have the polynomial G we can fix T = 1 and apply τ−1

to get back the irreducible polynomial factor f1 (with power series

root дi0 ).
The running time analysis of the algorithm is by now routine. A

detailed analysis would establish that the above described algorithm

is a randomized poly(nlogn )-time algorithm that outputs nO (logn)

sized factors.

□

Remark.
(1) Above results are true for the classesVBP (s ),VF (s ),VNP (s )

for any size function s = nΩ(logn)
.

(2) By using a reversal technique [57, Sec.1.1.2] and a modified

τ , our size bound can be shown to be poly(s,d log r ), where
r (resp. d) is the individual-degree (resp. degree) bound of

f . So, when r is constant, we get a factor as a poly(s )-size
formula (resp. ABP). Oliveira [57] proved the same result for

formulas. But, [57] used slow Newton iteration and in each

iteration the method was different, owing to which the size

was poly(s,dr ).

5 EXTENSIONS
5.1 Closure of Approximative Complexity

Classes
In this section, we show that all our closure results, under factor-

ing, can be naturally generalized to corresponding approximative

algebraic complexity classes.

Definition 12 (Approximative Closure of a Class [7]). Let
C be an algebraic complexity class over field F. A family ( fn ) of
polynomials from F[x] is in the classC (F) if there are polynomials fn;i
and a function t : N 7→ N such that дn is in the class C over the field
F(ϵ ) withдn (x ) = fn (x )+ϵ fn;1 (x )+ϵ

2 fn;2 (x )+. . .+ϵ
t (n) fn;t (n) (x ).

The above definition can be used to define closures of classes

like VF, VBP, VP, VNP which are denoted as VF, VBP, VP, VNP

respectively. In these cases one can assume wlog that the degrees

of дn and fn;i are poly(n).
Following Bürgisser [9]:- Let K := F(ϵ ) be the rational function

field in variable ϵ over the field F. Let R denote the subring of K
that consists of rational functions defined in ϵ = 0. Eg. 1/ϵ < R but

1/(1 + ϵ ) ∈ R.

Definition 13. [9, Defn.3.1] Let f ∈ F[x1, . . . ,xn]. The approxi-
mative complexity size( f ) is the smallest number r , such that there
exists F in R[x1, . . . ,xn] satisfying F |ϵ=0 = f and circuit size of F
over constants K is ≤ r .

Note that the circuit of F may be using division by ϵ implicitly

in an intermediate step. So, we cannot simply assign ϵ = 0 and get

a circuit free of ϵ . Also, the degree involved can be arbitrarily large

wrt ϵ . Thus, potentially size( f ) can be smaller than size( f ).
Using this new notion of size one can define the analogous class

VP. It is known to be closed under factors [9, Thm.4.1]. The idea

is to work over F(ϵ ), instead of working over F, and use Newton

iteration to approximate power series roots. Note that in the case

1161



Discovering the Roots STOC’18, June 25–29, 2018, Los Angeles, CA, USA

of VF, VBP, VP and VNP the polynomials have poly(n) degree. So,
by using repeated differentiation, we can assume the power series

root (of
˜f := f (τx )) to be simple (i.e. multiplicity= 1) and apply

classical NI. We need to carefully analyze the implementation of

this idea.

Root FindingUsingNI overK . For degree-d f ∈ F[x] if size( f ) =
s then: ∃F ∈ R[x] with a size s circuit satisfying F |ϵ=0 = f . The
degree of F wrt x may be greater than d . In that case we can extract

the part up to degree d and truncate the rest [11, Prop.3.1]. So wlog

degx (F ) = deg( f ).
By applying a random τ (using constants F) we can assume that

F̃ := F (τx ) ∈ R[x ,y] is monic (i.e. leading-coefficient, wrt y in F̃ ,

is invertible in R). Otherwise, degy (F̃ ) = degy (
˜f ) = degx ( f ) will

decrease on substituting ϵ = 0 contradicting F |ϵ=0 = f . Wlog,

we can assume that the leading-coefficient of F̃ wrt y is 1 and the

y-monomial’s degree is d . From now on we have F̃ |ϵ=0 = ˜f and

both have their leading-coefficients 1 wrt y.

Let µ be a root of ˜f (0,y) of multiplicity one (as discussed before).

Define F̂ := F̃ (x ,y + µ +ϵ ) − F̃ (0,µ +ϵ ). Note that (0,0) is a simple

root of F̂ (x ,y) [11, Eqn.5].
So, a power series root y∞ of F̂ can be built iteratively by classic

NI (Lemma 22) The above process, when combined with the first

part of the proof of Theorem 3, does imply:

Theorem 14 (Approximative factors). The approximative com-
plexity classes VF(nlogn ),
VBP(nlogn ) and VNP(nlogn ) are closed under factors.

It can be seen that the VNP-closure under factoring result of

Chou, Kumar and Solomon [14] extends to VNP-closure under

factoring. The same question for the classes VF and VBP we leave

as an open question. (Though, for the respective bounded individual-

degree polynomials we have the result as before.)

5.2 When Field F is Not Algebraically Closed
We show that all our results “partially” hold true for fields F which
are not algebraically closed. The common technique used in all the

proofs is the structural result (Theorem 4) which talks about power

series roots with respect to y. Let E ⊊ F be the smallest field where

a root µ1 can be found (µ1 is a root of the polynomial after applying

random τ and substituting x = 0. Say, д | ˜f1 (0,y) is the minimal

polynomial for µ1. The degree of the extension E := F[z]/(д(z)) is
at most d . So, computations over E can be done efficiently. The key

idea is to view E/F as a vector space and simulate the arithmetic

operations over E by operations over F. The details of this kind of

simulation can be seen in [74]. Once we have found all the power

series roots of
˜f (x ,y) over E[[x]], say starting from each of the

conjugates µ1, . . . ,µi ∈ E, it is easy to get a polynomial factor in

E[x ,y]. This factor will not be in F[x ,y], unless E is a splitting field

of
˜f1 (0,y). A more practical method is: While solving the linear

system over E in Steps 5-7 (Algorithm in Theorem 3) we can demand

an F-solution u. Basically, at the level of algorithm in Lemma 18,

we can rewrite the linear systemMw = (
∑
0≤i≤d Miz

i ) ·w = 0 as

Miw = 0 (i ∈ [0,d]), where the entries of the matrixMi are given

as formulas (resp. ABP) computing a poly(n) degree polynomial in

F[x]. This way we get the desired F-solution u. Then, Steps 8-9 will

yield an irreducible polynomial factor of f in F[x ,y]. This sketches
the following more practical version of Theorem 3.

Theorem 15. For F a number field, a local field, or a finite field
(with characteristic> deg( f )), there exists a randomized poly(snlogn )-
time algorithm that: for a given nO (logn) size formula (resp. ABP) f
of poly(n)-degree and bitsize s , outputs nO (logn) sized formulas (resp.
ABPs) corresponding to each of the nontrivial factors of f .

Note that over these fields there are famous randomized algo-

rithms to factor univariate polynomials in the base case, see [74,

Part III] & [60].

The allRootsNI method in Theorem 1 seems to require all the

roots µi ,i ∈ [d0], to begin with. Let ũ1 := rad(u1 (τx )). Since µi ’s

are in the splitting field E ⊂ F of rad(ũ1 (0,y)), we do indeed get

the size bound of the power series roots д≤d0i of ũ1 assuming the

constants from E. As seen in the proof, any irreducible polynomial

factor
˜hi := hi (τx ) of rad(ũ1) is some product of these (y −д≤d0i )’s

mod Id0+1. So, for the polynomial
˜hi in F[x ,y] we get a size upper

bound over constants E. We leave it as an open question to transfer

it over constants F (note: E/F can be of exponential degree).

5.3 Multiplicity Issue in Prime Characteristic
The main obstruction in prime characteristic is when the multiplic-

ity of a factor is a p-multiple, where p ≥ 2 is the characteristic of F.
In this case, all versions of Newton iteration fail. This is because the

derivative of a p-powered polynomial vanishes. When p is greater

than the degree of the input polynomial, these problems do not

occur, so all our theorems hold (also see Section 5.2).

When p is smaller than the degree of the input polynomial in

Theorem 3, adapting an idea from [45, Sec.3.1], we claim that we

can give nO (λ logn)
-sized formula (resp. ABP) for the pei -th power

of fi , where fi is a factor of f whose multiplicity is divisible exactly

by pei , and λ is the number of distinct p-powers that appear.
Note that presently it is an open question to show that: If a

circuit (resp. formula resp. ABP) of size s computes f p , then f has

a poly(sp)-sized circuit (resp. formula resp. ABP).

Theorem 3 can be extended to all characteristic as follows.

Theorem 16. Let F be of characteristic p ≥ 2. Suppose the poly(n)-
degree polynomial given by anO (logn) size formula (resp. ABP) factors
into irreducibles as f (x ) =

∏
i f

pei ji
i , where p ∤ ji . Let λ := #{ei |i}.

Then, there is a poly(nλ logn )-size formula (resp. ABP) computing
f
pei
i over Fp .

High Degree Case. Note that the above idea cannot be imple-

mented efficiently in the case of high degree circuits. Still we can

extend our Theorem 1 using allRootsNI. The key observation is that

the allRootsNI formula still holds but the summands that appear

are exactly the ones corresponding to дi with γi , 0 mod p.
This motivates the definition of a partial radical: radp ( f ) :=∏
p∤ei fi , if the prime factorization of f is

∏
i f

ei
i .

Theorem 17. Let F be of characteristic p ≥ 2. Let f = u0u1 such
that size(f )+size(u0) ≤ s . Any factor of radp (u1) has size poly(s +
deg(radp (u1))) over F.
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Proof idea: Observe that the roots with multiplicity divisible

by p do not contribute to the allRootsNI process. So, the process

works with radp (u1) and the linear algebra complexity involved is

polynomial in its degree.

6 CONCLUSION
The old Factors conjecture states that for a nonzero polynomial f :
д | f =⇒ size(д) ≤ poly(size( f ),deg(д)). Motivated by Theorem

1, we would like to strengthen it to:

Conjecture 1 (radical). For a non-zero polynomial f , the follow-
ing relation holds: min{deg(rad( f )),size(rad( f ))} ≤ poly(size( f )).

Is the Radical conjecture true if we replace size by size?

In low degree regime also there are many open questions. Can

we identify a class “below” VP that is closed under factoring? We

conclude with some interesting questions.

(1) Are VF,VBP closed under factoring? We might consider The-

orem 3 as a positive evidence. Additionally, note that these

classes are already closed under e-th root taking. This is easy

to see using the classic Taylor series of (1 + f )1/e , where
f ∈ ⟨x⟩.
Can we show closure results for the classes which are con-

tained in VF (nlogn ) but larger than VF? For example, is

VF(nlog logn ) closed under factoring?

(2) Can we find a suitable analog of Strassen’s (non-unit) divi-

sion elimination for high degree circuits? This, by Theorem

2, will resolve Factors conjecture.

(3) Our results weaken when F is not algebraically closed or

has a small prime characteristic (Sections 5.2, 5.3). Can we

strengthen the methods to work for all F?

A PRELIMINARIES
This section is intended for preliminaries, most of the claims will

be stated without giving detailed proof or proof idea.

A.1 Randomized Algorithm for Linear Algebra
Using PIT

The following lemma is an adapted version from [45] discusses how

to perform linear algebra when the coefficients of vectors are given

as formula (resp. ABP). This will be crucially used in Theorem 3

when we would give an algorithm to output the factors.

Lemma 18. (Linear algebra using PIT [45, Lem.2.6]) LetM =
(Mi,j )k×n be a matrix (where k is nO (1)) with each entry being a de-
gree ≤ nO (1) polynomial in F[x]. Suppose, we have algebraic formula
(resp. ABP) of size ≤ nO (logn) computing each entry. Then, there is a
randomized poly(nlogn )-time algorithm that either:
• finds a formula (resp. ABP) of size poly(nlogn ) computing a
non-zero u ∈ (F[x])n such thatMu = 0, or
• outputs 0 which declares that u = 0 is the only solution.

A.2 Basic Operations on Formula, ABP and
Circuit

We use the following standard results on size bounds for performing

some basic operations (like taking derivative) of circuits, formulas,

ABPs.

Lemma 19. (Eliminate single division [68], [66, Thm.2.1]) Let f
and д be two degree-D polynomials, each computed by a circuit (resp.
ABP resp. formula) of size-s with д(0) , 0. Then f /д mod ⟨x⟩d+1

can be computed byO ((s +d )d3) (resp.O (sd2D) resp.O (sd2D2)) size
circuit (resp. ABP resp. formula).

Proof Idea. Assume wlog that д(0) = 1. Using the identity,

f /д = f /(1− (1−д)) = f + f (1−д) + f (1−д)2 + f (1−д)3 + · · · .,
and truncation using Strassen’s homogenization trick, in the case

of circuits and ABPs (see [63, Lem.5.2]), and an interpolation trick

in the case of formulas (which also works for ABPs and low degree

circuits, [63, Lem.5.4]). A careful analysis shows that the size blow

up is at mostO ((s +d )d2 ·d ) (resp.O (sd ·D ·d ) resp.O (sd ·D2 ·d ))
for circuits (resp. ABP resp. formula).

Using the above result, it is easy to see, that we get poly(s,d ) size

circuit (resp. ABP resp. formula) for computing f /д mod ⟨x⟩d+1.
□

Remark. Note that it may happen that д(0) = 0. In such a case,

We can shift the polynomials f ,д by some random α ∈ Fn and

compute f (x + α )/д(x + α ) using the method described above.

Finally, we recover the polynomial f /д by applying the reverse

shift x 7→ x − α .
What if our model has several division gates?

Lemma 20. (Div. gates elimination [66, Thm.2.12]) Let f be a
polynomial computed by a circuit (resp. formula), using division
gates, of size s . Then, f mod ⟨x⟩d+1 can be computed by poly(sd )
size circuit (resp. formula).

Lemma 21 (Derivative computation). If a polynomial f (x ,y)
can be computed by a circuit (resp. formula resp. ABP) of size s and

degree d . Then, any ∂k f
∂yk

can be computed by circuit (resp. formula
resp. ABP) of size poly(sk ).

Proof. The idea is simply to use the homogenization and inter-

polation properties [63, Sec.5.1-2] when the polynomial is of degree

d ≤ poly(s ). When degree is higher, [35, Thm.1] shows that
∂k f
∂yk

can be computed by a circuit of size O (k2s ).
□

B USEFUL IN SECTION 3
Lemma 22. (Power series root [13, Thm.2.31]) Let P (x ,y) ∈ F(x )[y],

P ′(x ,y) =
∂P (x,y )

∂y and µ ∈ F be such that P (0,µ ) = 0 but P ′(0,µ ) ,

0 . Then, there is a unique power series S such that S (0) = µ and
P (x ,S ) = 0 i.e.

y − S (x ) | P (x ,y) .

Moreover, there exists a rational function yt , ∀t ≥ 0, such that

yt+1 = yt −
P (x ,yt )

P ′(x ,yt )
and S ≡ yt mod ⟨x⟩2

t
with y0 = µ .

Proof Idea. We can inductively prove existence and unique-

ness together. Suppose P =
∑d
i=0 ciy

i
. We show that there is

yt , a rational function
At
Bt such that yt ∈ F[[x]] , For all t ≥ 0,

P (x ,yt ) ≡ 0 mod ⟨x⟩2
t
and for all t ≥ 1, yt ≡ yt−1 mod ⟨x⟩2

t−1
.

The proof is by induction. Let y0 := µ. Thus, base case is true. Now
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suppose such yt exists. Define yt+1 := yt −
P (x,yt )
P ′ (x,yt )

. We use Taylor

expansion to show that P (x ,yt+1) = 0 mod ⟨x⟩2
t+1
.

Moreover, using the notion of limit, we have unique S , a power
series such that limt→∞ yt = S , a formal power series. In particular,

we get that P (x ,S ) = 0 or y − S | P . □

Lemma 23 (Transform to monic). For a polynomial f (x ) of
total degree d ≥ 0 and random αi ∈r F, the transformed polynomial
д(x ,y) := f (αy + x ) has a nonzero constant as coefficient of yd , and
degree wrt y is d .

Proof. Suppose the transformation is xi 7→ xi + αiy where

i ∈ [n]. Write f =
∑
|β |=d cβx

β + lower degree terms . Coefficient

of yd in д is

∑
|β |=d cβα

β
. Clearly, for a random α this coefficient

will not vanish [65], and it is the highest degree monomial in д.
This ensures degy (д) = deg( f ) = d and that д is monic wrt

y. □

C USEFUL IN SECTION 4
For the detailed proofs of the following lemmas, see the full version.

Lemma 24 (Matrix inverse). Let µi ,i ∈ [d], be distinct nonzero
elements in F. Define a d ×d matrix A with the (i, j )-th entry 1/(yi −
µ j )

2. Its entries are in the function field F(y). Then, det(A) , 0.

Proof Idea. The idea is to consider the power series of the func-

tion 1/(yi − µ j )
2
and show that a monomial appears nontrivially

in that of det(A) using Vandermonde determinant. □

Remark. If the characteristic of F is a prime p ≥ 2 then the

above proof needs a slight modification. One should consider the

coefficient of

∏
i ∈[d] y

si−1
i in det(A) for a set S = {s1, . . . ,sd } of

distinct non-negative integers that are not divisible by p. Moreover,

one has to consider ‘random’ µi ’s to deduce det(A) , 0.

Lemma 25 (Series inverse). Let δ ≥ 1. Assume that A is a poly-
nomial of degree < δ and B is a homogeneous polynomial of degree
δ , such that A(0) =: µ , 0. Then, we have the following identity:

1

y−(A+B ) ≡
1

y−A +
B

(y−µ )2 mod ⟨x⟩δ+1

Proof Idea. This is based on simple taylor series expansion:

(a − x )−1 = 1/a · (
∑
i≥0 (

x
a )

i ) □

C.1 Closure Properties for VNP
VNP-size parameter (w ,v ) of F refers to w being the witness size

and v being the size of the verifier circuit f .
Let F (x ,y),G (x ,y),H (x ) have verifier polynomials f ,д,h and the

VNP size parameters (wf ,vf ), (wд ,vд ), (wh ,vh ) respectively. Let
the degree of F wrt y be d . Then, the following closure properties
can be shown ([13] or [12, Thm.2.19]):

(1) Add (resp. Multiply): F+G (resp. FG) has VNP-size parameter

(wf +wд ,vf +vд + 3).
(2) Coefficient: Fi (x ) has VNP-size parameter (wf , (d + 1) (vf +

1)), where F (x ,y) =:
∑d
i=0 Fi (x )y

i
.

(3) Compose: F (x ,H (x )) has VNP-size parameter ((d + 1) (wf +

dwh ), (d + 1)
2 (vf +vh + 1)).
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