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Abstract

We study the problem of polynomial identity testing for depth-3 circuits of degree
d and top fanin k. The rank of any such identity is essentially the minimum number of
independent variables present. Small bounds on this quantity imply fast deterministic
identity testers for these circuits. Dvir & Shpilka (STOC 2005) initiated the study
of the rank and showed that any depth-3 identity (barring some uninteresting corner
cases) has a rank of 2O(k2)(log d)*=2. We show that the rank of a depth-3 identity is
at most O(k3logd). This bound is almost tight, since we also provide an identity of
rank Q(klogd).

Our rank bound significantly improves (dependence on k exponentially reduced)
the best known deterministic black-box identity tests for depth-3 circuits by Karnin
and Shpilka (CCC 2008). Our techniques also shed light on the factorization pattern
of nonzero depth-3 circuits: the rank of linear factors of a simple, minimal and nonzero
depth-3 circuit (over any field) is at most O(k?log d).

The novel feature of this work is a new notion of maps between sets of linear forms,
called ideal matchings, used to study depth-3 circuits. We prove interesting structural
results about depth-3 identities using these techniques. We believe that these ideas
may lead to the goal of a deterministic polynomial time identity test for these circuits.

1 Introduction

Polynomial identity testing (PIT) ranks as one of the most important open problems in the
intersection of algebra and computer science. We are provided an arithmetic circuit that
computes a polynomial p(z1, z9,- - ,zy) over a field F, and we wish to test if p is identically
zero. In the black-box setting, the circuit is provided as a black-box and we are only
allowed to evaluate the polynomial p at various domain points. The main goal is to devise
a deterministic polynomial time algorithm for PIT. Kabanets and Impagliazzo [KI04] and
Agrawal [Agr05] have shown connections between deterministic algorithms for identity
testing and circuit lower bounds, emphasizing the importance of this problem.

The first randomized polynomial time PIT algorithm, which was a black-box algorithm,
was given (independently) by Schwartz [Sch80] and Zippel [Zip79]. Randomized algorithms
that use less randomness were given by Chen & Kao [CK00], Lewin & Vadhan [LV98], and
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Agrawal & Biswas [AB03]. Klivans & Spielman [KS01] observed that even for depth-3 cir-
cuits for bounded top fanin, deterministic identity testing was open. Progress towards this
was first made by Dvir & Shpilka [DS06], who gave a quasi-polynomial time algorithm, al-
though with a doubly-exponential dependence on the top fanin. The problem was resolved
by a polynomial time algorithm given by Kayal & Saxena [KS07], with a running time ex-
ponential in the top fanin. Some special cases of PIT for depth-4 circuits have been dealt
in by Arvind & Mukhopadhyaya [AMO07], Saxena [Sax08], and Volkovich & Shpilka [SV09].
Why is progress restricted to small depth circuits? Agrawal and Vinay [AVO0S8| recently
showed that an efficient black-box identity test for depth-4 circuits will actually give a
quasi-polynomial black-box test for circuits of all depths.

For deterministic black-box testing, the first results were given by Karnin and Sh-
pilka [KS08]. Based on results in [DS06], they gave an algorithm for depth-3 circuits
having a quasi-polynomial running time (with a doubly-exponential dependence on the
top fanin). One of the consequences of our result will be a significant improvement in the
running time of their deterministic black-box tester.

This work focuses on depth-3 circuits. A structural study of depth-3 identities was
initiated in [DS06] by defining the rank of simple and minimal identities. A depth-3 circuit
C over a field F is:

C(xla"wxn) :ZT'%

where T; (a multiplication term) is a product of d; linear functions ¢; ; over F. For the
purposes of identity testing, there is a simple procedure (Lemma 3.5 in [DS06]) that
converts any such circuit C' into an “equivalent” one where all ¢; ;s are linear forms (i.e.
linear polynomials with a zero constant coefficient) and hence d; = --- = d, =: d. We give
details about this homogenization procedure towards the end in Section 2.7. Henceforth,
we will just assume that C' in homogeneous. Such a circuit is referred to as a LIIX(k, d)
circuit, where k is the top fanin of C and d is the degree of C'. We call C a XIIX-identity, if
C' is an identically zero Y.IIX-circuit. This means that all coefficients of C' (on expanding
out) are zero. We give a few definitions from [DS06].

Definition 1. [Simple Circuits] C' is a simple circuit if there is no nonzero linear form
dividing all the T;’s.

[Minimal Circuits]| C is a minimal circuit if for every proper subset S C [k], >;cq T;
is nonzero.

[Rank of a circuit] The rank of the circuit, rank(C), is defined as the rank of the
linear forms 4; ;’s viewed as n-dimensional vectors over F.

Can all the forms ¢; ; be independent, or must there be relations between them? The
rank can be interpreted as the minimum number of variables that are required to express
C. There exists a linear transformation converting the n variables of the circuit into
rank(C) independent variables. A trivial bound on the rank (for any XIIY-circuit) is kd,
since that is the total number of linear forms involved in C. The rank is a fundamental
property of a XIIX(k,d) circuit and it is crucial to understand how large this can be for
identities. A substantially smaller rank bound than kd shows that identities do not have
as many “degrees of freedom” as general circuits. This leads to deterministic black-box



identity tests'. Furthermore, the techniques used to prove rank bounds show us structural
properties of identities that may suggest directions to resolve PIT for XIIX(k, d) circuits.

Dvir and Shplika [DS06] proved that the rank is bounded by 2°%**)(logd)¥~2, and
this bound is translated to a poly(n)exp(2°**) (log d)*~!) time black-box identity tester
by Karnin and Shpilka [KS08]. Note that when k is larger than logd, these bounds are
trivial.

Our present understanding of XIIX(k, d) identities is very poor when k is larger than
a constant. We present the first result in this direction.

Theorem 2 (Main Theorem). The rank of a simple and minimal X11%(k, d) identity (over
any field) is O(k>logd).

This gives an exponential improvement on the previously known dependence on k, and
is strictly better than the previous rank bound for every k > 3. We also give a simple
construction of identities with rank Q(k log d) in Section 3, showing that the above theorem
is almost optimal. Note that this construction is over special fields, and does not work
for all fields. We can interpret the main theorem as saying that any simple and minimal
YIIX(k, d) identity can be expressed using O(k?®logd) independent variables. One of the
most interesting features of this result is a novel technique developed to study depth-3
circuits. We introduce the concepts of ideal matchings and ordered matchings, that allow
us to analyze the structure of depth-3 identities. These matchings are studied in detail
to get the rank bound. Along the way we develop a theory of ideal matchings, viewing a
matching as a fundamental map between two sets of linear forms.

Why are the simplicity and minimality restrictions required? Take the non-simple
YII3¥(2,d) identity (xi1x2---x4) — (z122---x4). This has rank d. Similarly, we can take
the non-minimal XI1%(4,d + 1) identity (y1y2 - - yaq)(z1 — 1) + (2122 - - - 24) (x2 — x2) that
has rank (2d+2). In some sense, these restrictions only ignore identities that are composed
of smaller identities.

Recent developments: Subsequent to the publication of the conference version of
this paper, there have been some very exciting developments on this problem. The question
of rank bounds for depth-3 identities where the underlying field is Q or R has been of special
interest. Dvir & Shpilka [DS06] conjectured that the rank of these identities is at most
poly(k). Note that the lower bound constructions in this paper are over finite fields, and
hence do not contradict this. Kayal and Saraf [KS09] made significant progress towards
this by proving a rank bound of 20(k1ogk) for this case. Observe that the rank bound is
independent of d. With the results of Karnin & Shpilka [KSO08], this implies the existence
of polynomial time black-box PIT algorithms for bounded fanin depth-3 circuits (over Q
or R). Nonetheless, the dependence of k was still very large.

Rank bounds were further improved in a later work of the authors [SS10]. Their result
finally resolves the conjecture of Dvir & Shpilka, by proving a rank bound of O(k?) for Q
and R. For general fields, a rank bound of O(k?logd) was proven, thereby improving on
the main result of this paper. The main technique of ideal matchings, first introduced in
this paper, was heavily used in the results of [SS10]. Combined with the insights of Kayal
& Saraf [KS09], the authors were able to prove improved bounds.

"We usually do not get a truly polynomial time algorithm, i.e., one whose running time depends
polynomially on n, d, and k.



This current paper still has techniques that are not subsumed by the developments of
[SS10]. Namely, Theorem 4 gives a rank bound for the linear factors of a nonzero depth-3
circuit.

1.1 Consequences

Apart from being an interesting structural result about XIIY identities, we can use the
rank bound to get nice algorithmic results. Our rank bound immediately gives faster
deterministic black-box identity testers for XII3(k,d) circuits. A direct application of
Lemma 4.10 in [KS08] to our rank bound gives an exponential improvement in the
dependence of k compared to previous black-box testers (that had a running time of
poly(n)exp(20¢) (log d)*~1)).

Theorem 3. There is a deterministic black-box identity tester for X1I3(k, d) circuits (over
any field) that runs in poly(n, dr’ logd) field operations.

The above black-box tester is now much closer in complexity to the best non black-box
tester known (poly(n,d*) time by [KS07]). Our black-box tester runs in subexponential
time when k& = d°(!), while the previous black-box testers were unable to handle even
k = logd.

Although it is not immediate from Theorem 2, our technique also provides an in-
teresting algebraic result about polynomials computed by simple, minimal, and nonzero
YIIX(k, d) circuits®. Consider such a circuit C' that computes a polynomial p(x1,--- ,y,).
Let us factorize p into [], ¢;, where each ¢; is a nonconstant and irreducible polynomial.
We denote by L(p) the set of linear factors of p (that is, ¢; € L(p) iff ¢;|p is linear).

Theorem 4. If p is computed by a simple, minimal, nonzero XIIX(k,d) circuit (over any
field) then the rank of L(p) is at most O(k>logd).

This property has been recently used by Shpilka and Volkovich (Section 7.1 in [SV09])
to give an alternate black-box PIT algorithm of a similar time complexity.

1.2 Organization

Section 2 contains the proof of our main theorem. We give some preliminary notation
in Section 2.1 before explaining an intuitive picture of our ideas (Section 2.2). We then
explain our main tool of ideal matchings (Section 2.3) and prove some useful lemmas about
them. We move to Section 2.4 where the concepts of ordered matchings and simple parts
of circuits are introduced. We motivate these definitions and then prove some easy facts
about them. We are now ready to tackle the problem of bounding the rank. We describe
our proof in terms of an iterative procedure in Section 2.5. Everything is put together in
Section 2.6 to bound the rank. A simple construction of identities with rank (klogd) is
provided in Section 3.

Throughout the paper, various claims will be labeled as “facts”. We believe that the
proofs of these facts are not important. We suggest that the reader skip these proofs on
initial readings.

2Here we can also consider circuits where the different terms in C' have different degrees. The parameter
d is then an upper bound on the degree of C.



2 Rank Bound

Our technique to bound the rank of XIIY identities relies mainly on two notions - form-
ideals and matchings by them - that occur naturally in studying a XIIX circuit C. Using
these tools we perform a surgery on the circuit C' and extract out smaller circuits and
smaller identities. Before explaining our basic idea we need to develop a small theory of
ideal matchings. We need the definitions of the ged and simple parts of a subcircuit [DS06].

We set down some preliminary definitions before giving an imprecise, yet intuitive
explanation of our idea and an overall picture of how we bound the rank.

2.1 Preliminaries

We will denote the set {1,...,n} by [n]. For any set S, #S5 denotes the size of the set. We
use R to denote the ring of polynomials F[zy,...,z,], and F* := F\ {0}. As mentioned
earlier, a XII¥(k, d) circuit is homogenous with top fanin k£ and degree d.

A linear form is a linear polynomial in R. We will denote the set of all linear forms
by L(R):

L(R) = {Zaixi |ai,...,an € IF}
i=1

There is a direct association between each linear form and a vector in F". Hence, for any
subset of forms in L(R), we can naturally define a basis. Much of what we do shall deal
with sets of linear forms, and various maps between them. A list L of linear forms is a
multi-set of forms with an arbitrary order associated with them. The actual ordering is
unimportant: we merely have it to distinguish between repeated forms in the list. One of
the fundamental constructs we use are maps between lists, which could have many copies
of the same form. The ordering allows us to define these maps unambiguously. All lists
we consider will be finite.

Definition 5. [Multiplication term] A multiplication term f is an expression in R
given as (the product may have repeated ’s):

f=c-: H {,  where c € F* and S is a list of linear forms.
les

The list of linear forms in f, L(f), is the list S of forms occurring in the product above.
#L(f) is naturally called the degree of the multiplication term. For a list S of linear forms
we define the multiplication term of S, M(S), as [[,cq? or 1 if S = ¢.

Definition 6. [Forms in a Circuit] We will represent a XIIX(k,d) circuit C' as a sum
of k multiplication terms of degree d, C' = Zle T;. The list of linear forms occurring in
Cis L(C) := Uie[k] L(T;). (Remark: for the purposes of this paper T;’s are given in the
“nput” forming the circuit, and thus L(T;) is unambiguously defined.)

Note that L(C) is a list of size exactly kd. The rank of C, rank(C), is the number of
linearly independent linear forms in L(C'). Clearly, 0 < rank(C) < kd.



2.2 Intuition

We set the scene, for proving the rank bound of a XIIX(k, d) identity, by giving a combi-
natorial /graphical picture to keep in mind. Our circuits consist of k£ multiplication terms,
and each term is a product of d linear forms. Think of there being k£ groups of d nodes, so
each node corresponds to a form and each group represents a term?. We will incrementally
construct a small basis for all these forms. This process will be described as some kind of
a coloring procedure.

At any intermediate stage, we have a partial basis of forms. These are all linearly
independent, and the corresponding nodes (we will use node and form interchangeably)
are colored red. Forms not in the basis that are linear combinations of the basis forms
(and are therefore in the span of the basis) are colored green. Once all the forms are
colored, either green or red, all the red forms form a basis of all forms. The number of
red forms is the rank of the circuit. When we have a partial basis, we carefully choose
some uncolored forms and color them red (add them to the basis). As a result, some other
forms get “automatically” colored green (they get added to the span). We “pay” only for
the red forms, and we would like to get many green forms for “free”. Note that we are
trying to prove that the rank is k9" log d, when the total number of forms is kd. Roughly
speaking, for every kP forms we color red, we need to show that the number of green
forms will double.

So far nothing ingenious has been done. Nonetheless, this image of coloring forms is
very useful to get an intuitive and clear idea of how the proof works. The main challenge
comes in choosing the right forms to color red. Once that is done, how do we keep
an accurate count on the forms that get colored green? Omne of the main conceptual
contributions of this work is the idea of matchings, which aid us in these tasks. Let us
start from a trivial example. Suppose we have two terms that sum to zero, i.e. T1+7T5 = 0.
By the unique factorization of polynomials, for every form ¢ € Ty, there is a unique form
m € Ty such that £ = em, where ¢ € F* (we will denote this by ¢ ~ m). By associating the
forms in T3 to those in 75, we create a matching between the forms in these two groups
(or terms). This rather simple observation is the starting point for the construction of
matchings.

Let us now move to k = 3, so we have a simple circuit C' = T1 + 15+ 13 = 0. Therefore,
there are no common factors in the terms. To get matchings, we will look at C' modulo
some forms in 73. By looking at C' modulo various forms in T3, we reduce the fanin of C
and get many matchings. Then we can deduce structural results about C. Similar ideas
were used by Dvir and Shpilka [DS06| for their rank bound. Taking a form ¢ € T3, we
look at C(mod ¢) which gives T1 + 75 = 0(mod ¢). By unique factorization of polynomials
modulo ¢, we get a g-matching. Suppose (¢,m) is an edge in this matching. In terms of
the coloring procedure, this means that if ¢ is colored and ¢ gets colored, then m must also
be colored. At some intermediate stage of the coloring, let us choose an uncolored form
q € T5. A key structural lemma that we will prove is that in the g-matching (between
Ty and T3) any neighbor of a colored form must be uncolored. This crucially requires the
simplicity of C. We will color ¢ red, and thus all neighbors of the colored forms in 77 U T5
will be colored green. By coloring ¢ red, we can double the number of colored forms. It
is the various matchings (combined with the above property) that allow us to show an

3We have a different node for each appearance of a form.



exponential growth in the colored forms as forms in T3 are colored red. By this process,
we can color all forms by coloring at most O(logd) forms. Quite surprisingly, the above
verbal argument can be formalized easily to prove that rank of a minimal, simple circuit
with top fanin 3 is at most (logy d+2). For this case of k = 3, the logarithmic rank bound
was proven by Dvir & Shpilka [DS06], though they did not present the proof idea in this
form. In particular, their rank bound grew to (logd)? for k = 4.

The major difficulty arises when we try to push these arguments for higher values of
k. In essence, the ideas are the same, but there are many technical and conceptual issues
that arise. Let us go to k = 4. The first attempt is to take a form g € Ty and look at
C(mod q) as a fanin 3 circuit. Can we now simply apply the above argument recursively,
and cover all the forms in 77 U T, U T3? No, the possible lack of simplicity in C(mod q)
blocks this simple idea. It may be the case that Ty, T and T3 have no common factors,
but once we go modulo ¢, there could be many common factors! (For example, let ¢ = z7.
Modulo ¢, the forms x; + x2 and z2 would be common factors.)

Instead of doing things recursively (both [DS06] and [KS07] used recursive arguments),
we look at generating matchings iteratively. By performing a careful iterative analysis that
keeps track of many relations between the linear forms we achieve a stronger bound for
k > 3. We start with a form ¢; € T3, and look at C(mod ¢;). From C(mod ¢;), we remove
all common factors. This common factor part we shall refer to as the ged of C'(mod ¢1),
the removal of which leaves the simple part of C'(mod ¢;). Now, we choose an appropriate
form ¢ from the simple part, and look at C(mod /1, ¢3). We now choose an ¢3 and so on
and so forth. For each ¢ that we choose, we decrease the top fanin by at least 1, so we will
end up with a matching modulo the ideal ({1, ¥2,...,¢;), where r < (k —2). We call these
special ideals form ideals (as they are generated by forms), and the main structures that
we find are matchings modulo form ideals. The coloring procedure will color the forms
in the form ideal red. It is not as simple as the case of k = 3, since, at the very least,
we have to deal with the simple and gcd parts. Many other problems arise, but we will
explain them as and when we they arise. For now, it suffices to understand the overall
picture and the concept of matchings among the linear forms in C.

We now start by setting some notation and giving some key definitions.

2.3 Ideal Matchings

In this subsection, we provide the necessary definitions and prove some basic facts about
these matchings.
First, we discuss similarity and form-ideals.

Definition 7. We give several definitions :

e [Ideal] Given a set of polynomials f1,..., fr, the ideal generated by them is the set
of polynomials {}_, figilgi € R}.

e [Similar forms] For any two polynomials f,g € R, f is similar to g if there exists
c € F* such that f = cg. We say f is similar to g modulo I, for some ideal I of R,
if there is a ¢ € F* such that f = cg (mod I). We also denote this by f ~ g (mod I)
or say that f is I-similar to g.



e [Similar lists] Let S1 = (ai1,...,aq) and Sy = (b1,...,bq) be two lists of linear
forms with a bijection w between them. S1 and So are called similar under 7 if for
all i € [d], a; is similar to m(a;). Any two lists of linear forms are called similar if
there exists such a w. Empty lists of linear forms are similar vacuously.

For any ¢ € L(R) we define the list of forms in S; similar to ¢ as the following list
(unique upto ordering):

simi(¢,S1) := (a € Sy | a is similar to {)
We call Sy, Sy coprime lists if V¢ € Sy, #simi(¢, S2) = 0.

e [Form-ideal] A form-ideal I is the ideal of R generated by some nonempty S C
L(R). Note that if I = {0} then a = b(mod I) simply means that a = b absolutely.

e [Span sp(S)] For any S C L(R), we let sp(S) C L(R) be the linear span of the
linear forms in S over the field F.

e [Orthogonal sets of forms] Let Sy,...,S,, be sets of linear forms for m > 2. We
call Sy, ..., Sy orthogonal if for all m' € [m —1]:

sp/( U Sj) N sp(Smrs1) = {0}
j€lm’]
Let form-ideals I, ..., Iy be generated by sets Sy, ..., Sy, respectively. If S1,...,Sm
are orthogonal, then the form-ideals I, ..., I, are also orthogonal.
We give a few simple facts based on these definitions. It will be helpful to have these

explicitly stated.

Fact 8. Let U,V be lists of linear forms and I be a form-ideal. If U,V are similar then
their sublists U' := (L € U | £ € sp(I)) and V' := (L € V | £ € sp(I)) are also similar.

Proof. If U,V are similar then for some ¢ € F*, M (V) = ¢M(U). This implies:
MWV -MWV\V')=cMU") - MU\ U")

Since elements of U \ U’ are not in sp(I), for any ¢ € V', ¢ does not divide M (U \ U’). In
other words M (V') divides M (U’), and vice versa. Thus, M (U’), M (V') are similar and
hence by unique factorization in R, lists U’ and V' are similar. O

Fact 9. Let Iy, I be two orthogonal form-ideals of R and let D be a X1IX(k,d) circuit
such that L(D) has all its linear forms in sp(I1). If D =0 (mod I3) then D = 0.

Proof. As Iy, I are orthogonal we can assume I1 to be {¢1,..., ¢y} and Iy tobe {¢},...,¢ ,}
where the ordered set V' := {{1,..., 4y, ¢},..., ¢ ,} has (m + m') linearly independent
linear forms. There exists an invertible linear transformation 7 on sp({z1,...,x,}) that
maps the elements of V' bijectively, in that order, to x1,...,Zmtm . On applying 7 to the
equation D =0 (mod I2) we get:

7(D) =0 (mod Xypi1, .-+, Tinime), where 7(D) € Flz1,..., 2]

Obviously, this means that 7(D) = 0 which by the invertibility of 7 implies D = 0. O



We now come to the most important definition of this section. We motivated the
notion of ideal matchings in the intuition section. Thinking of two lists of linear forms as
two sets of vertices, a matching between them signifies some linear relationship between
the forms modulo a form-ideal. Essentially, we have a matching by ideal I between two
lists U and V if U is similar to V modulo I. We will be more precise in the following
definition.

Definition 10. [Ideal matchings] Let U,V be lists of linear forms and I be a form-
ideal. An ideal matching m between U,V by [ is a bijection 7 between lists U,V such that:
VeeU, I €V, such that 7(£) = ' and ' = ¢l + v for some ¢ € F* and v € sp(I). We
also call this an I-matching between U and V. The matching 7 is called trivial if U,V
are similar.

Two sublists U' C U and V' CV are similar under 7 if: V0 € U’, ©(¥) is similar to {
and w(£) € V.

An I-matching is orthogonal to an I'-matching (both between U and V') if the form-
ideals I and I' are orthogonal.

An I-matching m between multiplication terms f, g is the one that matches L(f), L(g).
(For convenience, we will just say “matching” instead of “ideal matching”.) Note that
since 7 is a bijection and ¢ # 0, 7~! can be viewed as a matching between V, U by I.

The following is an easy fact about matchings.

Fact 11. Let m be a matching between lists of linear forms U,V by I and let U' C U,
V! CV be similar sublists. Then there exists a matching ' between U,V by I such that
U' and V' are similar under w'.

Proof. We begin with a matching 7 such that U’ is not similar V/ under 7. We will
convert this into a matching 7. The number of forms in U’ matched to similar forms in
V' increases. By repeating the process, we will eventually get a matching 7’ that matches
U to V',

Let ¢/ € U’ be such that 7(¢') = d'¢' + v' (for some d’ € F* and v' € sp(I)) is not in
V' or is not similar to ¢'. Since U’ and V' are similar, #simi(¢',U") = #simi(¢’,V'). So
it cannot be the case that all forms similar to ¢ in V'’ are matched to similar forms in U’.
Hence, there is a form equal to o’ in V' (for some o € F*) with the following property.
The matching m maps some ¢ € U to af’ in V' such that either ¢ ¢ U’ or £ is not similar
to al’. There exists some d € F* and v € sp(I) such that 7(¢) = dl +v = al'.

Now we define a new matching 7 by flipping the images of £ and ¢’ under r, i.e., define
7 to be the same as 7 on U \ {¢,¢'} and: 7({) L 7(¢') and 7(¢') L 7(¢). Note that 7
inherits the bijection property from 7 and it is an I-matching because: 7(¢') = af’ for
« € F* and more importantly,

! !
RO =m(l) =dl +o/ =d (d€+v> +of = (dd> ‘4 (d +v'>

(@ [0 o

The form (d(;—” + ') is clearly in sp(I). Thus, we have obtained now a matching 7
between U,V by I such that the ¢ € U’ is similar to w(¢') € V.

Since ¢ ¢ U’ or ¢ is not similar to ¢, the number of forms in U’ that are matched to
similar forms in V’ increases. This completes the proof. O



We are ready to present the most important lemma of this section. The following
lemma shows that there cannot be too many matchings between two nonsimilar lists of
linear forms. It is at the heart of our rank bound proof and the reason for the logarithmic
dependence of the rank on the degree. Similar ideas were used by Dvir & Shpilka to prove
lower bounds for 2-query locally decodable codes (Corollary 2.9 of [DS06]).

Lemma 12. Let U,V be lists of linear forms each of sized > 0 and I, . .., I, be orthogonal
form-ideals such that for all i € [r], there is a matching m; between U,V by I;. If r >
(logy d + 2) then U,V are similar lists.

Before giving the proof, let us first put it in the context of our overall approach. In
the sketch that we gave for k = 3, at each step, we were generating orthogonal matchings
between two terms. For each orthogonal matching we got, we colored one linear form
red (added one form to our basis) and doubled the number of green forms (doubled the
number of forms in the circuit that are in the span of the basis). This showed that there
is a logarithmic-sized basis for all L(C). If we take the contrapositive of this, we get that
there cannot be too many orthogonal matchings between two (nonsimilar) lists of forms.
For dealing with larger k, it will be convenient to state things in this way.

Proof. Let U; C U be a sublist such that: there exists a sublist V3 C V similar to U
for which U’ := U \ Uy and V' := V \ Vj are coprime lists. Let U’, V' be of size d'. If
d" = 0 then U,V are indeed similar and we are done already. So assume that d’ > 0. By
the hypothesis and Fact 11, for all ¢ € [r], there exists a matching =, between U,V by I;
such that: Uy, V; are similar under «, and 7} is a matching between U’, V' by I;. Our
subsequent argument will only consider the latter property of « for all i € [r].

Intuitively, it is best to think of the various 7s as bipartite matchings. The graph
G = (U',V',E) has vertices labelled with the respective form. For each w, and each
¢ € U', we add an (undirected) edge tagged with I; between ¢ and 7}(¢). There may be
many tagged edges between a pair of vertices®. We call 7/(¢) the I;-neighbor of ¢ (and
vice versa, since the edges are undirected). Abusing notation, we use vertex to refer to a
form in U' U V'. We will denote |J;, I; by J;.

We will now show that there cannot be more than (log, d + 2) such perfect matchings
in G. The proof is done by following an iterative process that has r phases, one for each
I;. This is essentially the coloring process that we described earlier. We maintain a partial
basis for the forms in U’ UV’ which will be updated iteratively. This basis is kept in the
set B. Note that although we only want to span U’ U V’, we will use forms in the various
1;’s for spanning.

We start with empty B and initialize by adding some ¢ € U’ to B. In the ith round,
we will add all forms in I; to B. All forms of U’ UV’ in sp({¢} U J;) are now spanned. We
then proceed to the next round. To introduce some colorful terminology, a green vertex is
one that is in the set sp(B) (a form in (U’ UV’) N sp(B)). Here is a nice fact : at the end
of a round, the number of green vertices in U’ and V' are the same. Why? All forms of I
are in B, at the end of any round. Let vertex v be green, so v € sp(B). The I;-neighbor
of v is a linear combination of v and I;. Therefore, this neighbor of v is in sp(B) and is
colored green. This shows that the number of green vertices in U’ is equal to the number
of those in V.

4Tt can be shown, using the orthogonality of the I;’s, that an edge can have at most two distinct tags.
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Let ig € [r] be the least index such that {¢}, I1,...,I;, are not orthogonal, if it does
not exist then set ig := r + 1. We have the following claim.

Claim 13. The sets {¢}, I,...,I;,—1 are orthogonal and the sets:
{E} U Ji07lio+17 s 717“

are orthogonal.

Proof of Claim 13. The ideals {¢}, I1,...,I;,—1 are orthogonal by the minimality of 4.

As Ih,...,I;, are orthogonal and {¢}, I1,...,I;, are not orthogonal, we deduce that
{¢} € sp(Ji,). Thus, {¢} Usp(Ji,) = sp(Ji,) which is orthogonal to the sets L;j1,..., I,
by the orthogonality of I1,..., I,. O

We now show that the green vertices at least double in (r — 2) rounds.
Claim 14. Fori & {1,io}, the number of green vertices doubles in the ith round.

Proof of Claim 14. Let ¢’ be a green vertex, say in U’, at the end of the (i — 1)th round
(B = {¢} U J;—1). Consider the I;-neighbor of ¢'. This is in V’ and is equal to (¢/' 4+ v)
where ¢ € F* and v is a nonzero element in sp(I;) (this is because U’, V' are coprime). If
this neighbor is green, then v would be a linear combination of two green forms, implying
v € sp(B). But by Claim 13, I; is orthogonal to B, implying v € sp(B) N sp(l;) = {0}
which is a contradiction. Therefore, the I;-neighbor of any green vertex is not green.
Because we have an I;-matching, the number of such neighbors is the number of green
vertices. On adding [I; to B, all these neighbors will become green. This completes the
proof. O

We started off with one green vertex £, and U’, V' each of size d’. This doubling can
happen at most logy d’ times, implying that (r — 2) < log, d'.
]

Remark: The bound of r = logy d 4 2 is achievable by lists of linear forms inspired
by Section 3. Fix an odd s and define:

U := {(bl.’El 4+t bs 151 + .CL‘S) | bi,...,bs_1 € {0, 1} S.t. by +---+bs_qis even}

V.= {(blxl 4o+ bs 151 + xs) ‘ bi,...,bs_1 € {O, 1} st. by +---+bs_qis Odd}

It is easy to see that over Fo, #U = #V = 2572 and for all i € [s — 1], there is a matching
between U,V by (z;), furthermore, there is a matching by (z1 + -+ + x5-1 + 2z5). Thus
there are (logy |[U|+2) many orthogonal matchings between these nonsimilar U, V; showing
that Lemma 12 is tight.

2.4 Ordered Matchings and Simple Parts of Circuits

Before we delve into the definitions and proofs, let us motivate them by an intuitive
explanation.

11



2.4.1 Intuition

Our main goal is to deal with the case k > 3. The overall picture is still the same. We
keep updating a partial basis S for L(C). This process goes through various rounds, each
round consisting of iterations. At the end of each round, we obtain a form-ideal I that is
orthogonal to S. In the first iteration of a round, we start by choosing a form ¢; in L(7})
that is not in sp(S), and adding it to I. We look at the circuit C'(mod ¢1) in the next
iteration. Every T; that /1 divides become zero, and the remaining terms “survive”. The
top fanin has decreased by at least 1, so we have a smaller circuit to deal with. We would
like to proceed to the next iteration with this circuit. The major obstacle to proceeding
is that our circuit is not simple any more, because there can be common factors among
multiplication terms modulo #;. Note how this seems to be a difficulty, since it appears
that our matchings will not give us a proper handle on these common factors. Suppose
that form v is now a common factor. That means, in every surviving term, there is a form
that is v modulo #1. So these forms can be ¢1-matched to each other! We have converted
the obstacle into some kind of a partial matching, which we can hopefully exploit.

Let us go back to C'(mod ¢1). Let us remove all common factors from this circuit. This
stripped down identity circuit is the simple part, denoted by sim(C mod ¢1). Note that
every surviving term is present in this circuit. The removed portion, called the gcd part,
is referred to as ged(C mod /7). By the above observation, the ged part has ¢1-matchings.
All the forms in the ged part are not similar to /1 and can be matched mod ¢;. (This is
because if a form is similar to ¢1, then the term containing that form vanishes.) Having
(somewhat) dealt with gcd(C mod ¢;) by finding I-matchings, let us focus on the smaller
circuit sim(C mod /;)

We try to find an o € L(sim(C mod ¢1)) that is not in sp(S U {¢1}). Suppose we
can find such an ¢». Then, we add ¢ to I and proceed to the next iteration. In a given
iteration, we start with a form-ideal I, and a circuit sim(C mod I). We find a form
¢ € L(sim(C mod I))\sp(SUI). We add ¢ to I (for convenience, let us set I’ = I U {¢})
and look at the C'(mod I"). We now have new terms in the ged part, which we can match
through I’-matchings. As we observed earlier, all the terms that have forms in I’ are
removed, so the terms we match here are all nonzero modulo I’. We remove the ged part
to get sim(C mod I'), and go to the next iteration with I’ as the new I. When does
this stop? If there is no ¢ in L(sim(C mod I))\sp(S U I), then this means that all of
L(sim(C mod I)) is in our current span. So we happily stop here with all the matchings
obtained from the gcd parts. Also, if the fan-in reaches 2, then we can imagine that the
whole circuit is itself in the gcd portion. At each iteration, the fan-in goes down by at
least one, so we can have at most (k — 2) iterations in a round, hence the I in any round
is generated by at most (k —2) forms. When we finish a round obtaining an ideal I, there
are some multiplication terms in C' that are nonzero modulo I after the gcd parts in the
various iterations are removed from these terms. These we shall refer to as constituting
the blocking subset of [k], for that round.

The way we prove rank bounds is by invoking Lemma 12. Each round constructs a
new orthogonal form ideal. At the end of a round, we have a set S, which is a partial basis.
If S does not cover all of L(C'), then we use the above process (of iterations) to generate
a form-ideal I orthogonal to S. We then add I to .S, and repeat this process until all of
L(C) is covered. Essentially, we argue that if this process takes too many rounds, there
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exist two terms that have too many orthogonal matchings between them. This violates
Lemma 12. Hence, we are able to cover L(C) with a relatively small set of forms, leading
to the rank bound.

2.4.2 Definitions

We start with looking at the particular kind of matchings that we get. Take two terms Ty,
and T} that survive a round, where we find the form-ideal I generated by {¢1, 02, -- , ¢, }.
At the end of the first iteration, we add ¢; to I. No form in L(7,)UL(T}) can be 0(mod ¢1).
We match some forms in 7, to T} via £1-matchings. They are removed, and then we proceed
to the next iteration. We now match some forms via sp({¢1, ¢2}) matchings and none of
these forms are in this span. So in each iteration, the forms that are matched (and then
removed) are non-zero mod the partial I obtained by that iteration. We formalize this as
an ordered matching.

Definition 15. [Ordered matching]| Let U,V be lists of linear forms and I be a form-
ideal generated by an ordered set {vi,...,v;} of i linearly independent linear forms. A
matching m between U,V by I is called an ordered I-matching if:

Let vy be zero. For allt € U, w(¢) = (¢l +w) where c € F*, and w € sp(vo, . ..,v;) for
some j satisfying € & sp(vo, ..., vj).

First, a small explanation about ordered matchings. We will stick to the notation in
Definition 15. For convenience, let sp; := sp(vg, - - ,v;) and diff; := sp;\spj—1. We can
partition all the ordered matching edges into groups corresponding to diffy, diffs,---. In
the group of edges corresponding to diff;, all forms do not belong to sp;, for any j < .
We can think of this matching being constructed group by group: first, the diff; edges are
inserted, then the diffy edges, so on and so forth. There is an order in which this matching
is created.

We add the zero element vg, just to deal with similar forms in U and V. Note that the
inverse bijection 7! is also an ordered matching between V,U by I. It is also easy to see
that if 71 and 7o are ordered matchings between lists Uy, V; and lists Us, V5 respectively
by the same ordered form-ideal I then their disjoint union, w Ume, is an ordered matching
between lists Uy U Us, V3 U Vo by 1.

Let 7(¢) = df + w, where w € sp; but £ ¢ sp;. We show that the constant d is
unique. If there were two such different constants, say d and d’, then both (7(¢) — d¢) and
(m(€) —d'¢) would be in sp; implying that (d — d’)¢ € sp;. That contradicts £ & sp;. Thus
for a fixed ¢ and an ordered matching m, d is uniquely determined. Keeping the notation
above, we define:

Definition 16. [Scaling factor| Let m be on ordered matching between U and V. For
each ¢ € U, let d; be the unique constant such that w(¢) = d¢l + w, where w € sp; but
¢ & spj. The scaling factor of 7, denoted by sc(w), is set to be [[,cry de. For empty U,
sc(m) is set to be 1.

Definition 17. [Subcircuits and regular circuits] For non-empty Q C [k], the sub-
circuit Cg of a XIIX(k,d) circuit C' is the sum Zje@ Tj. For a form-ideal I we call Cq
regular mod I if Vg € Q, Ty # 0 (mod I). We will denote the constant factor in the
multiplication term T, by aq € F*, thus Ty = agM(L(1y)).
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We are now ready to define the ged and sim parts of a subcircuit. Although the ideas
are quite simple and intuitive, we have to be careful in dealing with constant factors.
Much of this notation has been introduced for rigorous definitions. Take a subcircuit Cg
that is a regular identity modulo I. A maximal list of forms, say U, that divides T}, for
all ¢ € Q, is called the gcd of Cg(mod I). In every T, there is a list U, of forms that
are [-similar to U. Therefore, we have I-matchings between U and U,. This is the ged
data of Cg modulo I, and represents the various matchings that we will later exploit. If
we remove U, from each Ty, then (by accounting for constants carefully) we get a simple
(mod I) identity, the sim part of Cg(mod I). We formalize this below.

Fact 18. Let Cg be regular modulo 1. Let q1 be the smallest index® in Q. Let U be a
mazimal sublist of L(Ty,) such that M(U) divides T, modulo I for all g € Q.

o M(U) is a ged of the polynomials {Ty | ¢ € Q} modulo the ideal I.

e For all ¢ € Q, there exists a sublist Uy C L(T};) such that there exists an ordered
I-matching 7y between U, Uy.

Proof. This is a fairly direct consequence of unique factorization in R/I. Since I is a
form-ideal, under an appropriate linear transformation, we can assume that I is gener-
ated by the independent linear forms xi,x9, -+ ,x,. So R/I is exactly the polynomial
ring Flz,41,- -+ ,zy,], and therefore enjoys the unique factorization property. Hence, any
polynomial in R that is nonconstant modulo I uniquely factors modulo the ideal I into
polynomials irreducible modulo I.

Each of the terms 7Ty is non-zero modulo I and is just a product of linear forms (which
are irreducible factors) modulo I. So, M(U) is a ged of the T,’s. There must be some
sublist U, C L(T},) and a ¢, € F* such that M(U;) = ¢, - M(U) (mod I). By unique
factorization, we have an I-matching between every U, and U. No form in U, can be zero
modulo I, so this is an ordered matching. O

Given Cg and I, there are many possibilities to choose the lists U and {Uy | ¢ € Q}.
But they are all uniquely determined upto similarity modulo the ideal I and that will be
good enough for our purposes. So we choose them in some way, say the lexicographically
smallest one (unless specified otherwise). Also, by the definition of scaling factor of a
matching, m, satisfies: Vg € Q, M(Uy) = sc(ny) - M(U) (mod I). Using the ged of
Cg(mod I), we can extract out a smaller circuit from Cg that we call the simple part.

Definition 19. [gcd and sim parts] (We use the definition of oy from Definition 17
and those of U, Uy, mq from Fact 18.) The ged data of Cg modulo I is the following set of
#0Q matchings:

ged(Cq mod I) == {(7q, U, Ug) | q € Q} (1)

The ged of Cg(mod 1) is just ged(Cg mod I) := M(U). The simple part of Cg mod I is
the circuit:
sim(Cg mod I) := Z sc(mg)ag - M(L(Ty) \ Uy)
q€Q

°It is not necessary to choose the smallest index. Any fixed index will do.
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Before a round, we have a partial basis S. At the end of a round, we produce a form-
ideal I that is orthogonal to S. We call this a useful ideal. Let @ C [k] be such that Vg € Q,
T, survives (is non-zero) modulo /. This is called the blocking subset. For each such g,
there are a list of forms V, C L(T}) that are mutually matched via ordered I-matchings
(these are really a collection of gcd datas). This is called the matching data. Even after we
remove V, from each term T, (carefully accounting for constants, as explained above), we
still have an identity modulo I. All forms of this identity are in sp(SUT)\ sp(), since we
assume that the round has ended. These forms are not in sp(I) because the corresponding
terms survive modulo /. Furthermore, we can ensure (as shown later) that all V;’s can be
made disjoint to sp(S U I)\sp(I). Therefore, this round partitions the L(T3) into V, and
L(Ty) N (sp(SUI)\sp(I)) (for all ¢ € Q). These end-of-a-round properties motivate the
following definition.

Definition 20. [Useful ideals, blocking subsets, and matching data] Let C =
i<k Ly, Tj = o M(L(T;)). The set S C L(R) and I is an ordered form-ideal orthogonal
to S. We call I useful in C wrt S if 3Q C [k], 1 < #Q < k with the following properties :

For all g € Q, let Vi be L(T,)\(sp(SUI)\ sp(l)). (Therefore, L(Ty) \ V,; C sp(SUI)\
sp(1).)

e There exists a list of linear forms V such that for all ¢ € Q, there is an ordered
I-matching T4 between V, V.

o The circuil } .o sc(tq)ag - M(L(Ty) \ V) is a regular identity modulo 1.

Such a @ is a blocking subset of C,S,I. By matching data of C,S,I,Q we refer to the
set:

mdata(C, S, I,Q) == {(14, V, V) | ¢ € Q}
We will call mdata(C, S, 1,Q) trivial if the lists V,, q € Q, are all mutually similar.

From the matching data, we will exploit the fact that for each pair ¢1, ¢ € Q, there
is an ordered /-matching between V,, and V;,. Nonetheless, for convenience, we will
represent these #(@Q matchings via V.

2.4.3 Basic facts

In this subsection, we prove some basic facts about ordered matchings, scaling factors
and ged and sim parts of a circuit. These facts are not difficult to prove, but it will be
helpful later to have them. Again, we remind the reader that these proofs do not help in
understanding the main result.

We begin by a simple statement of how extending an ideal preserves the ordered nature
of matchings.

Fact 21. Suppose an ideal I is generated by an ordered set S of linear forms. Let S’ =
S U{l} be an ordered set of linear forms with ¢ at the end of the ordering. If m is an
ordered I-matching (between lists U and V'), then it is an ordered I'-matching (where I’
is generated by S').
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Proof. Let m(¢) = ¢/ + w. We use the earlier notation of sp; (resp. sp;») for the span of
the first j forms in the set S (resp. S’). Since 7 is an ordered I-matching, for some index
J, w € spj and £ ¢ sp;. Note that I’ preserves the ordering of I. So for j such that sp; is
defined, sp; = sp;-. Hence, 7 is also an ordered I’-matching. O

From the definition of scaling factor, it is easy to see that ordered matchings have
inverses and also a union.

Fact 22. Let m and mwo be ordered I-matchings between lists Uy, Vy and lists Us, Vo Te-
spectively. Then 7" is an ordered I-matching such that sc(n]') = sc(my)~'. The disjoint
union 1 Uy is also an ordered I-matching such that sc(m Umy) = sc(my) - se(ma).

Proof. For some ¢ € U, let ¢/ := m(¢) = ¢l + w. Since I is an ordered matching,
for some j, w € sp; and ¢ ¢ sp;. This implies that ¢ is also not in sp;. We have
i () =€ ="{'/c—w/c. Since w/c € spj and ¢’ ¢ spj, 7 is an ordered I-matching. The
contribution to the scaling factor in 7 Lis1 /¢, which is the reciprocal of the corresponding
contribution to sc(m1). This shows sc(m; ) = sc(m) ™t

Consider the disjoint union 7/ = 7 Ume. For £ € Uy, ©'(¢) = m(¢) = ¢l +w. Again, for
some j, w € sp; and ¢ ¢ sp;. We have a similar statement for £ € Us. So 7’ is an ordered
matching. In 7/, we have all the edges in the union of 7, and 7s. Hence the scaling factor
sc(my U mg) is just the product se(my) - sc(ma). O

The following fact shows that ordered matchings can also be composed.

Fact 23. Let w1 and my be ordered matchings between Uy, V' and V,Us respectively by the
same ordered form-ideal I = {v1,...,v;}. Then the naturally defined composite matching
o 4s also an ordered matching between Uy, Us by I. Furthermore, sc(mam) = sc(my) -

se(ms).

Proof. Consider a linear form ¢ € U;. There exists ¢; € F* and a1 € spj,, ¢ ¢ spj;, such
that m1(¢) = c1f + ;. Also, there exists co € F* and oy € spj,, m1(¢) ¢ spj, such that
mo(m1(¢)) = ca(c1l+ar)+aa. Let j = max{ji,j2}. Obviously, (coa1+a2) € sp;. If € € sp;
then as ¢ ¢ spj, we deduce that j = jo > ji, thus ¢ € spj,, implying 71 (¢) = c1l+a1 € spj,,
which is a contradiction. Therefore, ¢ ¢ sp;. This proves that the composite bijection
mom is an ordered matching.

The contribution from the image of ¢ € U; to sc(mamy) is ¢1¢2 while the corresponding
contributions of £ € U to sc(m) is ¢1 and of 71 (€) € V to sc(me) was ca. Thus, sc(mem) =
sc(my) - se(ms). O

The scaling factor characterizes the ratio of M (U) and M (V') when U,V are similar.

Fact 24. Let m be an ordered matching between lists U,V of linear forms, by an ordered
form-ideal I = {v1,...,v;}. If U and V are similar, then M (V') = sc(w) - M(U). Thus,

all ordered matchings between a given pair of similar lists, have the same scaling factor.

Proof. The proof idea is identical to the one seen in Fact 11. Starting from an ordered
matching w, we will convert it into a matching 7. The number of forms matched to similar
forms will increase, and the scaling factor will remain the same.

Let ¢ € U be such that 7(¢) = dl + v is not similar to ¢, where d € F*, v € sp; and
¢ ¢ spj. Since V is similar to U, #simi({,U) = #simi(¢,V). So there exists a form
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similar to £ in V' that is matched to a non-similar form in U. Let this form be ¢/ € V,
for some ¢ € F*. As 7 is an ordered matching, it maps some ¢’ € U to c¢f in V, satisfying:
n(l') = d'l' +v' = cl, where d' € F*, v € spj, and €' & spjr.

Now we define a new matching 7 by flipping the images of £ and ¢’ under r, i.e., define
T to be the same as m on U\ {4, ¢'} and: 7(¢) L 7w (¢") and 7(¢) L 7(¢). The matching 7 is
an ordered matching because: 7(¢) = ¢/ for ¢ € F* and more importantly 7(¢') = dl+v =
d(@) +v= (de,)f’ + (dT”, +v). Let j* := max{j,j’'}. Obviously, <qu/ + ) € spj+. If
J* =7, we are done, because we already know that ¢’ ¢ sp;. If j* = j and ¢’ € sp;, then
el = d'l' +v' is in sp; (contradiction).

We have obtained now an ordered I-matching T between U,V where the number of
forms mapped to a similar form has strictly increased. Observe that sc(m) had a unique
contribution of d, d’ from the images of ¢, ¢’ respectively while s¢(7) has a corresponding
contribution of c, (de/). On all the other elements of U, 7 is the same as 7. Thus, we have
that sc(m) = sc(m).

The above process will yield an ordered matching 7’ in at most #U many iterations,
such that U,V are similar under 7" and sc(n') = sc(w). But this means that, for all £ € U,
7'(0) = A, for some Ay € F*. The contribution by ¢ to sc(n’) is Ap. This implies that
M (V) = se(n") - M(U) and hence M (V') = se(w) - M(U). O

We move on to facts about the ged and sim parts of a circuit.

Fact 25. If Cg is a regqular mod I subcircuit of C' then:
Co = ged(Cg mod I) - sim(Cg mod I) (mod I)

Additionally, if Cq is an identity modulo I then sim(Cg mod I) is a simple identity
modulo 1.

Proof. Recall that Cq = >_ o Ty and the ged data ged(Comod 1) is {(m,, U, Uy) | q € Q}.
Now Ty, = agM (Uy) - M(L(T,) \ Uy) and M (U,) = sc(mq) - M(U) (mod I), where M (U) is
ged(Comod I). Thus,

Co = Y agsc(ng) M(U) - M(L(T,) \ U,) (mod I)
q€Q
= gcd(Cg mod I) - sim(Cg mod I) (mod 1)

This proves the first part. Assume now that Cg = 0(mod I) which means sim(Cg mod I) =
O(mod I). If it is not a simple identity mod I, then there is an ¢’ € L(sim(Cg mod I))
such that, Vg € Q, ¢ | M(L(T,) \ Uy) mod I. Then, M(U) cannot be the ged of the
polynomials {7 | ¢ € @} modulo the ideal (I) (contradiction). O

When I = {0} we write gcd(Cg), ged(Cg) and sim(Cp) instead of ged(Cg mod I),
gcd(Cg mod I) and sim(Cg mod I) respectively. We collect here some properties of
sim(Cgq) that would be directly useful in our rank bound proof.

Fact 26. Let ¢ € L(R)* and Cq be a subcircuit of C. Then #simi(¢, L(sim(Cq))) > 0
iff 31,92 € Q such that #simi(¢, L(Ty,)) # #simi({, L(Ty,)).
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Proof. Recall that #simi(¢, L(T,)) is the highest power of ¢ that divides 7j,. Thus, if
#simi(¢, L(T},)) is the same, say r, for all ¢ € @ then the highest power of ¢ dividing
gcd(Cq) is also r. Therefore, for all ¢ € @, the polynomial m is coprime to ¢. By
definition of the simple part of C this means that #simi(¢, L(sim(Cgq))) = 0.
Conversely, for any ¢ E L(R)*, 3q1,q2 € Q such that #simi(¢, L(T,,)) > #simi(L,

L(T, )) It follows that d(c y cannot be coprime to ¢. This implies that #simi(¢, L(sim(
Cq))) > 0. O

Fact 27. Let S C L(R) and Q2 C Q1 C [k]. If L(sim(Cq,)) has all its linear forms in
sp(S), then all the linear forms in L(sim(Cgq,)) are also in sp(S).

Proof. For an arbitrary ¢ € L(sim(Cg,)), by Fact 26, there are qi,q2 € Q2 such that
#simi(l, L(Ty, ) # #simi(l,L(Ty,)). As qi,q2 € Q1, we can again apply Fact 26 to
deduce that #simi(¢, L(sim(Cq,))) > 0. Therefore £ € sp(S). O

Fact 28. Let S C L(R) and Q1,Q2 C [k] such that Q1 N Q2 # ¢. If L(sim(Cq,)) and
L(sim(Cq,)) have all their linear forms in sp(S) then all the linear forms in L(sim(Cg,uqQ,))
are also in sp(S).

Proof. Take qp € Q1 N Q2 and an arbitrary ¢ € L(sim(Cg,ug,)). By Fact 26, there are
q1,q2 € Q1 U Q2 such that #simi(¢, L(T,,)) # #simi(¢, L(T,,)).

If ¢1,q2 are in the same set (wlog, in @), then Fact 26 tells us that #simi(¢,
L(sim(Cq,))) > 0, trivially implying that £ € sp(S). Now assume wlog that ¢1 € Q1,¢2 €
Q2. For some i € {1,2}, #simi({, L(Ty,)) # #simi(¢,L(T,,)). Therefore, by Fact 26,
¢ € sp(S). O

2.5 Getting Useful Form-ideals

Given a set S of linear forms that does not span all of L(C'), we can find a form-ideal that
is useful wrt S. As we mentioned earlier, in a round we start with S, and end up with a
useful I through various iterations. We will formally describe this process below.

An iteration starts with a partial I, and a simple regular identity F in the ring R/I,
which has multiplication terms with indices in [k]. At least one of the forms in E is not
in sp(SUI). At the beginning of the first iteration, E is set to C' and I is {0}.

A SINGLE ITERATION
1. Let £ be a form in E that is not in sp(SUI).
2. Add ¢ to I (add ¢ to end of the ordered set generating I).

3. Consider F modulo I and let @ be the subset of indices of nonzero multiplication
terms.

4. Let U be the ged of E(mod I), and let the ged data be ged = {(mg, U, U,) | ¢ € Q}.
5. If the fanin, |Q|, of E(mod I) is 2, stop the round.

6. If all forms in sim(E mod I) are contained in sp(SUI), stop the round. Otherwise,
set F to be sim(E mod I) and go to the next iteration.
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Lemma 29. Let C be a simple XII1X(k,d) identity in R. Suppose S C L(R) and
L(C)\sp(S) is non-empty. Then the above procedure finds a form-ideal I useful in C
wrt S.

Proof. As discussed before in the intuition, we generate I in one round and the proof will
be done by induction on the number of iterations in this round. For convenience, we set
the end of the zero iteration to be the beginning of the round. We will prove the following
claim:

Claim 30. Consider the end of some iteration. There exists a list V' of forms such that:
for all q in the current Q, there is a list Vy C L(T}) that has an ordered I-matching T, to
V. Furthermore, the circuit sim(E mod I) is an identity and a multiple of 3 o sc(Tq)aq:
M(L(Tg) \ Vq)

Proof of Claim 30. This is proven by induction on the iterations. At the end of the zero
iteration, E is just C' and I = {0}. By the simplicity of C, sim(E mod I) is just C, and
Q@ = [k]. So all the V,’s can be taken just empty.

Now, suppose that at the end of the ith iteration, we have the circuit F, the ideal I, and
the subset @. In the next iteration, we have E’ := sim(E mod I), the ideal I' := I U {{},
and Q' C @, the subset of indices of non-zero terms in £’ modulo I’. By the induction
hypothesis, sim(E mod I) is an identity. By Fact 25, the circuit sim(E’ mod I') is also
an identity.

It remains to find an appropriate Vq’s and ordered matchings. We have a list V' and for
every ¢ € ), an ordered I-matching 7, between V, V. By Fact 21, 7, is also an ordered
I'-matching. Let U, be the ged (of the (i + 1)th round) in 7. Set V| =V, U U, noting
that this is a disjoint union. Consider the I’-matching 7, between U, U, obtained in this
iteration. No forms in these can be in sp(I’), since U is ged(E’ mod I') and ¢ € Q.
Therefore, 7, is an ordered matching. We can take the disjoint union of these matchings
to get an ordered I’-matching 7, = 7, L, between V UU and V. We set V' to be VUU.
By the induction hypothesis, £ is a multiple of 3 o sc(7q)aq- M (L(Ty)\ Vy). The circuit
sim(E' mod I) is a multiple of >_ o sc(rq)se(mg)ag - M(L(Ty) \ Vy). Fact 22 tells us that
sc(ry) = sc(7q)sc(my), completing the proof. O

The number of iterations in a round is at most (k — 2). This is because after each
iteration, the fanin of the circuit F goes down by at least 1. Therefore, there must be
a last iteration (signifying the end of the round). Consider the end of the last iteration.
If the fanin |@Q| of E(mod I) is 2, then by unique factorization, sim(E mod I) is empty.
Whichever way the round ends, all the forms in sim(E mod I) are in sp(SUI)\sp(I). By
the previous claim, there is a list V' such that for every surviving q € @, there is a sublist
Vy, € L(T,) and an ordered I-matching 7, between V' and V;. By Fact 25, we have that
sim(E mod I)) is a multiple of 3~ o sc(7g)ag- M(L(T) \ Vy) and is an identity (in R/I).

Let V, := Vy\ (sp(SUTI)\sp(I)) (similarly, define V). Note that 7; induces a matching
7o between V' and V. Furthermore, > .o sc(ry)aq - M(L(T,) \ V) is a multiple of
E(mod I) and is regular (each term in the above sum is non-zero mod I). Thus, the
form-ideal I is useful in C' wrt S. O]

To prove a rank bound for minimal and simple XII¥(k, d) identity C, our plan is to
start with S = ¢ and expand it round-by-round by adding the forms of a form-ideal, useful
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in C wrt S, to the current S. Trivially, such a process has to stop in at most kd iterations
(over all rounds) but we intend to show that it actually terminate more rapidly. All the
forms in L(C) will be covered by a small set of form-ideals. To formalize this process
we need the notion of a chain of form-ideals. This is just a concise representation of the
matchings that we get from the various rounds.

Definition 31. [Chain of form-ideals] Let C' be a XIIX(k,d) circuit. We define a
chain of form-ideals for C' to be the ordered set T := {(C,S1,11,Q1),...,(C,Sm, L, Qm)}
where,

e Forallie [m], S; CL(R), I; is a form-ideal orthogonal to S; and Q; C [k] .
e Si=¢and forall2<i<m, S;=5_1UIl;_1.

e For alli € [m], I; is useful in C wrt S;.

e For alli € [m], Q; is a blocking subset of C,S;, I;.

We will use sp(T) to mean sp(Sy, Uln) and #7T to denote m, the length of 7. The chain
7 is maximal if L(C) C sp(7).

Note that by Lemma 29, if a chain 7 of length m is not maximal, then we can find a
form-ideal I,,+; that is useful wrt S, U I;,. This allows us to add a new (C, Spp+1, Im+1,
Qm+1) to this chain. Tt is easy to construct a maximal chain for C', and the length of this
can be used to bound the rank.

Fact 32. Let C be a simple XIIX(k,d) identity. Then there exists a mazximal chain of
form-ideals T for C. The rank of C is at most (k — 2)(#7).

Proof. We start with S; = ¢ and an ¢ € L(C). By Lemma 29 there is a form-ideal I;
(containing ¢) useful in C' wrt S; with blocking subset, say, Q1. So we have a chain of
form-ideals {(C, S1,11,Q1)} to start with. Now if L(C') has all its elements in sp(S; U I;)
then the chain cannot be extended any further and we are done. Otherwise, we can again
apply Lemma 29 to get a form-ideal I useful in C' wrt So := 57 U I; with blocking subset,
say, Q2. Thus, we have a longer chain of form-ideals {(C, S1, I1,Q1), (C, Sa, I2,Q2)} now.
We keep repeating till we have a chain of length m where L(C') C sp(Sy, U Iy,).

Note that Sy, U I, = |J;<,, Im- Each I; is generated by at most (k —2) forms, so there
is a basis for L(C) having at most (k — 2)m forms. O

We state a slightly stronger version of the main theorem of this paper.

Theorem 33. If C is a simple and minimal X1I3(k, d) identity then the length of any
mazximal chain of form-ideals for C is at most (g) (logod +3) + (kK —1).

This theorem with Fact 32 imply the main result, Theorem 2. We prove this theorem
in the next section.
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2.6 Counting All Matchings: Proof of Theorem 33

Let a maximal chain of form-ideals 7 for C be {(C, S1,1,Q1), ..., (C,Sm, Im,Qm)}. We
will partition the elements of the chain into three types according to properties of the
matchings that they represent. Each of these types will be counted separately.
We first set some notation before explaining the different types. Let the m matching
data be:
mdata(C, Si, I, Qi) =t {(Ti,q, Vis Vig) | ¢ € Qi}

We will use mdata; as shorthand for the above. For all ¢ € Q;, V; 4 is a sublist of L(T})
and 7; 4 is an ordered matching between V;,V; , by I;. By the definition of usefulness of
form-ideal I; we have that V; , is disjoint to sp(S;UI;)\sp(I;). Thus, V; 4 can be partitioned
into two sublists:

Vigo:= (€ Vig|esp(l;)), and
Vigin =€ Vig | &sp(S;UL)).

and analogously V; can be partitioned into two sublists V; o and V; 1. It is easy to see that
these partitions induce a corresponding partition of 7; 4 as 7; 40 U 7 4,1, where 7; 40 (and
Tiq,1) is an ordered matching between V; o, Vi 40 (and Vi1, Viq1) by I;.

Here are the three types of mdata;’s:

1. [Type 1] There exist g1, g2 € @Q; such that V; 4, 1 is not similar to Vj g, 1.

2. [Type 2] There exist ¢1,q2 € Q; such that V; 4, is not similar to Vj4,, but for all
ri,72 € Qi, Viy 1 and V; ., 1 are similar.

3. [Type 3] For all g1, ¢2 € Q;, Vi g, is similar to Vj 4,. In other words, mdata; is trivial.

We partition [m] into sets Ny, N3, N3, which are the index sets for the mdata of types
1,2, 3 respectively.

2.6.1 Bounding #N; and #N>

The dominant term in Theorem 33 comes from #Nj. If # N, is large, then by an averaging
argument, for some pair (a,b), we find many matchings between forms in T, and Tp.
These are all orthogonal matchings, but are defined on different sublists of L(7;) and
L(T},). Nonetheless, we can find two dissimilar sublists that are matched too many times.
Invoking Lemma 12 gives us the required bound.

Lemma 34. #N; < (g)(logQ d+2).

Proof. For the sake of contradiction, let us assume #N; > (g) (logy d + 2). For each
mdata; (i € Ny), choose an unordered pair of indices P; = {q1,¢2} such that V; 4, 1 and
Vi.go,1 are not similar. As there can be only (g) distinct pairs, by the pigeonhole principle,
s > (logy d+2) of the pairs P; are equal. Let P;, = --- = P;, = {a,b} fori; < --- <ig € Nj.
Now we will focus our attention solely on the ordered matchings u; := Ti,b,leall between
Via1,Vipa by I;, for all i € {iy,...,i5}. The source of contradiction is the fact that all
these matchings are also well defined on the ‘last’ pair of sublists V;, 41, Vi, p.1:
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Claim 35. For alli € {i1,...,is}, p; induces an ordered matching between Vi g1, Vi, p1

Proof of Claim 35. The claim is true for i = i so let ¢ < is. The matching u; is an
ordered I;-matching between V; 41, Vip1. For £ € Vi o1, £ & sp(S;, U I,). Since i < i,
and L(T5) \ Via1 C sp(S; U L;), £ cannot be in L(T,) \ Viq1. Therefore, £ is in V; 1. So
p; maps £ to some element in V;; 1, showing p; is defined on the domain V;_ 4 1.

So we know p; maps ¢ € Vj_ 41 to an element p;(¢) € Vjp1. As p; is an I;-matching,
wi(€) = (e€+ ) for some ¢ € F* and « € sp(I;) C sp(1;,), thus p;(€) & sp(S;, UIL;,) (recall
¢ & sp(Si, Ul,)). Thus p;(¢) cannot be in L(T}) \ Vi, 51 (which has all its elements in
sp(Si, U 1i,)). Since pi(£) € L(Ty), pi(f) € Vigpa-

Thus, p; maps an arbitrary ¢ € Vi, 1 to pi(¢) € Vi p1. In other words, p; induces an
ordered matching between Vi, .1, Vi, p1 by ;. O

This claim means that there are s > (log, d + 2) bipartite matchings between V;_ , 1,
Vi, b1 by orthogonal form-ideals I;,, ..., I;, respectively. Lemma 12 implies that the lists
Visa,1s Vig b1 are similar. This contradicts the definition of P;,. Thus, #N; < (g) (logy d +
2). O

For dealing with # N>, we use a slightly different argument to get a better bound. We
show that a Type 2 matching can involve a pair of terms at most once.

Lemma 36. #N, < (g)

Proof. For the sake of contradiction, assume #No > (g) For each mdata; (i € Na), let
P; be an unordered pair (g1, g2) such that Vj, is not similar to Vj4,. Note that because
Vigi,1 is stmilar to V; g, 1, it must be that V; 4, o is not similar to V; 4, 0. By the pigeonhole
principle, at least two P,’s are the same. Suppose P;, = P, = {a,b} for i; < iy € Na.

We will show that the Vi, o0 = Vi, a1 N sp(fi,) and similarly, Vi, p0 = Vi, p10 N sp(1s,).
This together with the similarity of Vj, o1 and V;, ;1 gives us (by Fact 8) that Vj, 40 and
Via.b,0 are similar. This is a contradiction and thus, # N2 < (’2“)

Let ¢ € Vi, 0,0. By definition, £ € sp(l;,). We know that L(T,) \ Vj, 4,1 is contained in
sp(Si, U 1;;). Since iy < ig, I;, is orthogonal to sp(S;; U I;;) and £ ¢ L(1y) \ Vi, q,1. Since
¢ e L(T,), we get Viy a0 C Viya1 Nsp(Liy).

The usefulness of I;, implies that Vj, o0 = L(T,) Nsp(I;,). This gives V;, o.1Nsp(I;,) C
‘/ig,a,0~ O

2.6.2 Bounding # N3

This requires a different argument than the pigeonhole ideas used for #N; and #Ns.
Observe that till now, we have not used the minimality of C. This is the crucial argument
that uses this property of C.

Our final aim is to prove:

Lemma 37. #N3 < (k—1)

We shall use a combinatorial picture of how the chain of form-ideals connects the
various multiplication terms through matchings. We will describe an evolving forest F
and only deal with Type 3 mdata;.
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Initially, the forest JF consists of k isolated vertices, each representing the k£ terms
T, , 1. We process each mdata; in increasing order of the ¢’s, and update the forest
F accordingly. We will refer to this as adding mdata; to F. At any intermediate state,
the forest F will be a collection of rooted trees with a total of k leaves.

We divide type 3 matchings into internal and external ones.

Definition 38. Consider F when mdata; is processed. If all of Q; belongs to a single tree
in F, then mdata; is called internal. Otherwise, it is called external.

If mdata; is internal, F remains unchanged. While each time we encounter an external
mdata;, we update the forest F as follows. We create a new root node labelled with mdata;
(abusing notation, we refer to mdata; as a node), and for any tree of F that contains a
T4, q € Q;, we make the root of this tree a child of mdata,.

Fact 39. The total number of external matchings is at most (k —1).

Proof. Note that each external mdata; reduces the number of trees in the forest F by at
least one. Initially, F has k trees, and F always contains at least one tree. This completes
the proof. O

It remains to count the number of internal matchings. Whenever we encounter an
internal mdata;, we can always associate it with some root mdata; of the current F such
that i’ < ¢ and all of Q; is in the tree rooted at mdata; .

Lemma 40. If mdata; is internal, then the subcircuit Cg, is identically zero in R. There-
fore, by the minimality of C', no mdata; can be internal.

This lemma with the previous fact immediately implies that #N3 < (k — 1). We now
set the stage to prove this lemma. Take any Type 3 mdata;. By the triviality of mdata;,
the lists in {V;, | ¢ € Q;} are mutually similar. By the usefulness of I;, for all ¢ € @,
L(To)\ Vig C sp(Si U L;) \ sp(l;). Furthermore, D; := o sc(7iq)ag M(L(Ty) \ Vig)
is a regular identity modulo I;. Our aim is to remove the forms in D; which are common
factors (not mod I;, but mod 0). This gives us a new circuit (quite naturally, that will
turn out to be sim(Cy,)) that is still an identity (mod I;). In other words, start with the
subcircuit Cg,, and remove all common factors from this subcircuit. This is expected to
be both sim(Cgp,) and an identity mod I;.

Using this we will actually show that if mdata; is internal then sim(Cyp,) is an identity
(mod 0). Then we can multiply the common factors back, and Cg, would be an absolute
identity (violating minimality of C'). We proceed to show this rigorously. We have to
carefully deal with field constants to ensure that sim(Cyg,) is indeed a factor of D;.

Claim 41. For Type 3 mdata;, the circuit sim(Cq,) is an identity mod I; and has all its
forms in sp(S; U I;).

Proof. Let the gcd data of D; be:
ged(Dy) := {(miq, Ui, Uig) | 4 € Qi}

where U; 4 is a sublist of L(T}) \ Vi4 and 7;, is an ordered matching between U;, U; 4 by
{0}. Note that this is not mod I;, even though D; is an identity only mod I;.
By Facts 22 and 25 we can ‘stitch’ U’s and V'’s to get:
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° ’TZ-,’q = T; 4 U q is an ordered matching between V;/ := V; U U, Vifq :

g

o Dj:=3" o, scltiJaqg M(L(Ty) \ V/,), is a regular identity modulo ;.

= %,q U Ui,q by

Fix an arbitrary element ¢, in @;. We have that 7/ 7~1 is an ordered I;-matching

0q" i,qm
between the similar lists V/, ,V/ . By Fact 24, we can construct an ordered matching p; 4
between V/ . V/ by {0}, with scaling factor equal to sc(7], Tz/;il) = sc(1],)/se(T], )

The way D) is constructed it is clear that D} is a simple circuit. This combined with
the similarity of V/ VZ’ o under fi; o implies that the following set of #@); matchings:

4,qm?
{(igs Vi Vig) | 4 € Qi}
is a ged data of Cg, modulo (0) and the corresponding simple part is:

sim(Cg,) = Z sc(piq)agM(L(Ty) \ V;:g)
q€Q;

- > 2 e\ vy

qui 5 ( inm>
1

- - p

SC(T{7qm) !
Thus, sim(Cg,) is a regular identity mod I; as well. Also, by the usefulness of I,
sim(Cyg,) has all its forms in sp(S; U I;). This completes the proof. O

We now use the structure of F to show relationships between the various connected
terms.

Claim 42. At some stage, let mdata; be a root node of F. Let X be a subset of the leaves
of mdata;. Then L(sim(Cx)) is a subset of sp(S; U L;).

Proof. Let the indices of all the external Type 3 mdata be (in order) iy,i2,---. We prove
the claim by induction on the order in which F is processed. For the base case, let i := ;.
Consider F just after mdata; is added. The leaves of mdata; are all in @);. By Claim 41,
L(sim(Cq,)) C sp(S;UI;). Any X is a subset of Q;. By Fact 27, L(sim(Cx)) C sp(S;UI;).

For the induction step, consider an external mdata;. When this is processed, a series
of trees rooted at mdataj, , mdataj,,--- will be made children of mdata;. Every j, is less
than i. Let Y, denote the leaves of the tree mdata;.. Note that Y. N Q; # ¢. By the
induction hypothesis, L(sim(Cly,)) is a subset of sp(S;, U I;.) (C sp(S; U ;). Let Z;
be Q; UY;. By Fact 28 applied to sim(Cy;) and sim(Cg,), we have that L(sim(Cz,))
is in sp(S; U I;)). Let Zy be Z; UY;. We can apply the same argument to show that
L(sim(Cyz,)) is in sp(S; U I;)). With repeated applications, we get that for Z = J, Y;,
L(sim(Cz)) C sp(S;UI;)). Note that Z is the set of all leaves of the tree rooted at mdata,.
By Fact 27, L(Cx) C sp(S; U I;), completing the proof. O

We are finally armed with all the tools to prove Lemma 40.

Proof. (of Lemma 40) Consider some internal mdata;. All the elements of @Q; are leaves
in the tree rooted at some mdata;, for j < i. By Claim 42, L(sim(Cg,)) C sp(S; U I;).
But by Claim 41, sim(Cg,) = 0 (mod ;). Since I; is orthogonal to sp(S; U I;), Fact 9
tells us that sim(Cy,) is an identity (mod 0). Therefore, C, is an identity. O
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2.7 Factors of a XII3(k,d) Circuit: Proof of Theorem 4

The ideal matching technique is quite robust and can be used to prove Theorem 4. Let C be
a simple, minimal, nonzero circuit with top fanin k£ and degree d. This may not necessarily
be homoegenous. There is a simple trick, given in Lemma 3.5 of [DS06], that converts
C into a circuit computing a homogenous polynomial. For the sake of studying depth-
3 circuits (especially, the rank of identities or the set of linear factors), this conversion
makes a lot of the analysis cleaner. We give a simple extension of this lemma. The proof
is almost identical to that for Lemma 3.5 of [DS06].

Lemma 43. Given a simple and minimal depth-3 circuit C of degree d and top fanin k,
there exists a simple andAmz'm'mal YII¥(k,d) circuit C' with the following property. The
rank of linear factors of C is the same as that of C.

Proof. Let C =3, T; be defined on the variables z1,...,2,. Let T; = [[;,, £ij, where
d; is the degree of T;. Abusing notation, we will use C' to denote the generated polynomial.
As usual, Greek letters are field constants. We let d denote the (formal) degree of C. We
introduce a new variable y. We define C := y? - C(z1/y,...,2n/y). Note that it can be
viewed as a XIIX(k,d) circuit and we look closely at its linear forms ¢. Consider a non-
constant linear polynomial ¢ dividing some T;. If £ = )" «,x, + 3, then the corresponding

U= > arxy + By. Consequently,

C=y [ B XD

i<k j<d; i<k

The circuit C is obviously simple. (There must be some d; = d, so y cannot be a common
factor.) Since T, evaluated at y = 1 is exactly T;, C is minimal. Let C = ZZ:O P,, where
P, is the homogenous part of degree a in C. Then C= Zgzo yi=ep,.

Suppose a non-constant linear polynomial ¢ divides C. By a suitable linear transfor-
mation, we can assume that ¢/ = x1 — 7. Let us further express each P, as a polynomial
inz1. So Po =37, Qa,bl‘?, where Qg is homogenous of degree (a — b) (over variables
x9,...,Ty). Substituting v for z; (in C) yields the zero polynomial. Collecting terms of
the same degree, we get:

d

Z Z’bea,b =0 =Ve<d, Z ’Yan,b =0

a=0 b=0 a,b:a—b=c

We now show that the linear form x; — vy divides C. Setting z1 to vy in C:

d

a d a
DY Qaprt = Dy Qun’y
a=0 b=0 a=0 b=0
d a
= z Z Van,byd_(a_b)

a=0 b=0
d
d— b
- T S Queo
c=0 a,b:a—b=c
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If any linear polynomial divides C', the homogeneous version divides 6, and vice-versa by
setting y = 1. Hence, the rank of linear factors dividing C' is identical to that of C. O

Consider a simple and minimal depth-3 circuit C' with top fanin £ and degree d, that
computes polynomial p. We remind the reader of the definition of L(p). Let us factorize
p into []; g;, where each g; is irreducible. Then L(p) denotes the set of linear factors of p
(that is, ¢; € L(p) if ¢; is linear).

By the lemma above, we convert our original circuit C' into a simple and minimal
Y113 (k, d)-circuit C. Let the polynomial computed by C be p. For any q € L(p), C =
0 (mod ). Therefore we can generate a form-ideal useful in C involving §. Using these we
can create a chain of form-ideals whose span contains L(p), and all our counting lemmas
for the matchings of types 1,2, 3 will follow. As a result, we get a bound of O(k?logd) on
the rank of L(p). By Lemma 43, this also holds for the polynomial p.

3 High Rank Identities

The following identity was constructed in [KS07]: over Fo (with r > 2),

C(‘le"ax’/‘) = H (blwl +'”+b7’—1x7’—1)
b1,....br—1€F2
bi+-+br—1=1
+ H (xr + b1y + - + bp_12p—1)
b1,....br—1€F2
b1+---+br—1=0
+ H (xr + b1y + - + bp12p1) (2)

b1,...,br—1€F2
b1+ +bp_1=1

It was shown that, over Fo, C is a simple and minimal XIIY zero circuit of degree d = 272
with & = 3 multiplication terms and rank(C) = r = logy d + 2. Let S1(Z), S2(T), S3(T)
denote the three multiplication terms of C. We now build a high rank identity based
on S1,5,S53. Our basic step is given by a composition lemma to construct identities of
rank Q(k) (first discussed in a personal communication [?]). The idea is that a simple,
minimal ¥II¥(k, d;) identity can be combined with a XII3(3, d2) one to generate a simple,
minimal YXII¥(k+1, dy +d2) identity of higher rank. We mention that this lemma was used
in [DS06] to generate the high rank identities referred to in their conclusion. Nonetheless,
it has not been explicitly stated before.

Lemma 44. Let D := Z§:1Tj be a simple, minimal and zero X1IY circuit over Fa,
defined over s variables y1,...,ys. Let D have degree g, fanin k and rank s. The circuit
C' is defined over r variables x1,...,x, (as give in Equation 2). Define a new circuit over
Fy using D and C':
k—1
D= T;-S1 — Ty Sy —Tp - S
j=1

Then D' is a simple, minimal and zero XIIY circuit with degree d' = g+d, fanin k' = k+1
and rank v’ = s+ 1.
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Proof. Since C' is an identity, we get that Ss + S3 = —S;. Therefore,

o

-1 -1 -1
D' = ( Tj)Sl—Tk(SQ—i-S;g): ( Tj)SlJerSl: ( Tj)Slz()
1 1 1

o
e

.
Il

<.
Il

.
Il

The terms Tj do not share any variables with Sy (¢ € {1,2,3}). Since D and C' are simple,
D' is also simple. Suppose D’ is not minimal. We have some subset P C [1, k—1] such that
C' = (ZjePTj)Sl — T S2 — asTySs = 0, where o, a3 € {0,1}. If both ae and a3 are 1,
then we get (3 ;cp 75)51+T)xS1 = 0. Since D is minimal, PP must be the whole set [1, k—1].
On the other hand, if both as, ag are 0, then (3_,pT;)S1 = 0 which is impossible as D
is minimal. The only remaining possibility is (wlog) (3_;cpTj)S1 — TS2 = 0. As S is
coprime to Sy and Ty, this is impossible. Therefore, D’ is minimal.

It is easy to see the parameters of D": k' = k+ 1 and d’ = g + d. Because the T}’s do
not share any variables with Sy’s, the rank ' = s + r. O

Family of High Rank Identities: We iteratively use Lemma 44 to generate circuit
Dj;q from D;. We initially state with Dy := C. The circuit D; has degree d; = (i + 1)d,
fanin k; =i+ 3, and rank 7; = (i + 1)r = (i + 1)(logy d 4+ 2). So r; relates to k;, d; as:

d;
ri = (ki —2) <log2 - +2>.

Also it can be seen that if d > i then kidi2 > \/d;. Thus after simplification, we have for
any 3 < i <d, r; > % -logy d;. This gives us an infinite family of XII¥(k,d) identities

over Fy with rank Q(klogd).

Remark: The above family can be obtained over any field F of characteristic p > 0.
The main idea is to generalize Equation (2) to:

C’(xl,...,acr) = H (b1$1+"'+br—1xr—1)

blw-»brfler
bi+-+br_1=1

+ H (w’r’_"blxl + - +br—1wr—1)

blw-,b'rfler
bi+-+br—1=0

- H (xp + b1y + -+ + bp—120—1) (3)

b1,....br—1€Fp
b1+-Fbr_1=1

It can be seen that the rank deteriorates with the characteristic as (log, d + 2). On the
other hand, the highest rank fanin-3 identity known over characteristic zero fields is of rank
4: xq(zg+x1+x2)(Ta+aotx3)(xst+x3+21) — (xa+21)(vs+22)(Ta+23) (T4 + 21+ 22+ 23)
+ z12923(204 + 21 + T2 + T3).

4 Concluding Remarks

It would be very interesting to leverage the matching technique to design identity testing
algorithms. By unique factorization, matchings can be easily detected in polynomial

27



time, and it is also not hard to search for I-matchings involving a specific set of forms in
I. We prove that depth-3 identities exhibit structural properties described by the ideal
matchings. Can we reverse these theorems? In other words, can we show that certain
collections of matchings are present iff C' is an identity? This would lead to a polynomial
time identity tester for all depth-3 circuits.
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