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Abstract

For a univariate polynomial f, a sum-of-squares representation (SOS) has the form

f =
∑

i2[s] cif
2
i , where ci's are �eld elements and the fi's are polynomials. The size of

the representation is the number of monomials that appear across the fi's. Its minimum

is the support-sum S(f) of f.

For a polynomial f of degree d of full support, a lower bound for the support-sum is

S(f) �
p
d. We show that the existence of an explicit polynomial f with support-sum

just slightly larger than the lower bound, that is, S(f) � d0.5+ε(d), for a sub-constant

function ε(d) > ω(
p

log logd/ logd), implies that VP 6= VNP. The latter is the major

open problem in algebraic complexity.

We also consider the sum-of-cubes representation (SOC) of polynomials. In a similar

way, we show that an explicit hard polynomial even implies that blackbox-PIT is in P.
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1 Introduction

The sum-of-squares representation (SOS) is one of the most fundamental in number the-

ory and algebra. Lagrange's four-squares theorem inspired generations of mathematicians

[Ram17]. Hilbert's 17th problem asks whether a multivariate polynomial, that takes only

non-negative values over the reals, can be represented as an SOS of rational functions [P�76].

In engineering, SOS has found many applications in approximation, optimization and control

theory, see [Rez78, Las07, Lau09, BM16]. In this work, we show a connection to central

complexity questions.

1.1 Algebraic circuits and univariate polynomials

Valiant de�ned the algebraic complexity classes VP and VNP based on algebraic circuits.

They are considered as the algebraic analog of boolean classes P and NP. Separating VP

from VNP is a long-standing open problem. One of the popular ways has been via depth-

reduction results [AV08, Koi12, GKKS13, Tav15]. It seems that showing strong lower bounds

require a deeper understanding of the algebraic-combinatorial structure of circuits, which

may be easier to unfold for more analytic models that appear in wider mathematics.

It is known that most of the polynomials of degree d are hard, i.e. they require Ω(d) size

circuits (see [CKW11, Theorem 4.2])1. For example, for pi being the i-th prime,
∑d
i=0

p
pi x

i

and
∑d
i=0 2

2ixi both require circuits of size Ω (d/ logd) (see [BCS13, Str74]). Such polyno-

mials can be transformed into multivariate polynomials that require exponential size circuits,

i.e. they are exponentially hard. Unfortunately, these strong lower bounds are insu�cient to

separate VP and VNP because the polynomials may not be in VNP (see [HS80b, B�ur13] for

details). The problem is, that the coe�cients of the polynomials seem to be hard to compute,

i.e., the polynomials are not explicit, a notion de�ned in the next section.

1The size-bound in the literature usually counted only the number of nodes in the circuit, which gives

a Ω(
p
d) bound. When counting also the edges, the size is Ω(d).
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The interplay between proving lower bounds and derandomization is one of the central

themes in complexity theory [NW94]. Blackbox Polynomial Identity Testing (PIT) asks

for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

It is still an open problem to design an e�cient deterministic PIT algorithm. However,

since a non-zero polynomial evaluated at a random point is non-zero with high probability

(by the Polynomial Identity Lemma [Ore22, DL78, Zip79, Sch80]), one gets a randomized

polynomial-time algorithm for PIT.

One important direction, from hardness to derandomization, is to design deterministic

PIT algorithms for small circuits assuming access to explicit hard polynomials [NW94, KI04].

Most of the constructions use the concept of a hitting-set generator (HSG), see De�ni-

tion 2.3. Very recent work discovered that PIT is amenable to the phenomenon of boot-

strapping (w.r.t. variables) [AGS19, KST19]. Finally, Guo et al. [GKSS19] showed: ample

circuit-hardness of constant -variate polynomials implies blackbox-PIT in P.

1.2 Sum-of-squares model (SOS)

We give some background on sum-of-square representation, give some examples, and de�ne

our hardness condition. We �rst de�ne the model and a complexity measure.

Definition 1.1 (SOS and support-sum size SR(f)). Let R be a ring. An n-variate polyno-

mial f(x) 2 R[x] is represented as a (weighted) sum-of-squares (SOS), if

f =
s∑
i=1

cif
2
i , (1)

for some top-fanin s, where fi(x) 2 R[x] and ci 2 R.
The size of the representation of f in (1) is the support-sum, the sum of the support

size (or sparsity) of the polynomials fi. The support-sum size of f, is de�ned as the

minimum support-sum of f, denoted by SR(f), or simply S(f), when the ring R is clear

from the context.

Remark. In real analysis, the SOS representation of a polynomial is de�ned without the

coe�cients ci, that is, only for non-negative polynomials f. In these terms, what we de�ne

in (1) is a weighted SOS. However, we will skip the term \weighted" in the following.

If we consider the expression in (1) as a
∑V2∑∏

-formula, then the support-sum is the

number of
∏
-operations directly above the input level.

For any N-variate polynomial f, let sp(f) denote the sparsity of f. For any �eld R = F of

characteristic 6= 2, we have
sp(f)1/2 � SF(f) � 2 sp(f) + 2 .

The lower bound can be shown by counting monomials. The upper bound is because

f = (f+ 1)2/4− (f− 1)2/4 . (2)

In particular, when f is univariate and has full sparsity, sp(f) = d+ 1, we get
p
d � S(f) � 2d+ 2 . (3)
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By (2), the SOS-model is complete for any �eld of characteristic 6= 2. It can be argued

by a geometric-dimension argument that for most N-variate (constant N � 1) polynomials f

of degree d, we have SF(f(x)) = Θ(d
N), as for random f, we know that sp(f) = Θ(dN). Note

that this matches the upper bound given in (3) for univariate f.

We give two examples.

Example 1. Let f(x) =
∑d−1
k=0 x

k. Note that

d−1∑
k=0

xk =

0@p
d−1∑
k=0

xk

1A 0@p
d−1∑
k=0

xk
p
d

1A .

Hence, we have a representation of f as f = gh, where sp(g), sp(h) � p
d. Such a product

can be written as a SOS,

gh =
(g+ h)2

4
−

(g− h)2

4
(4)

Because sp(g� h) � 2pd we get that S(f) � 4pd.
Observe that S(f) essentially hits the lower bound in (3), except for a constant factor.

Example 2. Let f(x) = (x+ 1)d. This has a trivial SOS-representation with one summand:

(x+ 1)d =
�
(x+ 1)d/2

�2
, for even d. So we get S(f) � d/2+ 1.

Note that this bound meets the upper bound in (3), except for a constant factor. We

conjecture that it is optimal, i.e. that S(f) = Ω(d). This is somewhat in contrast to that f

has small circuits. By repeated squaring, the circuit size of fd is O(logd).

We call a polynomial family SOS-hard, if its support-sum is just slightly larger than

the trivial lower bound from (3). For our results, it actually su�ces to consider univariate

polynomials.

Definition 1.2 (SOS-hardness). A polynomial family (fd(x))d is SOS-hard with hardness ε,

if S(fd) = Ω(d0.5+ε).

Main results. Our main results with respect to SOS-representation show that the existence

of explicit SOS-hard families of polynomials imply circuit lower bounds. The precise bounds

depend on the size of ε:

1. For ε = ω(1/
p
logd), we show that the permanent cannot be computed by small ABPs,

i.e., VBP 6= VNP (Corollary 3.6).

2. For ε = ω(
p
log logd/ logd) we show that the permanent cannot be computed by small

circuits, i.e., VP 6= VNP (Theorem 3.2).

3. For ε > 0 constant, we show that the permanent requires exponential size circuits, i.e.,

we have an exponential separation of VP and VNP (Theorem 4.2).

The technical foundation for these results are SOS-decompositions for circuits (Lemma 3.1

and 3.8) that are based on the known depth-reductions techniques. We show how to express

a polynomial p(x) of degree d, given by a circuit of size s, as a sum of squares
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• of quasi-poly(d, s)many polynomials, each of degree at most d/2, in case of Lemma 3.1,

and

• of poly(s) many polynomials, each of degree close to d/2, in case of Lemma 3.8.

Hence, by our results, the major challenge in arithmetic complexity, to separate VP

from VNP, can be solved by exhibiting an explicit univariate polynomial family fd(x) 2 C[x]
of degree d with SOS-hardness parameter ε, just slightly above the general lower bound, even

for vanishing small ε = ε(d).

This would also have consequences for PIT, because Kabanets and Impagliazzo [KI04,

Theorem 7.7] showed that VP 6= VNP implies blackbox-PIT 2 SUBEXP. In the case of

constant ε, where we have an exponential separation of VP and VNP, we get blackbox-PIT

2 QP (quasi -polynomial time).

1.3 Sum-of-cubes model (SOC)

It is not clear whether a strong lower bound in the SOS-model can give a polynomial-time

blackbox-PIT. However, a di�erent complexity measure on the sum-of-cube representation of

polynomials indeed leads to a complete derandomization of blackbox-PIT. So, we start by

de�ning the model and give some background on it.

Definition 1.3 (SOC and support-union size UR(f, s)). Let R be a ring. An n-variate

polynomial f(x) 2 R[x] is represented as a sum-of-cubes (SOC), if

f =
s∑
i=1

cif
3
i , (5)

for some top-fanin s, where fi(x) 2 R[x] and ci 2 R.
The size of the representation of f in (5) is the size of the support-union, namely

the number of distinct monomials in the representation,
�� Ss

i=1 supp(fi)
��, where support

supp(fi) denotes the set of monomials with a nonzero coe�cient in fi(x). The support-

union size of f with respect to s, denoted UR(f, s), is de�ned as the minimum support-

union size when f is written as in (5).

If we consider the expression in (5) as a
∑V3∑∏

-circuit, then the support-union size

is the number of distinct
∏
-operations directly above the input level.

The two measures{ support-union and support-sum {are largely incomparable, since U(�)
has the extra argument s. Still one can show: SF(f) � mins (UF(f, 4s) − 1) (Lemma 6.9).

For any polynomial f of sparsity sp(f), we have

sp(f)1/3 � UF(f, s) � sp(f) + 1,

where the upper bound is for s � 3 and for �elds R = F of characteristic 6= 2, 3. The lower

bound can be shown by counting monomials. The upper bound is because

f = (f+ 2)3/24+ (f− 2)3/24− f3/12 .

Hence, the SOC-model is complete for any �eld of characteristic 6= 2, 3.
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In particular, when f is univariate and has full sparsity, sp(f) = d+ 1, we get

d1/3 � UF(f, s) � d+ 1 .

More bounds and examples for the trade-o� between s and the measure U(f, s) can be found

in Section 6. Here, we summarize:

Example 3. 1. For small s = Θ(d1/2), we have U(f, s) = O(d1/2) (Corollary 6.6).

2. For large s = Ω(d2/3), we have U(f, s) = Θ(d1/3) (Theorem 6.8).

However, it is unclear whether it is possible to have a very small fanin s, like s = o(
p
d),

and at the same time a support-union of o(d). This motivated us to de�ne the hardness of

univariate polynomials in the SOC-model as follows.

Definition 1.4 (SOC-hardness). A polynomial family (fd(x))d is SOC-hard, if there is a

constant 0 < ε < 1/2 such that UF (fd, d
ε) = Ω(d).

Main results. Our main result with respect to SOC-representation shows that the exis-

tence of an explicit SOC-hard family of polynomials leads to a complete derandomization of

blackbox-PIT (Theorem 4.2). From this, also the separation of VP and VNP follows.

The technical basis for our result is again a decomposition lemma (Lemma 4.1), an ex-

tension of Lemma 3.8. It shows how to express a polynomial p(x) of degree d, given by a

circuit of size s, as a sum of cubes of poly(s) many polynomials, each of degree close to d/3.

1.4 SOS (and SOC)-hardness and Geometric Complexity Theory (GCT)

In computer science, the notion of approximative complexity emerged in the context of ten-

sors for matrix multiplication, i.e. the notion of border rank; see [LL89, BCS13] and ref-

erences therein. B�urgisser [B�ur04] used this concept in the context of arithmetic circuits.

Approximative closure of algebraic complexity classes is of great interest in the GCT pro-

gram [MS01, MS08, GMQ16, Mul17], which aims to study the symmetries of di�erent actions

of groups on algebraic varieties, and settle a stronger version of the permanent vs. deter-

minant problem. The SOS- and SOC-hardness, de�ned above, can also be extended in the

border or approximative complexity-theoretic sense, which would eventually strengthen the

lower bound and PIT consequences. For formal de�nitions and related results in the GCT

paradigm, we refer to Section 5.

1.5 Small SOS- and SOC-representations

In Section 6, we study small representations of a generic univariate polynomial. Eventually

we show that every univariate d-degree polynomial can be optimally represented as a sum of

powers, where the measure is support-union, see Theorem 6.1. However, our construction re-

quires the top-fanin to be large. Subsequently, we show a nice trade-o� between the top-fanin

and support-union size, for both SOS- and SOC-representations; for details see Theorem 6.4

and 6.8. The algorithmic essence of these constructions make the trade-o� very interesting.
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1.6 Comparison with prior works

SOS to non-commutative hardness. Hrube�s, Wigderson, and Yehudayo� [HWY11] con-

sidered the sum-of-squares representation in the non-commutative setting. They showed that

lower bounds for the SOS-representation of a speci�c multivariate polynomial imply exponen-

tial lower bounds on the circuit size of the permanent. Besides the non-commutative algebra,

their setting di�ers in the precise SOS-model and the complexity measure. So, hardly any

comparison is possible.

Depth-4 circuits with unbounded powering. Much of the previous works are concerned

with multivariate depth-4 circuits that are a sum of unbounded-powers, i.e.,
∑Vω(1)∑∏

-

circuits, because this is the form one gets after applying the depth-reduction results [AV08,

Koi12, GKKS13, AGS19]. The su�ciency of proving lower bound on restricted models of

univariate polynomials was shown by Koiran [Koi11]. He considered univariate explicit

polynomials fd of degree d over an algebraically closed �eld F that are written as

fd(x) =
s∑
i=1

ciQ
ei
i (x) ,

where ci 2 F, and Qi are polynomials with sparsity sp(Qi) � t with unbounded exponents

ei � 1. He showed that when every such presentation of fd requires s =
�
d
t

�Ω(1)
summands,

then VP 6= VNP.

Some initial lower bounds have been established for this model.

• When deg(Qi) � t, there is a family such that s � Ω(
p
d/t) [KKPS15].

• For deg(Qi) � 1, the bound s � Ω(d) has been established for certain polynomials

using the concept of Birkho� Interpolation [GMK17, KPGM18].

Clearly, allowing arbitrary exponents gives much more 
exibility than �xed exponents as

in SOS and SOC. In that sense, it should be easier to obtain lower bounds in the SOS- or

SOC-model. Also the complexity measure is di�erent, as Koiran considers the number of

summands, whereas we consider the support-sum.

Existence of (r, 2)-elusive function vs. SOS-hardness. Raz [Raz10] formalized a notion

of elusive maps and established a connection between the existence of explicit elusive maps

and VP vs. VNP. A polynomial map L : Fn → Fm is (r, 2)-elusive, if for every polynomial of

degree 2 that maps M : Fr → Fm, we have Image(L) 6� Image(M). Formally, he showed that

any explicit polynomial map which is (r, 2)-elusive, with m = nω(1) and r = n0.9, implies

VP 6= VNP.

Observe that one can reinterpret the coe�cients of the f 2i 's in Equation (1) as expressing

coef(f) via quadratic forms, like M. However, the elusiveness notion is too general in the

following sense: the parameters r and m have a super-polynomial large gap, and still M has

to elude all L. On the other hand, SOS-hardness, say for N = 1, goes a step further and

optimizes the gap to be vanishingly close to square. Further, SOS gives a rather specialized

degree-2 polynomial mapping.
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From hardness to derandomization. With respect to the derandomization of blackbox-

PIT, there are a few conditional results. For example, it has been shown that multivariate

hard polynomials lead to blackbox-PIT 2 QP (quasi-poly time) [KI04, AGS19]. Closer to

our result is the work of Guo et al. [GKSS19]. They showed that the circuit hardness of

a constant-variate polynomial family yields blackbox-PIT 2 P (Theorem 2.4). Still, our

hardness assumption is merely in the SOC-model and for univariate polynomials. For now,

SOC seems to be the simplest model where hardness implies a complete derandomization.

2 Preliminaries

Basic notation. We work with �elds F = Q,Qp, or their �xed extensions. Our results hold

also for �elds with large enough characteristic.

We denote [n] = {1, . . . , n}. For i 2 N and b � 2, we denote by baseb(i) the unique k-tuple
(i1, . . . , ik) such that i =

∑k
j=1 ij � bj−1.

For binomial coe�cients, we use the following well known bounds. For 1 � k � n,�
n

k

�k
�
 
n

k

!
�
�
en

k

�k
. (6)

Polynomials. For p 2 F[x], where x = (x1, . . . , xm), for some m � 1, the support of p,

denoted by supp(p), is the set of nonzero monomials in p. The sparsity or support size of p

is sp(p) := |supp(p)|. If p is m-variate of degree d, its sparsity is bounded by

sp(p) �
 
m+ d

d

!
. (7)

By coef(p) we denote the coe�cient vector of p (in some �xed order).

For an exponent vector e = (e1, . . . , em), we use xe to denote the monomial xe11 � � � xemm .

For a polynomial p(x,y) 2 F[x,y], the x-degree of p, denoted by degx(p), is the maximum

degree of x in p. That is, for p(x,y) =
∑

e pe(x)y
e, we de�ne degx(p) = maxe deg(pe(x)).

Kronecker map and its inverse. The Kronecker substitution is a bijective map between

univariate and multivariate polynomials. We de�ne two variants: The �rst one is the standard

one, the second one is a multilinear version of it. In our application, we consider the sparsity

of the polynomials. There it seems as the standard Kronecker substitution does not yield the

bounds we need. Let p(x) be a univariate polynomial of degree d.

1) Standard Kronecker substitution. Let k and n be such that n = d(d + 1)1/ke − 1.
Introduce k variables x = (x1, . . . , xk). De�ne the Kronecker map φk,n by

φn,k : x
i 7→ xbasen+1(i) , (8)

for all i 2 [d]. By linear extension, de�ne polynomial Pn,k = φn,k(p). Note that φk,d maps

each xi to a distinct k-variate monomial of individual degree � n, for 0 � i � d.
Next, we consider the inverse map. Let P(x1, . . . , xk) be a polynomial, where the variables

have individual degree bounded by n. De�ne ψn,k by

ψn,k : xi 7→ x(n+1)
i−1

,
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for 0 � i � k, and ψn,k(P) by linear extension. Note that the degree of ψn,k(P) is bounded

by
∑k
i=1 n(n+ 1)i−1 = (n+ 1)k − 1 [Kro82]. Also, we have ψn,k � φn,k(p) = p.

2) Multilinear Kronecker substitution. Here, we choose k and n such that (k − 1)n �
d + 1 � kn. Introduce kn variables yj,`, where 1 � j � n and 0 � ` � k − 1. For every

i = 0, 1, . . . d, write i in base-k representation, basek(i) = (i1, . . . , in). De�ne the injective

map φlin
n,k by

φlin
n,k : x

i 7→ n∏
j=1

yj,ij . (9)

By linear extension, de�ne polynomial Pn,k = φ
lin
n,k(p). Note that Pn,k is a kn-variate multi-

linear polynomial of degree n.

Mapping φlin
n,k can be inverted by ψlin

n,k,

ψlin
n,k : yj,` 7→ x`�k

j−1

. (10)

Again by linear extension, we have ψlin
n,k � φlin

n,k(p) = p.

It is also important to note that the sparsity of the polynomials stays the same, for the

standard and the multilinear Kronecker map and their inverses.

Algebraic circuits. An algebraic circuit over a �eld F is a layered directed acyclic graph

that uses �eld operations {+,�} and computes a polynomial. It can be thought of as an

algebraic analog of boolean circuits. The leaf nodes are labeled with the input variables

x1, . . . , xn and constants from F. Other nodes are labeled as addition and multiplication

gates. The root node outputs the polynomial computed by the circuit.

Complexity parameters of a circuit are: 1) size, i.e. the number of edges and nodes, 2)

depth, i.e. the number of layers, 3) fan-in and fan-out, i.e. the maximum number of inputs

to, respectively, outputs of a node.

When the graph is in fact a tree, i.e., the fan-out is 1, we call the circuit an algebraic

formula.

For a polynomial f, the size of the smallest circuit that computes f is denoted by size(f),

it is the algebraic circuit complexity of f. By C(n, d, s), we denote the set of circuits C that

compute n-variate polynomials of degree d such that size(C) � s.

Algebraic complexity classes. Valiant's class VP contains the families of n-variate poly-

nomials of degree poly(n) over F, computed by circuits of size poly(n). A family of n-variate

polynomials (fn)n over F is in VNP, if there exists a family of polynomials (gn)n 2 VP

such that for every x = (x1, . . . , xn) one can write fn(x) =
∑
w2{0,1}t(n) gn(x, w), for some

polynomial t(n) which is called the witness size. It is straightforward to see that VP �
VNP and conjectured to be di�erent (Valiant's Hypothesis [Val79]). For more details see

[Mah14, SY10, BCS13]. Unless speci�ed otherwise, we consider the �eld F = Q (resp. a �nite

�eld with large characteristic).

Valiant [Val79] showed a su�cient condition for a polynomial family (fn(x))n to be

in VNP. We use a slightly modi�ed version of the criterion and formulate it only for multi-

linear polynomials.
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Theorem 2.1 (VNP criterion, [Val79], see also[B�ur13]). Let fn(x) =
∑

e2{0,1}n cn(e) x
e be a

polynomial family such that the coe�cients cn(e) have length � n in binary. Then

cn(e) 2 #P/poly =⇒ fn 2 VNP.

One can further relax Theorem 2.1 such that the coe�cients cn(e) can actually be 2n

bits long. Koiran and Perifel [KP11, Lem. 3.2] used a similar idea. We also use the fact that

VNP is closed under substitution. That is, for a family of polynomials (f(x,y)) 2 VNP, it

also holds that (f(x,y0)) 2 VNP, for any value y0 2 Fn assigned to the variables in y.

Theorem 2.2. Let fn(x) =
∑

e2{0,1}n cn(e) x
e be a polynomial family such that the co-

e�cients cn(e) have length � 2n in binary. Let cn,j(e) be the j-th bit of cn(e). Then

cn,j(e) 2 #P/poly =⇒ fn 2 VNP.

Proof. For j 2 {0, 1, . . . , 2n−1} let bin(j) = (j1, . . . , jn) denote the n-bit base-2 representation

of j such that j =
∑n
i=1 ji 2

i−1. Introduce new variables y = (y1, . . . , yn) and de�ne ~cn(e,y) =∑2n−1
j=0 cn,j(e)y

bin(j). Let y0 = (22
0
, . . . , 22

n−1
). Then we have ~cn(e,y0) = cn(e). Finally,

consider the 2n-variate auxiliary polynomial hn(x,y).

hn(x,y) =
∑

e2{0,1}n
~cn(e,y) x

e =
∑

e2{0,1}n

2n−1∑
j=0

cn,j(e)y
bin(j) xe .

Then we have hn(x,y0) = fn(x). Since cn,j(e) can be computed in #P/poly, we have

(hn(x,y))n 2 VNP. As VNP is closed under substitution, it follows that (fn(x))n 2 VNP.

Explicit univariate polynomials. We will consider univariate polynomials and de�ne

associated multivariate polynomials via Kronecker maps. We want all of these polynomials

to be in VNP. For this, we use Theorem 2.2.

Let (fd)d be a univariate polynomial family, where fd(x) is of degree d. The family is

called explicit, if its coe�cient-function is computable in #P/poly and each coe�cient can

be at most poly(d)-bits long. The coe�cient-function gets input (j, i, d) and outputs the j-th

bit of the coe�cient of xi in fd.

An explicit candidate for the hard family is the Pochhammer-Wilkinson polynomial,

fd(x) :=
∏d
i=1(x−i). Other explicit families are (x+1)d and the Chebyshev polynomial (that

writes cosdθ as a function of cosθ) [MH02], and also
∑
i2[d] 2

i2xi.

Hitting-set generators and blackbox-PIT from lower bounds. The technical tool to

solve blackbox-PIT is to construct an e�cient hitting-set generator.

Definition 2.3 (Hitting-set generator (HSG)). A polynomial map G : Fk → Fn given by

G(z) = (g1(z), g2(z), . . . , gn(z)) is a hitting-set generator (HSG) for a class C � F[x] of

polynomials, if for every nonzero f 2 C, we have that f �G = f(g1, g2, . . . , gn) is nonzero.

We say that G is t-time HSG, if coef(gi) can be computed in time t and the maximum

degree of gi is � t.
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Given a HSG, one can construct a hitting-set, a set H such that a non-zero circuit is

non-zero at some points in H. Crucial here is the size of H which depends on the parameters

of the HSG. A t-time HSG G gives a (td)O(k) time blackbox-PIT algorithm, for circuits that

compute polynomials of degree � d, over popular �elds like rationals Q or their extensions,

local �elds Qp or their extensions, or �nite �elds Fq. When k is constant, we get a poly-time

blackbox-PIT.

Very recently, Guo et al. [GKSS19] showed how to use the hardness of a constant variate

explicit polynomial family to derandomize PIT. They need the algebraic circuit hardness to

be more than d3; which requires k � 4 for the family to exist.

Theorem 2.4. [GKSS19] Let P 2 F[x] be a k-variate polynomial of degree d such that

coef(P) can be computed in poly(d)-time. If size(P) > s10k+2 d3, then there is a poly(s)-

time HSG for C(s, s, s).

Algebraic branching programs (ABP). An algebraic branching program (ABP) in

variables x over a �eld F is a directed acyclic graph with a starting vertex s with in-degree

zero, an end vertex t with out-degree zero. The edge between any two vertices is labeled by

an a�ne form a1x1 + . . .+ anxn + c 2 F[x], where ai, c 2 F.
The weight of a path in an ABP is the product of labels of the edges in the path. The

polynomial computed at a vertex v is the sum of weights of all paths from the starting

vertex s to v. The polynomial computed by the ABP is the polynomial computed at the

end vertex t.

An ABP can be seen as a very restricted circuit, but still being able to compute deter-

minants [MV99]. The class VBP contains all families of n-variate polynomials that can be

computed by ABPs of size poly(n). This implies that the degree is poly(n) too. Clearly,

VBP � VP.

We say that an ABP is homogeneous, if the polynomial computed at every vertex is a

homogeneous polynomial. It is known that for an ABP B of size s that computes a homo-

geneous polynomial p(x), there is an equivalent homogeneous ABP B 0 of size poly(s), where

each edge-label is a linear form a1x1 + � � �+ anxn. Moreover, when p has degree d, then B 0

has d + 1 layers and each vertex in the `-th layer computes a homogeneous polynomial of

degree ` (see [IL17, Thm. 4.1(5)], [Kum19, Lem.15] or [Sap19]).

We remark that each homogeneous part of a polynomial p(x) of degree d, computed by s-

size circuit, can also be computed by a homogeneous circuit of size O(sd2), see [SY10, Sap19].

3 Sum of Squares

In this section, let F be a �eld of characteristic 6= 2, 3.

3.1 From SOS-hardness to VP 6= VNP

The connection between the SOS-model and general circuits is mainly established by

the next lemma. It shows that a multivariate polynomial p(x) of degree d, computed by a

11



circuit of size s, has a SOS-representation with (sd)O(log d) summands, where each summand

polynomial has degree precisely d/2.

This is achieved by transforming the given circuit for p(x) in several steps into a homoge-

neous ABP. The point here is that degrees of the polynomials computed at the intermediate

nodes of the ABP increase gradually, as the labels are linear forms. In particular, there exists

a layer of vertices that computes polynomials of degree exactly d/2. By cutting the ABP at

that layer, we get a representation of p as a sum of products of two polynomials of degree d/2

each. This immediately yields the desired SOS-representation.

We present a similar SOS-decomposition in Lemma 3.8 below. It uses the frontiers based

depth-reduction technique [VSBR83]. However, this approach yields intermediate polynomi-

als of degree only close to d/2, whereas we want degree exactly d/2 here.

Lemma 3.1 (SOS Decomposition). Let p 2 F[x] be an n-variate polynomial of degree d,
with size(p) = s.

Then there exist pi 2 F[x] and ci 2 F such that

p(x) =
s 0∑
i=1

cipi(x)
2 , (11)

for s 0 = (sd)O(log d) and deg(pi) � dd/2e, for all i 2 [s 0].

Proof. Let C be a circuit of size s that computes p. Let us �rst assume that p is a homoge-

neous polynomial. We transform C by the following steps.

1. We apply depth reduction to C [VSBR83], and get a homogeneous circuit C 0 of

depth logd and size poly(s) that computes p.

2. Then we convert C 0 into a formula F by unfolding the gates with fan-out larger than

one. By induction on the depth of the circuit, one can show that F has size sO(log d).

3. Next, we convert F to an ABP B. It is well known that for any formula of size t, there

exists an equivalent ABP of size at most t + 1, for details see [Sau12, Lemma 2.14].

Thus, the ABP B that computes p has size at most sO(log d).

4. Finally, we homogenize B to a layered ABP B 0 as explained at the end of the prelimi-

nary section. Its size is |B 0| = poly(sO(log d)) = sO(log d).

To obtain the representation (11) of p, we cut ABP B 0 in half. That is, we split B 0 along
the nodes in the dd/2e-th layer. The i-th node vi in that layer (in some order) de�nes two

ABPs, one between the starting node of B 0 and vi as end node, and a second one between vi
as starting node and the end node of B 0. Let pi,1 and pi,2 be the two polynomials computed

by these ABPs, respectively. By the de�nition of how ABPs compute polynomials, we have

p =

|B 0|∑
i=1

pi,1 pi,2 ,

where the degree of pi,1, pi,2 is at most dd/2e. Now each product can be written as a SOS

by (4) as pi,1 pi,2 = 1
4

�
(pi,1 + pi,2)

2 − (pi,1 − pi,2)
2
�
to obtain (11). Hence, we get a SOS-

representation of p with top fan-in s 0 = 2|B 0|.
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For a non-homogeneous polynomial p, it is known that the homogeneous parts can be

computed by homogeneous circuits of size O(sd2). Thus, for non-homogeneous polynomials,

we can replace the s from above by O(sd2). Then the top-fanin of the SOS-representation is

(sd2)O(log d) = (sd)O(log d).

Now we come to our main result. We show how to lift the hardness of univariate poly-

nomial fd of degree d in the SOS-model to a multivariate polynomial that has circuits of

super-polynomial size, it will be in VNP and not in VP.

Our technique is to convert fd into a multivariate polynomial Pn,k via the multilinear

Kronecker substitution de�ned in the preliminary section. Polynomial Pn,k will have kn

variables and degree n, for carefully chosen parameters k and n that depend on d and the

SOS-hardness parameter ε for fd. Since n is a function in k, it would actually su�ce to index

the family over k. We will eventually show that size(Pn,k) = (kn)ω(1).

The proof goes via contradiction. If the size is smaller than claimed, then, by Lemma 3.1,

we can write Pn,k as the sum of do(ε)-many Q2i 's, where the polynomials Qi have kn variables

and degree at most n/2. Thus, the support-sum of Pn,k, and hence of fd as well, is bounded

by do(ε)
�kn+n/2

n/2

�
. We show that, for carefully chosen parameters, the latter expression is

bounded by o(d1/2+ε). Hence, we get a contradiction to the SOS-hardness of fd.

Theorem 3.2. If there exists an SOS-hard explicit family (fd) with hardness ε = ε(d) =

ω
�q

log log d
log d

�
, then VP 6= VNP.

Proof. Let fd(x) be an explicit SOS-hard polynomial with hardness ε as in the theorem

statement. We de�ne parameters k and n as follows. Choose k large enough such that

(k− 1)ε � 6 . (12)

That is, de�ne k = d6 1
ε + 1e. Then choose n such that

(k− 1)n � d+ 1 � kn .

Note that n = Θ(ε � logd) = O(logd).
Now we apply the multilinear Kronecker map φlin

n,k from (9) to fd and de�ne polynomial

Pn,k(y) = φ
lin
n,k(fd(x)) .

Recall that Pn,k is multilinear of degree n and has kn variables yj,`, where 1 � j � n and

0 � ` � k− 1. We show that Pn,k 2 VNP and 62 VP, thereby separating the classes.

Part 1: Pn,k 2 VNP. Let

Pn,k =
∑

e2{0,1}kn
cn(e)y

e .

By the inverse multilinear Kronecker map ψlin
n,k from (10), we get an exponent e such that

xe = ψlin
n,k(y

e). Note that coe�cient cn(e) in Pn,k is the coe�cient of xe in fd. We can

compute e in time poly(n, k) and each bit of cn(e) in time poly(logd) = poly(n log k), by the

explicitness of fd. Hence, Pn,k 2 VNP by Theorem 2.2.
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Part 2: Pn,k 62 VP. De�ne

µ =
1p

logd log logd
.

We will show that size(Pn,k) � dµ.
Assume to the contrary that size(Pn,k) � dµ. By Lemma 3.1, there exist polynomials Qi

such that Pn,k =
∑s
i=1 ciQ

2
i , where s = (dµ n)O(logn) and deg(Qi) � dn/2e.

We apply the inverse multilinear Kronecker map ψlin
n,k to the Qi's: De�ne gi(x) =

ψlin
n,k(Qi(y)). Note that the Qi's might no longer be multilinear. Anyway we can apply

the ψlin-transformation. Then we get

fd =
s∑
i=1

ci g
2
i .

Recall that sparsity of gi can be at most that of Qi. For the sparsity of Qi, we use the general

bound (7). That is, sp(Qi) �
�kn+dn/2e

dn/2e
�
, for all i 2 [s]. Thus,

S(fd) � s
 
kn+ dn/2e
dn/2e

!
. (13)

In the following two claims, we give upper bounds for s and the binomial coe�cient in (13).

Let

δ =

s
log logd

logd
.

Note that δ = µ log logd = o(ε).

Claim 3.3. s = dO(δ) = do(ε).

Proof. Recall that s = (dµ n)O(logn). We show that (dµ n)O(logn) = dO(δ). Taking logarithms,

we have to show that

logn (µ logd+ logn) = O(δ) logd .

Recall that n = O(logd). Hence, we have logn = O(log logd). Now it su�ces to show that

µ log logd+
(log logd)2

logd
= O(δ) .

But this holds because by the de�nitions of µ and δ, for large enough d, we have

(log logd)2

logd
< µ log logd = δ .

This proves the claim.

Claim 3.4.
�kn+dn/2e

dn/2e
� � d 1+ε

2 .

Proof. We use (6) to bound the binomial coe�cient. We omit the ceiling brackets for better

readability.  
kn+ n/2

n/2

!
�

 
e(kn+ n

2 )
n
2

!n
2

= (2ek+ e)
n
2 � (6(k− 1))

n
2 . (14)
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The last inequality is because 2e < 6. Hence, we get that 2ek + e � 6(k − 1), for large

enough k.

By (12), we get that 6(k− 1) � (k− 1)1+ε . Hence, we can continue (14) by

(6(k− 1))
n
2 � (k− 1)

n
2
(1+ε) � d

1+ε
2 .

The last inequality follows by our choice of n such that (k − 1)n � d. This proves the

claim.

We plug in the bounds from the two claims in (13) and get

S(fd) = d
o(ε) d

1+ε
2 = o(d1/2+ε) .

This is a contradiction to the SOS-hardness of fd. So size(Pn,k) � dµ.
It remains to show that dµ is super-polynomial in parameters k and n.

Claim 3.5. dµ = (kn)ω(1) .

Proof. Taking logarithms, we have to show that

µ logd = ω(log k+ logn) . (15)

For the left hand side of (15), we have

µ logd =

s
logd

log logd
= ω(1/ε) .

For the right hand side of (15), we have

log k = logd61/ε + 1e = O(1/ε) ,
logn � log logd = o(1/ε) .

This proves (15), and the claim follows.

We conclude that Pn,k requires super-polynomial size circuits, and therefore, Pn,k 62 VP.

This proves the theorem.

Remark. 1. We used the multilinear Kronecker substitution φlin because the standard

one φ from (8) would not give our result. For d, k, n as above, polynomial φn,k(fd)

would have only k variables but higher degree, kn, compared to Pn,k from above. Then

the binomial coe�cient in (13) would become
�k+kn/2

k

�
> (n+1)k > d. Hence, Claim 3.4

would no longer hold.

2. Recall from the proof that deg(Qi) � n/2. Hence, for gi(x) = ψn,k(Qi(y)), by the

de�nition of ψ, we have

deg(gi) � n

2
(k− 1)kn−1 < nkn = O(nd) = O(d logd) .

Thus, in the SOS-hardness assumption for fd we could additionally restrict the degree

of the polynomials in the SOS-representation to O(d logd), and still Theorem 3.2 would

hold.
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3. Similarly, by Claim 3.3, we could additionally restrict the top fan-in s in the SOS-

representation to s = dδ and still Theorem 3.2 would hold. Note that this is very small

compared to d since dδ = do(ε).

Separating VBP and VNP. Recall that VBP � VP. If we are interested in the weaker

separation of VBP and VNP, then actually a smaller hardness parameter ε su�ces in the

assumption. The reason comes from Lemma 3.1: When we start with a polynomial p given

by an ABP of size s, we can skip transformation steps 1, 2, 3, and only do the homogenization

step 4. Then the resulting ABP has size only poly(s), i.e., we do not have the logd-term in

the exponent. So we can modify the proof of Theorem 3.2 and set ε = ω(1/
p
logd) and

µ = δ = 1/
p
logd, and still all the calculations go through, in particular Claim 3.3.

Corollary 3.6 (Determinant vs Permanent). If there exists an SOS-hard explicit fam-

ily (fd) with hardness parameter ε = ω(1/
p
logd), then VBP 6= VNP.

3.2 An exponential separation of VP and VNP

The argument for an exponential separation of VP and VNP follows the proof of Theo-

rem 3.2. However, we use a di�erent decomposition lemma and a di�erent parameter setting.

The decomposition lemma is based on the circuit depth-reduction technique of Valiant et

al. [VSBR83]. See for example [Sap19] for a very well written survey on frontier decompo-

sition, the technique to prove the following lemma.

Lemma 3.7 (Sum of product-of-2). Let p 2 F[x] be an n-variate homogeneous polynomial
of degree d, computed by a homogeneous circuit of size s. Then there exist polynomials

pi,j 2 F[x] such that

p =
s∑
i=1

pi,1 pi,2 ,

and for all i 2 [s] and j = 1, 2,

1. d
3 � deg(pi,j) � 2d

3 ,

2. deg(pi,1) + deg(pi,2) = d, and

3. pi,j has a homogeneous circuit of size O(s).

Remark. For a non-homogeneous polynomial p(x), we can apply Lemma 3.7 for each ho-

mogeneous part of p(x). It is well known that each homogeneous part can be computed by

a homogeneous circuit of size O(sd2). Thus, for non-homogeneous polynomials, s can be

replaced by O(sd2) and we get a similar conclusion.

The following lemma iterates the decomposition in Lemma 3.7 to bring the degree of the

intermediate polynomials close to d/2, while keeping the circuit size polynomial s. Note the

contrast to Lemma 3.7 where we got intermediate polynomials of degree precisely d/2 but

payed with super-polynomial circuit size.
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Lemma 3.8. Let 12 < γ < 1 be a constant. Then there exists a constant c, such that for

any n-variate homogeneous polynomial p 2 F[x] of degree d that can be computed by a

homogeneous circuit of size s, we have a representation

p =
sc∑
i=1

q2i , (16)

where qi 2 F[x], for all i 2 [sc], such that

1. deg(qi) < γd,

2. qi has a homogeneous circuit of size O(s).

Proof. By Lemma 3.7, we can write p(x) =
∑s
i=1 ~pi,1 ~pi,2, where deg(~pi,j) � 2d/3, deg(~pi,1)+

deg(~pi,2) = d, and ~pi,j has circuits of size O(s).

Let δ = γ−1/2. Choose constantm such that (2/3)m < δ. That is, letm = dlog3/2(1/δ)e.
Now we apply Lemma 3.7 recursively m-times to each ~pi,j. It follows that we can write p(x)

as

p(x) =
s2

m−1∑
i=1

bpi,1 bpi,2 � � � bpi,2m , (17)

where deg(bpi,j) � (2/3)m d < δd. For all i 2 [s2
m−1], we have

∑2m

j=1 deg(bpi,j) = d and

size(bpi,j) = O(s), for all j 2 [2m].

For each product bpi,1 � � � bpi,2m , pick the smallest j0 2 [2m] such that

d

2
�

j0∑
j=1

deg(bpi,j) < γd .

De�ne pi,1 = bpi,1 � � � bpi,j0 and pi,2 = bpi,j0+1 � � � bpi,2m . Then we have

p =
s2

m−1∑
i=1

pi,1 pi,2 .

By de�nition, d/2 � deg(pi,1) < γd, and therefore, deg(pi,2) = d − deg(pi,1) � d/2 <

γd. Because each bpi,j has a homogeneous circuit of size O(s), so does pi,j. Finally, we use

equality (4) as pi,1 pi,2 =
1
4

�
(pi,1 + pi,2)

2 − (pi,1 − pi,2)
2
�
to obtain (16) with c = 2m.

Remark. Similar as remarked for Lemma 3.7, for a non-homogeneous polynomial p(x), the

size s can be replaced by O(sd2) and we get a similar conclusion.

Lemma 3.8 provides the tool for an exponential separation of VP and VNP. The argument

follows the proof of Theorem 3.2. Instead of Lemma 3.1, we use Lemma 3.8. Also we use a

di�erent parameter setting.

Theorem 3.9 (Constant ε). If there exists an SOS-hard explicit family with constant

hardness parameter ε > 0, then VNP is exponentially harder than VP.
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Proof. Let fd(x) be an explicit SOS-hard polynomial with constant hardness parameter ε < 1
2 .

First, we de�ne parameters k and n. Let

γ =
1

2
+
ε

4
.

Choose constant k large enough such that

(k− 1)
ε
12 � 6γ , (18)

and n again such that (k − 1)n � d + 1 � kn. Note that n = O(k logd) = O(logd). Then

de�ne Pn,k(y) = φn,k(fd(x)). Again, we have Pn,k 2 VNP.

We show that Pn,k requires exponential size circuits. We apply Lemma 3.8 to Pn,k with

parameter γ. Let c be the constant such that sc bounds the top fan-in in (16). That is, when

size(Pn,k) = s, we get a representation

Pn,k =
sc∑
i=1

ciQ
2
i ,

where deg(Qi) � γn. De�ne constant

µ =
ε

3c
.

Claim 3.10. size(Pn,k) > d
µ.

Proof. Assume that size(Pn,k) � dµ. Via the inverse Kronecker map applied to the Qi's, we

get a bound similar to (13):

S(fd) � dcµ
 
kn+ dγne
dγne

!
. (19)

We bound the binomial coe�cient: 
kn+ γn

γn

!
�

�
e(kn+ γn)

γn

�γn
� (2ek+ e)γn � (6(k− 1))γn .

The last inequality is again for large enough k. By (18) and the de�nition of γ, we get that

(6(k− 1))γn � (k− 1)n(
ε
12

+γ) � d
1
2
+ ε

3 .

Plugging the bound into (19), we get by de�nition of µ

S(fd) � dcµ d
1
2
+ ε

3 = d
1
2
+ 2

3
ε = o(d

1
2
+ε) .

This is a contradiction to the SOS-hardness of fd. This proves the claim.

Finally observe that by the de�nition of n, and since µ and k are constants, we have dµ =

Ω(kµn) = 2Ω(kn). Hence, Pn,k requires exponential size circuits. This shows an exponential

separation between VP and VNP.
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4 Sum of Cubes

In this section, let F be a �eld of characteristic 6= 2, 3. The following lemma is the crucial

ingredient to connect general circuits to a SOC-representation. It is similar to Lemma 3.8.

There, we represented a polynomial p as a sum of squares of polynomials with degree close

to 1/2. Now, we write p as a sum of cubes of polynomials with degree close to 1/3.

Lemma 4.1 (SOC decomposition). There exists a constant c, such that for any n-variate

homogeneous polynomial p 2 F[x] of degree d that can be computed by a homogeneous

circuit of size s, we have a representation

p =
sc∑
i=1

q3i ,

where qi 2 F[x], for all i 2 [sc], such that

1. deg(qi) <
4
11 d,

2. qi has a homogeneous circuit of size O(s).

Proof. We start exactly as in the proof of Lemma 3.8, with parameters γ = 4/11 and δ =

γ − 1/3 = 1/33. Then we choose m such that (2/3)m < δ. Hence, we can set m = 9 and we

can write p as in (17):

p =
s2

m−1∑
i=1

bpi,1 bpi,2 � � � bpi,2m ,
where deg(bpi,j) � (2/3)m d < δd. For all i 2 [s2

m−1], we have
∑2m

j=1 deg(bpi,j) = d and

size(bpi,j) = O(s), for all j 2 [2m].

In Lemma 3.8, we split each product bpi,1 � � � bpi,2m into two parts of degree close to d/2.

Now, we similarly split it into three parts of degree close to 1/3. So we �rst pick the smallest

j0 2 [2m] such that

d

3
�

j0∑
j=1

deg(bpi,j) < γd ,

and de�ne pi,1 = bpi,1 � � � bpi,j0 . Then we pick the smallest j1, where j0 < j1 � 2m, such that

d

3
�

j1∑
j=j0+1

deg(bpi,j) < γd ,

and de�ne pi,2 = bpi,j0+1 � � � bpi,j1 and pi,3 = bpi,j1+1 � � � bpi,2m . Then we have

p =
s2

m−1∑
i=1

pi,1 pi,2 pi,3 , (20)

where d/3 � deg(pi,j) < γd, for all i 2 [sc] and j = 1, 2, 3.

Finally, we write the products in (20) as sums of cubes by the following identity:

24abc = (a+ b+ c)3 − (a− b+ c)3 − (a+ b− c)3 + (a− b− c)3 . (21)
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Remark. In case of non-homogeneous polynomials, we can consider the homogeneous parts

separately. The size s has then again to by replaced by O(sd2).

We now come to the main result of this section, that the existence of a SOC-hard family

implies the derandomization of blackbox-PIT. The proof outline is roughly similar to the proof

of Theorem 3.2, but with some crucial modi�cations. Given a SOC-hard polynomial fd(x), we

apply the standard Kronecker map to construct a polynomial Pn,k that is k-variate, for some

constant k, and the variables have individual degree n. We show that size(Pn,k) = n
Ω(1).

The proof of the size lower bound goes again by contradiction, and this is where Lemma 4.1

comes into the play. Via the SOC-decomposition of Pn,k and the inverse Kronecker map, we

get a SOC-representation of fd that would be smaller than the assumed SOC-hardness of fd.

Thus Pn,k ful�lls the assumptions made in Theorem 2.4 by Guo et al. [GKSS19], and we

can conclude that blackbox-PIT 2 P .

Theorem 4.2. If there is an SOC-hard family, then blackbox-PIT 2 P.

Proof. Let fd(x) be an explicit SOC-hard polynomial such that U (fd, d
ε) � δd, for constants

0 < ε < 1/2 and δ > 0. Let furthermore c be the constant from Lemma 4.1.

We de�ne parameters k and n as follows. Let α = 1 − 1
110 . Choose k large enough such

that

k >
9c

ε
and αk < δ, (22)

and de�ne n = d(d + 1)1/ke − 1. Now we apply the Kronecker map φn,k from (8) to fd and

de�ne polynomial

Pn,k(y) = φn,k(fd(x)) .

Recall that Pn,k has k variables of individual degree n, and therefore total degree kn. Since fd
is explicit, we have Pn,k 2 VNP.

De�ne µ as

µ =
1

2

�
ε

c
−
1

k

�
.

Note that µ > 0 by our choice of k in (22).

Claim 4.3 (Hardness of Pn,k). size(Pn,k) > d
µ, for large enough n.

Proof. Assume to the contrary that size(Pn,k) � dµ. By Lemma 4.1, there exist polynomi-

als Qi such that Pn,k =
∑s0
i=1 ciQ

3
i , where s0 � (dµ kn)c and deg(Qi) � 4

11 kn.

We apply the inverse Kronecker map ψn,k to the Qi's: De�ne gi(x) = ψn,k(Qi(y)). Then

we get

fd =

s0∑
i=1

ci g
3
i .

Recall that gi and Qi have the same sparsity. Therefore

s1 =

�����[
i

supp(gi)

����� �
�����[
i

supp(Qi)

����� �
 
k+ 4

11kn

k

!
.

Thus, U(fd, s0) � s1.
We want to show that s0 < d

ε 0

and s1 < δd, for large enough n. Then, we have U(fd, d
ε) <

δd, for large enough d, which contradicts the SOC-hardness of fd.
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Bound on s0. Recall that d = (n + 1)k − 1 > nk, for large n. Therefore we get for large

enough n, and thus d,

s0 � (dµ kn)c < (dµ kd
1
k )c = (kdµ+

1
k )c < dε .

In the last inequality we used that µ+ 1/k < ε/c, by the de�nition of µ.

Bound on s1. By (6), we have

s1 =

 
k+ 4

11kn

k

!
�
�
e

�
1+

4

11
n

��k
< (αn)k < αkd < δd .

As 4e � 10.873, we used that e
�
1+ 4

11n
�
< αn and d > nk, for large n. The last inequality

is by our choice of k. This proves Claim 4.3.

It remains to show that from the hardness of Pn,k, we can ful�ll the assumption in Theo-

rem 2.4, that size(Pn,k) > s
10k+2 deg(Pn,k)

3, for some growing function s = s(n). Recall that

deg(Pn,k) � kn. We de�ne, s(n) = n
1

10k+3 . Then we have

s10k+2 (kn)3 = n
10k+2
10k+3 (kn)3 = k3 n4−

1
10k+3 < n4 , (23)

for large enough n. By the �rst condition in our choice of k in (22), we have

µ =
1

2

�
ε

c
−
1

k

�
� 1

2

�
9

k
−
1

k

�
=
4

k
,

and therefore kµ � 4. Recall also that nk < d, for large n. Hence, we can continue (23) as

n4 � nkµ < dµ < size(Pn,k) . (24)

Equations (23) and (24) give the desired hardness of Pn,k. Thus, Theorem 2.4 gives a poly(s)-

time HSG for C(s, s, s). Hence, blackbox-PIT 2 P.

Remark. The degree of the Qi's in the above proof is bounded by 4
11kn. Hence, the degree

of the gi's obtained via the inverses Kronecker substitution is bounded by

(n+ 1)k−1
4

11
kn <

4

11
k(n+ 1)k � 4

11
k(d+ 1) = O(d) ,

where the last equality is because k is a constant. Thus, it su�ces to study the representation

of fd as sum-of-cubes g3i , where deg(gi) = O(d), and still Theorem 4.2 would hold.

5 Approximative SOS-hardness and SOC-hardness

In this section, we study the SOS-hardness, respectively, the SOC-hardness, in the border

or approximative sense. Eventually, we show similar consequences as of Theorem 3.2 and

Theorem 4.2 in the border algebraic complexity setup.

In a slight abuse of notation, for an arithmetic C with input variables x, the output

polynomial computed by C(x) we denote by C(x) as well.
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Definition 5.1 (Approximative computation). A circuit C over F(ε)[x] is said to approx-

imate a polynomial P(x), if for some M � 0,

lim
ε→0 1

εM
C(x, ε) = P(x) . (25)

The approximative circuit complexity of P, denote by size(P), is the size of the smallest

circuit that approximates P. The class VP contains all families of n-variate polynomials

of degree poly(n) over F of approximative complexity poly(n).

Equation (25) can be interpreted as P being approximated by the circuit C(x, ε)/εM over

the function �eld F(ε). An equivalent way to express the approximation in (25) is that the

polynomial computed by circuit C can be written as C(x, ε) = εM P(x) + εM+1Q(x, ε), for

some polynomial Q(x, ε) 2 F[x, ε].
Note that VP � VP because VP is the special case in De�nition 5.1 where we �x M = 0.

However, the de�nition does not boundM at all. Thus, VP could potentially be much larger

than VP. B�urgisser [B�ur01] gave a bound onM. He showed that any polynomial in VP can be

approximated withM � 2poly(n). It is still an open question whether VP is di�erent from VP.

5.1 Approximative SOS-hardness and VNP 6� VP

Mulmuley and Sohoni [MS01, MS08] proposed the Geometric Complexity Theory (GCT)

program, which is an approach to the VP vs. VNP problem, via representation theory and

algebraic geometry. Eventually, it strengthens Valiant's conjecture and focuses on separat-

ing VP (or VBP) from VNP. We show that proving a slightly non-trivial lower bound in the

SOS-model, in the border sense, is enough to separate these classes.

Definition 5.2 (Approximative SOS and border-support-sum size SR(f)). Let R be a ring.

An n-variate polynomial f(x) 2 R[x] is approximated as a (weighted) SOS, if there exists

an integer M � 0 such that

f(x) = lim
ε→0 1

εM

s∑
i=1

cif
2
i (x, ε) , (26)

for some top-fanin s, where fi 2 R[x, ε] and ci 2 R[ε].
The size in the representation of f in (26) is the border support-sum, the sum of

the support size (or sparsity) of the polynomials fi over R[ε]. The border-support-sum

size of f, is de�ned as the minimum border-support-sum of f, denoted by SR(f), or

simply S(f), when the ring R is clear from the context.

Note that, by de�nition, SR(f) � SR(f). In particular, when f is univariate and has

sparsity, sp(f) = d+ 1, over any �eld R = F, of characteristic 6= 2, similar bounds hold:

p
d � S(f) � S(f) � 2d+ 2 .

We call a polynomial family approximative SOS-hard, if its border-support-sum size is

just slightly larger than the trivial lower bound.
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Definition 5.3 (Approximative SOS-hardness). A polynomial family (fd(x))d is approxi-

mative SOS-hard with hardness ε, if S(fd) = Ω(d0.5+ε).

We point out that the SOS decomposition lemma (Lemma 3.1) works for approxima-

tive circuits as well. This lemma plays the pivotal role to establish a connection between

approximative SOS-hardness and the general circuit hardness, in the border sense.

Lemma 5.4 (Border SOS Decomposition). Let f(x) 2 F[x] be a polynomial of degree d that
can be approximated by a circuit C of size s. Then there exist polynomials fi 2 F[x, ε]
and ci 2 F[ε] such that

C(x, ε) =
s 0∑
i=1

ci f
2
i ,

where s 0 = (sd)O(log d) and degx(fi) � dd/2e, for all i 2 [s 0].

Proof. We adapt the proof of Lemma 3.1. Simply consider C 2 F(ε)[x] and observe that the

earlier proof is independent of the underlying �eld. However, there is one subtlety that we

have to take care of: Let C be the circuit of size s that approximates f. That is, for some

M � 0, we have
C(x, ε) = εM f+ εM+1 g(x, ε) .

Now it could happen that degx(g) > d. However, using the homogenization technique, we

can extract all the terms upto degree d in x, which does not e�ect the f-part. In particular,

there is a circuit bC 2 F(ε)[x] of size O(sd2), such that bC(x, ε) = εM f + εM+1 bg(x, ε), where
degx(bg) � d. Now, we can work with the circuit bC instead C and the proof of Lemma 3.1

goes through over F(ε).

We come to our main result in this section. We lift the approximative hardness of a

univariate polynomial of degree d in the SOS-model to a multivariate polynomial that has

approximative circuits of super-polynomial size, implying it is not in VP, but its explicitness

ensures it to be in VNP.

Theorem 5.5. If there exists an approximative SOS-hard explicit family (fd) with hard-

ness parameter ε = ε(d) = ω
�q

log log d
log d

�
, then VNP 6� VP.

Proof. The proof is similar to the proof of Theorem 3.2. We de�ne Pn,k with the similar

parameters as in that proof. As fd is explicit, so is Pn,k. Therefore Pn,k 2 VNP.

To show that Pn,k 62 VP, we de�ne µ similarly. We will argue that

size(Pn,k) � d1/µ = (kn)ω(1) . (27)

It follows that Pn,k 62 VP.

To show (27), assume to the contrary that size(Pn,k) � dµ. Then there is a circuit

C(y, ε) 2 F(ε)[x] of size dµ and a M � 0, such that C(y, ε) = εM Pn,k + ε
M+1Q(y, ε). By

Lemma 5.4, there exist polynomials Qi(y, ε) such that C(y, ε) =
∑s
i=1 ciQi(y, ε)

2, where

s = (dµn)O(logn) and degy(Qi) � dn/2e.
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If we apply the inverse multilinear Kronecker map ψlin
n,k to the Qi's, we get

εM fd + ε
M+1ψlin

n,k(Q) =
s∑
i=1

ci g
2
i ,

where gi(x) = ψlin
n,k(Qi(y)). Note that, sp(gi) � sp(Qi) over F(ε). For the sparsity of Qi,

we use the general bound (7). That is, sp(Qi) � �kn+dn/2e
dn/2e

�
, for all i 2 [s]. Thus, by

de�nition, S(fd) � s
�kn+dn/2e

dn/2e
�
. The same calculation as in the proof of Theorem 3.2 shows

that S(fd) = o(d
1/2+ε), a contradiction.

With a slight modi�cation in the parameters ε, µ and δ, we get a similar consequence as

Corollary 3.6 .

Corollary 5.6. If there exists an approximative SOS-hard explicit family (fd) with hard-

ness parameter ε = ω(1/
p
logd), then VNP 6� VBP.

When ε is constant, we get an exponential separation between VP and VNP, similar to

Theorem 3.9. The basic tool is a border-decomposition version of Lemma 3.8. We omit the

proofs as they are similar.

Theorem 5.7 (Constant ε in the border). If there exists an approximative SOS-hard

explicit polynomial family with constant hardness parameter ε > 0, then VNP is expo-

nentially harder than VP.

5.2 Approximative SOC-hardness and efficient hitting set for VP

In this subsection, we introduce approximative SOC-hardness and show its intrinsic connec-

tion to construct e�cient hitting sets for VP. Though the existence of a poly-size hitting

set is known due to [HS80a], the best complexity bound known for constructing a hitting

set for VP is PSPACE [FS18, GSS19]. The main di�culty comes from certifying that the set

that has been constructed is indeed a hitting set. Very recently, Kumar, Saptharishi, and

Solomon [KSS19] showed that the hardness of constant-variate polynomials in the approxi-

mative sense su�ces to construct an HSG for VP.

Theorem 5.8. [KSS19, Thm.1.6] Let P be a k-variate polynomial in F[x] of degree d

such that coef(P) can be computed in time poly(d). Suppose size(P) > s10k+2 d, for some

parameter s. Then there is a poly(s)-size hitting set for C(s, s, s).

Next, we de�ne the approximative SOC-model and its complexity measure.

Definition 5.9 (Approximative SOC and border-support-union size UR(f, s)). Let R be a

ring. An n-variate polynomial f(x) 2 R[x] is approximated as a SOC, if there exists an

integer M � 0 such that

f(x) = lim
ε→0 1

εM

s∑
i=1

cif
3
i (x, ε) , (28)

for some top-fanin s, where fi 2 R[x, ε] and ci 2 R[ε].
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The size of the representation of f in (28) is the size of the support-union over

R[ε], i.e.
�� Ss

i=1 supp(fi)
��, where supp(fi) denotes the set of monomials with a nonzero

coe�cient in fi. The border support-union size of f with respect to s, denoted UR(f, s),

is de�ned as the minimum border support-union size when f is written as in (28).

Note that, by de�nition, UR(f, s) � UR(f, s). In particular, when f is univariate and has

sparsity sp(f) = d+ 1, over any �eld R = F, of characteristic 6= 2, 3, a similar bounds hold:

d1/3 � U(f, s) � U(f, s) � d+ 1 .

Thus, it follows that for s large enough, U(f, s) is small. However, it is unclear whether

this is true when s = o(
p
d). We call a polynomial family approximative SOS-hard, if its

border support-union size attains the trivial upper bound.

Definition 5.10 (Approximative SOC-hardness). A polynomial family (fd(x))d is approx-

imative SOC-hard, if there is a constant 0 < ε < 1/2 such that UF (fd, d
ε) = Ω(d).

One can show that an explicit approximative SOC-hard univariate family can be con-

verted to an explicit hitting set for VP. The main ingredient is a SOC-decomposition in

the approximative sense. This decomposition is very similar to Lemma 4.1, except that the

working �eld is F(ε).

Lemma 5.11 (Approximative SOC decomposition). There exists a constant c, such that

for any n-variate polynomial p 2 F[x] of degree d that can be approximated by a circuit

of size s, we have a representation

εM p+ εM+1 q(x, ε) =

(sd)c∑
i=1

q3i ,

where qi 2 F[ε][x], for all i 2 [(sd)c], such that

1. deg(qi) <
4
11 d,

2. qi has a circuit of size poly(s, d) over F(ε).

Using the above lemma and Theorem 5.8, it is not hard to construct an explicit and

e�cient hitting set for VP. The proof goes along the lines of Theorem 4.2.

Theorem 5.12. If there is an approximative SOC-hard family, then we have a poly(s)-

explicit hitting set for VP.

6 Sum of powers of small support-union

In this section, let F be a �eld of characteristic 0 or large. We give a way to represent

any univariate polynomial as sum of r-th powers of polynomials. Here we use the notion

of sumsets. In additive combinatorics, the sumset, also called the Minkowski sum of two
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subsets A and B of an abelian group G, is de�ned to be the set of all sums of an element

from A with an element from B,

A+ B = {a+ b | a 2 A, b 2 B } .

The n-fold iterated sumset of A is nA = A+ � � � +A, where there are n summands.

We want a small support-union representation of a d-degree polynomial f as a sum of

r-th powers, where r is constant.

Let t be the unique non-negative integer such that (t− 1)r < d+ 1 � tr. De�ne set B as

B = {a t` | 0 � a � t− 1 and 0 � ` � r− 1 } .

Hence |B| = rt = O(d1/r). Let k 2 {0, 1, . . . , d}. The base-t representation of k is a sum

of at most r elements from B. Hence, {0, 1, . . . , d} � rB. The largest element in B is m =

(t− 1)tr−1 = O(d). Since r is a constant, the largest element in rB is rm = O(d).

We show next that any polynomial can be written as a sum of r-th powers of polynomials

with support in B.

Theorem 6.1. For any f 2 F[x] of degree d, there exist `i 2 F[x] with supp(`i) � B and

ci 2 F, for i = 0, 1, . . . ,mr, such that f =
∑mr
i=0 ci `

r
i .

Proof. Let us set up the polynomials `i we seek as

`i(x) =
∑
j2B
ai,jx

j ,

for unknown coe�cients ai,j 2 F, for i = 0, 1, . . . , rm and j 2 B. We determine the ai,j's via

the multivariate polynomial

Li(zi, x) =
∑
j2B
zi,jx

j ,

where we replaced the coe�cients of `i by distinct indeterminates zi,j.

Note that degx(Li) � m. Taking the r-th power, we can write

Lri =
mr∑
j=0

Qj(zi) x
j ,

for 0 � i � rm, for polynomials Qj of degree r with |B| = rt many variables, 0 � j � rm.

Let S = { j | Qj 6= 0 } � {0, 1, . . . ,mr}. Note that from any monomial in Qj we can

recover j. This follows because supp(Qj1) \ supp(Qj2) = ;, for any j1 6= j2 in S. Therefore,

the polynomials {Qj | j 2 S } are F-linearly independent.

Note that by the de�nition of B, we have {0, 1, . . . , d} � S.
We want to �nd c =

�
c1 c2 � � � c|S|

�
2 F|S| and a = (ai,j)i,j such that

f(x) =
mr∑
i=0

ci `
r
i(x) =

mr∑
i=0

ci L
r
i(a, x) . (29)
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Let f(x) =
∑d
i=0 fi x

i. We set up a linear system to determine the unknowns. De�ne the

coe�cient vector f of f over S and a |S|� |S|-matrix A as

f =
�
f0 f1 � � � fd 0 � � � 0

�
,

A =

0BBBB@
Qj1(z1) Qj2(z1) � � � Qjs(z1)

Qj1(z2) Qj2(z2) � � � Qjs(z2)
...

... � � � ...

Qj1(z|S|) Qj2(z|S|) � � � Qjs(z|S|)

1CCCCA .

Then (29) is equivalent to

cA(a) = f .

As the zi's are distinct variables, the �rst column of A consists of di�erent variables at

each coordinate. Moreover, the �rst row of A contains F-linearly independent Qj's. Thus,

for a random a = (ai,j), matrix A(a) has full rank over F. Fix such an a. This yields

c = f (A(a))−1. For these values c and a, we get (29) as desired.

Remark. 1. The above calculation does not give small support-sum representation of f,

as the top-fanin is already Ω(d).

2. The above representation crucially requires a �eld F. E.g. it does not exist for fd over

the ring Z.

The number of distinct monomials across the `j's in the above proof is |B| = O(d1/r),

while the top-fanin is � mr+ 1 = Θ(d). Of particular interest for us are the cases r = 2, 3.
Corollary 6.2. Any polynomial f 2 F[x] of degree d has a SOS- and a SOC-representation
with top-fanin O(d) and support-union O(

p
d), respectively O( 3

p
d).

In the following, we improve Theorem 6.1 for r = 2, 3. We show a SOS- and SOC-

representation for any polynomial f(x), wherein both the top-fanin and the support-union

size are small, namely O(
p
d). We assume that characteristic of F is 6= 2 in case of SOS, and

6= 3, in case of SOC. The representations are based on discussions with Agrawal [Agr20].

6.1 Small SOS

By Corollary 6.2, any polynomial f of degree d has a SOS-representation with top-fanin O(d)

and support-union O(
p
d) We show that also the top-fanin can be reduced to O(

p
d). The

technical key for this is the following lemma. It shows how to decrease the top-fanin in a

representation without increasing the support-union.

Lemma 6.3. Let f 2 F[x] be written as f =
∑s
i=1 ci fi,1fi,2, with support-union t =

|
S
i,j supp(fi,j)|. Then there exists a representation f =

∑t
i=1 c

0
i f

0
i,1f

0
i,2 with support-

union � t.
Proof. For the given representation of f, we assume w.l.o.g. that deg(fi,1) � deg(fi,2) and

that fi,1, fi,2 are monic, for i = 1, 2, . . . , s. Let S =
S
i,j supp(fi,j).

We construct the representation claimed in the lemma by ensuring the following proper-

ties:
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1. For every xe 2 S, there is exactly one i such that deg(f 0i,1) = e,

2.
S
i,j supp(f

0
i,j) � S,

Since we also maintain that deg(f 0i,1) � deg(f 0i,2), it follows that the top-fanin is indeed

bounded by t = |S| as claimed.

We handle the monomials in S successively according to decreasing degree. Let xe 2 S
be the monomial with the largest e that occurs more than once as the degree of a fi,1, say

deg(f1,1) = deg(f2,1) = e.

De�ne g1 = f2,1 − f1,1. Then we have f2,1 = f1,1 + g1 and deg(g1) < e. Moreover, the

support of g1 is contained in the support of f1,1 and f2,1 If deg(f2,2) = e, then we de�ne

similarly g2 = f2,2 − f1,1. Then f2,2 = f1,1 + g2 and deg(g2) < e. Now we can write

c1f1,1f1,2 + c2f2,1f2,2 = c1f1,1f1,2 + c2(f1,1 + g1)(f1,1 + g2)

= f1,1 (c1f1,2 + c2f1,1 + c2g1 + c2g2) + c2g1g2

The second line is a new sum of two products, where only the �rst product has terms of

degree e, whereas in the second product, g1, g2 have smaller degree. Also, the support-union

set has not increased.

In case when deg(f2,2) < e, we can just work with f2,2 directly instead of f1,1 + g2, and

the above equations gets even simpler.

So when we start with the SOS-representation for polynomial f provided by Theorem 6.1

and apply Lemma 6.3, It follows that f can be re-written as f(x) =
∑O(

p
d)

i=1 c 0i fi,1 fi,2, where
|
S
i,j supp(fij)| = O(

p
d). This can be turned into a SOS-representation by fi,1 fi,2 = (fi,1 +

fi,2)
2/4 − (fi,1 − fi,2)

2/4. Note that the last step does not change the support-union, and at

most doubles the top-fanin. Hence, we get

Theorem 6.4 (Small SOS-Representation). Any polynomial f 2 F[x] of degree d has a

SOS-representation such that the top-fanin and the support-union are bounded by O(
p
d).

6.2 Small SOC

We show two small SOC-representation with di�erent parameters. First, we show a
p
d

SOC-representation that follows essentially from Theorem 6.4. We use the following lemma

that a given representation of a polynomial as a sum of m-powers can be rewritten as a sum

of r-powers, for any r � m. In particular, for m = 2 and r = 3, we see how to rewrite a

SOS-representation as a SOC-representation.

Lemma 6.5. Let F be a �eld of characteristic 0 or large. Let h(x) 2 F[x] and 0 � m � r.
There exist cm,i 2 F and distinct λi 2 F, for 0 � i � r, such that

h(x)m =
r∑
i=0

cm,i (h(x) + λi)
r . (30)
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Proof. Consider the polynomial (h(x)+ t)r, where t is a new indeterminate di�erent from x.

We have

(h(x) + t)r =
r∑
i=0

 
r

i

!
h(x)i tr−i .

Choose r + 1 many distinct λi's and put t = λi, for i = 0, 1, . . . , r. We get r + 1 many linear

equations which can be represented in matrix form Av = b, for matrix A =
��r
j

�
λ
r−j
i

�
0�i,j�r,

and vectors v =
�
hi
�
0�i�r and b = ((h+ λi)

r)0�i�r.
Note that except for the binomial factors, A is a Vandermonde matrix. When computing

the determinant, one can pull out the binomial factor
�r
j

�
from the j-th column, for j =

0, 1, . . . , r. Then a Vandermonde matrix remains, and hence

det(A) =
r∏
j=0

 
r

j

! ∏
0�i<j�r

(λj − λi) 6= 0 .

Therefore, A is invertible and we have v = A−1b. Let cm be the (m+1)-th row of A−1. Then

we have h(x)m = cmb which is exactly (30).

Observe that the support on both sides of (30) is the same, except maybe for an extra

constant term on the right hand side. Hence, for any given polynomial f, we can take the

SOS-representation from Theorem 6.4 and rewrite each square as a sum of four cubes by

Lemma 6.5. Then we get

Corollary 6.6 (
p
d SOC-representation). Any polynomial f 2 F[x] of degree d has a SOC-

representation such that the top-fanin and the support-union are bounded by O(
p
d).

Remark. Recall De�nition 1.4 that fd is SOC-hard if UF (fd, d
ε) = Ω(d), for some 0 < ε <

1/2. Corollary 6.6 shows, that SOC-hardness is not possible for ε = 1/2.

The second way to get a small SOC-representation technically follows the way we got

Theorem 6.4. We �rst show a reduction similar to Lemma 6.3 for the sum of product-of-3.

Lemma 6.7. Let f 2 F[x] be written as If f =
∑s
i=1 ci fi,1fi,2fi,3 with support-union t, then

there exists a representation f =
∑t2

i=1 c
0
i f

0
i,1f

0
i,2f

0
i,3 with support-union � t.

Proof. The argument is similar to the proof of Lemma 6.3. For the given representation

of f, we assume that deg(fi,1) � deg(fi,2) � deg(fi,3) and that fi,1, fi,2, fi,3 are monic, for

i = 1, 2, . . . , s. Let S =
S
i,j supp(fi,j).

Let xe 2 S be the monomial with the largest e that occurs more than once as the degree

of a fi,1. W.l.o.g. assume deg(f1,1) = e. Write all the other fi,j's where x
e occurs as

fi,j = f1,1 + gi,j, (31)

for j 2 [s] and k 2 [3]. Note that deg(gi,j) < e.

Now we plug in (31) in the representation of f given by assumption and multiply out.

This gives

f =
∑
i2[m]

ci fi,1fi,2fi,3 = f1,1 P + R,
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where P is a sum of product-of-2 and R is a sum of product-of-3, where each intermediate

polynomial has degree < e. Note that the last expression still has the same support-union.

Apply Lemma 6.3 on P, to reduce its top-fanin to t. Observe that then f1,1P has a sum

of product-of-3 expression with top fanin at most t. Iterating the procedure to R, we �nally

get a representation of f with top fanin bounded by t2.

By Corollary 6.2, any polynomial f of degree d has a SOC-representation with top-

fanin O(d) and support-union O( 3
p
d). By Lemma 6.7, this can be re-written as a sum

product-of-3 with top-fanin O(d2/3). Finally, any product-of-3 can be written as a sum of

four cubes, by (21). Hence, we get

Theorem 6.8 (d2/3 SOC-representation). Any polynomial f 2 F[x] of degree d has a

SOC-representation with top-fanin O(d2/3) and support-union O(d1/3).

Finally, we observe that Lemma 6.5 also provides a connection between the two complexity

measures S(f) from SOS and U(f, s) from SOC.

Lemma 6.9. For any f 2 F[x], we have S(f) � min
s

(U(f, 4s) − 1).

Proof. Suppose f =
∑s
i=1 ci f

2
i . By Lemma 6.5, each f2i can be written as f2i =

∑4
j=1 cij (fi +

λij)
3, for distinct λij 2 F. Thus, U(f, 4s) � 1+

∑s
i=1 sp(fi). Taking minimum over s gives the

desired inequality.

Corollary 6.10. For s = Ω(d2/3), we have U(f, s) = Θ(d1/3).

7 Conclusion

This work established that studying the univariate sum-of-squares representation (resp. cubes)

is fruitful. Proving a vanishingly better lower bound than the trivial one, su�ces to both

derandomize and prove hardness in algebraic complexity.

Here are some immediate questions which require rigorous investigation.

1. Does existence of a SOS-hard family solve PIT completely? The current proof technique

fails to reduce from cubes to squares.

2. Prove existence of a SOS-hard family for the sum of constantly many squares.

3. Prove existence of a SOC-hard family for a `generic' polynomial f with rational coe�-

cients (Q). Does it fail when we move to complex coe�cients (C)?

4. Can we optimize ε in the SOS-hardness condition (& Corollary 3.6)? In particular, does

proving an SOS lower-bound of
p
d � poly(logd), su�ce to deduce a separation between

determinant and permanent (similarly VP and VNP)?
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