
Automorphisms of Finite Rings and

Applications to Complexity of Problems

Manindra Agrawal and Nitin Saxena

National University of Singapore⋆⋆

{agarwal,nitinsax}@comp.nus.edu.sg

1 Introduction

In mathematics, automorphisms of algebraic structures play an important role.
Automorphisms capture the symmetries inherent in the structures and many
important results have been proved by analyzing the automorphism group of
the structure. For example, Galois characterized degree five univariate polyno-
mials f over rationals whose roots can be expressed using radicals (using ad-
dition, subtraction, multiplication, division and taking roots) via the structure
of automorphism group of the splitting field of f . In computer science too, au-
tomorphisms have played a useful role in our understanding of the complexity
of many algebraic problems. From a computer science perspective, perhaps the
most important structure is that of finite rings. This is because a number of
algebraic problems efficiently reduce to questions about automorphisms and iso-
morphisms of finite rings. In this paper, we collect several examples of this from
the literature as well as providing some new and interesting connections.

As discussed in section 2, finite rings can be represented in several ways.
We will be primarily interested in the basis representation where the ring is
specified by its basis under addition. For this representation, the complexity of
deciding most of the questions about the automorphisms and isomorphisms is in
FPAM∩coAM [KS04]. For example, finding ring automorphism (find a non-trivial
automorphism of a ring), automorphism counting problem (count the number
of automorphisms of a ring), ring isomorphism problem (decide if two rings are
isomorphic), finding ring isomorphism (find an isomorphism between two rings).
Also, ring automorphism problem (decide if a ring has a non-trivial automor-
phism) is in P [KS04]. In addition, a number of problems can be reduced to
answering these questions. Some of them are:

Primality Testing. Fermat’s Little Theorem states that the map a 7→ an is the
trivial automorphism in Zn if n is prime. Although this property is not strong
enough to decide primality, the recent deterministic primality test [AKS04]
generalizes this to the property that the map is an automorphism in the ring
Zn[Y ]/(Y r − 1) for a suitable r iff n is prime. Further, they prove that it is
enough to test the correctness of the map at a “few” elements to guarantee
that it is indeed an automorphism.

⋆⋆ On leave from Indian Institute of Technology, Kanpur.



Polynomial Factorization. Factoring univariate polynomials over finite fields
uses automorphisms in a number of ways [LN86,vzGG99]. It is used to split
the input polynomial into factors with each one being square-free and com-
posed only of same degree irreducible factors. Then to transform the problem
of factoring polynomial with equal degree irreducible factors to that of root
finding. And finally, in finding the roots of the polynomial in the field (this
step is randomized while the others are deterministic polynomial-time).

Integer Factorization. Two of the fastest known algorithms for factoring inte-
gers, Quadratic sieve [Pom84] and Number Field sieve [LLMP90], essentially
aim to find a non-obvious automorphism of the ring Zn[Y ]/(Y 2 − 1). Be-
sides, recently [KS04] have shown that integer factorization can be reduced to
(1) automorphism counting for ring Zn[Y ]/(Y 2), (2) finding automorphism
of the ring Zn[Y ]/(f(Y )) where f is a degree three polynomial, (3) find-
ing isomorphism between rings Zn[Y ]/(Y 2 − 1) and Zn[Y ]/(Y 2 − a2) where
a ∈ Zn.

Graph Isomorphism. Again, [KS04] show this problem reduces to ring iso-
morphism problem for rings of the form Zp3 [Y1, . . . , Yn]/I where p is an
odd prime and ideal I has degree two and three polynomials. Here, we im-
prove this result to the rings with any prime characteristic. As the isomor-
phism problems for a number of structures reduce to Graph Isomorphism
(e.g., Group Isomorphism), this shows that all these problems reduce to ring
isomorphism and counting automorphisms of a ring (it can be shown eas-
ily that ring isomorphism problem reduces to counting automorphism in a
ring [KS04]).

Polynomial Equivalence. Two polynomials p(x1, · · · , xn) and q(x1, . . . , xn)
over field F are said to be equivalent if there is an invertible linear transfor-
mation T , T (xi) =

∑n
j=1 ti,jxj , ti,j ∈ F , such that p(T (x1), . . . , T (xn)) =

q(x1, . . . , xn).1 This is a well studied problem: we know a lot about the struc-
ture of equivalent polynomials when both p and q are quadratic forms (ho-
mogeneous degree two polynomials) resulting in a polynomial time algorithm
for testing their equivalence (Witt’s equivalence theorem, see, e.g., [Lan93]).
The structure of cubic forms (homogeneous degree three polynomials) is less
understood though. There is also a cryptosystem based on the difficulty of de-
ciding equivalence between a collection of degree three polynomials [Pat96].
In [Thi98], it was shown that polynomial equivalence problem is in NP ∩
coAM and Graph Isomorphism reduces to polynomial isomorphism problem
where we require T to be a permutation.
Here, we show that the ring isomorphism problem over finite fields reduces
to cubic polynomial equivalence. We prove a partial converse as well: deciding
equivalence of homogeneous degree k polynomials with n variables over field
Fq such that (k, q − 1) = 1, reduces to ring isomorphism problem in time
nO(k). This shows that (1) equivalence for homogeneous constant degree
polynomials (for certain degrees) can be efficiently reduced to equivalence for
degree three polynomials, and (2) Graph Isomorphism reduces to equivalence

1 In some literature, p and q are said to be equivalent if p = q for all elements in F n.



for degree three polynomials. In fact, we show that Graph Isomorphism can
even be reduced to cubic form equivalence. This explains, at least partly,
why cubic form equivalence has been hard to analyze.

The organization of the remaining paper is as follows. The next section dis-
cusses the various representations of the rings and their morphisms. Sections 3
to 7 discuss applications of ring automorphisms and isomorphisms in the order
outlined above. The last section lists some open questions.

2 Representations of Rings and Automorphisms

We will consider finite rings with identity. Any such ring R can be represented
in multiple ways. We discuss three important representations.

Table Representation

The simplest representation is to list all the elements of the ring and their addi-
tion and multiplication tables. This representation has size n = O(|R|2) where
|R| is the number of elements of the ring. This is a highly redundant representa-
tion and the problem of finding automorphisms or isomorphisms can be solved
in nO(log n) time since any minimal set of generators for the additive group has
size O(logn).

Basis Representation

This representation is specified by a set of generators of the additive group of
R. Let n be the characteristic of the ring. Then the additive group (R,+) can
be expressed as the direct sum ⊕m

i=1Zni
bi where b1, . . ., bm are elements of R

and ni | n for each i. The elements b1, . . ., bm are called basis elements for
(R,+). Therefore, the ring R can be represented as (n1, . . . , nm, A1, . . . , Am)
where matrix Ai = (ai,j,k) describes the effect of multiplication on bi, viz.,
bi · bj =

∑m
k=1 ai,j,kbk, ai,j,k ∈ Znk

. The size of this representation is O(m3).
This, in general, is exponentially smaller than the size of the ring |R| =

∏m
i=1 ni.

For example, the ring Zn (it has only one basis element).
The problem of finding automorphisms or isomorphisms becomes harder for

this representation. As [KS04] show, these problems belong to the complexity
class FPAM∩coAM and are at least as hard as factoring integers and—in the case
of finding isomorphisms—solving graph isomorphism.

Polynomial Representation

A third, and even more compact, representation of R is obtained by starting
with the basis representation and then selecting the smallest set of bis, say b1,
. . ., bm such that the remaining bis can be expressed as polynomials in b1, . . .,
bm. The representation can be specified by the m basis elements and generators



of the ideal of polynomials satisfied by these. Each polynomial is specified by an
arithmetic circuit.

The ring can be written as:

R = Zn[Y1, Y2, . . . , Ym]/(f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym))

where Y1, . . ., Ym are basis elements and (f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym)) is
the ideal generated by the polynomials f1, . . ., fk describing all polynomials satis-
fied by Y1, . . ., Ym.2 Often, this representation is exponentially more succinct that
the previous one. For example, consider the ring Z2[Y1, . . . , Ym]/(Y 2

1 , Y
2
2 , . . . , Y

2
m).

This ring has 2m basis elements and so the basis representation would require
Ω(23m) space.

The problem of finding automorphisms or isomorphisms is even harder for
this representation:

Theorem 1. Ring automorphism for polynomial representation is NP-hard and
ring isomorphism problem is coNP-hard.

Proof. To prove NP-hardness of ring automorphism problem, we reduce 3SAT
to it. Let F be a 3CNF boolean formula over n variables, F = ∧m

i=1ci. Let

F̂ =
∏m

i=1 ĉi and ĉi = 1− (1− xi1) · xi2 · (1− xi3) where ci = xi1 ∨ x̄i2 ∨xi3 . It is

easy to verify that F is unsatisfiable iff F̂ (x1, . . . , xn) ∈ (x2
1 − x1, . . . , x

2
n − xn).

Let ring

R = F2[Y1, . . . , Yn]/(1 + F̂ (Y1, . . . , Yn), {Y 2
i − Yi}1≤i≤n).

It follows that R is a trivial ring iff formula F is unsatisfiable. So ring R⊕R has
a non-trivial automorphism iff F is satisfiable.

For hardness of ring isomorphism problem, simply note that ring R is iso-
morphic to trivial ring {0} iff F is unsatisfiable.

So the table representation is too verbose while the polynomial represen-
tation is too compact. In view of this, we will restrict ourselves to the basis
representation for the rings. The rings that we will consider are all commutative
with a basis that has all basis elements of the same additive order. In addition,
their polynomial representation is of similar size to the basis representation and
so, for clarity of exposition, we will use the polynomial representation to express
our rings.

Representation of Automorphisms and Isomorphisms

An automorphism φ of ring R is a one-one and onto map, φ : R 7→ R such that
for all x, y ∈ R, φ(x+ y) = φ(x) + φ(y) and φ(x · y) = φ(x) · φ(y).

2 Throughout the paper, we use lower case letters, e.g., x, y for free variables (as in
polynomial p(x, y) = x2 − 2y) and upper case letters, e.g., X, Y for bound variables
(as in the ring Zn[X, Y ]/(X2 − 2Y, Y 2)).



An isomorphism between two rings R1 and R2 is a one-one and onto map
φ, φ : R1 7→ R2 such that for all x, y ∈ R1, φ(x + y) = φ(x) + φ(y) and
φ(x · y) = φ(x) · φ(y).

Their representations will depend on the representation chosen for the rings.
For basis representation, an automorphism (and isomorphism) will be repre-
sented as a linear transformation mapping basis elements. Thus, it corresponds
to an invertible matrix of dimension n where n is the number of basis elements.

For polynomial representation, say R = Zn[Y1, . . . , Yt]/I, an automorphism
(or isomorphism) φ will be specified by a set of t polynomials p1, . . ., pt with
φ(Yi) = pi(Y1, . . . , Yt).

3 Application: Primality Testing

A number of primality tests use the properties of the ring Zn where n is the
number to be tested. The prominent ones are Miller-Rabin test [Mil76,Rab80],
Solovay-Strassen test [SS77], Adleman-Pomerance-Rumely test [APR83] etc. There
are several others that use a different algebraic structure, e.g., elliptic curve based
tests [GK86].

However, even the ones based on Zn use properties other than automorphisms
of Zn. The reason is that approaches based on automorphisms do not work. For
example, when n is prime, the map φ(x) = xn is an automorphism (in fact it is
the trivial automorphism); on the other hand when n is composite then φ may
not be an automorphism. We can use this to design a test, however, as testing
if φ(x) = x (mod n) for all x’s requires exponential time, we do the test for only
polynomially many x’s. This test does separate prime numbers from non-square-
free composites (see Lemma 1 below), however fails for square-free composites.
The reason are Carmichael numbers [Car10]: these are composite numbers for
which φ is the trivial automorphism.

So an automorphism based property appears too weak to separate primes
from composites. However, it is not so. The strongest known deterministic pri-
mality test [AKS04] is based on the same property of automorphisms as outlined
above! What makes it work is the idea of using a polynomial ring instead of Zn.
Let R = Zn[Y ]/(Y r − 1) where r is a “small” number. As before, the map φ
remains an automorphism of R when n is prime. It is easy to see that φ is an
automorphism of R iff for every g(Y ) ∈ R,

gn(Y ) = φ(g(Y )) = g(φ(Y )) = g(Y n). (1)

As above, this can be tested for polynomially many g(Y )’s. It was shown in [AKS04]
that for a suitably chosen r, if the equation (1) holds for

√
r log n many g(Y )’s

of the form Y + a then n must be a prime power. The analysis in the paper
can easily be improved to show that when a’s are chosen from [1,

√
r log n] then

n must be a prime: Suppose equation (1) holds for all a’s in the above range.
Then we know that n is a prime power. Let n = pk for some k > 1. Let ring
R0 = Zp2 [Y ]/(Y − 1) ∼= Zp2 . Clearly, equation (1) will hold in R0 too. This



implies that for all a ≤ 1 +
√
r log n:

apk

= a (mod p2).

The choice of r is such that r ≥ log2 n [AKS04] and therefore, the above equation
holds for all a ≤ 4 log2 p. The following lemma, proved by Hendrik Lenstra [Len]
contradicts this:

Lemma 1. (Hendrik Lenstra) For all large enough primes p, for every ℓ > 0

there is an a ≤ 4 log2 p such that apℓ 6= a (mod p2).

Proof. Suppose there is an ℓ > 0 such that apℓ

= a (mod p2) for all a ≤ 4 log2 p.
We first prove that we can always assume ℓ to be 1. Consider the case when
ℓ > 1. Since ap = a (mod p), we have

ap = a+ p · t (mod p2)

for some t. Therefore,

apℓ

= (a+ p · t)pℓ−1

(mod p2)

= apℓ−1

(mod p2)

Repeating this, we get ap = apℓ

= a (mod p2). Now, there are at most p solutions
to the equation ap = a (mod p2) in Zp2 . Since all numbers up to 4 log2 p are

solutions to this, so will be all their products. Let ψ(p2, 4 log2 p) denote the
number of distinct numbers less than p2 that are 4 log2 p-smooth (all their prime
factors are at most 4 log2 p). Using the bound for ψ [CEG83], ψ(x, x1/u) =
x · u−u+o(1) for u = O( x

log x ), we get that ψ(p2, 4 log2 p) > p for large enough p.
This is a contradiction. ⊓⊔

So when n is composite then for at least one of Y + a’s, φ does not satisfy
equation 1 and the test works correctly.

4 Application: Factoring Polynomials

Automorphisms play a central role in efficient factoring of univariate polynomials
over finite fields. We outline a randomized polynomial time factoring algorithm
using automorphisms. This, and similar algorithms can be found in any text
book discussing polynomials over of finite fields, e.g., [LN86,vzGG99]. Let f be
a degree d polynomial over finite field Fq. Let R = Fq[Y ]/(f(Y )) and φ : R 7→ R,
φ(x) = xq. Clearly, φ is an automorphism of R. Notice that if f is irreducible
then φd is trivial. Conversely, if φd is trivial then, letting f0 be an irreducible
factor of f , φd is trivial on the ring Fq[Y ]/(f0(Y )) as well. Therefore, degree of
f0 divides d. This can be generalized to show that all irreducible factors of f
have degrees dividing k iff φk is trivial. Moreover, φk is trivial iff φk(Y ) = Y .
An algorithm for distinct degree square-free factorization of f follows: for k = 1



to d, compute the gcd of f(Y ) and φk(Y )− Y . The algorithm can also be used
to decide if f is irreducible: f is irreducible iff the smallest k with non-trivial
gcd(f(Y ), φk(Y )− Y ) is d.

For equal degree factorization—given f that is square-free and all irreducible
factors of the same degree k—some more work is needed. Find an t(Y ) ∈ R =
Fq[Y ]/(f(Y )) with t(Y ) 6∈ Fq and φ(t(Y )) = t(Y ). Since f is reducible, such a
t(Y ) always exists and can be found using linear algebra as φ is a linear map.
Clearly, t(Y ) (mod fi(Y )) ∈ Fq where fi is an irreducible factor of f and so,
gcd(t(Y )− x, f(Y )) > 1 for some x ∈ Fq. This condition can be expressed as a
polynomial in x, e.g., gcd(t(Y )−x, f(Y )) > 1 iff R(t(Y )−x, f(Y )) = 0 where R
is the resultant polynomial defined as determinant of a matrix over coefficients
on two input polynomials. Therefore, g(x) = R(t(Y ) − x, f(Y )) ∈ Fq[x]. By
above discussion, a root of this polynomial will provide a factor of f .

To factor g(x), we use the distinct degree factorization method. Choose a
random a ∈ Fq and let h(x) = g(x+ a). Then with probability at least 1

2 , h(x2)
can be factored over Fq using the above distinct degree factorization algorithm.

To see this, let g(x) =
∏d

i=1(x − ηi) for ηi ∈ Fq. Then h(x2) =
∏d

i=1(x
2 −

ηi + a). With probability at least 1
2 , there exist i and j such that ηi + a is a

quadratic residue and ηj +a is a quadratic non-residue in Fq. The distinct degree
factorization algorithm will separate these factors into two distinct polynomials
h1(x

2) and h2(x
2). This gives g(x) = h1(x− a) · h2(x− a).

Algorithms for polynomial factorization over rationals also (indirectly) use
automorphisms since these proceed by first factoring the given polynomial f over
a finite field, then use Hensel lifting [Hen18] and LLL algorithm for short lattice
vectors [LLL82] to obtain factors over rationals efficiently.

Multivariate polynomial factorization can be reduced, in polynomial time,
to the problem of factoring a univariate polynomial via Hilbert irreducibility
theorem and Hensel lifting [Kal89]. Therefore, this too, very indirectly though,
makes use of automorphisms.

5 Application: Factoring Integers

Integer factorization has proven to be much harder than polynomial factor-
ization. The fastest known algorithm is Number Field Sieve [LLMP90] with

a conjectured time complexity of 2O((log n)1/3(log log n)2/3). This was preceded
by a number of algorithms with provable or conjectured time complexity of

2O((log n)1/2(log log n)1/2), e.g., Elliptic Curve method [Len87], Quadratic Sieve
method [Pom84].

Of these, the fastest two—Quadratic and Number Field Sieve methods—can
be easily viewed as trying to find a non-obvious automorphism in a ring. Both the
methods aim to find two numbers u and v in Zn such that u2 = v2 and u 6= ±v
in Zn where n is an odd, square-free composite number to be factored. Consider
the ring R = Zn[Y ]/(Y 2−1). Apart from the trivial automorphism, the ring has
another obvious automorphism specified by the map Y 7→ −Y . The problem of
finding u and v as above is precisely the one of finding a third automorphism of R.



This can be seen as follows. Let φ be an automorphism of R with φ(Y ) 6= ±Y . Let
φ(Y ) = aY +b. We then have 0 = φ(Y 2−1) = (aY +b)2−1 = a2 +b2−1+2abY
in R. This gives ab = 0 and a2 + b2 = 1 in Zn. Notice that (a, n) = 1 since
otherwise φ( n

(a,n)Y ) = n
(a,n)b = φ( n

(a,n)b). Therefore, b = 0 and a2 = 1. By

assumption, a 6= ±1 and so u = a and v = 1. Conversely, given a u and v with
u2 = v2, u 6= ±v in Zn, we get φ(Y ) = u

vY as an automorphism of R.
In fact, as shown in [KS04], factoring integers can be reduced to a number of

questions about automorphisms and isomorphisms of rings. They show that an
odd, square-free composite number n can be factored in (randomized) polynomial
time if

– one can count the number of automorphisms of the ring Zn[Y ]/(Y 2), or
– one can find an isomorphism between rings Zn[Y ]/(Y 2−a2) and Zn[Y ]/(Y 2−

1) for a randomly chosen a ∈ Zn, or
– one can find a non-trivial automorphism of the ring Zn[Y ]/(f(Y )) where f

is a randomly chosen polynomial of degree three.

6 Application: Graph Isomorphism

In this section, we consider the application of ring isomorphisms for solving the
graph isomorphism problem. It was shown in [KS04] that testing isomorphism
between two graphs on n vertices can be reduced to testing the isomorphism
between two rings of the form Zp3 [Y1, . . . , Yn]/I where p is any odd prime and I is
an ideal generated by certain degree two and three polynomials. Here, borrowing
ideas from [KS04] and [Thi98] we give a different, and more general, reduction.

Let G = (V,E) be a simple graph on n vertices. We define polynomial pG as:

pG(x1, . . . , xn) =
∑

(i,j)∈E

xi · xj .

Also, define ideal IG as:

IG(x1, . . . , xn) = (pG(x1, . . . , xn), {x2
i }1≤i≤n, {xixjxk}1≤i,j,k≤n). (2)

Then,

Theorem 2. Simple graphs G1 and G2 over n vertices are isomorphic iff either
G1 = G2 = Km∪Dn−m (Dn−m is a collection of n−m isolated vertices) or rings
R1 = Fq[Y1, . . . , Yn]/IG1

(Y1, . . . , Yn) and R2 = Fq[Z1, . . . , Zn]/IG2
(Z1, . . . , Zn)

are isomorphic. Here Fq is a finite field of odd characteristic.3

Proof. If the graphs are isomorphic, then the map φ, φ : R1 7→ R2, φ(Yi) =
Zπ(i), is an isomorphism between the rings where π is an isomorphism mapping

3 The theorem also holds for fields of characteristic two. For such fields though, we
need to change the definition of the ideal IG. It now contains xn+1 · pG, x3

i ’s and
xixjxkxℓ’s and the ring is defined over n + 1 variables. The proof is similar.



G1 to G2. This follows since φ(pG1
(Y1, . . . , Yn)) = pG2

(Z1, . . . , Zn). Conversely,
suppose that G2 is not of the form Km∪Dn−m and the two rings are isomorphic.
Let φ, φ : R1 7→ R2 be an isomorphism. Let

φ(Yi) = αi +
∑

1≤j≤n

βi,jZj +
∑

1≤j<k≤n

γi,j,kZjZk.

Since Y 2
i = 0 in the ring,

0 = φ(Y 2
i ) = φ2(Yi) = α2

i + (higher degree terms).

This gives αi = 0. Again looking at the same equation:

0 = φ(Y 2
i ) = φ2(Yi) = 2

∑

1≤j<k≤n

βi,jβi,kZjZk.

If more than one βi,j is non-zero, then we must have
∑

j,k∈J,j<k βi,jβi,kZjZk

divisible by pG2
(Z1, . . . , Zn) where J is the set of non-zero indices. Since pG2

is
also homogeneous polynomial of degree two, it must be a constant multiple of
the above expression implying that G2 = K|J| ∪Dn−|J|. This is not possible by
assumption. Therefore, at most one βi,j is non-zero. Now suppose that all βi,j ’s
are zero. But then φ(YiYℓ) = 0 which is not possible. Hence, exactly one βi,j is
non-zero for every i.

Define π(i) = j where j is the index with βi,j non-zero. Suppose π(i) = π(ℓ)
for i 6= ℓ. Then, φ(YiYℓ) = 0. Again, this is not possible. Hence π is a permutation
on [1, n]. Now consider φ(pG1

(Y1, . . . , Yn)). It follows that:

0 = φ(pG1
(Y1, . . . , Yn))

=
∑

(i,j)∈E1

φ(Yi)φ(Yj)

=
∑

(i,j)∈E1

βi,π(i)βj,π(j)Zπ(i)Zπ(j)

The last expression must be divisible by pG2
. This gives βi,π(i) = βℓ,π(ℓ) for

all i and ℓ. This implies that the expression is a constant multiple of pG2
, or

equivalently, that G1 is isomorphic to G2. ⊓⊔
Notice that the rings R1 and R2 constructed above have lots of automor-

phisms. For example, Yi 7→ Yi + Y1Y2 is a non-trivial automorphism of R1.
Therefore, automorphisms of graph G1 do not directly correspond to automor-
phisms of the ring R1. In fact, each automorphism of G1 gives rise to at least

pn·((n
2)−1) automorphisms of R1 (this is the number of ways we can add quadratic

terms to the automorphism map).

7 Application: Polynomial Equivalence

Thomas Thierauf [Thi98] analyzed the complexity of polynomial isomorphism
problem where one tests if the two given polynomials, say p and q, become equal



after a permutation of variables of p. He showed that this problem is in NP ∩
coAM and Graph Isomorphism reduces to it. His upper bound proof can easily be
generalized to polynomial equivalence. We first prove a lower bound by showing
that ring isomorphism problem reduces to it.

Theorem 3. Ring isomorphism problem for rings of prime characteristic re-
duces, in polynomial time, to cubic polynomial equivalence.

Proof. For this proof, we adopt the basis representation of rings. Let R and
R′ be two rings with additive basis b1, . . . , bn and d1, . . . , dn respectively and
characteristic p. Multiplication in R is defined as

(∀) i, j, 1 ≤ i, j ≤ n : bi · bj =
n

∑

k=1

ai,j,kbk where ai,j,k ∈ Fp.

Let us define a polynomial which captures the relations defining ring R:

fR(ȳ, b̄) :=
∑

1≤i≤j≤n

yi,j



bibj −
∑

1≤k≤n

ai,j,kbk



 (3)

Similarly, we define fR′ over variables z̄ and d̄.

Let us start off with an easy observation:

Claim 1 If rings R and R′ are isomorphic then fR is equivalent to fR′ .

Proof of Claim. Let φ be an isomorphism from R to R′. Note that φ sends each bi
to a linear combination of d’s and for all i, j, φ(bi)φ(bj)−

∑

1≤k≤n ai,j,kφ(bk) = 0
in R′. This implies that there exist c’s in Fp such that

φ(bi)φ(bj)−
∑

1≤s≤n

ai,j,sφ(bs) =
∑

1≤k≤l≤n

ci,j,k,ℓ



dkdℓ −
∑

1≤s≤n

a′k,ℓ,sds



 .

This immediately suggests that the linear transformation:

bi 7→ φ(bi)
∑

1≤i≤j≤n

ci,j,k,ℓyi,j 7→ zk,ℓ

makes fR equal to fR′ . ⊓⊔

Conversely,

Claim 2 If fR is equivalent to fR′ then R and R′ are isomorphic.



Proof of Claim. Let φ be a linear transformation such that

∑

1≤i≤j≤n

φ(yi,j)



φ(bi)φ(bj)−
∑

1≤k≤n

ai,j,kφ(bk)





=
∑

1≤i≤j≤n

zi,j



didj −
∑

1≤k≤n

a′i,j,kdk



 . (4)

This immediately implies that
∑

1≤i≤j≤n

φ(yi,j)φ(bi)φ(bj) =
∑

1≤i≤j≤n

zi,jdidj . (5)

We intend to show that φ(bi) has no z’s, i.e., φ(bi) is a linear combination of
only d’s. We will be relying on the following property of rhs of equation (5): let
τ be an invertible linear transformation on the z’s then for all 1 ≤ i ≤ j ≤ n the
coefficient of zi,j in

∑

1≤i≤j≤n τ (zi,j)didj is nonzero.
Suppose φ(b1) has z’s:

φ(b1) =
∑

i

c1,idi +
∑

ij

c1,i,jzi,j

We can apply an invertible linear transformation τ on z’s in equation (5) so
that τ :

∑

i,j c1,i,jzi,j 7→ z1,1 and then apply an evaluation map val by fixing
z1,1 ← − (

∑

i c1,idi). So equation (5) becomes:

∑

2≤i≤j≤n

val◦τ ◦φ(yi,jbibj) =
∑

1≤i≤j≤n;i,j 6=1,1

zi,j(quadratic d’s)+(cubic d’s) (6)

We repeat this process of applying invertible linear transformations on z’s and
fixing z’s in equation (6) so that for all 2 ≤ i ≤ j ≤ n, val ◦ τ ◦ φ(yi,jbibj) either
vanishes or is a cubic in d’s. Thus, after 1 +

(

n
2

)

z-fixings the lhs of equation (5)

is a cubic in d’s while the rhs still has
(

n+1
2

)

−
(

n
2

)

− 1 = (n − 1) unfixed z’s,
which is a contradiction.

Since φ(b)’s have no z’s and there are no cubic d’s in rhs of equation (4)
we can ignore the d’s in φ(y)’s. Thus, now φ(y)’s are linear combinations of
z’s and φ(b)’s are linear combinations of d’s. Again looking at equation (4),

this means that
(

φ(bi)φ(bj)−
∑

1≤s≤n ai,j,sφ(bs)
)

is a linear combination of
(

dkdℓ −
∑

1≤s≤n a
′
k,ℓ,sds

)

where 1 ≤ k, ℓ ≤ n. This implies that



φ(bi)φ(bj)−
∑

1≤s≤n

ai,j,sφ(bs)



 = 0

in ring R′. This combined with the fact that φ is an invertible linear transfor-
mation on b̄ means that φ induces an isomorphism from ring R to R′. ⊓⊔



The above two claims complete the proof. ⊓⊔

In the case of Graph Isomorphism, we can reduce the problem to cubic form
equivalence.

Theorem 4. Graph Isomorphism reduces in polynomial time to cubic form equiv-
alence.

Proof. Suppose we are given two graphs G1 and G2 and we have rings R1

and R2 as in the proof of Theorem 2. To simplify matters suppose (i0, j0) ∈
E(G1), E(G2). We fix an additive basis {1, b1, . . . , bm} of the ring R1 over Fp

such that

b1 = Y1, . . . , bn = Yn, {bn+1, . . . , bm} = {YiYj}1≤i<j≤n \ {Yi0Yj0}. (7)

Note that m =
(

n+1
2

)

− 1 and that {b1, . . . , bm} is an additive basis of the

maximal ideal M (M′) of local ring R1 (R2). Also, bibj = 0 except for
(

n
2

)

unordered tuples (i, j).

As local rings are isomorphic iff their maximal ideals are isomorphic [McD74],
we focus on M and M′. So let us construct homogeneous cubic polynomials
capturing the relations in M,M′. These polynomials are similar to the ones
seen in the proof of Theorem 3:

fM(u, ȳ, b̄) =
∑

1≤i≤j≤m

yi,j



bibj − u
∑

1≤k≤m

ai,j,kbk



 + u3

fM′(v, z̄, d̄) =
∑

1≤i≤j≤m

zi,j



didj − v
∑

1≤k≤m

a′i,j,kdk



 + v3

where, ai,j,k, a
′
i,j,k ∈ {−1, 0, 1} are given by the definition of ideal IG and b’s in

equations (2) and (7).

Let us start off with the easier side:

Claim 3 If G1 is isomorphic to G2 then fM is equivalent to fM′ .

Proof of Claim. If G1 is isomorphic to G2 then by Theorem 2, R1 is isomorphic
to R2 which meansM is isomorphic toM′. Now by sending u 7→ v and following
the proof of claim 1, we deduce fM is equivalent to fM′ . ⊓⊔

Conversely,

Claim 4 If fM is equivalent to fM′ then G1 is isomorphic to G2.



Proof of Claim. We will try to show that if fM is equivalent to fM′ then M is
isomorphic toM′, which when combined with Theorem 2 means that the graphs
are isomorphic.

Suppose φ is an invertible linear transformation on (u, ȳ, b̄) such that:

∑

1≤i≤j≤m

φ(yi,j)



φ(bi)φ(bj)− φ(u)
∑

1≤k≤m

ai,j,kφ(bk)



 + φ(u)3

=
∑

1≤i≤j≤m

zi,j



didj − v
∑

1≤k≤n

a′i,j,kdk



 + v3. (8)

The main idea again is to show that φ(bi) is a linear combination of d’s and the
proof is very similar to the one above.

Suppose φ(b1) has z’s:

φ(b1) = c1,vv +
∑

i

c1,idi +
∑

i,j

c1,i,jzi,j .

As before, We apply an invertible linear transformation τ on z’s in equation (8)
so that τ :

∑

i,j c1,i,jzi,j 7→ z1,1 and then apply an evaluation map val by fixing
z1,1 ← − (c1,vv +

∑

i c1,idi). So equation (8) becomes:

∑

2≤i≤j≤m

val◦τ◦φ(yi,jbibj)−
∑

1≤i≤j≤m

val◦τ◦φ



uyi,j

∑

1≤k≤m

ai,j,kbk



+val◦τ◦φ(u)3

=
∑

1≤i≤j≤m;i,j 6=1,1

zi,j ((quadratic d’s)− v(linear d’s)) + (cubic in v, d’s). (9)

Note that now on the lhs of the equation (9) there are at most
(

m
2

)

terms of the

form val ◦ τ ◦φ(yi,jbibj). And since except for
(

n
2

)

pairs (i, j), the product bibj is

zero, there are at most
(

n
2

)

terms of the form val ◦ τ ◦φ
(

uyi,j

∑

1≤k≤m ai,j,kbk

)

.

We repeat this process of applying invertible linear transformations on z’s and
fixing z’s in equation (9) so that the expressions val ◦ τ ◦ φ(yi,jbibj) for 2 ≤ i ≤
j ≤ m, val ◦ τ ◦ φ

(

uyi,j

∑

1≤k≤m ai,j,kbk

)

for 1 ≤ i ≤ j ≤ m, and val ◦ τ ◦ φ(u)3

either vanish or are cubics in v and d’s. Thus, after at most 1 +
(

m
2

)

+
(

n
2

)

+ 1
z-fixings the lhs of equation (8) is a cubic in v and d’s while the rhs still has
(

m+1
2

)

−
(

m
2

)

−
(

n
2

)

− 2 = m−
(

n
2

)

− 2 =
(

n+1
2

)

− 1−
(

n
2

)

− 2 = n− 3 > 0 unfixed
z’s, which is a contradiction.

So φ(bi)’s have no z’s. Now if φ(u) has zi,j then there is a nonzero coefficient
of z3

i,j on the lhs of equation (8) while z3
i,j does not appear on the rhs. Thus,

even φ(u) has no z’s. Looking at equation (8) we deduce that all the z’s on the
lhs occur in φ(y)’s. So we can apply a suitable invertible linear transformation
τ on the z’s such that for all 1 ≤ i ≤ j ≤ m:

τ ◦ φ(yi,j) = zi,j +
∑

1≤k≤m

ci,j,kdk + ci,j,vv,



and then equation (8) simply looks like:

∑

1≤i≤j≤m

zi,j



φ(bi)φ(bj)− φ(u)
∑

1≤k≤m

ai,j,kφ(bk)



 + (cubic in v, d’s)

=
∑

1≤i≤j≤m

zi,j((quadratic d’s)− v(linear d’s)) + v3.

Therefore,

∑

1≤i≤j≤m

zi,j



φ(bi)φ(bj)− φ(u)
∑

1≤k≤m

ai,j,kφ(bk)





=
∑

1≤i≤j≤m

zi,j((quad d’s)− v(linear d’s)). (10)

Let us compare the coefficients of zi,i in equation (10):

φ(bi)
2 = (quadratic d’s)− v(linear d’s).

This clearly rules out φ(bi) having a nonzero coefficient of v. Thus, φ(bi)’s are lin-
ear combinations of d’s. Since we have obtained equation (10) from equation (8)
by applying invertible linear transformation on z’s, there has to be a nonzero
v coefficient in the rhs and hence in the lhs of equation (10). Thus, φ(u) has a
nonzero v coefficient. Say, for some cu,v 6= 0:

φ(u) = cu,vv +
∑

1≤k≤m

cu,kdk.

For any 1 ≤ i ≤ j ≤ m, by comparing coefficients of zi,j in equation (10) we get
that there exist elements ei,j,k,ℓ ∈ Fp such that:

φ(bi)φ(bj)−



cu,vv +
∑

1≤s≤m

cu,sds





∑

1≤s≤m

ai,j,sφ(bs)

=
∑

1≤k≤ℓ≤m

ei,j,k,ℓ



dkdℓ − v
∑

1≤s≤m

a′k,l,sds



 .

By fixing v = 1 this actually means that in the ring M′:

φ(bi)φ(bj) =



cu,v +
∑

1≤s≤m

cu,sds





∑

1≤s≤m

ai,j,sφ(bs). (11)



Notice that there is an inverse of the expression
(

cu,v +
∑

1≤s≤m cu,sds

)

in the

ring R2 that looks like:



cu,v +
∑

1≤s≤m

cu,sds





−1

=



c−1
u,v +

∑

1≤s≤m

c′u,sds



 . (12)

Since the product of any three terms inM′ vanishes, we get the following when
we multiply both sides of equation (11) by the inverse (12) inM′:

c−1
u,vφ(bi)φ(bj) =

∑

1≤s≤m

ai,j,sφ(bs)

⇒ φ(bi)

cu,v

φ(bj)

cu,v
=

∑

1≤s≤m

ai,j,s
φ(bs)

cu,v
.

In other words, this means that bi 7→ φ(bi)
cu,v

is an isomorphism from M→M′.
⊓⊔

This completes the reduction from graph isomorphism to cubic form equiv-
alence. ⊓⊔

Polynomial equivalence for homogeneous constant degree polynomials effi-
ciently reduces to ring isomorphism for certain degrees.

Theorem 5. Polynomial equivalence for homogeneous degree d polynomials over
field Fq with (d, q − 1) = 1 reduces, in time nO(d), to ring isomorphism.

Proof. Let p and q be two homogeneous degree d polynomials over field Fq with
n variables. Define rings Rp and Rq as:

Rp = Fq[Ȳ ]/(p(Ȳ ), {Yj1Yj2 · · ·Yjd+1
}1≤j1,j2,...,jd+1≤n)

Rq = Fq[Z̄]/(q(Z̄), {Zj1Zj2 · · ·Zjd+1
}1≤j1,j2,...,jd+1≤n).

It is easy to see that if p and q are equivalent, then Rp and Rq are isomorphic.
The converse is also not difficult. Let φ be an isomorphism from Rp to Rq.

Let

φ(Yi) = αi +

n
∑

j=1

βi,jZj + (higher degree terms). (13)

The fact φd+1(Yi) = 0 implies that αi = 0. Let ψ(Yi) =
∑n

j=1 βi,jZj , i.e., the
linear component of φ. We show that ψ is (almost) an equivalence between p
and q.

First of all, ψ is an invertible linear transformation. This is because for every
j, there exists a polynomial rj such that φ(rj(Ȳ )) = Zj (using the fact that φ
is an isomorphism). Let rL

j be the linear part of rj . Then, φ(rL
j (Ȳ )) = Zj +

(higher degree terms). It follows that ψ(rL
j (Ȳ )) = Zj .



Now consider the polynomial p. We have

φ(p(Ȳ )) ∈ (q(Z̄), {Zj1Zj2 · · ·Zjd+1
}1≤j1,j2,...,jd+1≤n).

Of the polynomials defining the ideal in above equation, only q is of degree d.
Hence the degree d part of φ(p(Ȳ )) must be divisible by q(Z̄). In other words,
ψ(p(Ȳ )) is divisible by q(Z̄). Since both p and q have the same degree, this
means ψ(p(Ȳ )) = c · q(Z̄) for c ∈ Fq. Since (d, q − 1) = 1, there exists an e ∈ Fq

with ed = c. Therefore, the map 1
eψ is an equivalence. ⊓⊔

The restriction on degree in the above theorem, (d, q − 1) = 1, appears
necessary. For example, consider polynomials x2 and ax2 over field Fq with a
being a quadratic non-residue. These two polynomials are not equivalent while
the rings defined by them, Fq[Y ]/(Y 2) and Fq[Y ]/(aY 2) are equal.

8 Open Questions

We have listed a number of useful applications of automorphisms and isomor-
phisms of finite rings in complexity theory. Our list is by no means exhaustive,
but should convince the reader about the importance of these. We pose a few
questions that we would like to see an answer of:

– It is not clear if automorphisms play a role in some important algebraic
problems, e.g., discrete log. This problem can easily be viewed as that of
finding a certain kind of automorphism in a group, however, we do not know
any connections to ring automorphisms.

– Nearly all the effort in integer factoring has been concentrated towards find-
ing automorphism in the ring Zn[Y ]/(Y 2 − 1). Is there another ring where
this problem might be “easier”? Can some of the other formulations of [KS04]
be used for factoring?

– Theorems 2 and 4 together show that Graph Isomorphism reduces to equiv-
alence of cubic forms over fields of any characteristic. Can the theory of
cubic forms (over complex numbers) be used to find a subexponential time
algorithm for Graph Isomorphism?

– It appears likely that ring isomorphism problem reduces to equivalence of
cubic forms, but we have not been able to find a proof.

– It appears likely that equivalence of constant degree polynomials reduces to
ring isomorphism at least when (d, q − 1) = 1. However, we have been able
to prove it only for homogeneous polynomials.
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