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Abstract. We give a nO(log n)-time (n is the input size) blackbox polynomial identity testing
algorithm for unknown-order read-once oblivious arithmetic branching programs (ROABP). The best

time-complexity known for blackbox PIT for this class was nO(log2 n) due to Forbes-Saptharishi-
Shpilka (STOC 2014). Moreover, their result holds only when the individual degree is small, while
we do not need any such assumption. With this, we match the time-complexity for the unknown
order ROABP with the known order ROABP (due to Forbes-Shpilka (FOCS 2013)) and also with the
depth-3 set-multilinear circuits (due to Agrawal-Saha-Saxena (STOC 2013)). Our proof is simpler
and involves a new technique called basis isolation.

The depth-3 model has recently gained much importance, as it has become a stepping stone to
understanding general arithmetic circuits. Multilinear depth-3 circuits are known to have exponential
lower bounds but no polynomial time blackbox identity tests. In this paper, we take a step towards
designing such hitting-sets. We give the first subexponential whitebox PIT for the sum of constantly
many set-multilinear depth-3 circuits. To achieve this, we define the notions of distance and base
sets. Distance, for a multilinear depth-3 circuit (say, in n variables and k product gates), measures
how far are the variable partitions corresponding to the product gates, from being a mere refinement
of each other. The 1-distance circuits strictly contain the set-multilinear model, while n-distance
captures general multilinear depth-3. We design a hitting-set in time (nk)O(∆ log n) for ∆-distance.
Further, we give an extension of our result to models where the distance is large (close to n) but it
is small when restricted to certain base sets (of variables).

We also explore a new model of read-once arithmetic branching programs (ROABP) where
the factor-matrices are invertible (called invertible-factor ROABP). We design a hitting-set in time

poly(nw2
) for width-w invertible-factor ROABP. Further, we could do without the invertibility re-

striction when w = 2. Previously, the best result for width-2 ROABP was quasi-polynomial time
(Forbes-Saptharishi-Shpilka, STOC 2014).

1. Introduction. The problem of Polynomial Identity Testing is that of deciding
if a given polynomial is zero. The complexity of the question depends crucially on the
way the polynomial is input to the PIT test. For example, if the polynomial is given as
a set of coefficients of the monomials, then we can easily check whether the polynomial
is nonzero in polynomial time. The problem has been studied for different input
models. Most prominent among them is the model of arithmetic circuits. Arithmetic
circuits are the arithmetic analog of boolean circuits and are defined over a field F.
They are directed acyclic graphs, where every node is a ‘+’ or ‘×’ gate and each input
gate is a constant from the field F or a variable from x = {x1, x2, . . . , xn}. Every edge
has a weight from the underlying field F. The computation is done in the natural
way. Clearly, the output gate computes a polynomial in F[x]. We can restate the PIT
problem as: Given an arithmetic circuit C, decide if the polynomial computed by C is
zero, in time polynomial in the circuit size. Note that, given a circuit, computing the
polynomial explicitly is not possible in poly-time, as it can have exponentially many
monomials. However, given the circuit, it is easy to compute an evaluation of the
polynomial by substituting the variables with constants.

Though there is no known deterministic algorithm for PIT, there are easy ran-
domized algorithms [DL78, Zip79, Sch80]. These randomized algorithms are based
on the theorem: A nonzero polynomial, evaluated at a random point, gives a nonzero
value with a good probability. Observe that such an algorithm does not need to ac-
cess the structure of the circuit, it just uses the evaluations; it is a blackbox algorithm.
The other kind of algorithms, where the structure of the input is used, are called
whitebox algorithms. Whitebox algorithms for PIT have many known applications.
E.g. graph matching reduces to PIT. On the other hand, blackbox algorithms (or
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hitting-sets) have connections to circuit lower bound proofs. PIT also fits well in the
geometric complexity theory framework, see [Mul12b, Mul12a]. See the surveys by
Saxena [Sax09, Sax14] and Shpilka & Yehudayoff [SY10] for more applications.

An Arithmetic Branching Program (ABP) is another interesting model for com-
puting polynomials. It consists of a directed acyclic graph with a source and a sink.
The edges of the graph have polynomials as their weights. The weight of a path is the
product of the weights of the edges present in the path. The polynomial computed
by the ABP is the sum of the weights of all the paths from the source to the sink.
It is well known that for an ABP, the underlying graph can seen as a layered graph
such that all paths from the source to the sink have exactly one edge in each layer.
And the polynomial computed by the ABP can be written as a matrix product, where
each matrix corresponds to a layer. The entries in the matrices are weights of the
corresponding edges. The maximum number of vertices in a layer, or equivalently, the
dimension of the corresponding matrices is called the width of the ABP. It is known
that projections of symbolic determinant and ABPs have the same expressive power
[Ber84, Tod91, MV97]. Ben-Or & Cleve [BOC92] have shown that a polynomial com-
puted by a formula can also be computed by a width-3 ABP of size polynomial in the
formula size. A formula is a circuit with every node (except the input gates) having
outdegree at most 1. Thus, ABP is a strong model for computing polynomials. The
following chain of reductions shows the power of ABP and its constant-width version
relative to other arithmetic computation models (see [BOC92] and [Nis91, Lemma
1]).

Constant-depth Arithmetic Circuits ≤p Constant-width ABP

=p Formulas ≤p ABP ≤p Arithmetic Circuits

Our first result is for a special class of ABP called Read Once Oblivious Arithmetic
Branching Programs (ROABP). An ABP is a read once ABP (ROABP) if the weights
in its n layers are univariate polynomials in n distinct variables, i.e. the i-th layer
has weights coming from F[xπ(i)], where π is a permutation on the set {1, 2, . . . , n}.
When we know this permutation π, we call it an ROABP with known variable order
(it is significant only in the blackbox setting).

Raz and Shpilka [RS05] gave a poly(n,w, δ)-time whitebox algorithm for n-variate
polynomials computed by a width-w ROABP with individual degree bound δ. Re-
cently, Forbes and Shpilka [FS12, FS13] gave a poly(n,w, δ)logn-time blackbox algo-
rithm for the same, when the variable order is known. Subsequently, Forbes et al.
[FSS14] gave a blackbox test for the case of unknown variable order, but with time
complexity being poly(n)δ logw logn. Note the exponential dependence on the degree.
Their time complexity becomes quasi-polynomial in case of multilinear polynomials
i.e. δ = 1 (in fact, even when δ = poly(log n)).

In another work Jansen et al. [JQS10b] gave quasi-polynomial time blackbox test
for a sum of constantly many multilinear “ROABP”. Their definition of “ROABP” is
more stringent. They assume that every variable appears at most once in the ABP.
Later, this result was generalized to “read-r OABP” [JQS10a], where a variable can
occur in at most one layer, and on at most r edges. Our definition of ROABP seems
much more powerful than both of these.

We improve the result of [FSS14] and match the time complexity for the unknown
order case with the known order case (given by [FS12, FS13]). Unlike [FSS14], we do
not have exponential dependence on the individual degree. Formally,

Theorem 1. Let C(x) be an n-variate polynomial computed by a width-w ROABP
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(unknown order) with the degree of each variable bounded by δ. Then there is a
poly(n,w, δ)logn-time hitting set for C.

Remark. Our algorithm also works when the layers have their weights as general
sparse polynomials (still over disjoint sets of variables) instead of univariate polyno-
mials (see the detailed version in Section 3).

A polynomial computed by a width-w ABP can be written as S>D(x)T , where
S, T ∈ Fw and D(x) ∈ Fw×w[x] is a polynomial over the matrix algebra. Like [ASS13,
FSS14], we try to construct a basis (or extract the rank) for the coefficient vectors in
D(x). We actually construct a weight assignment on the variables, which “isolates”
a basis in the coefficients in D(x). This idea is inspired from the rank extractor
techniques in [ASS13, FSS14]. Our approach is to directly work with D(x), while
[ASS13, FSS14] have applied a rank extractor to small subcircuits of D(x) by shifting
it carefully. In fact, the idea of “basis isolating weight assignment” evolved when we
tried to find a direct proof for the rank extractor in [ASS13], which does not involve
subcircuits. But, our techniques go much further than both [ASS13, FSS14], as is
evident from our strictly better time-complexity results.

The boolean analog of ROABP, read once ordered branching programs (ROBP)
have been studied extensively, with regard to the RL vs. L question. For ROBP,
a pseudorandom generator (PRG) with seed length O(log2 n) (nO(logn) size sample
space) is known in the case of known variable order [Nis90]. This is analogous to the
[FS13] result for known order ROABP. On the other hand, in the unknown order case,

the best known seed length is of size n1/2+o(1)) (2n
1/2+o(1)

size sample space) [IMZ12].
One can ask: Can the result for the unknown order case be matched with the known
order case in the boolean setting as well. Recently, there has been a partial progress
in this direction by [SVW14].

The PIT problem has also been studied for various restricted classes of circuits.
One such class is depth-3 circuits. Our second result is about a special case of this
class. A depth-3 circuit is usually defined as a ΣΠΣ circuit: The circuit gates are in
three layers, the top layer has an output gate which is +, second layer has all × gates
and the last layer has all + gates. In other words, the polynomial computed by a ΣΠΣ
circuit is of the form C(x) =

∑k
i=1 ai

∏ni
j=1 `ij , where ni is the number of input lines

to the i-th product gate and `ij is a linear polynomial of the form b0 +
∑n
r=1 brxr. An

efficient solution for depth-3 PIT is still not known. Recently, it was shown by Gupta
et al. [GKKS13], that depth-3 circuits are almost as powerful as general circuits. A
polynomial time hitting-set for a depth-3 circuit implies a quasi-poly-time hitting-set
for general poly-degree circuits. Till now, for depth-3 circuits, efficient PIT is known
when the top fan-in k is assumed to be constant [DS07, KS07, KS09, KS11, SS11,
SS12, SS13] and for certain other restrictions [Sax08, SSS13, ASSS12].

On the other hand, there are exponential lower bounds for depth-3 multilinear
circuits [RY09]. Since there is a connection between lower bounds and PIT [Agr05],
we can hope that solving PIT for depth-3 multilinear circuits should also be feasible.
This should also lead to new tools for general depth-3.

A polynomial is said to be multilinear if the degree of every variable in every term
is at most 1. The circuit C(x) is a multilinear circuit if the polynomial computed at
every gate is multilinear. A polynomial time algorithm is known only for a sub-class of
multilinear depth-3 circuits, called depth-3 set-multilinear circuits. This algorithm is
due to Raz and Shpilka [RS05] and is whitebox. In a depth-3 multilinear circuit, since
every product gate computes a multilinear polynomial, a variable occurs in at most
one of the linear polynomials input to it. Thus, each product gate naturally induces
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a partition of the variables, where each color (i.e. part) of the partition contains the
variables present in a linear polynomial. Further, if the partitions induced by all the
product gates are the same then the circuit is called a depth-3 set-multilinear circuit.

Agrawal et al. [ASS13] gave a quasi-polynomial time blackbox PIT for the class
of depth-3 set-multilinear circuits. But before this work, no subexponential time PIT
(not even whitebox) was known even for sum of two set-multilinear circuits. We give a
subexponential time whitebox PIT for sum of constantly many set-multilinear circuits
(also, see subsequent work).

Theorem 2. Let C(x) be a n-variate polynomial, which is a sum of c set-

multilinear depth-3 circuits, each having top fan-in k. Then there is an nO(n1−ε log k)-
time whitebox test for C, where ε := 1/2c−1.

To achieve this, we define a new class of circuits, as a tool, called multilinear
depth-3 circuits with ∆-distance. A multilinear depth-3 circuit has ∆-distance if there
is an ordering on the partitions induced by the product gates, say (P1,P2, . . . ,Pk),
such that for any color in the partition Pi, there exists a set of ≤ (∆ − 1) other
colors in Pi such that the set of variables in the union of these ≤ ∆ colors are exactly
partitioned in the upper partitions, i.e. {P1,P2, . . . ,Pi−1}. As we will see, such sets
of ∆ colors form equivalence classes of the colors at partition Pi. We call them
friendly neighborhoods and they help us in identifying subcircuits. Intuitively, the
distance measures how far away are the partitions from a mere refinement sequence
of partitions, P1 ≤ P2 ≤ · · · ≤ Pk1. A refinement sequence of partitions will have
distance 1. On the other hand, general multilinear depth-3 circuits can have at most
n-distance.

As it turns out, a polynomial computed by a depth-3 ∆-distance circuit (top fan-
in k) can also be computed by a width-O(kn∆) ROABP (see Lemma 14). Thus, we
get a poly(nk)∆ logn-time hitting set for this class, from Theorem 1. Next, we use a
general result about finding a hitting set for a class m-base-sets-C, if a hitting set is
known for class C. A polynomial is in m-base-sets-C, if there exists a partition of the
variables into m base sets such that restricted to each base set (treat other variables
as the function field constants), the polynomial is in class C. We combine these two
tools to prove Theorem 2. We show that a sum of constantly many set-multilinear
circuits falls into the class m-base-sets-∆-distance, for m∆ = o(n).

Agrawal et al. [AGKS13] had achieved rank concentration, which implies a hitting
set, for the class m-base-sets-∆-distance, but through complicated proofs. On the
other hand, this work gives only a hitting set for the same class, but with the advantage
of simplified proofs.

Our third result deals again with arithmetic branching programs. The results
of [BOC92] and [SSS09] show that the constant-width ABPs capture several natu-
ral subclasses of circuits. Here, we study constant-width ABP with some natural
restrictions.

We consider a class of ROABPs where all the matrices in the matrix product are
invertible. We give a blackbox test for this class of ROABP. In contrast to [FSS14]
and our Theorem 1, this test works in polynomial time if the dimension of the matrices
is constant.

Note that the class of ABP, where the factor matrices are invertible, is quite
powerful, as Ben-Or and Cleve [BOC92] actually reduce formulas to width-3 ABP
with invertible factors. Saha, Saptharishi and Saxena [SSS09] reduce depth-3 cir-
cuits to width-2 ABP with invertible factors. But the constraints of invertibility

1 That is ∀i, each color in Pi gets exactly partitioned in the upper partitions
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and read-once together seem to restrict the computing power of the ABP, making it
amenable to this line of attack. Interestingly, an analogous class of read-once boolean
branching programs called permutation branching programs has been studied recently
[KNP11, De11, Ste12]. These works give PRG for this class (for constant width) with
seed-length O(log n), in the known variable order case. In other words, they give
polynomial size sample space which can fool these programs. For the unknown vari-
able order case, Reingold et al. [RSV13] gave a PRG with seed-length O(log2 n). Our
polynomial size hitting sets for the arithmetic setting work for any unknown variable
order. Hence, it is better as compared to the currently known results for the boolean
case.

Theorem 3 (Informal version). Let C(x) = D>0 (
∏d
i=1Di)Dd+1 be a polynomial

such that D0, Dd+1 ∈ Fw and for all i ∈ [d], Di ∈ Fw×w[xji ] is an invertible matrix
(order of the variables is unknown). Let the degree bound on Di be δ for 0 ≤ i ≤ d+1.

Then there is a poly((δn)w
2

)-time hitting-set for C(x).
The proof technique here is very different from the first two theorems (here we

show rank concentration, see the proof idea in Section 5). Our algorithm works even
when the factor matrices have their entries as general sparse polynomials (still over
disjoint sets of variables) instead of univariate polynomials (see the detailed version
in Section 5).

If the matrices are 2× 2, then we do not need the assumption of invertibility (see
Theorem 37, Section 5.4). So, for width-2 ROABP our results are strictly stronger
than [FSS14] and our Theorem 1. Here again, there is a comparable result in the
boolean setting. PRGs with seed-length O(log n) (polynomial size sample space) are
known for width-2 ROBP [BDVY13].

Subsequent Work. The models introduced in this paper have led to some fruit-
ful research recently. Our result on sum of set-multilinear circuits (Theorem 2) has
been greatly improved by subsequent works of Gurjar et al. [GKST14] and de Oliveira
et al. [dOSV14]. [GKST14] gave a polynomial time whitebox PIT for a sum of con-
stantly many ROABPs (ROABPs subsume set-multilinear circuits). They also gave
a quasi-polynomial time blackbox PIT for the same model. As a by-product, they
showed that the hitting-set in Theorem 1 can be used as a shift to make an ROABP
O(logw)-concentrated. Thus, basis isolation is as strong as rank concentration.

[dOSV14] gave a subexponential time (nÕ(n2/3)) blackbox PIT for depth-3 mul-
tilinear circuits. This model is equivalent to sum of arbitrarily many set-multilinear
circuits.

2. Preliminaries.
Hitting Set. A set of points H is called a hitting set for a class C of polynomials

if for any nonzero polynomial P in C, there exists a point in H where P evaluates
to a nonzero value. An f(n)-time hitting set would mean that the hitting set can be
generated in time f(n) for input size n.

2.1. Notation. Z+ denotes the set N∪{0}. [n] denotes the set {1, 2, . . . , n}. [[n]]
denotes the set {0, 1, . . . , n}. x will denote a set of variables. For a set of n variables
x = {x1, x2, . . . , xn} and for an exponent e = (e1, e2, . . . , en) ∈ Zn+, xe will denote
the monomial

∏n
i=1 x

ei
i . The support of a monomial is the set of variables that have

degree ≥ 1 in that monomial. The support size of the monomial is the cardinality of
its support. A polynomial is called s-sparse if there are at most s monomials in it
with nonzero coefficients. For a polynomial P , the coefficient of the monomial m in
P (x) is denoted by coefP (m).
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Fm×n represents the set of all m × n matrices over the field F. Mm×m(F) will
denote the algebra of m×m matrices over the field F. Let Ak(F) be any k-dimensional
algebra over the field F. For any two elements A = (a1, a2, . . . ak) ∈ Ak(F) and
B = (b1, b2, . . . bk) ∈ Ak(F) (having a natural basis representation in mind), their dot
product is defined as A ·B =

∑n
i=1 akbk; and the product AB will denote the product

in the algebra Ak(F).
Part(S) denotes the set of all possible partitions of the set S. Elements in a

partition are called colors (or parts).

2.2. Arithmetic Branching Programs. An ABP is a directed graph with
d + 1 layers of vertices {V0, V1, . . . , Vd} and a start node u and an end node t such
that the edges are only going from u to V0, Vi−1 to Vi for any i ∈ [d], Vd to t. A
width-w ABP has |Vi| ≤ w for all i ∈ [[d]]. Let the set of nodes in Vi be {vi,j | j ∈ [w]}.
All the edges in the graph have weights from F[x], for some field F. As a convention,
the edges going from u and coming to t are assumed to have weights from the field F.

For an edge e, let us denote its weight by W (e). For a path p from u to t, its weight
W (p) is defined to be the product of weights of all the edges in it, i.e.

∏
e∈pW (e).

Consider the polynomial C(x) =
∑
p∈paths(u,t)W (p) which is the sum of the weights

of all the paths from u to t. This polynomial C(x) is said to be computed by the
ABP.

It is easy to see that this polynomial is the same as S>(
∏d
i=1Di)T , where S, T ∈

Fw and Di is a w × w matrix for 1 ≤ i ≤ d such that

S(`) = W (u, v0,`) for 1 ≤ ` ≤ w
Di(k, `) = W (vi−1,k, vi,`) for 1 ≤ `, k ≤ w and 1 ≤ i ≤ d
T (k) = W (vd,k, t) for 1 ≤ k ≤ w

ROABP. An ABP is called a read once oblivious ABP (ROABP) if the edge
weights in the different layers are univariate polynomials in distinct variables. For-
mally, the entries in Di come from F[xπ(i)] for all i ∈ [d], where π is a permutation
on the set [d].

sparse-factor ROABP. We call the ABP a sparse-factor ROABP if the edge
weights in different layers are sparse polynomials in disjoint sets of variables. Formally,
if there exists an unknown partition of the variable set x into d sets {x1,x2, . . . ,xd}
such that Di ∈ Fw×w[xi] is a s-sparse polynomial, for all i ∈ [d], then the correspond-
ing ROABP is called a s-sparse-factor ROABP. It is read once in the sense that any
particular variable contributes to at most one edge on any path.

2.3. Kronecker Map. We will often use a weight function on the variables
which separates a desired set of monomials. It is a folklore trick to solve blackbox
PIT for sparse polynomials. The following lemma is used towards the end of proofs
of Theorem 1 and 3 to design the hitting-sets. Let w : x→ N be a weight function on
the variables. Consider its natural extension to the set of all monomials w : Zn+ → N
as follows: w(Πn

i=1x
γi
i ) =

∑n
i=1 γiw(xi), where γi ∈ Z+, ∀i ∈ [n]. Note that if each

variable xi is replaced with tw(xi) then any monomial m just becomes tw(m).
Lemma 4 (Efficient Kronecker map [Kro82, AB03]). Let M be the set of all

monomials in n variables x = {x1, x2, . . . , xn} with maximum individual degree δ. For
any value a, there exists a (constructible) set of N := na log(δ + 1) weight functions
w : x → {1, . . . , 2N logN}, such that for any set A of pairs of monomials from M
with |A| = a, at least one of the weight functions separates all the pairs in A, i.e.
∀(m,m′) ∈ A, w(m) 6= w(m′) (proof is described in Appendix A).
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3. Hitting set for ROABP: Theorem 1. Like [ASS13] and [FSS14], we work
with the vector polynomial. That is, for a polynomial computed by a width-w
ROABP, C(x) = S>(

∏d
i=1Di)T , we see the product D :=

∏d
i=1Di as a polyno-

mial over the matrix algebra Mw×w(F). We can write the polynomial C(x) as the dot
product R ·D, where R = ST>. The vector space spanned by the coefficients of D(x)
is called the coefficient space of D(x). This space will have dimension at most w2.
We essentially try to construct a small set of vectors, by evaluating D(x), which can
span the coefficient space of D(x). Clearly, if C 6= 0 then the dot product of R with
at least one of these spanning vectors will be nonzero. And thus, we get a hitting set.

Unlike [ASS13] and [FSS14], we directly work with the original polynomial D(x),
instead of shifting it and breaking it into subcircuits. For a polynomial in F[x], a usual
technique for PIT is to give a univariate monomial map for the variables, such that a
monomial of the given polynomial is isolated (e.g. sparse PIT [KS01]). Our approach
can be seen as a generalization of this technique. We come up with a univariate map
(or weight function) on the variables which can isolate a basis for the coefficients of
the polynomial D(x) ∈Mw×w[x].

We present our results for polynomials over arbitrary algebra. Let Ak(F) be a
k-dimensional algebra over the field F. Let x = {x1, x2, . . . , xn} be a set of variables
and let D(x) be a polynomial in Ak(F)[x] with highest individual degree δ. Let M
denote the set of all monomials over the variable set x with highest individual degree
δ.

Now, we will define a basis isolating weight assignment for a polynomial D ∈
Ak(F)[x] which would lead to a hitting set for the polynomial C ∈ F[x], where C =
R ·D, for some R ∈ Ak(F).

Definition 5 (Basis Isolating Weight Assignment). A weight function w : x→ N
is called a basis isolating weight assignment for a polynomial D(x) ∈ Ak(F)[x] if there
exists a set of monomials S ⊆ M (k′ := |S| ≤ k) whose coefficients form a basis for
the coefficient space of D(x), such that

• for any m,m′ ∈ S, w(m) 6= w(m′) and
• for any monomial m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)}.

The above definition is equivalent to saying that there exists a unique minimum
weight basis (according to the weight function w) among the coefficients of D, and also
the basis monomials have distinct weights. We skip the easy proof for this equivalence,
as we will not need it. Let us emphasize here that according to this definition there
could be many monomials in M \ S which have the same weight as a monomial m
in S. The only requirement is that their coefficients should be linearly dependent on
basis coefficients with weight smaller than w(m).

Note that a weight assignment, which gives distinct weights to all the monomials,
is indeed a basis isolating weight assignment. But, it will involve exponentially large
weights. To find an efficient weight assignment one must use some properties of the
given circuit. First, we show how such a weight assignment would lead to hitting set.
We will actually show that it isolates a monomial in C(x).

Lemma 6. Let w : x→ N is a basis isolating weight assignment for a polynomial
D(x) ∈ Ak(F)[x]. And let C = R ·D be a nonzero polynomial, for some R ∈ Ak(F).
Then, after the substitution xi = tw(xi) for all i ∈ [n], the polynomial C remains
nonzero, where t is an indeterminate.

Proof. For any monomial m ∈ M, let Dm ∈ Ak(F) denote the coefficient
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coefD(m). It is easy to see that after the mentioned substitution, the new polynomial
C ′(t) is equal to

∑
m∈M(R ·Dm)tw(m).

Let us say that S ⊂M is the set of monomials whose coefficients form the isolated
basis for D. According to the definition of the basis isolating weight assignment, for
any monomial m ∈M \ S,

Dm ∈ span{Dm′ | m′ ∈ S, w(m′) < w(m)}. (1)

First, we claim that ∃m′ ∈ S such that R ·Dm′ 6= 0. For the sake of contradiction,
let us assume that ∀m′ ∈ S, R · Dm′ = 0. Taking the dot product with R on both
the sides of Equation (1), we get that for any monomial m ∈M \ S,

R ·Dm ∈ span{R ·Dm′ | m′ ∈ S, w(m′) < w(m)}.

Hence, R ·Dm = 0, ∀m ∈ M. That means C(x) = 0, which contradicts our assump-
tion.

Now, let m∗ be the minimum weight monomial in S whose coefficient gives a
nonzero dot product with R, i.e. m∗ = arg min

m∈S
{w(m) | R · Dm 6= 0}. There is a

unique such monomial in S because all the monomials in S have distinct weights.
We claim that coefC′(t

w(m∗)) 6= 0 and hence C ′(t) 6= 0. To see this, consider any
monomial m, other than m∗, with w(m) = w(m∗). The monomial m has to be in the
set M\ S, as the monomials in S have distinct weights. From Equation (1),

Dm ∈ span{Dm′ | m′ ∈ S, w(m′) < w(m∗)}.

Taking dot product with R on both the sides we get,

R ·Dm ∈ span{R ·Dm′ | m′ ∈ S, w(m′) < w(m∗)}.

But, by the choice of m∗, R ·Dm′ = 0, for any m′ ∈ S with w(m′) < w(m∗). Hence,
R ·Dm = 0, for any m 6= m∗ with w(m) = w(m∗).

So, the coefficient coefC′(t
w(m∗)) can be written as∑
m∈M

w(m)=w(m∗)

R ·Dm = R ·Dm∗ ,

which, we know, is nonzero.
We continue to use C ′ and S as in the proofs of Lemma 6. To construct a hitting

set for C ′(t), we can try many possible field values for t. The number of such values
needed will be the degree of C ′(t), which is at most (nδmaxi w(xi)). Hence, the cost
of the hitting set is dominated by the cost of the weight function, i.e. the maximum
weight given to any variable and the time taken to construct the weight function.

In the next step, we show that such a basis isolating weight assignment can indeed
be found for a sparse-factor ROABP, but with cost quasi-polynomial in the input size.
First, we make the following observation that it suffices that the coefficients of the
monomials not in S, linearly depend on any coefficients with strictly smaller weight,
not necessarily coming from S.

Observation 7. If, for a polynomial D ∈ Ak(F)[x], there exists a weight function
w : x→ N and a set of monomials S ⊆M (k′ := |S| ≤ k) such that for any monomial
m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈M, w(m′) < w(m)}.
8



then we can also conclude that for any monomial m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)}.

Proof. We are given that for any monomial m ∈ S :=M\ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈M, w(m′) < w(m)}.

Any coefficient coefD(m′) on the right hand side of this equation, which corresponds to
an index in S, can be replaced with some other coefficients, which have further smaller
weight. If we keep doing this, we will be left with the coefficients only corresponding to
the set S, because in each step we are getting smaller and smaller weight coefficients.

In our construction of the weight function, we will create the set S := M \ S
incrementally, i.e. in each step we will make more coefficients depend on strictly
smaller weight coefficients. Finally, we will be left with only k′ (the rank of the
coefficient space of D) coefficients in S. We present the result for an arbitrary k-
dimensional algebra Ak(F), instead of just the matrix algebra.

Lemma 8 (Weight Construction). Let x be given by a union of d disjoint sets
of variables x1 t x2 t · · · t xd, with |x| = n. Let D(x) = P1(x1)P2(x2) · · ·Pd(xd),
where Pi ∈ Ak(F)[xi] is a sparsity-s, individual degree-δ polynomial, for all i ∈ [d].
Then, we can construct a basis isolating weight assignment for D(x) with the cost
being (poly(k, s, n, δ))log d.

Proof. In our construction, the final weight function w will be a combination of
(log d + 1) different weight functions, say (w0, w1, . . . , wlog d). The weight function
w is said to give an ordering on the monomials which comes from the lexicographic
ordering given by the weight functions (w0, w1, . . . , wlog d). Let us say, their precedence
is decreasing from left to right, i.e. w0 has the highest precedence and wlog d has
the lowest precedence. As mentioned earlier, we will build the set S (the set of
monomials whose coefficients are in the span of strictly smaller weight coefficients
than themselves) incrementally in (log d + 1) steps, using weight function wi in the
(i+ 1)-th step.

LetM0,1,M0,2, . . . ,M0,d be the sets of monomials and C0,1, C0,2, . . . , C0,d be the
sets of coefficients in the polynomials P1, P2, . . . , Pd, respectively.

Notation. The product of two sets of monomials M1 and M2 is defined as
M1 × M2 = {m1m2 | m1 ∈ M1, m2 ∈ M2}. The product of any two sets of
coefficients C1 and C2 is defined as C1 × C2 = {c1c2 | c1 ∈ C1, c2 ∈ C2}.

The crucial property of the polynomial D is that the set of coefficients in D, C0, is
just the product C0,1×C0,2×· · ·×C0,d. Similarly, the set of all the monomials in D, say
M0, can be viewed as the productM0,1×M0,2×· · ·×M0,d. Let m := mama+1 · · ·mb

be a monomial, where 1 ≤ a ≤ b ≤ d and mj ∈ M0,j , for a ≤ j ≤ b. Then Dm will
denote the coefficient coefPa(ma) coefPa+1

(ma+1) · · · coefPb(mb).
Iteration 0: Let us fix w0 : x→ N to be a weight function on the variables which

gives distinct weights to all the s monomials in M0,i, for each i ∈ [d]. As w0 assigns
distinct weights to these monomials, so does the weight function w.

For each Pi we do the following:
• arrange the coefficients in C0,i in increasing order of their weight according to
w (or equivalently, according to w0),

• choose a maximal set of linearly independent coefficients, in a greedy manner,
going from lower weights to higher weights.
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The fact that the weight functions w1, w2, . . . , wlog d are not defined yet does not mat-
ter because w0 has the highest precedence. The total order given to the monomials in
M0,i by w0 is the same as given by w, irrespective of what the functions w1, . . . , wlog d

are chosen to be.
This gives us a basis for the coefficients of Pi, say C′0,i. Let M′0,i denote the

monomials in Pi corresponding to these basis coefficients. From the construction of
the basis, it follows that for any monomial m ∈M0,i \M′0,i ,

Dm ∈ span{Dm′ | m′ ∈M′0,i, w(m′) < w(m)}. (2)

Now, consider any monomial m ∈ M0 which is not present in the set M′0 :=
M′0,1 ×M′0,2 × · · · ×M′0,d. Let m = m1m2 · · ·md, where mi ∈ M0,i for all i ∈ [d].
We know that for at least one j ∈ [d], mj ∈ M0,j \M′0,j . Then using Equation (2)
we can write the following about Dm = Dm1Dm2 · · ·Dmd ,

Dm ∈ span{Dm1
· · ·Dmj−1

Dm′j
Dmj+1

· · ·Dmd | m′j ∈M′0,j , w(m′j) < w(mj)}.

This holds, because the algebra product is bilinear. Equivalently, for any monomial
m ∈M0 \M′0,

Dm ∈ span{Dm′ | m′ ∈M0, w(m′) < w(m)}.

This is true because

w(m1) + · · ·+ w(m′j) + · · ·+ w(md) < w(m1) + · · ·+ w(mj) + · · ·+ w(md) = w(m).

Hence, all the monomials inM0 \M′0 can be put into S, i.e. their corresponding
coefficients depend on strictly smaller weight coefficients.

Iteration 1: Now, let us consider monomials in the set M′0 = M′0,1 ×M′0,2 ×
· · · ×M′0,d. Let the corresponding set of coefficients be C′0 := C′0,1 × C′0,2 × · · · × C′0,d.
Since, the underlying algebra Ak(F) has dimension at most k and the coefficients
in C′0,i form a basis for C0,i, |M′0,i| ≤ k, for all i ∈ [d]. In the above product, let
us make d/2 disjoint pairs of consecutive terms, and for each pair, multiply the two
terms in it. Putting it formally, let us define C1,j to be the product C′0,2j−1 × C′0,2j
and similarly M1,j :=M′0,2j−1 ×M′0,2j , for all j ∈ [d/2] (if d is odd, we can make it
even by multiplying the identity element of Ak(F) in the end). Now, let C1 := C′0 =
C1,1×C1,2×· · ·×C1,d1 , andM1 :=M′0 =M1,1×M1,2×· · ·×M1,d1 , where d1 := d/2.
For any i ∈ [d1], M1,i has at most k2 monomials.

Now, we fix the weight function w1 : x → N such that it gives distinct weights
to all the monomials in M1,i, for each i ∈ [d1]. As w1 separates these monomials,
so does the weight function w. Now, we repeat the same procedure of constructing a
basis in a greedy manner for C1,i according to the weight function w, for each i ∈ [d1].
Let the basis coefficients for C1,i be C′1,i and corresponding monomials be M′1,i.

As argued before, any coefficient in C1, which is outside the set C′1 := C′1,1 ×
C′1,2 × · · · × C′1,d1 , is in the span of strictly smaller weight (than itself) coefficients.

So, we can also put the corresponding monomials M1 \ M′1 in S where M′1 :=
M′1,1 ×M′1,2 × · · · ×M′1,d1 .

Iteration r: We keep repeating the same procedure for (log d + 1) rounds. After
round r, say the set of monomials we are left with is given by the product M′r−1 =
M′r−1,1 ×M′r−1,2 × · · · × M′r−1,dr−1

, where Mr−1,i has at most k monomials, for

each i ∈ [dr−1] and dr−1 = d/2r−1. In the above product, we make dr−1/2 disjoint
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pairs of consecutive terms, and multiply the two terms in each pair. Let us say we
get Mr := M′r−1 = Mr,1 × Mr,2 × · · · × Mr,dr , where dr = dr−1/2. Say, the
corresponding set of coefficients is given by Cr = Cr,1 × Cr,2 × · · · × Cr,dr . Note that
|Mr,i| ≤ k2, for each i ∈ [dr].

We fix the weight function wr such that it gives distinct weights to all the mono-
mials in the setMr,i, for each i ∈ [dr]. We once again mention that fixing of wr does
not affect the greedy basis constructed in earlier rounds and hence the monomials
which were put in the set S, because wr has less precedence than any wr′ , for r′ < r.

For each Cr,i, we construct a basis in a greedy manner going from lower weight to
higher weight (according to the weight function w). Let this set of basis coefficients
be C′r,i and corresponding monomials be M′r,i, for each i ∈ [dr]. Let C′r := C′r,1 ×
C′r,2 × · · · × C′r,dr and M′r := M′r,1 ×M′r,2 × · · · ×M′r,dr . Arguing similar as before
we can say that each coefficient in Cr,i \ C′r,i is in the span of strictly smaller weight
coefficients (from C′r,i) than itself. Hence, the same can be said about any coefficient

in the set Cr \ C′r. So, all the monomials in the setMr \M′r can be put into S. Now,
we are left with monomials M′r =M′r,1 ×M′r,2 × · · · ×M′r,dr for the next round.

Iteration log d: As in each round, the number of terms in the product gets halved,
after log d rounds we will be left with just one term, i.e. Mlog d = M′log d−1,1 ×
M′log d−1,2 = Mlog d,1. Now, we will fix the function wlog d which separates all the
monomials in Mlog d,1. By arguments similar as above, we will be finally left with at
most k′ monomials in S, which will all have distinct weights. It is clear that for every
monomial in S, its coefficient will be in the span of strictly smaller weight coefficients
than itself.

Now, let us look at the cost of this weight function. In the first round, w0 needs to
separate at most O(ds2) many pairs of monomials. For each 1 ≤ r ≤ log d, wr needs
to separate at most O(dk4) many pairs of monomials. From Lemma 4, to construct
wr, for any 0 ≤ r ≤ log d, one needs to try poly(k, s, n, δ)-many weight functions
each having highest weight at most poly(k, s, n, δ) (as d is bounded by n). To get
the correct combination of the weight functions (w0, w1, . . . , wlog d) we need to try all
possible combinations of these polynomially many choices for each wr. Thus, we have
to try (poly(k, s, n, δ))log d many combinations.

To combine these weight functions we can choose a large enough number B
(greater than the highest weight a monomial can get in any of the weight functions),
and define w := w0B

log d + w1B
log d−1 + · · · + wlog d. The choice of B ensures that

the different weight functions cannot interfere with each other, and they also get the
desired precedence order.

The highest weight a monomial can get from the weight function w would be
(poly(k, s, n, δ))log d. Thus, the cost of w remains (poly(k, s, n, δ))log d.

Combining Lemma 8 with Observation 7 and Lemma 6, we can get a hitting set
for ROABP.

Theorem 1 (restated). Let C(x) be an n-variate polynomial computed by a
width-w, s-sparse-factor ROABP, with individual degree bound δ. Then there is a
poly(w, s, n, δ)logn-time hitting set for C(x).

Proof. As mentioned earlier, C(x) can be written as R · D(x), for some R ∈
Mw×w(F), where D(x) ∈Mw×w(F)[x]. The underlying matrix algebra Mw×w(F) has
dimension w2. The hitting set size will be dominated by the cost of the weight function
constructed in Lemma 8. As the parameter d in Lemma 8, i.e. the number of layers
in the ROABP, is bounded by n, the hitting set size will be poly(w, s, n, δ)logn.

11



4. Sum of constantly many set-multilinear circuits: Theorem 2. To find
a hitting set for a sum of constantly many set-multilinear circuits, we build some
tools. The first is depth-3 multilinear circuits with ‘small distance’. As it turns out,
a multilinear polynomial computed by a depth-3 ∆-distance circuit (top fan-in k)
can also be computed by a width-O(kn∆) ROABP (Lemma 14). Thus, we get a
poly(nk)∆ logn-time hitting set for this class, from Theorem 1. For our main result
(Theorem 2), we only use 1-distance circuits. But we present our results for arbitrary
distance circuits, as they are of independent interest and do not follow immediately
from those for 1-distance.

Next, we use a general result about finding a hitting set of size hm for a class m-
base-sets-C, if a hitting set of size h is known for class C (Lemma 17). A polynomial is
in m-base-sets-C, if there exists a partition of the variables into m base sets such that
restricted to each base set (treat other variables as field constants), the polynomial
is in class C. Finally, we show that a sum of constantly many set-multilinear circuits
falls into the class m-base-sets-∆-distance, for m∆ = o(n). Thus, we get Theorem 2.

4.1. ∆-distance circuits. Recall that each product gate in a depth-3 multilin-
ear circuit induces a partition on the variables. Let these partitions be P1,P2, . . . ,Pk.

Definition 9 (Distance for a partition sequence). Let P1,P2, . . . ,Pk ∈ Part([n])
be the k partitions of the variables {x1, x2, . . . , xn}. Then d(P1,P2, . . . ,Pk) = ∆ if
∀i ∈ {2, 3, . . . , k},∀colors Y1 ∈ Pi, ∃Y2, Y3, . . . , Y∆′ ∈ Pi (∆′ ≤ ∆) such that Y1 ∪ Y2 ∪
· · · ∪ Y∆′ equals a union of some colors in Pj ,∀j ∈ [i− 1].

In other words, in every partition Pi, each color Y1 has a set of colors called
‘friendly neighborhood’, {Y1, Y2, . . . , Y∆′}, consisting of at most ∆ colors, which is
exactly partitioned in the ‘upper partitions’. We call Pi, an upper partition relative
to Pj (and Pj , a lower partition relative to Pi), if i < j. For a color Xa of a partition
Pj , let nbdj(Xa) denote its friendly neighborhood. For example, for the partitions
P1 = {{1, 2}, {3}, {4}, {5, 6}} and P2 = {{1, 3}, {2, 4}, {5}, {6}}, d(P1,P2) = 2. In
partition P2, the set {{1, 3}, {2, 4}} is a friendly neighborhood and the set {{5}, {6}}
is another.

The friendly neighborhood nbdj(xi) of a variable xi in a partition Pj is defined
as nbdj(colorj(xi)), where colorj(xi) is the color in the partition Pj that contains the
variable xi.

Definition 10 (∆-distance circuits). A multilinear depth-3 circuit C has ∆-
distance if its product gates can be ordered to correspond to a partition sequence
(P1, . . . ,Pk) with d(P1,P2, . . . ,Pk) ≤ ∆.

For example, the circuit (1+x1 +x2)(1+x3)(1+x4)(1+x5 +x6)+(1+x1 +x3)(1+
x2 + x4)(1 + x5)(1 + x6) has 2-distance. Every depth-3 multilinear circuit is thus an
n-distance circuit. A circuit with a partition sequence, where the partition Pi is a
refinement of the partition Pi+1,∀i ∈ [k−1], exactly characterizes a 1-distance circuit.
All depth-3 multilinear circuits have distance between 1 and n. Also observe that
the circuits with 1-distance strictly subsume set-multilinear circuits. E.g. a circuit,
whose product gates induce two different partitions P1 = {{1}, {2}, . . . , {n}} and
P2 = {{1, 2}, {3, 4}, . . . , {n− 1, n}}, has 1-distance but is not set-multilinear.
Friendly neighborhoods - To get a better picture, we ask: Given a color Xa of a
partition Pj in a circuit D(x), how do we find its friendly neighborhood nbdj(Xa)?
Consider a graph Gj which has the colors of the partitions {P1,P2, . . . ,Pj}, as its
vertices. For all i ∈ [j − 1], there is an edge between the colors X ∈ Pi and Y ∈ Pj if
they share at least one variable. Observe that if any two colors Xa and Xb of partition
Pj are reachable from each other inGj , then, they should be in the same neighborhood.
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As reachability is an equivalence relation, the neighborhoods are equivalence classes of
colors.

Moreover, observe that for any two variables xa and xb, if their respective colors in
partition Pj , colorj(xa) and colorj(xb) are reachable from each other in Gj then their
respective colors in partition Pj+1, colorj+1(xa) and colorj+1(xb) are also reachable
from each other in Gj+1. Hence, we get the following.

Observation 11. If at some partition, the variables xa and xb are in the same
neighborhood, then, they will be in the same neighborhood in all of the lower partitions.
I.e. nbdj(xa) = nbdj(xb) =⇒ nbdi(xa) = nbdi(xb),∀i ≥ j.

In other words, if we define a new sequence of partitions, such that the j-th
partition has xa and xb in the same color if nbdj(xa) = nbdj(xb), then the upper
partitions are refinements of the lower partitions.

4.1.1. Reduction to ROABP. Now, we show that any polynomial computed
by a low-distance multilinear depth-3 circuit can also be computed by a small size
ROABP. First we make the following observation about sparse polynomials.

Observation 12. Any multilinear polynomial C(x) with sparsity s can be com-
puted by a width-s ROABP, in any variable order.

Proof. Let M denote the set of monomials in C, and let Cm denote coefC(m).
Consider an ABP with n+ 1 layers of vertices V1, V2, . . . , Vn+1 each having s vertices
(one for each monomial inM) together with a start vertex v0 and an end vertex vn+2.
Let vi,m denote the m-th vertex of the layer Vi, for any i ∈ [n+ 1] and any m ∈M.

The edge labels in the ABP are given as follows: For all m ∈M,
• The edge (v0, v1,m) is labelled by Cm,
• The edge (vn+1,m, vn+2) is labelled by 1,
• For all i ∈ [n], the edge (vi,m, vi+1,m) is labelled by xi if the monomial m

contains xi, otherwise by 1.
All other edges get labelled by 0. Clearly, the ABP constructed computes the poly-
nomial P (x) and it is an ROABP.

Also, note that this construction can be done with any desired variable order.
Now, consider a depth-3 ∆-distance multilinear polynomial P =

∑k
i=1 aiQi,

where each Qi =
∏ni
j=1 `ij is a product of linear polynomials. We will construct an

ROABP for each Qi. We can combine these ROABPs to construct a single ROABP if
they all have the same variable order. To achieve this we use the refinement property
described above (from Observation 11).

Lemma 13 (Achieving same order). Let P =
∑k
i=1 aiQi be a multilinear polyno-

mial computed by a ∆-distance circuit. Then we can make a width-O(n∆) ROABP
for each Qi, in the same variable order.

Proof. Each Qi is a product of linear forms in disjoint set of variables, say Qi =∏ni
j=1 `ij . Let the partition induced on the variable set, by the product Qi, be Pi, for

all i ∈ [k]. Without loss of generality let the partition sequence (P1,P2, . . . ,Pk) have
distance ∆. For each i ∈ [k], let us define a new partition P′i, such that the union of
colors in each neighborhood of Pi forms a color of P′i. This is a valid definition, as
neighborhoods are equivalence classes of colors. From Observation 11, the partition
P′i is a refinement of partition P′j for any i < j.

For a partition P of the variable set x, an ordering on its colors (c1 < c2 < · · · < cr)
naturally induces a partial ordering on the variables, i.e. for any xi ∈ cj and xi′ ∈ cj′ ,
cj < cj′ =⇒ xi < xi′ . The variables in the same color do not have any relation.

Let us say, a variable (partial) order (<∗) respects a partition P with colors
{c1, c2, . . . , cr}, if there exists an ordering of the colors (cj1 < cj2 < · · · < cjr ),
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such that its induced partial order (<) on the variables can be extended to <∗. We
claim that there exists a variable order (<∗) which respects partition P′i, for all i ∈ [k].

We build this variable order (<∗) iteratively. We start with P′k. We give an
arbitrary ordering to the colors in P′k, say (ck,1 < ck,2 < · · · < ck,rk), which induces a
partial order (<k) on the variables. For any k > i ≥ 1, let us define a partial order
(<i) inductively as follows: Let (<i+1) be a partial order on the variables induced
by an ordering on the colors of P′i+1. As mentioned earlier, the colors of P′i are just
further partitions of the colors of P′i+1. Hence, we can construct an ordering on the
colors of P′i, such that the induced partial order (<i) is an extension of (<i+1). To
achieve that, we do the following: For each color c in P′i+1, fix an arbitrary ordering
among those colors of P′i, whose union forms c.

Clearly, the partial order (<1) defined in such a way respects P′i for all i ∈ [k].
We further fix an arbitrary ordering among variables belonging to the same color in
P′1. Thus, we get a total order (<∗), which is an extension of <1 and hence respects
P′i for all i ∈ [k].

Now, we construct an ROABP for each Qi in the variable order <∗. First, we
multiply out the linear forms which belong to the same neighborhood in each Qi. That
is, we write Qi as the product

∏ri
j=1Qij , where ri is the number of neighborhoods in

Pi (number of colors in P′i) and each Qij is the product of linear forms (colors) which
belong to the same neighborhood in Pi. As, the partition sequence has distance ∆,
the neighborhoods have at most ∆ colors. So, the degree of each Qij is bounded by
∆ and hence the sparsity is bounded by O(n∆). By Observation 12, we can construct
a width-O(n∆) ROABP for Qij in the variable order given by <∗.

Let cij denote the color of P′i corresponding to Qij . As the order <∗ respects
P′i, it gives an order on its colors, say cij1 < cij2 < · · · < cijri . Now, we arrange the
ROABPs for Qij ’s in the order Qij1Qij2 . . . Qijri , while identifying the end vertex of
Qija with the start vertex of Qija+1 , for all a ∈ [ri − 1]. Clearly the ROABP thus
constructed computes the polynomial Qi and has variable order <∗.

Once we have ROABPs for the polynomials Qi’s in the same variable order, let
us make a new start node and connect it with the start node of the ROABP for Qi
with label ai, for all i ∈ [k]. Also, let us make a new end node and connect it with the
end node of the ROABP for Qi with label 1, for all i ∈ [k]. Clearly, the ROABP thus

constructed computes the polynomial P =
∑k
i=1 aiQi and has width O(kn∆). Thus,

we can write
Lemma 14 (∆-distance to ROABP). An n-variate multilinear polynomial com-

puted by a depth-3, ∆-distance circuit with top fan-in k has a width-O(kn∆) ROABP.
Hence, from Theorem 1 we get,
Theorem 15 (∆-distance Hitting Set). Let C(x) be a depth-3, ∆-distance,

n-variate multilinear circuit with top fan-in k. Then there is a (nk)O(∆ logn)-time
hitting-set for C(x).

4.2. Base sets with ∆-distance. In this section we describe our second tool
towards finding a hitting set for sum of constantly many set-multilinear polynomials.
We further generalize the class of polynomials, for which we can give an efficient test,
beyond low-distance. Basically, it is enough to have low-distance “projections”.

Definition 16. A multilinear depth-3 circuit C(x) is said to have m-base-sets-
∆-distance if there is a partition of the variable set x into base sets {x1,x2, . . . ,xm}
such that for any i ∈ [m], restriction of C on the i-th base set (i.e. other variables are
considered as function field constants), has ∆-distance.
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For example, the circuit (1 + x1 + y1)(1 + x2 + y2) · · · (1 + xn + yn) + (1 + x1 +
y2)(1 + x2 + y3) · · · (1 + xn + y1) has n-distance, but when restricted to either base
set {xi}i or base set {yi}i, it has 1-distance. Thus, it has 2-base-sets-1-distance. We
will show that there is an efficient hitting set for this class of polynomials. In fact, we
can show a general result for a polynomial whose restriction on one base set falls into
a class C, for which a hitting set is already known. Here, by F we mean the algebraic
closure of a field F. (Actually, a sufficiently large field extension of F suffices for the
proof.)

Lemma 17 (Hybrid Argument). Let H be the hitting set for a class C of n-
variate polynomials over field F. Let x be a union of m disjoint sets of variables
x1tx2t· · ·txm, called base sets, each with size at most n. Let C(x) be a polynomial
such that for all i ∈ [m], its restriction to the base set xi is in class C, i.e. for all

points (a1, . . . ,ai−1,ai+1, . . . ,am) ∈ F
∑
j 6=i|xj |, the polynomial C(x1 = a1, . . . ,xi−1 =

ai−1,xi+1 = ai+1, . . . ,xm = am)) is in class C. Then there is a hitting set for C(x)
of size |H|m (with the knowledge of the base sets).

Proof. Let us assume that the set xi has cardinality n, for all i ∈ [m]. If not,
then we can introduce dummy variables. Now, we claim that if C(x) 6= 0 then there
exists m points h1,h2, . . . ,hm ∈ H, such that C(x1 = h1,x2 = h2,xm = hm) 6= 0.

We prove the claim inductively.
Base Case: The polynomial C(x1,x2, . . . ,xm) 6= 0. It follows from the assump-

tion.
Induction Hypothesis: There exist points h1,h2, . . . ,hi ∈ H such that the par-

tially evaluated polynomial C ′(xi+1, . . . ,xm) := C(x1 = h1, . . . ,xi = hi,xi+1, . . . ,xm)
6= 0.

Induction Step: We show that there exists hi+1 ∈ H such that the polynomial
C ′(xi+1 = hi+1,xi+2, . . . ,xm) 6= 0.

As the polynomial C ′(xi+1, . . . ,xm) is nonzero, there exist points ai+2, . . . ,am ∈
Fn such that C ′′(xi+1) := C ′(xi+1,xi+2 = ai+2, . . . ,xm = am) 6= 0 (from Schwartz-
Zippel Lemma, see [SY10, Fact 4.1]). We know that C ′′(xi+1) is in class C. So, there
must exist a point hi+1 ∈ H such that C ′′(xi+1 = hi+1) 6= 0. This clearly implies
that C ′(xi+1 = hi+1,xi+2, . . . ,xm) 6= 0. Thus, the claim is true.

Now, to construct a hitting set for C, one needs to substitute the set H for each
base set xi, i.e. the Cartesian product H ×H × · · · × H (m times). Hence, we get a
hitting set of size |H|m.

Note that, in the above proof the knowledge of the base sets is crucial. This
lemma, together with Theorem 15, gives us the following:

Theorem 18 (m-base-sets-∆-distance PIT). If C(x) is a depth-3 multilinear
circuit, with top fan-in k, having m-base-sets (known) with ∆-distance, then there is
a (nk)O(m∆ logn)-time hitting-set for C.

4.3. Sum of set-multilinear circuits reduces to m-base-sets-∆-distance.
In this section, we will reduce the PIT for sum of constantly many set-multilinear
depth-3 circuits, to the PIT for depth-3 circuits with m-base-sets-∆-distance, where
m∆ = o(n). Thus, we get a subexponential time whitebox algorithm for this class
(from Theorem 18). Note that a sum of constantly many set-multilinear depth-3
circuits is equivalent to a depth-3 multilinear circuit such that the number of distinct
partitions, induced by its product gates, is constant.

We first look at the case of two partitions. For a partition P of [n], let P|B denote
the restriction of P on a base set B ⊆ [n]. E.g., if P = {{1, 2}, {3, 4}, {5, 6, . . . , n}} and
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B = {1, 3, 4} then P|B = {{1}, {3, 4}}. Recall that d(P1,P2, . . . ,Pc) denotes the dis-
tance of the partition sequence (P1,P2, . . . ,Pc) (Definition 9). For a partition sequence
(P1,P2, . . .Pc), and a base set B ⊆ [n], let dB(P1,P2, . . . ,Pc) denote the distance of
the partition sequence when restricted to the base set B, i.e. d(P1|B ,P2|B , . . . ,Pc|B).

Lemma 19 (c = 2). For any two partitions {P1,P2} of the set [n], there exists a
partition of [n], into at most 2

√
n base sets {B1, B2, . . . , Bm} (m < 2

√
n), such that

for any i ∈ [m], either dBi(P1,P2) = 1 or dBi(P2,P1) = 1.

Proof. Let us divide the set of colors in the partition P1, into two types of colors:
One with at least

√
n elements and the other with less than

√
n elements. In other

words, P1 = {X1, X2, . . . , Xr} ∪ {Y1, Y2, . . . , Yq} such that |Xi| ≥
√
n and |Yj | <

√
n,

for all i ∈ [r], j ∈ [q]. Let us make each Xi a base set, i.e. Bi = Xi, ∀i ∈ [r]. As
|Xi| ≥

√
n, ∀i ∈ [r], we get r ≤

√
n. Now, for any i ∈ [r], P1|Bi has only one color.

Hence, irrespective of what colors P2|Bi has, dBi(P2,P1) = 1, for all i ∈ [r].

Now, for the other kind of colors, we will make base sets which have exactly
one element from each color Yj . More formally, let Yj = {yj,1, yj,2, . . . , yj,rj}, for all
j ∈ [q]. Let r′ = max{r1, r2, . . . , rq} (r′ <

√
n). Now define base sets B′1, B

′
2, . . . , B

′
r′

such that for any a ∈ [r′], B′a = {yj,a | j ∈ [q], |Yj | ≥ a}. In other words, all those
Yjs which have at least a elements, contribute their a-th element to B′a. Now for any
a ∈ [r′], P1|B′a = {{yj,a} | j ∈ [q], |Yj | ≥ a}, i.e. it has exactly one element in each
color. Clearly, irrespective of what colors P2|B′a has, dB′a(P1,P2) = 1, for all a ∈ [r′].
{B1, B2, . . . , Br} ∪ {B′1, B′2, . . . , B′r′} is our final set of base sets. Clearly, they form a
partition of [n]. The total number of base sets, m = r + r′ < 2

√
n.

Now, we generalize Lemma 19 to any constant number of partitions, by induction.

Lemma 20 (Reduction to m-base-sets-1-distance). For any set of c partitions
{P1,P2, . . . ,Pc} ⊆ Part([n]), there exists a partition of the set [n], into m base sets

{B1, B2, . . . , Bm} with m < (4n)1−(1/2c−1) such that for any i ∈ [m], there exists a
permutation of the partitions, (Pi1 ,Pi2 , . . . ,Pic) with dBi(Pi1 ,Pi2 , . . . ,Pic) = 1.

Proof. Let f(c, n) := (4n)1−(1/2c−1). The proof is by induction on the number of
partitions.

Base case: For c = 2, f(c, n) becomes 2
√
n. Hence, the statement follows from

Lemma 19.

Induction hypothesis: The statement is true for any c− 1 partitions.

Induction step: Like in Lemma 19, we divide the set of colors in P1 into two
types of colors. Let P1 = {X1, X2, . . . , Xr} ∪ {Y1, Y2, . . . , Yq} such that |Xi| ≥

√
n

and |Yj | <
√
n, for all i ∈ [r], j ∈ [q]. Let us set Bi = Xi and let ni := |Bi|, ∀i ∈ [r].

Our base sets will be further subsets of these Bis. For a fixed i ∈ [r], let us define
P′h = Ph|Bi , as a partition of the set Bi, for all h ∈ [c]. Clearly, P′1 has only one
color. Now, we focus on the partition sequence (P′2,P′3, . . . ,P′c). From the inductive
hypothesis, there exists a partition ofBi intomi base sets {Bi,1, Bi,2, . . . , Bi,mi} (mi <
f(c− 1, ni)) such that for any u ∈ [mi], there exists a permutation of (P′2,P′3, . . . ,P′c),
given by (P′i2 ,P

′
i3
, . . . ,P′ic), with dBi,u(P′i2 ,P

′
i3
, . . . ,P′ic) = 1. As P′1 has only one color,

so does P′1|Bi,u . Hence, dBi,u(P′i2 ,P
′
i3
, . . . ,P′ic ,P

′
1) is also 1. From this, we easily get

dBi,u(Pi2 ,Pi3 , . . . ,Pic ,P1) = 1. The above argument can be made for all i ∈ [r].

Now for the other colors, we proceed as in Lemma 19. Let Yj = {yj,1, yj,2, . . . , yj,rj},
for all j ∈ [q]. Let r′ = max{r1, r2, . . . , rq} (r′ <

√
n). Now define sets B′1, B

′
2, . . . , B

′
r′

such that for any a ∈ [r′], B′a = {yj,a | j ∈ [q], |Yj | ≥ a}. In other words, all those Yjs
which have at least a elements, contribute their a-th element to B′a. Let n′a := |B′a|,
for all a ∈ [r′]. Our base sets will be further subsets of these B′as. For a fixed a ∈ [r′],
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let us define P′h = Ph|B′a , as a partition of the set B′a, for all h ∈ [c]. Clearly, P′1
has exactly one element in each of its colors. Now, we focus on the partition se-
quence (P′2,P′3, . . . ,P′c). From the inductive hypothesis, there exists a partition of
B′a into m′a base sets {B′a,1, B′a,2, . . . , B′a,m′a} (m′a < f(c − 1, n′a)) such that for any

u ∈ [m′a], there exists a permutation of (P′2,P′3, . . . ,P′c), given by (P′i2 ,P
′
i3
, . . . ,P′ic),

with dB′a,u(P′i2 ,P
′
i3
, . . . ,P′ic) = 1. As P′1 has exactly one element in each of its colors,

so does P′1|B′a,u . Hence, dB′a,u(P′1,P′i2 ,P
′
i3
, . . . ,P′ic) is also 1. From this, we easily get

dB′a,u(P1,Pi2 ,Pi3 , . . . ,Pic) = 1. The above argument can be made for all a ∈ [r′].
Our final set of base sets will be {Bi,u | i ∈ [r], u ∈ [mi]} ∪ {B′a,u | a ∈ [r′], u ∈

[m′a]}. As argued above, when restricted to any of these base sets, the given partitions
have a sequence, which has distance 1. Now, we need to bound the number of these
base sets,

m =
∑
i∈[r]

mi +
∑
a∈[r′]

m′a.

From the bounds on mi and m′a, we get

m <
∑
i∈[r]

f(c− 1, ni) +
∑
a∈[r′]

f(c− 1, n′a).

Recall that ni ≥
√
n ∀i ∈ [r] and

∑
i∈[r] ni ≤ n, thus r <

√
n. Also, we know that

r′ <
√
n. Let us combine the two sums by defining nr+a := n′a for all a ∈ [r′] and

r′′ := r + r′.

m <
∑
i∈[r′′]

f(c− 1, ni).

We know that r′′ < 2
√
n and

∑
i∈[r′′] ni = n. Observe that f(c− 1, z), as a function

of z, is a concave function (its derivative is monotonically decreasing, when z > 0).
From the properties of a concave function, we know,

1

r′′

∑
i∈[r′′]

f(c− 1, ni) ≤ f

c− 1,
1

r′′

∑
i∈[r′′]

ni


= f(c− 1, n/r′′).

Equivalently,

∑
i∈[r′′]

f(c− 1, ni) ≤ r′′(4n/r′′)1−(1/2c−2)

= (4n)1−(1/2c−2) · (r′′)1/2c−2

< (4n)1−(1/2c−2) · (4n)1/2c−1

(∵ r′′ <
√

4n)

= (4n)1−(1/2c−1).

Thus we get,

m < (4n)1−(1/2c−1).
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Now, we combine these results with our hitting-sets for depth-3 circuits having
m-base-sets with ∆-distance.

Theorem 2 (restated). Let C(x) be a n-variate polynomial, which can be com-
puted by a sum of c set-multilinear depth-3 circuits, each having top fan-in k. Then
there is a (nck)O(n1−ε logn)-time whitebox PIT test for C, where ε := 1/2c−1.

Proof. As mentioned earlier, the polynomial C(x) can be viewed as being com-
puted by a depth-3 multilinear circuit, such that its product gates induce at most c
distinct partitions. From Lemma 20, we can partition the variable set into m base
sets, such that for each of these base sets, the partitions can be sequenced to have
distance 1, where m < (4n)1−ε. Hence, the polynomial C has m-base-sets with 1-
distance and top fan-in ck. Moreover, from the proof of Lemma 20, it is clear that
such base sets can be computed in nO(c)-time. From Theorem 18, we know that there
is (nck)O(m logn)-time whitebox PIT test for such a circuit. As m = O(n1−ε), we get
the result.

Tightness of this method for c = 2. Lemma 19 can be put in other words as:
Any two partitions have m-base-sets-∆-distance with m∆ = O(

√
n). We can, in fact,

show that this result is tight.
Showing the lower bound: Let d(P1,P2) = ∆. Then each color of P2 has a

friendly neighborhood (of at most ∆ colors) which is exactly partitioned in P1. Now
construct ∆ base sets such that i-th base set takes the variables of i-th color from
every neighborhood of P2. Clearly, when restricted to one of these bases sets, d(P1,P2)
is 1. In other words P1 and P2 have ∆-base-sets-1-distance. Similarly, one can argue
that if P1 and P2 have m-base-sets-∆-distance then they also have m∆-base-sets-1-
distance. Now, we will show that if we want m-base-sets-1-distance for two partitions
then m = Ω(

√
n).

Consider the following example (assuming n is a square):
P1 = {{1, 2, . . .

√
n}, {

√
n+ 1,

√
n+ 2, . . . , 2

√
n}, . . . , {

√
n(
√
n− 1) + 1,

√
n(
√
n−

1) + 2, . . . , n}} and
P2 = {{1,

√
n+1, . . . , n−

√
n+1}, {2,

√
n+2, . . . , n−

√
n+2}, . . . , {

√
n, 2
√
n, . . . , n}}.

Basically, P2 has the residue classes (mod
√
n).

Observation 21. A base set B, such that dB(P1,P2) = 1, has at most
√
n

variables.
Proof. Suppose it has more than

√
n variables. Then, there is at least one color

in P1 which contributes two variables to B. These two variables have to be in two
different colors of P2 (because of our design of P1 and P2). So, dB(P1,P2) is at least
2. We get a contradiction.

The number of such base sets has to be at least
√
n. Combining this with the

reduction from m-base-sets-∆-distance to m∆-base-sets-1-distance, we get m∆ =
Ω(
√
n).
It is not clear if Lemma 20 is tight. We conjecture that for any set of partitions,

m∆ = O(
√
n) can be achieved.

5. Sparse-Invertible Width-w ROABP: Theorem 3. As mentioned in the
Preliminaries (Section 2), a polynomial C(x) computed by a s-sparse-factor width-w

ROABP can be written as D>0 (
∏d
i=1Di)Dd+1, where D0, Dd+1 ∈ Fw, Di ∈ Fw×w[xi]

is an s-sparse polynomial for all i ∈ [d], and x1,x2 . . . ,xd are disjoint sets of variables.

We will show a hitting-set for a sparse-factor ROABP D0(
∏d
i=1Di)Dd+1, where

the Dis are invertible matrices, for all i ∈ [d]. Hence, we name this model sparse-

18



invertible-factor ROABP.
For a polynomial D, let its sparsity s(D) be the number of monomials in D with

nonzero coefficients.
Theorem 3 (restated). Let x = x1 t · · · t xd, with |x| = n. Let C(x) =

D>0 DDd+1 ∈ F[x] be a polynomial with D0, Dd+1 ∈ Fw, D(x) =
∏d
i=1Di(xi),

and for all i ∈ [d], Di ∈ Fw×w[xi] is an invertible matrix. For all i ∈ [d], Di

has degree bounded by δ and sparsity s(Di) ≤ s. Then there is a hitting-set of size

poly((nδs)w
2 logw) for C(x).

Remark [1]. If the width w is constant, then it is clear that we get a polynomial
sized hitting-set.

Remark [2]. If the Dis are univariate, then we get a (nδ)O(w2) sized hitting-set.
The proof is presented along with the proof of Theorem 3.

Like [ASS13] and [FSS14], we find a hitting-set by showing a low-support concen-

tration. Low-support concentration in the polynomial D(x) =
∏d
i=1Di means that

the coefficients of the low-support monomials in D(x) span the whole coefficient space
of D(x).

Let x be {x1, x2 . . . , xn}. For an exponent e = (e1, e2, . . . , em) ∈ Zm+ , and for a set
of variables y = {y1, y2, . . . , ym}, ye will denote y1

e1y2
e2 . . . ym

em . For any e ∈ Zn+,
support of the monomial xe is defined as S(e) := {i ∈ [n] | ei 6= 0} and support
size is defined as s(e) := |S(e)|. Now, we define `-concentration for a polynomial
D(x) ∈ Fw×w[x].

Definition 22 (`-concentration). Polynomial D(x) ∈ Fw×w[x] is `-concentrated
if rankF{coefD(xe) | e ∈ Zn+, s(e) < `} = rankF{coefD(xe) | e ∈ Zn+}.

We will later see that the low-support concentration in polynomial D(x) implies
low-support concentration in polynomial C(x) (defined similarly). In other words,
C(x) will have a nonzero coefficient for at least one of the low-support monomials.
Thus, we get a hitting set by testing these low-support coefficients. We use the
following Lemma from [ASS13].

Lemma 23. If C(x) ∈ F[x] is an n-variate, `-concentrated polynomial with highest
individual degree δ, then there is a (nδ)O(`)-time hitting-set for C(x).

Proof. `-concentration for C(x) simply means that it has at least one (< `)-
support monomial with nonzero coefficient. We will construct a hitting set which
essentially will test all these (< `)-support coefficients. We go over all subsets S of
x with size ` − 1 and do the following: Substitute 0 for all the variables outside the
set S. There will be at least one choice of S, for which the polynomial C(x) remains
nonzero after the substitution. Now, it is an (`− 1)-variate nonzero polynomial. We
take the usual hitting set H`−1 for this, where H ⊆ F is a set of size δ + 1 (see, for
example, [SY10, Fact 4.1]). In other words, each of these `− 1 variables are assigned
values from the set H.

The number of sets S we need to try are
(
n
`−1

)
. Hence, the overall hitting set size

is (nδ)O(`).
It is known that low-support concentration in D(x) gives low-support concentra-

tion in C(x) (Lemma 33). Now, we move on to show how to achieve low-support

concentration in D(x) =
∏d
i=1Di. To achieve that we will use some efficient shift.

By shifting by a tuple α := (α1, α2, . . . , αn), we mean replacement of xi with xi +αi.
Note that C(x + α) 6= 0 if and only if C(x) 6= 0. Hence, a hitting set for C(x + α)
gives us a hitting set for C(x). Instead of constants, we will shift C(x) by univariate
polynomials, say, given by the map φ : t → {ta}a≥0, where t := {t1, t2, . . . , tn}. The
φ is said to be an efficient map if φ(ti) is efficiently computable, for each i ∈ [n].
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Block-Support. Let the matrix product D(x) :=
∏d
i=1Di correspond to an

ROABP such that Di ∈ Fw×w[xi] for all i ∈ [d]. Let ni be the cardinality of xi
and let n =

∑d
i=1 ni. Viewing Di as belonging to Fw×w[xi], one can write Di :=∑

e∈Zni+
Diex

e
i , where Die ∈ Fw×w, for all e ∈ Zni+ . In particular Di0 refers to the

constant part of the polynomial Di.

Any monomial xe for e ∈ Zn+, can be seen as a product
∏d
i=1 xi

ei , where ei ∈ Zni+

for all i ∈ [d], such that e = (e1, e2, . . . , ed). We define block-support of e, bS(e) as
{i ∈ [d] | ei 6= 0} and block-support size of e, bs(e) = |bS(e)|. Thus, the block-support
of a monomial is the set of blocks which contribute non-trivially to the monomial.

The coefficient of the monomial xe is De :=
∏d
i=1Diei . Observe that when

i /∈ bS(e), the i-th block contributes its constant part, Di0 to the coefficient. The
coefficient Df is called a substring of the coefficient De if bs(f) < bs(e) and fi =
ei whenever fi 6= 0. We will use the operator substrings(e) to denote the set
{f | Df is a substring of De}.

Consider the toy example D = (A1 +B11x1 +B12x1
2)(A2 +B2x2)(A3 +B3x3 +

B4x3x4). Here, Di0 = Ai, for all i and the block-support of the monomial x1x3x4 is
{1, 3}. A1B2B3 is a substring of B12B2B3, whereas B11B2B3 is not.

A substring Df of De is called its prefix if ∀i (fi 6= ei =⇒ (∀j ≥ i, fj = 0)).
In the above example, it means that only the trailing Bs can be replaced with the
corresponding As. Thus, B12A2A3 is a prefix of B12B2B4, whereas B12A2B4 is not,
though both are its substrings. Observe that when the Di0s are invertible, if Df

is a prefix of De, then we can write De = DfA
−1B, where A :=

∏d
i=r+1Di0 and

B :=
∏d
i=r+1Diei with r = max bS(f). We will denote the product A−1B as Df−1e.

Proof Idea-

Let ` = w2 and `′ = logw2 + 1. There are four steps that we take to prove
low-support concentration in the sparse, invertible-factor, width-w ROABP D.

1. Given an invertible matrix Di ∈ Fw×w[xi], we use a shift, so that the constant
part of the shifted matrix is invertible.

2. Assuming the constant part of the shifted matrix D is invertible, we show
that any coefficient with block support (= `) is linearly dependent on its
substrings with (< `) block support (Lemma 25).

3. We use this Lemma to show that any coefficient in D is linearly dependent
on its substrings with < ` block support (Lemma 26).

4. We show that the shifted polynomial has `′-concentration within each of the
blocks.

The contribution/novel part of this section is in the second step. The remaining
steps were already known.

We will give the proof idea for the second step through a toy example. Consider
D = (A1 + B1x1)(A2 + B2x2) · · · (An + Bnxn), where each of the Ais are invert-
ible and Ai, Bi ∈ Fw×w,∀i. Take the `-block-support monomial x[`] := x1x2 · · ·x`.
We will show that its coefficient is linearly dependent on its substrings with (< `)

block-support. Let Mj =
∏j
i=1Bi

∏`
i=j+1Ai, for 0 ≤ j ≤ `. Consider the set of

matrices {Mj}`j=0. These ` + 1 matrices lie in F`. Hence, there exists a r ∈ [`]

such that Mr =
∑r−1
j=0 αjMj , where αj ∈ F. All the Mjs on the right hand side

have < r many Bs. Since the Ais are invertible, we can post-multiply throughout
by (

∏`
i=r+1Ai)

−1
∏`
i=r+1Bi

∏n
i=`+1Ai to obtain that the coefficient of x[`] is linearly

dependent on strictly smaller block-support coefficients.

The third step is a simple extension of the above idea. For the first and fourth
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steps, we use an appropriate shift (Section 5.1). The sparsity of Di is used crucially
here.

Note that we have to assume that Di(xi) is an invertible matrix for all i ∈ [d].
For the shifted polynomial D′i(xi) := Di(xi + φ(ti)), its constant term D′i0 is just an
evaluation of Di(x), i.e. Di|xi=φ(ti). Hence, if det(Di(xi)) = 0 (viewing Di(xi) as an
element in (F[xi])

w×w), then det(D′i0) = 0. This means that if det(Di(xi)) = 0, then
even after shifting, D′i0 cannot become invertible.

Let us now prove that a particular kind of dependency can be lifted.
Lemma 24. Let De be a prefix of De∗ . If De is linearly dependent on its sub-

strings, then De∗ is linearly dependent on its substrings.
Proof. Since De is a prefix of De∗ ,

De∗ = DeDe−1e∗ . (3)

Let the dependence of De on its substrings be the following:

De =
∑

f∈substrings(e)

αfDf .

Using Equation (3) we can write,

De∗ =
∑

f∈substrings(e)

αfDfDe−1e∗ .

Now, we just need to show that for any substring Df of De, DfDe−1e∗ is a valid
coefficient of some monomial in D(x) and also that it is a substring of De∗ .

Let r = max{bS(e)}. Recall that De−1e∗ = A−1B, where A :=
∏d
i=r+1Di0 and

B :=
∏d
i=r+1Die∗i

. Thus, DfDe−1e∗ is the coefficient of xf
∗

:=
∏r
i=1 xi

fi
∏d
i=r+1 xi

e∗i .
Since f ∈ substrings(e) and e ∈ substrings(e∗), f ∈ substrings(e∗). From these two
facts, it is easy to see that DfDe−1e∗ is a substring of De∗ .

We will now prove the existence of a dependency for any `-block-support coeffi-
cient.

Lemma 25. Let De be a coefficient in D with bs(e) = `. Then De F-linearly
depends on its substrings.

Proof. Consider the set of coefficients {M0,M1, . . . ,M`}, where Mj is the prefix
of De with block support size j, for 0 ≤ j < `. And M` = De. These ` + 1 vectors
lie in F` ∼= Fw×w. Hence, there exists an r ∈ [`] such that Mr is linearly dependent

on {Mj}r−1
j=0. (Note that Mr = 0 is also a dependency. Also note that r > 0, since

M0 is invertible.) The coefficients in the set {Mj}r−1
j=0 are prefixes of Mr, and thus,

substrings of Mr.
Now, by applying Lemma 24, we conclude that De is dependent on its substrings.

We will now prove that any coefficient in D(x) is dependent on coefficients in D
with block-support ≤ `− 1. We call this as `-block-concentration in D(x).

Lemma 26 (`-Block-concentration). Let D(x) =
∏d
i=1Di(xi) ∈ Fw×w[x] be

a polynomial with Di0 being invertible for each i ∈ [d]. Then D(x) has `-block-
concentration.

Proof. We will actually prove that for any coefficient De with bs(e) ≥ ` (the case
when bs(e) < ` is trivial),

De ∈ span{Df | f ∈ Zn+, f ∈ substrings(e) and bs(f) ≤ `− 1}.
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We will prove this by induction on the block-support of De, bs(e).
Base case: When bs(e) = `, it has been already shown in Lemma 25.
Induction Hypothesis: For any coefficient De with bs(e) = i− 1 for i− 1 ≥ `,

De ∈ span{Df | f ∈ Zn+, f ∈ substrings(e) and bs(f) ≤ `− 1}.

Induction step: Let us take a coefficient De with bs(e) = i. Consider the unique
prefix De′ of De such that bs(e′) = i− 1.

As bs(e′) = i − 1, by our induction hypothesis, De′ is linearly dependent on its
substrings. So, from Lemma 24, De is linearly dependent on its substrings. In other
words,

De ∈ span{Df | f ∈ substrings(e) and bs(f) ≤ i− 1}. (4)

Again, by our induction hypothesis, for any coefficient Df , with bs(f) ≤ i− 1,

Df ∈ span{Dg | g ∈ substrings(f) and bs(g) ≤ `− 1}. (5)

Combining Equations (4) and (5), we get,

De ∈ span{Dg | g ∈ substrings(e) and bs(g) ≤ `− 1}.

In Lemma 26, we had assumed that the constant term Di0 is invertible for every
block Di. In the next subsection, we will show how to achieve this invertibility and
low-support concentration within each block Di.

5.1. Achieving invertibility and low-support concentration through shift-
ing. Let D′ := D(x + φ(t)). Then, D′ =

∏d
i=1D

′
i and D′i0 is the constant part of

D′i. Shifting will serve two purposes.
• Recall that for Lemma 26, we need invertibility of the constant term D′i0 in
D′i, for all i ∈ [d]

• D′i should have low-support concentration after shifting.
Now, we want a shift for Di which would ensure that det(D′i0) 6= 0 and that D′i has

low-support concentration. For both the goals we use the sparsity of the polynomial.
Definition 27. For a polynomial p, let its sparsity set S(p) be the set of mono-

mials in p with nonzero coefficients and s(p) be its sparsity, i.e. s(p) = |S(p)|. Let
Sw(p) := {m1m2 · · ·mw | mi ∈ S(p), ∀i ∈ [w]}.

A map φ over t separates all the monomials in a set S if for any two monomials
te1 , te2 ∈ S, φ(te1) 6= φ(te2).

Let us now characterize the shift which makes the determinant of D′i0 nonzero.
Lemma 28. Suppose Di is invertible. Let φ : t → {ti}∞i=0 be a monomial map

which separates all the monomials in Sw(Di). Then, the constant term D′i0 of the
shifted polynomial D′i := Di(x + φ(t)) is invertible.

Proof. Observe that S(det(Di)) ⊆ Sw(Di).
Since φ separates all the monomials in det(Di(t)), det(Di) 6= 0 implies that

det(Di|x=φ(t)) 6= 0. Hence, det(D′i0) = det(Di|x=φ(t)) 6= 0.
Gurjar et al. proved in [GKST14, Lemma 19] that shifting by a basis isolating

weight assignment gives concentration. The proof of Lemma 30 uses this.
Lemma 29 (Isolation to concentration, [GKST14]). Let D(x) be a polynomial

over a k-dimensional algebra Ak. Let w be basis isolating weight assignment for D
(Definition 5). Then, D(x + tw) has dlog(k + 1)e-concentration.
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Recall that `′ := log(w2) + 1.

Lemma 30. Let φ : t → {ti}∞i=0 be a monomial map which separates all the
monomials in S(Di). Then, D′i := Di(x + φ(t)) is `′-concentrated.

Proof. Di is a polynomial over a w2-dimensional algebra, Fw×w. A map φ which
separates all the monomials in S(Di) is trivially a basis isolating weight assignment
for Di. Thus, by Lemma 29, Di(x + φ(t)) is (logw2 + 1)-concentrated.

We will now show how to find such a map φ.

Lemma 31. Let D(x) =
∏d
i=1Di(xi) be a polynomial in Fw×w[x] such that for

all i ∈ [d], det(Di) 6= 0, Di has degree bounded by δ and the sparsity s(Di) ≤ s. Let
M := n2s2w log(wδ). There is a set of M monomial maps with degree bounded by
2M logM such that for at least one of the maps φ, all D′is are `′-concentrated and all
D′i0s are invertible, where D′ = D(x + φ(t)).

Proof. We will provide a map φ that satisfies the pre-conditions of Lemmas 28
and 30. This will ensure that all D′is are `′-concentrated and all D′i0s are invertible.

Observe that a map which separates all the monomials in Sw(Di) also separates
all the monomials in S(Di). This can be proved by considering the two monomials
M1 := m1m2 . . .mw and M ′1 = m′1m2 . . .mw, where mj ∈ S(Di),∀j ∈ [w] and m′1 ∈
S(Di). M1,M

′
1 ∈ Sw. Thus, if φ separates M1 and M ′1, then φ should also separate

m1 and m′1.

Hence, it is enough if φ separates all the monomial pairs in Sw(Di), for i ∈ [d]
simultaneously. There are n variables, the number of monomial pairs is ≤ d · s2w ≤
n · s2w and degree of the monomials (in the determinant of Dis) is bounded by w · δ.
Hence, by Lemma 4, M = n2s2w log(wδ) suffices.

5.2. Concentration in D(x). Now, we want to show that if D(x) =
∏d
i=1Di

has low-block-concentration, and moreover if each Di has low-support concentration,
then D(x) has an appropriate low-support concentration.

Lemma 32 (Composition). If D(x) has `-block-concentration and Di(xi) has
`′-support concentration for all i ∈ [d] then D(x) has ``′-support concentration.

Proof. We have to prove that the any monomial xe,

De := coefD(xe) ∈ span {coefD(xg) | s(g) < ``′} .

Since D(x) has `-block-concentration,

De ∈ span {Df | bs(f) < `} . (6)

Recall that as Di’s are polynomials over disjoint sets of variables, any coefficient Df

in D(x) can be written as

Df =

d∏
i=1

Difi , (7)

where f = (f1, f2, . . . , fd) and Difi is the coefficient corresponding to the monomial

xfii in Di for all i ∈ [d]. Also, |{i : fi 6= 0}| < `.

From `′-support concentration of Di(xi), we know that for any coefficient Difi ,

Difi ∈ span{Digi | gi ∈ Zni+ , s(gi) ≤ `′ − 1}. (8)
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Using Equations (7) and (8), we can write the following for any coefficient Df :

Df ∈ span

{
d∏
i=1

Digi | gi ∈ Zni+ , s(gi) ≤ `′ − 1, ∀i ∈ [d]

and gi = 0, ∀i /∈ bS(f)

}
.

Note that the product
∏d
i=1Digi will be the coefficient of a monomial xg such that

bS(g) ⊆ bS(f) because gi = 0, ∀i /∈ bS(f). Clearly, if s(gi) ≤ `′ − 1, ∀i ∈ bS(f) then
s(g) ≤ (`′ − 1) bs(f). So, one can write

Df ∈ span{Dg | g ∈ Zn+, s(g) ≤ (`′ − 1) bs(f)}. (9)

Using Equations (6) and (9), we can write for any coefficient De,

De ∈ span{Dg | g ∈ Zn+, s(g) ≤ (`′ − 1)(`− 1)}.

We are now ready to go to the final step of the proof - getting the actual hitting
set.

5.3. From Concentration to Hitting Set. Let C(x) = D>0 DDd+1 ∈ F[x].
Since any coefficient coefC(xf ) in C can be written as D>0 coefD(xf )Dd+1, we get the
following Lemma.

Lemma 33 (Concentration in C). Let C(x) = D>0 DDd+1 ∈ F[x] be a polynomial
with D0, Dd+1 ∈ Fw. If D(x) has ``′-concentration then C(x) has ``′-concentration.

Now, we come back to the proof of Theorem 3. From Lemmas 31, 26, 32 and
33, we get poly(nswlog(wδ)) maps, such that for atleast one map φ : t → {ti}∞i=0,
C ′(x) = C(x + φ(t)) is (w2(logw2 + 1))-concentrated. The degree of t is bounded
by poly(nswlog(wδ)). Hence, by Lemma 23 we get a hitting set for C ′(x) = C(x +

φ(t)) of size (nδ)O(w2 logw). Each of these evaluations of C will be a polynomial in
t with degree bounded by poly(nswlog(wδ)). Hence, total time complexity becomes

poly(sw(nδ)w
2 logw).

For the proof of Remark 2, observe that when the Dis are univariate, D′is are
1-concentrated and sparsity s ≤ δ. Thus, when the Dis are univariate, we get a
(nδ)O(w2) sized hitting-set.

5.4. Width-2 Read Once ABP. In the previous section, the crucial part in
finding a hitting-set for an ROABP is the assumption that the matrix product D(x)
is invertible. Now, we will show that for width-2 ROABP, this assumption is not
required. Via a factorization property of 2 × 2 matrices, we will show that PIT
for width-2 sparse-factor ROABP reduces to PIT for width-2 sparse-invertible-factor
ROABP. This factorization of width-2 ABPs has also been studied by Allender and
Wang [AW11]. But their reduction cannot maintain the sparsity of the matrix entries.

Lemma 34 (2×2 invertibility). Let C(x) = D>0

(∏d
i=1Di

)
Dd+1 be a polynomial

computed by a width-2 sparse-factor ROABP. Then for some nonzero α ∈ F[x] and
some m ≤ d, we can write α(x)C(x) = C1(x)C2(x) · · ·Cm+1(x), where each of the
Cis are of the form P>iQiRi. Qi ∈ F2×2[x] is a polynomial computed by a width-2
sparse-invertible-factor ROABP, Pi, Ri ∈ F2[x], and Pi, Qi and Ri are over disjoint
sets of variables for all i ∈ [m+ 1].
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Proof. Let us say, for some i ∈ [d], Di(xi) is not invertible. Let Di =
[
ai bi
ci di

]
with ai, bi, ci, di ∈ F[xi] and aidi = bici. Without loss of generality, at least one of
{ai, bi, ci, di} is nonzero. Let us say ai 6= 0 (other cases are similar). Then we can
write, [

ai bi
ci di

]
=

1

ai

[
ai
ci

] [
ai bi

]
.

In other words, we can write αiDi = AiB
>
i , where Ai, Bi ∈ F2[xi] and 0 6= αi ∈

{ai, bi, ci, di}. Note that s(αi), s(Ai), s(Bi) ≤ s(Di). Let us say that the set of non-
invertible Dis is {Di1 , Di2 , . . . , Dim}. Writing all of them in the above form we get,

C(x)

m∏
j=1

αij =

m+1∏
j=1

Cj ,

where

Cj :=


D>0

(∏i1−1
i=1 Di

)
Ai1 if j = 1,

B>ij−1

(∏ij−1
i=ij−1+1Di

)
Aij if 2 ≤ j ≤ m,

B>im

(∏d
i=im+1Di

)
Dd+1 if j = m+ 1.

Clearly, for all j ∈ [m + 1],
(∏ij−1

i=ij−1+1Di

)
can be computed by a sparse-invertible-

factor ROABP. The required Pj is Bij−1
and the required Qj is Aij . Moreover, Pj , Qj

and Rj are over disjoint variables for all j.
Now, from the above Lemma it is easy to construct a hitting-set. First we write a

general result about hitting-sets for a product of polynomials from some class [SY10,
Observation 4.1].

Lemma 35 (Lagrange interpolation). Suppose H is a hitting-set for a class of
polynomials C. Let C(x) = C1(x)C2(x) · · ·Cm(x), be a degree δ′ polynomial over F,
where Ci ∈ C for all i ∈ [m]. There is a hitting-set of size δ′|H|+ 1 for C(x).

Proof. Let h = |H| and H = {α1, α2, . . . , αh}. Let B := {βi}hi=1 be a set of
constants. The Lagrange interpolation α(u) of the points in H is defined as follows

α(u) :=

h∑
i=1

∏
j 6=i(u− βj)∏
j 6=i(βi − βj)

αi.

The key property of the interpolation is that when we put u = βi, α(βi) = αi for all
i ∈ [h]. For any a ∈ [m], we know that Ca(αi) 6= 0, for some i ∈ [h]. Hence, Ca(α(u))
as a polynomial in u is nonzero because Ca(α(βi)) = Ca(αi) 6= 0. So, we can say
C(α(u)) 6= 0 as a polynomial in u.

Degree of α(u) is h− 1. So, degree of C(α(u)) in u is bounded by δ′(h− 1). We
can put δ′h distinct values of u to get a hitting-set for C(α(u)).

Consider the polynomial C(x) = P (x)>Q(x)R(x), where Q ∈ Fw×w[x] is a poly-
nomial computed by a width-w s-sparse-invertible-factor ROABP, P,R ∈ Fw[x], and
P,Q and R are over disjoint sets of variables for all i ∈ [m + 1]. It is similar to
the polynomial described in Theorem 3, except that P and R are now polynomials
over Fw. By adapting the proof of Theorem 3, we can show a hitting set of size
poly(nδs)w

2 logw in such a model. Lemma 30 can also be applied to P and R to make
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them (logw2 + 1)-concentrated. Since Q is w2-block-concentrated by Lemma 26, C
would be (w2 + 2)-block-concentrated. The rest of the proof goes through similarly.
We thus get the following Lemma.

Lemma 36. Let C(x) = P (x)>Q(x)R(x), where Q ∈ Fw×w[x] is a polynomial
computed by a width-w s-sparse-invertible-factor ROABP, P,R ∈ Fw[x], and P,Q
and R are over disjoint sets of variables. Let the degree of each layer in Q be bounded
by δ and the sparsity of each layer in Q be bounded by s. Then there is a hitting-set
of size poly((nδs)w

2 logw) for C(x).
Note that a hitting-set for α(x)C(x) is also a hitting-set for C(x) if α is a nonzero

polynomial. We get a hitting-set for each of the factors by Lemma 36. Lemma 34 tells
us how to factorize a width-2 ROABP into a product of width-2 invertible ROABPs.
Combining these results with Lemma 35 we get the following.

Theorem 37. Let C(x) = D>0 (x0)(
∏d
i=1Di(xi))Dd+1(xd+1) be a polynomial in

F[x] computed by a width-2 ROABP such that for all 1 ≤ i ≤ d, Di has degree bounded
by δ and sparsity s(Di) bounded by s. Then there is a hitting-set of size poly(nδs).

6. Discussion. The first open problem is to do basis isolation for ROABP with
only a polynomially large weight assignment. Also, our technique of finding a basis
isolating weight assignment seems general. It needs to be explored, for what other
classes can it be applied. In particular, can it be used to solve depth-3 multilinear
circuits? An easier question, perhaps, could be to improve Theorem 18 to get a truly
blackbox PIT for the 2-base-sets-1-distance model.

Another question is whether we can find a similar result in the boolean setting,
i.e. get a pseudorandom generator for unknown order ROBP with seed length same
as the known order case.

In the case of constant width ROABP, we could show constant-support concen-
tration, but only after assuming that the factor matrices are invertible. It seems that
the invertibility assumption restricts the computing power of ROABP significantly. It
is desirable to have low-support concentration without the assumption of invertibility.

As in the case of invertible ROABP and width-2 ROABP, analogous results hold
in the boolean setting, it will be interesting to see if there is some connection, at
the level of techniques, between pseudorandom generators for boolean and arithmetic
models.
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Appendix A. Separating a set of monomials.

Lemma 4 (restated). Let M be the set of all monomials in n variables x =
{x1, x2, . . . , xn} with maximum individual degree δ. For any value a, there exists a
(constructible) set of N := na log(δ + 1) weight functions w: x → {1, . . . , 2N logN},
such that for any set A of pairs of monomials from M with |A| = a, at least one of
the weight functions separates all the pairs in A, i.e. ∀(m,m′) ∈ A, w(m) 6= w(m′).

Proof. Since we want to separate the n-variate monomials with maximum indi-
vidual degree δ, we use the näıve Kronecker map W : xi 7→ (δ + 1)i−1 for all i ∈ [n].
It can be easily seen that W will give distinct weights to any two monomials (with
maximum individual degree δ). But, the weights given by W are exponentially high.

So, we take the weight function W modulo p, for many small primes p. Each
prime p leads to a different weight function. That is our set of candidate weight
functions. We need to bound the number N of primes that ensures that at least one
of the weight functions separates all the monomial pairs in A. We choose the smallest
N primes, say P is the set. By the effective version of the Prime Number Theorem,
the highest value in the set P is less than 2N logN .
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To bound the number N of primes: We want a p ∈ P such that ∀(m,m′) ∈
A, W (m)−W (m′) 6≡ 0 (mod p). Which means,

∃p ∈ P, p -
∏

(m,m′)∈A

(W (m)−W (m′)) .

In other words, ∏
p∈P

p -
∏

(m,m′)∈A

(W (m)−W (m′)) .

This can be ensured by setting
∏
p∈P p >

∏
(m,m′)∈A (W (m)−W (m′)). There are

|A| such monomial pairs and each W (m) < (δ + 1)n. Also,
∏
p∈P p > 2N . Hence,

N = na log(δ + 1) suffices.
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