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Abstract. A constant locality function is one in which each output bit
depends on just a constant number of input bits. Viola and Wigderson
(2018) gave an explicit construction of bipartite degree-3 Ramanujan
graphs such that each neighbor of a vertex can be computed using a
constant locality function. In this work, we construct the first explicit
local Ramanujan graph (bipartite) of degree q + 1, where q > 2 is any
prime power.
Alon and Capalbo (2002) used 4-regular, 8-regular and 44-regular Ra-
manujan graphs to construct unique-neighbor expanders that were 3-
regular, 4-regular, 6-regular and ‘bipartite’ (respectively). Viola and
Wigderson (2018) had asked if a local construction of such unique-
neighbor expanders exists. Our construction gives local 4-regular, 8-
regular and 44-regular Ramanujan graphs, which also solves the cor-
responding open problem of the construction of local unique-neighbor
expanders.
The only known explicit construction of Ramanujan graphs exists for
degree q + 1, where q is a prime-power. In this paper, we essentially
localize the explicit Ramanujan graphs for all these degrees. Our results
use the explicit Ramanujan graphs by Morgenstern (1994) and a signif-
icant generalization of the ideas used in Viola and Wigderson (2018).
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1. Introduction

Expanders are sparse graphs with strong connectivity properties,
due to which they find numerous applications in computer science
— decreasing random bits, designing error correcting codes, ex-
tractors, pseudo-random generators, hardness amplification, one-
way permutations, and proving complexity results; for details, see
the survey Hoory et al. (2006). Expanders have a lot of practical
applications, such as building optimal and cost-efficient computer
networks, see Cheung et al. (2011), which is useful for various net-
work service providers. An important application of expanders is
that they help in reducing the number of random bits required
for a randomized algorithm. Expanders relate to the construction
of error-correcting codes, see Barg & Zémor (2002); Guruswami
(2004); Sipser & Spielman (1996); Spielman (1999). They have
been instrumental in proving some important results in complex-
ity theory, such as the PCP theorem Dinur (2007), and SL = L
Reingold (2008).

Ramanujan graphs are expanders whose spectral gap is as large
as possible, see Nilli (1991). So they possess the best possible
expansion properties; they also tend to have a deep connection
to number theory. They have important applications in extremal
graph theory and computational complexity theory. Ramanujan
graphs are also important in cryptography and can be used to
construct low density parity check codes; for more details, see the
survey Li (1993).

A lot of these applications require that the neighbors of a given
node be computed efficiently; and this has been studied in Arora
et al. (2009); Bar-Yossef et al. (1999); Diehl & Van Melkebeek
(2006); Gutfreund & Viola (2004) under various constraints on
resources.

We view a d-regular graph as a set of d transition functions
fi : V −→ V where fi(v) is the ith neighbor of the vertex v ∈
V . A function has locality t if each bit of the output depends on
only t bits of the input. A graph is t-local if all the functions
computing its neighbors have locality ≤ t. The class of functions
with constant locality is NC0. If t is a constant independent of the
size of the graph (in an infinite family of graphs), we say the graph
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has constant locality.
The attention to expanders, where these transition functions

have constant locality, was brought in Arora et al. (2009); and in
Viola & Wigderson (2018) they gave a construction of expander
graphs that have locality 1. They also gave construction of degree
3 Ramanujan graphs, which have constant locality.

We answer the question left open in Alon & Capalbo (2002);
Viola & Wigderson (2018) about the construction of local unique-
neighbor expanders by providing the first construction of constant
locality bipartite Ramanujan graphs to degrees beyond 3.

We construct the first local Ramanujan graphs of degree q + 1,
where q > 2 is any prime power.

In particular, making constructions of Alon & Capalbo (2002)
local required constant locality Ramanujan graphs of degrees 4, 8
and 44, that was left open in Viola & Wigderson (2018); this con-
struction problem we solve in this paper.

1.1. Previous results. The connectivity of a graph is captured
by its spectral gap, which is the difference between the moduli
of the two largest eigenvalues of the normalized adjacency matrix
of the graph. Larger spectral gap implies better connectivity (or
expansion).

As proved in Nilli (1991), all sufficiently large d-regular graphs
satisfy λG ≥ 2

√
d− 1− o(1), where λG is the second-largest eigen-

value in absolute value (while |λ1| = d). This gives an upper bound
on the spectral gap of expanders. Ramanujan graphs are d-regular
graphs with λG = 2

√
d− 1− o(1), i.e., they are asymptotically the

best possible expanders.
Existence and construction of Ramanujan graphs has been of

great interest in Computer Science and studied extensively. In
Marcus et al. (2013, 2018) it was proved that bipartite Ramanu-
jan graphs of all degrees and sizes exist. Explicit construction
of Ramanujan graphs of prime+1 degree was given by Lubotzky
et al. (1988), which were extended to degree =(prime power)+1
in Morgenstern (1994). In Morgenstern (1994), they give two con-
structions, one that works where degree is of the form 2k+1, while
the other for degree =(odd prime power)+1. Construction for ar-
bitrary degree is a longstanding open problem Marcus et al. (2013,
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2018).

The area of study of small locality is of major interest in theo-
retical computer science. It was introduced and studied in Arora
et al. (2009) for AC0 graphs. In the field of pseudorandomness,
Applebaum et al. (2006); Goldreich (2000); Mossel et al. (2003)
gave cryptographic generators of constant locality, where Apple-
baum et al. (2006) used only logarithmic space.

In Viola & Wigderson (2018), an explicit construction of ex-
panders, which were 1-local, was provided. Along with it, the au-
thors also gave a construction algorithm that made the Ramanujan
graph from Morgenstern (1994) for degree 3 to be a Ramanujan
graph of constant locality.

1.2. Our results. In this paper, we give the first construction
of local bipartite Ramanujan graphs of degree q + 1, where q is
power of any prime p. We denote the bipartite graph as, V×{0, 1}
where any vertex (v, a) has a neighbor (w, 1 − a). The vertex set
V will be of size qn − 1. The parameter n takes values depending
on the prime power q.

Theorem 1.1. [p = 2] For any q = 2k, there exist q + 1 explicit
O(log q)-local functions f1, . . . , fq+1 such that the bipartite graph
on 2(qn−1) vertices (Fn

q \{0})×{0, 1}, with (v, 0) having neighbors
{(f1(v), 1), . . . , (fq+1(v), 1)}, is a degree q + 1 Ramanujan graph.
Here n is an increasing parameter of form 4 · 3t, for every t ≥ 0,
which gives us an infinite family of local, q + 1-degree Ramanujan
graphs.

In the case of odd p, we need to slightly modify V : by ‘clubbing
together’ the distinct values v and −v, in an unordered way.

Theorem 1.2 (Odd p). For any q = pk where p is arbitrary odd
prime, there exist q+1 explicit O(log q)-local functions f1, . . . , fq+1

such that the bipartite graph on (qn−1) vertices V ×{0, 1}, where
V := {{v,−v}|v ∈ (Fn

q \{0})} where {v,−v} denotes an unordered
set, with ({v,−v}, 0) having neighbors {(f1({v,−v}), 1), . . ., (fq+1(
{v,−v}), 1)}, is a degree q + 1 Ramanujan graph. Here n is an
increasing parameter whose allowed values depend on q (infinitely
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many for each q), which gives us an infinite family of local, q + 1-
degree Ramanujan graphs.

The unordered set {v,−v} is input to the transition functions
bit-by-bit. By explicit, we mean that these functions can be com-
puted in poly(n, q) time. Also, the graph has a simple description
and we do not require additional results from representation the-
ory. Computing the neighbors in this graph is very efficient. Each
neighbor of a node can be calculated using O(n) multiplications
and additions (in Fq), i.e. in O(n · log q · log log q) time.

This gives the first construction of constant locality Ramanujan
graphs that are q + 1-regular for all prime powers q > 2, greatly
extending the work started in Viola & Wigderson (2018).

1.3. Proof ideas. Our construction differs in the cases of prime
p = 2, 3 and ≥ 5. We discuss the main ideas now.

1.3.1. For q = even prime power. The case of q = 2 was
already solved in Viola & Wigderson (2018). We will be localizing
the construction given in Theorem 5.13 of Morgenstern (1994).

The original construction of Morgenstern (1994) is a Cayley
graph with specific generators Γ of the linear groups PSL(2,Fqn/2)
(for definitions, see Section 2.3). The extension Fqn/2 was defined
using an irreducible polynomial of even degree n/2. The computa-
tion in calculating neighbors had mainly 2 non-local components,
the elements of the generators (depends on L ∈ Fqn/2 , solution of
L2 + L + ϵ, ϵ ∈ Fq such that x2 + x + ϵ is irreducible), which get
multiplied, can have high sparsity (O(n)) and the multiplication
with the normalizing factor (so determinant is 1).

In Viola & Wigderson (2018), for construction of degree 3
graphs, the authors move to an easier to represent vertex set of
Fn
2 by consider action of SL(2,F2n/2)(isomorphic to PSL(2,F2n/2))

on (Fn/2
2 )2 \ {0}. The extension is defined using the polynomial

g(x) = xn + xn/2 + 1 for n = 2 · 3t as F2[x]/⟨g(x)⟩, which makes
L = xn/2 sparse. Multiplication with the normalizing factor 1√

x+1
is handled by taking double cover of the graph and applying twist
equivalent to multiplication with the factor.

This approach fails for q = 2k as the family is no longer irre-
ducible for all t and hence cannot be used to make the extension.
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For odd q’s, the construction in Morgenstern (1994) has small dif-
ferences that put more constraints on the extension and g. We
give more general (g) explicit families for all prime power q’s, that
satisfying the required properties, thus localizing the known con-
structions.

For q = 2k, in construction of Morgenstern (1994), we have an
ϵ such that x2 + x + ϵ is irreducible in Fq. The idea is that as
3|q2 − 1, we have elements that are not cubes in Fq2 . We choose
gt(x) := (b2 ·x3t −b1)

2+(b2 ·x3t −b1)+ϵ. Let α ∈ Fq2 be the root of
x2+x+ϵ, which means x2+x+ϵ factors as (x+α)(x+α+1) in Fq2 .
This means, after substitution, gt(x) is irreducible iff there exist
b1, b2 ∈ Fq such that α+b1

b2
and α+b1+1

b2
are not cubes in Fq2 . Then we

show the existence of required b1, b2 ∈ Fq for any such α by using
the bound on the number of cubes in Fq2 \Fq. The construction for
even characteristic requires L as solution of L2+L+ϵ in Fqd , which

we get in our construction L = b2 · x3t − b1, which is of constant
locality.

So we get the required design of finite field for all even char-
acteristics. Now, we use the fact that PSL(2,Fqn/2) is isomorphic
to SL(2,Fqn/2) if q is power of 2. This means Cay(SL(2,Fqn/2),Γ)
is a Ramanujan graph from Morgenstern (1994), which we con-
vert to Sch(SL(2,Fqn/2),Γ, V = Fn

q \ {0}) preserving spectral gap,
with neighbor of (v, 0) being (Γv, 1). Once again, we are left
with handling the normalization factor, which for even charac-
teristics construction from Morgenstern (1994) comes out to be
1/
√
1 + x (same as Viola & Wigderson (2018)). To remove this

factor, we see that since Fq[x]/⟨gt(x)⟩ is a field extension of power
of 2, all elements are squares in Fq. In particular, 1 + x is a
square in Fq[x]/⟨gt(x)⟩ which ensures that 1/

√
1 + x is an element

of Fq[x]/⟨gt(x)⟩ . So to remove the normalization factor, we just
need to convert the graph into a bipartite graph and then apply
the correct twist. See the details in Section 3.1.

1.3.2. For q = odd prime power. We build on the construc-
tion in Morgenstern (1994) of Ramanujan graphs for odd prime
powers and make the computation local. In the following discus-
sion, we will design a finite field extension Fqn/2 ; keeping in mind
that 4|n.
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For odd prime-power q, the construction in Morgenstern (1994)
is a Cayley graph with specific generators Γ of the linear groups
PSL(2,Fqn/2) (for definitions, see Section 2.3). The non-locality
comes from elements of Γ depending on L ∈ Fqn/2 , which is a
solution of L2 = ϵ, ϵ non-square in Fq and normalization factor
1√
x
. We use Schreier graphs, as used in Viola & Wigderson (2018),

to change the set of vertices to V := {{v,−v}|v ∈ (Fn
q \ {0})}

which are easier to handle as compared to vertices of Cayley graph
of PSL(2,Fqn/2). Vector v ∈ (Fn

q \ {0}) is considered as a 2 × 1

vector with elements in Fn/2
q . Therefore, each vertex, in one part

of the bipartite, is essentially an unordered set containing two 2×1
vectors on elements of Fqn/2 . The calculation of the neighbors of
this set, boils down to the multiplication of the vertex vectors v
and −v with the generator matrices in Γ, i.e. ({v,−v}, 0) has i-th
neighbor ({Γiv,−Γiv}, 1). This ensured that the action of Γi and
−Γi is the same, which means the PSL(2,Fqn/2) action is well-
defined on the set V and hence we can convert to Schreier graph
(note: The center of SL(2,Fqn/2) is ±1; see Section 2.3). Constant
locality in this means that the number of Fq-additions needed to
compute the product vectors should be constant; as we can view
Fq-multiplication as trivially dependent on log q (independent of
n) input bits. We will be using the PSL(2,Fqn/2) graph along with
adding a normalization term to generator matrices when converting
to Schreier graph; which will be division by the determinant of the
generator matrices.

The elements of the generator matrices are heavily dependent
on the degree d := n/2 polynomial g(x) which is chosen to represent
the extension Fqn/2 = Fqd . Therefore, it is needed that the terms
be chosen in such a way that each generator in Γ has a constant
sparsity representation. The polynomial g(x) also has to be of
even degree and irreducible in Fq[x]. Moreover, it is required that
the normalization factor 1/

√
x lives in Fq[x]/⟨g(x)⟩. Finally, the

degree of g(x) controls the size of the graph; so we want a family
of polynomials {gt}t of increasing degree satisfying all of the above
conditions.

Case of q = power of prime p ≥ 5. In contrast to Viola &
Wigderson (2018), we make a more general choice of g(x), i.e. for
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a graph of size 2(qn − 1), n = 2d = 4 · 3t, we chose g(x) of degree
d as gt(x) := (x3t − b1)

2 − α · b22, for an α non-square in Fq, and
b1, b2 ∈ Fq. Fixing this α, what is left to show is: gt(x) is irreducible
and

√
x ∈ Fq[x]/⟨gt(x)⟩ = Fqd . We first reduce the irreducibility

property (over all t) to b1 +
√
α · b2 being a non-cube in Fq2 ; and

reduce the existence of
√
x in Fq[x]/⟨gt⟩ (for all t) to the base case

t = 0.
Then using the fact that α is non-square in Fq, we consider

{1,
√
α} as a Fq-basis of Fq2 , and look at the span using b1, b2 as

coefficients (unknown as of yet). As 2|(q2 − 1) and 3|(q2 − 1), and
that the group Fq2 \ {0} is cyclic, we have (q2 − 1)/2 squares and
2(q2−1)/3 non-cubes in the group. Therefore, there will be ‘many’
elements in Fq2 \ {0} that are both squares and non-cubes; which
gives us the required b1, b2 ∈ Fq. See the details in Section 3.4.

Illustrative example. Considering an example of q = 5, we
see that the possible values for α are 2 and 3. For α := 2, we
see that b1 := 1 =: b2 gives a polynomial family (x3t − 1)2 − 2
satisfying the required conditions: which can be seen by checking
irreducibility of (x3−1)2−2 in F5[x] and the existence of

√
x = x+2

in F5[x]/⟨(x−1)2−2⟩, which translates to the existence of the same
for larger t. Similarly, for α := 3, we set b1 := 1, b2 := 3, giving
the same family (x3t − 1)2 − 2. We show that the density of b1, b2
for any α is high, i.e. a random choice works with high probability.
Checking if b1, b2 satisfy the condition requires computing in Fq2 :

(b1+α · b2)(q
2−1)/2 and (b1+α · b2)(q

2−1)/3, which can easily be done
in poly(log q) time.

Case of q = 3k, k > 1. In this case, we define r to be the smallest
odd prime factor of q2 − 1. We define gt(x) := (xrt − b1)

2 − α · b22
in this case. The proof works on similar lines as the above case,
using r|(q2− 1) and 2|(q2− 1), we have that there will be elements
in Fq2 that are not r-th powers but are squares. As above, it can
be shown that there exist the required b1, b2 ∈ Fq. See the details
in Section 3.5.

Case of q = 3. In this case, we see that q2−1 = 8, which is a power
of 2. So the previous techniques do not work here, as all elements
have rth-root for any prime r > 2. So, in this case, we go to the
extension F34 . It has size 80 and so it has elements that are not 5th
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powers. In F3, we see that 2 is the only non-square. So
√
2 helps in

generating F32 . Similarly, 1 +
√
2 is not a square in F32 and hence√

1 +
√
2 will generate F34 . We also compute that (1 +

√
1 +

√
2)

is not 5th power in F34 , hence becoming the base of the generating
polynomial family. We set as g0 := x4 + x3 − x+ 1 = (x+ 1)4 + x

which completely factors in F34 with roots (1±
√
1±

√
2)2 which we

know are not 5th powers and are by definition a square in F34 . This
allows us to create the irreducible family as gt(x) = (x5t +1)4+x5t

with x as a square as x5t is a square.
The equation L2 = 2 has a solution in the extension F34 =

Fq[x]/⟨g0⟩ as L = x3+x2+x+1 works. For higher t, this becomes
L = x3·5t +x2·5t +x5t +1, therefore satisfying the constant locality
condition as t increases. This gives us the infinite family satisfying
the required conditions. See the details in Section 3.6.

These three cases give us the design of the finite fields for all
odd-characteristics (q being any odd prime-power). Once we have
designed these special finite fields, we are left with handling the
normalization factor, which for odd characteristics construction
from Morgenstern (1994) comes out to be 1/

√
x. To remove this

factor, we will use the tools from Viola & Wigderson (2018) of
double-cover and π-twist of a graph. Our choice of g(x) ensures
that 1/

√
x is an element of Fqd . This makes it possible to remove

the normalization factor by converting it into a bipartite graph and
applying the correct twist. See the details in Section 2.2.

1.4. More on the related results. Small or constant locality
constructions are an important subject in theoretical computer sci-
ence, as they make the implementation of the expanders efficient.
The first construction of constant locality Ramanujan graphs of
degree 3 was given in Viola & Wigderson (2018); making the local
construction problem for other degrees a natural open question.

Ramanujan graphs are used for the construction of unique-
neighbor expanders, which have widespread applications, see Alon
& Capalbo (2002). In Viola & Wigderson (2018), the construction
of local unique-neighbor expanders is left open, as Alon & Capalbo
(2002) uses 4-regular, 8-regular and 44-regular Cayley Ramanujan
graphs. Even though a construction for these Ramanujan graphs
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was present, constant locality construction was unknown till now.
In (Alon & Capalbo 2002, Sec.2), an infinite family of 4-regular
and 8-regular Ramanujan graphs was used to construct 3-regular,4-
regular and 6-regular unique-neighbor expanders. Using our con-
struction, constant locality Ramanujan graphs that are 4-regular
and 8-regular are possible, which gives the first construction of lo-
cal 3-regular, 4-regular and 6-regular unique-neighbor expanders.
In construction of 3-regular unique-neighbor expanders, the ver-
tex set of the unique neighbor expanders is edge set of Ramanujan
graph, and 2 edges are connected if they have common vertex and
the other vertices are fi(v) and fj(v) in the 8-regular Ramanujan
graph where |i − j| is 1, 4 or 7. As computation of fi’s can be
done locally, the unique-neighbor expanders are also local. The
construction for other degree are also similarly local.

In (Alon & Capalbo 2002, Sec.4), they also present a simple,
explicit family of bounded degree bipartite graphs (referred to as
‘bipartite unique-neighbor expanders’) which requires an infinite
family of 44-regular Ramanujan graphs. Using our construction,
we get a local infinite family of 44-regular Ramanujan graphs which
gives us the first construction of local ‘bipartite unique-neighbor
expanders’, see Alon & Capalbo (2002).

Our construction of constant locality Ramanujan graphs is ef-
ficiently computable, in time linear in n, as we can compute the
neighbors for the Ramanujan graphs by transition functions that
have constant locality. These can be used to implement expanders
more efficiently than the generic method of Morgenstern (1994)
which required time quadratic in n. Our linear-time efficiency is
comparable to the constructions in Gabber & Galil (1981); Jimbo
& Maruoka (1985); Margulis (1973), but the latter expanders were
only for the fixed degrees 5, 7, 8, 9, 13 (thus, unable to reach the
eigenvalue bounds of Ramanujan graphs in the limit).

2. Preliminaries

We assume that the graphs that we talk about are undirected, reg-
ular and connected. They can be represented using an adjacency
matrix, which is a square matrix (symmetric in case of undirected
graphs) which shows the number of edges between any two vertices.
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Expanders (or expander graphs) are sparse graphs that show
strong connectivity properties. The connectivity properties of ex-
panders can be quantified using vertex, edge or spectral expansion.
We use spectral expansion to define expanders.

Definition 2.1. (Expander) Given a graph G, let λG be the
second-largest eigenvalue (in magnitude) of the adjacency matrix
AG of the graph. G is called an (n, d, λ) expander if G has n-
vertices, is d-regular and has λG ≤ λ.

A lower bound on the second-largest eigenvalue of the adjacency
matrix of a d-regular graph was given in Nilli (1991). The graphs
that come close to meeting this bound are Ramanujan graphs. In
other words, Ramanujan graphs are regular graphs with the max-
imum possible spectral gap, which makes them excellent spectral
expanders.

Definition 2.2. (Ramanujan graph) An (n, d, λ) expander G
is called a Ramanujan graph if λG ≤ 2

√
d− 1.

2.1. Cayley and Schreier graphs. The initial construction
based on Morgenstern (1994) is a Cayley graph. A major reason
why we consider Cayley graphs, is that their connection to group
theory makes the analysis of the spectral gap easier. This yielded
the first construction of Ramanujan graphs.

Definition 2.3. (Cayley graph, Viola & Wigderson (2018))
Let H be a group. Given a multiset S of elements from H, we form
the Cayley graph Cay(H,S) whose vertices are H and where a ver-
tex h ∈ H has neighbors sh, for every element s ∈ S.

We will also require the Schreier graph to change the set of
vertices to a much simpler set.

Definition 2.4. (Schreier graph, Viola & Wigderson (2018))
Suppose that H is a group acting on a set V , namely there is a
homomorphism from H to the group of permutations of V . Then
we define the Schreier graph Sch(H,S, V ), whose vertices are V
and where the vertex v ∈ V has neighbors sv, for every element
s ∈ S.



Explicit q + 1 regular local Ramanujan graphs 13

We will require the following lemma, which shows that the con-
version from a Cayley graph to a Schreier graph conserves the
spectral gap.

Lemma 2.5. (Viola & Wigderson 2018, Lem.2.2) If λ is an eigen-
value of Sch(H,S, V ), then λ is also an eigenvalue of Cay(H,S).

2.2. Operations related to bipartite graphs. To localize a
Ramanujan graph, we will need to convert it into a bipartite graph,
while preserving its spectral gap. For this, we will use the bipartite
double cover of a graph.

Definition 2.6. (Bipartite double cover of a graph, Viola
& Wigderson (2018)) Let G be a graph on vertex set V where
vertex v has neighbors fi(v), ∀i ∈ I. The double-cover of G is
the bipartite graph V × {0, 1} where a vertex (v, b) has neighbors
(fi(v), 1− b), ∀i ∈ I.

Lemma 2.7. (Viola & Wigderson 2018, Fact 2.3) Let G0 be the
bipartite double cover of a graph G. If G0 has eigenvalue λ, then
G has eigenvalue λ or −λ. In particular, the double cover of a
Ramanujan graph is a bipartite Ramanujan graph.

The main idea to go into a bipartite version of a graph is to
apply a twist, which enables us to get rid of a ‘non-local multipli-
cation’ present inside fi’s.

Definition 2.8. (π-twist of a graph, Viola & Wigderson
(2018)) Let G be a bipartite graph on vertex set V ×{0, 1}, where
vertex (v, b) has neighbors (fi(v), 1− b), ∀i ∈ I and π be a permu-
tation on the vertex set. The π-twist of G is the bipartite graph
G0 having the same set of vertices with the modification: ver-
tex (v, 0) ∈ G0 has neighbors (πfiv, 1), and equivalently vertex
(v, 1) ∈ G0 has neighbors (fiπ

−1v, 0), ∀i ∈ I.

Applying a twist conserves the spectral gap.

Lemma 2.9. (Viola & Wigderson 2018, Lem.4.2) The eigenvalues
of the twisted graph are the same as the original graph, i.e., π-twist
preserves the spectral gap.
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2.3. Linear groups. We need the definitions of the following
groups for our results. Basically, their action defines the neighbors
in the Ramanujan graph.

Definition 2.10. (Special linear group) The special linear
group of degree n over R, denoted by SL(n,R), is defined as the
set of n× n invertible matrices with determinant 1 having entries
from R, with the operation being the matrix multiplication over
R.

Definition 2.11. (Center of a group) The center of a group G
is defined as the set of elements that commute with every element
of G. It is denoted as Z(G) := {z ∈ G | ∀g ∈ G, zg = gz}.

Definition 2.12. (Projective special linear group) The pro-
jective special linear group, PSL(V ) is the quotient group defined
as PSL(V ) := SL(V )/Z(V ), where SL(V ) is the special linear
group of V and Z(V ) is the center of SL(V ).

So, the projective special linear group PSL(n,R) is the quo-
tient of SL(n,R) by their centers, respectively. The center of
SL(n,R) is the subgroup of scalar transformations with unit de-
terminant. Therefore, center of SL(2, R) = {I2,−I2}.

2.4. Irreducibility of binomials over finite fields. We will
be needing the following lemma for showing irreducibility of poly-
nomial for our field extension. Define ordq(a) to be the multiplica-
tive order of a in the group F∗

q := Fq \ {0}.

Theorem 2.13. (Lidl & Niederreiter 1994, Theorem 3.75) Let
w ≥ 2 be an integer and a ∈ F∗

q. Then the binomial xw − a is
irreducible in Fq[x] if and only if the following three conditions are
satisfied:

(i) Every prime divisor p of w divides ordq(a)

(ii) gcd
(
w, q−1

ordq(a)

)
= 1

(iii) If 4 divides w, then q = 1 mod 4

We use the above lemma to get the following result as well.
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Lemma 2.14. If β is non-p-power (p > 2 is prime) in Fr, then
xp − β is irreducible in Fr.

Proof. We will be using Theorem 2.13, with w = p, a = β and
q = r. Since β is not p-th power in Fr, we have p|(r−1) (otherwise

all elements of Fr are p-th power) and β
r−1
p ̸= 1. β can be written

as ak, where a is a generator of F∗
r, giving β(r−1)/p = ak(r−1)/p,

which if = 1, will mean that a’s order divides k(r − 1)/p. But we
know ord(a) = (r − 1), which means p|k, which means β is a p-th
power. Also, ordr(β)|(r− 1). Note that condition 3 is not relevant
as p is prime > 2.

For sake of contradiction, assume condition 1 did not hold,
and p does not divide ordr(β), i.e. p and ordr(β) are coprime.

We consider β
r−1
p = (β

r−1
p·ordr(β) )ordr(β) = 1

r−1
p·ordr(β) . Since, p|(r − 1),

ordr(β)|(r − 1) and gcd(p, ordr(β)) = 1, we can say r−1
p·ordr(β) is an

integer. Therefore, β
r−1
p = 1

r−1
p·ordr(β) = 1 which is a contradiction.

Next, assume condition 1 holds but condition 2 does not. So, we

have gcd
(
p, r−1

ordr(β)

)
̸= 1. As p is prime, this means p| r−1

ordr(β)
, which

again means r−1
p·ordr(β) is an integer. Therefore, β

r−1
p = 1

r−1
p·ordr(β) = 1

which again is a contradiction.
Therefore, for β non-p-power in Fr, x

p − β satisfies all the con-
ditions of Theorem 2.13. Hence, xp − β is irreducible. □

We lastly prove the following claim,

Claim 2.15. For any prime power p ≥ 3, if β is non-p-power in
finite field Fr, then B(x) := xpt − β is irreducible over Fr.

Proof (of Claim 2.15). By Lemma 2.14 we have, β is a non-p-
power in Fr implies xp−β is irreducible in Fr. As seen in its proof,

we have p|ordr(β) and gcd
(
p, r−1

ordr(β)

)
= 1.

For irreducibility of xpt − β, condition 1 of Theorem 2.13 is
satisfied, as pt has only one prime factor p and p|ordr(β). For the

same reason, gcd
(
p, r−1

ordr(β)

)
= 1 implies gcd

(
pt, r−1

ordr(β)

)
= 1, and

hence condition 2 is satisfied. Condition 3 is irrelevant, as 4 ∤ pt,
for p prime > 2. Therefore, we get xpt − β irreducible in Fr[x]. □
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3. Main Results

3.1. Local Ramanujan graph of deg 2k + 1, k > 1: Proof of
Theorem 1.1. First, we look at the construction of Ramanujan
Graphs in Morgenstern (1994) for q power of 2.

Theorem 3.1. (Morgenstern 1994, Theorem 5.13) Let q be a power
of 2 and f(x) = x2+x+ ϵ irreducible in Fq[x]. Let g(x) ∈ Fq[x] be
irreducible of even degree d, and Fqd is represented as Fq[x]/⟨g(x)⟩.
Let L ∈ Fqd be a root of f(x), and

Γi =

(
1 γi + δiL

(γi + δiL+ δi)x 1

)
∀i ∈ {1, . . . , q + 1}

where γi, δi ∈ Fq are all the q + 1 solutions in Fq of γ
2
i + γiδi +

δ2i ϵ = 1. Then the Cayley graph of PSL(2,Fqd) with Γ as genera-
tors is a q + 1 regular Ramanujan graph.

For any ϵ such that x2 + x+ ϵ is irreducible over Fq, we choose
gt(x) as

gt(x) := (b2 · x3t − b1)
2 + (b2 · x3t − b1) + ϵ

We show that there exist b1 ∈ Fq and b2 ∈ F∗
q such that gt

is irreducible, and the extension using it gives local Ramanujan
graphs.

Lemma 3.2. Consider the extension of Fq to Fq2 , and let α ∈
Fq2 \Fq be a root of x2+x+ ϵ. gt is irreducible iff

α+b1
b2

and α+b1+1
b2

are not cubes in Fq2 .

Proof. As α is a root of f = x2+x+ ϵ in Fq2 , the factorization
of f in Fq2 will be (x+α+1)(x+α). So gt factorizes as (b2 · x3t −
b1 +α)(b2 · x3t − b1 +α+1) in Fq2 . By Claim 2.15, we have if α+b1

b2

and α+b1+1
b2

are not cubes in Fq2 , then u := (b2 · x3t − b1 + α) and

v := (b2 · x3t − b1 + α+ 1) are irreducible in Fq2 . Any factor of gt,
say h ∈ Fq[x], has to either divide one of u, v; or one of h’s factor
in Fq2 will have to divide u, v. But then the irreducibility of u, v,
implies h is trivial and gt is irreducible (over Fq). □
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Lemma 3.3. For q = 2k, k ≥ 2, and for any α ∈ Fq2 \ Fq, there
exist b1, b2 ∈ Fq, b2 ̸= 0, such that both α+b1

b2
and α+b1+1

b2
are not

cubes in Fq2 .

Proof. Let b3 ∈ F∗
q be the multiplicative inverse of b2. So we

need to show b3α+ b1b3 and b3α+ b1b3+ b3 are not both cubes. We
know that the number of cubes in F∗

q2 is q2−1
3

, and the number of

non-cubes is 2(q2−1)
3

. Also, the number of cubes in Fq2 \Fq is ≤ q2−1
3

and number of non-cubes is ≥ 2(q2−1)
3

− q. As α ∈ Fq2 \Fq, {1,
√
α}

is a Fq-basis of Fq2 . So b3α+ b1b3 will attain values in Fq2 \ Fq (as
b3 ̸= 0).

For the sake of contradiction, assume that whenever b3α+ b1b3
is not a cube, b3α + b1b3 + b3 is a cube (as we vary b1 ∈ Fq, b2 ∈
F∗
q). The number of non-cube values attained by b3α + b1b3 is

≥ 2(q2−1)
3

− q, which would mean that the number of cube values

attained by b3α + b1b3 + b3 is ≥ 2(q2−1)
3

− q. But the number of

cubes in Fq2 \Fq is ≤ q2−1
3

; which is a contradiction for all q ≥ 4.□

Thus, we have for any ϵ s.t. x2+x+ ϵ is irreducible in Fq, there
exist b1, b2 such that gt(x) is irreducible of even degree d = 2 · 3t,
modeling the field Fqd := Fq[x]/⟨gt(x)⟩. The parameter L for our

choice of gt will be b2 · x3t − b1, which has constant locality. Us-
ing Theorem 3.1 we get that Cay(PSL(2,Fqd),Γ) is a Ramanujan
graph. We consider Cay(SL(2,Fqd), zΓ), after adding the normal-
ization constant z equal to 1√

x+1
(as determinant of Γ = x+ 1); as

PSL(2,Fqd) is isomorphic to SL(2,Fqd) in characteristic 2.
Using Lemma 2.5, we can as well move to the graph Sch(SL(2,

Fqd), zΓ,Fn
q \ {0}), where n := 2d = 4 · 3t. As fields Fq of charac-

teristic 2 have size 2λ, and F∗
q have size 2λ − 1, all elements of Fq

are squares (as, gcd(2, 2λ−1) = 1). So, z is an element of Fqd , and
multiplication by it can be removed by taking double cover and
applying the required twist.

Finally, we also give local construction of Ramanujan graphs
for degree 2k + 1, k ≥ 2.

Theorem 3.4 (2k +1 regular, k > 1). For any fixed q = 2k, and
variable n = 4 ·3t, there exist q+1 explicit O(log q)-local functions
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f1, . . . , fq+1 such that the bipartite graph of 2(qn−1) vertices (Fn
q \

{0})×{0, 1}, with (v, 0) having neighbors {(f1(v), 1), . . . , (fq+1(v),
1)}, is a degree q + 1 Ramanujan graph.

Proof (of Theorem 3.4). We get from Theorem 3.1 that Cay(PSL
(2,Fqd), zΓ) is a q+1 regular graph. By Lemma 2.5 we know that
Sch(PSL(2,Fqd), zΓ, Fn

q \ {0} ) is also a Ramanujan graph. By
Lemma 2.7-Lemma 2.9, we get that after applying double cover
and twist, spectral gap remains the same, and z gets removed.
Therefore, G is a q+1 regular Ramanujan graph. Now we need to
show: each fi has constant locality, which is just multiplication by
Γi.

Looking at the transition function Γi in detail, we see that the
only non-trivial steps are multiplication by L and x (multiplication
by Fq elements is independent of n). Recall, L = b2 · xd/2 − b1 and
g(x) = (b2x

d/2 − b1)
2 + (b2x

d/2 − b1) + ϵ = L2 + L + ϵ. When L
multiplies, the multiplication by b1 is trivial (has O(log q)-locality,
which is constant with respect to n). So, only multiplication by xd/2

needs careful analysis. We see that, in Fq[x]/⟨g(x)⟩, we can write

xd =: p1x
d/2 + p2, where p1 =

1
b2

and p2 =
b21+b1+ϵ

b22
; so p1, p2 ∈ Fq.

Write any element y ∈ Fq[x]/⟨g(x)⟩ as y =: (y2, y1), where
vector y2 (resp. y1) corresponds to the most (resp. least) significant
d/2 coefficients of powers of x. Write multiplication by xd/2 as:

xd/2 · y =
∑
j<d

cj · xj+d/2 =
∑

0≤j<d/2

cj · xj+d/2 +
∑

0≤j<d/2

cj+d/2 · xj+d

= xd/2 ·
∑

0≤j<d/2

cjx
j + (p1x

d/2 + p2) ·
∑

0≤j<d/2

cj+d/2 · xj

= xd/2 ·
∑

0≤j<d/2

(cj + p1cj+d/2) · xj + p2 ·
∑

0≤j<d/2

cj+d/2 · xj

= (p1y2 + y1, p2y2) .

Since, p1, p2 are Fq elements, the locality of multiplication isO(log q)
= constant, with respect to the size of the graph (as t, n grow).
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This shows that all the operations in the transition functions are
local. □

Proof (of Theorem 1.1). Combining Theorem 3.4 and the result
from Viola &Wigderson (2018), we see that we get the construction
for q+1-regular bipartite local Ramanujan graph, for all 2-powers
q. This completes the proof of Theorem 1.1. □

3.2. Ramanujan graphs of deg pk + 1, p ̸= 2. We start
with the construction of Ramanujan graphs given in Morgenstern
(1994), for degree q + 1, where q is power of an odd prime.

Theorem 3.5. (Morgenstern 1994, Theorem 4.13). Let q be an
odd prime and ϵ a non-square Fq. Let g ∈ Fq[x] be an irreducible
polynomial of even degree d, and Fqd is represented as Fq[x]/⟨g(x)⟩.
Let L ∈ Fqd be s.t. L2 = ϵ and Γ be the set of matrices,

Γi =

(
1 γi − δiL

(γi + δiL)(x− 1) 1

)
∀i ∈ {1, . . . , q+1}

where γi, δi ∈ Fq are all the q + 1 solutions in Fq of δ2i ϵ − γ2
i =

1. Then if x is a square modg(x), then the Cayley graph of
PSL(2,Fqd) with respect to above generators is a q + 1 regular
Ramanujan graph.

We will use g(x) such that
√
x is in Fp[x]/⟨g(x)⟩, giving Cay(PSL

(2,Fqd),Γ) as the Ramanujan graph. To make the construction lo-
cal, we will need g(x) such that L2 = ϵ has a solution with constant
sparsity so that multiplication with the matrix to get neighbors is
local. We divide the task of localizing into the following three cases
(in the order of technical difficulty):

1. q = pk, p ≥ 5,

2. q = 3k, k ≥ 2,

3. q = 3 .

3.3. First case: Identifying suitable parameters for the
Ramanujan graph. This section is dedicated to identifying the
following objects, and constructing them efficiently.



20 Batra, Saxena & Shringi

Lemma 3.6 (Parameters). Let q be any odd prime power. There
exists an explicit polynomial family g(x) ∈ Fq[x] with the following
properties:

(i) g is a family of irreducible polynomials in Fq[x] having even
degree (which defines the field Fqd).

(ii)
√
x ∈ Fq[x]/⟨g⟩ (as we want to use PSL, for which x should

be a square).

(iii) L /∈ Fq but L2 ∈ Fq (as we want L2 = ϵ where ϵ is a non-
square in Fq).

(iv) L has constant sparsity (as the computation of a neighbor
requires multiplication with the generator matrices and thus
all the elements of the matrix should be constant sparsity).

With an eye on the case of q = pk, prime p ≥ 5: Let us fix α
to be a non-square in Fq, and for (yet to be fixed) b1, b2 ∈ Fq we
define a family for g(x) as:

gt(x) := (x3t − b1)
2 − α · b22 , ∀t ∈ Z≥0 .

As α ·b22 is non-square in Fq, we deduce that g0(x) is irreducible.
For t ≥ 1, the following lemma reduces the irreducibility of gt(x)
to the existence of the cube root of b1 +

√
α · b2 in Fq2 . (Note:

The conjugate b1 −
√
α · b2 has identical properties due to the

automorphism of Fq2 .)

Lemma 3.7. gt(x) is irreducible in Fq[x] if and only if b1 +
√
α · b2

is non-cube in Fq2 .

Proof. Observe that gt = (x3t −b1−
√
α ·b2) ·(x3t −b1+

√
α ·b2)

is the factorization over Fq2 . Consider its Fq-automorphism σ :√
α 7→ −

√
α. Let us denote (x3t − b1 −

√
α · b2) by ft. Then

(x3t − b1+
√
α · b2) = σ(ft). Assume ∃h ∈ Fq[x] such that h divides

gt = ft · σ(ft). There are only two cases possible:

◦ h divides one of ft and σ(ft): In this case, h would divide
both the factors because if h divides the first factor, then
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σ(h) = h would divide the second factor. So h2|gt, which
contradicts gt’s square-freeness. The square-freeness easily
follows from the coprimality of: g = (x3t − b1)

2 − α · b22 and
dg
dx

= 2 · 3t · x3t−1(x3t − b1). So, this case is not possible for a
nontrivial h.

◦ ∃u ∈ Fq2 [x] such that u|ft and h = u·σ(u): If u is nontrivial
then ft = (x3t−b1−

√
α ·b2) is reducible over Fq2 . Since t ≥ 1

and Fq2 has a cube-root of unity, it follows from the following
Claim 2.15 that, (b1 +

√
α · b2) is cube in Fq2 . So, this case is

possible for a nontrivial h iff b1 +
√
α · b2 ∈ Fq2 is cube.

□

The following lemma reduces the problem of existence of
√
x ∈

Fq[x]/⟨gt(x)⟩ to that of the existence of
√
x ∈ Fq[x]/⟨g0(x)⟩.

Lemma 3.8. If
√
x is in Fq[x]/⟨g0⟩, then

√
x is in Fq[x]/⟨gt⟩,∀t ≥

1.

Proof. We know that g0 = (x− b1)
2 −α · b22 for the non-square

α. Consider β := b1+
√
α · b2 in Fq2 . From the hypothesis, if x is a

square mod g0, then β (and its conjugate b1 −
√
α · b2) is a square

in Fq2 . Since the field Fqd := Fq[x]/⟨gt⟩ subsumes Fq2 , thus, x
3t is

a square in Fqd .
We know that the multiplicative group of Fqd is cyclic. Let λ

be a generator of this group; its order is qd−1. There exists unique
m ∈ [qd − 1] s.t. x = λm, which means x3t = λm·3t . Since x3t is a
square, we deduce: 2|(m · 3t), which means 2|m. Hence, x = λm

itself is a square in Fqd = Fq[x]/⟨gt⟩. □

Based on Lemma 3.7-Lemma 3.8, our problem reduces to find-
ing b1, b2 ∈ Fq such that b1 ±

√
α · b2 is non-cube, but is a square

in Fq2 . We solve this in the following lemma.

Lemma 3.9. Assume q = pk, prime p ≥ 5. There exist ((q2− 1)/6
many) b1, b2 ∈ Fq such that, gt(x) is irreducible and

√
x exists in

Fq[x]/⟨gt⟩.

Proof. From Lemma 3.7 we know that gt(x) is irreducible if
and only if b1 +

√
α · b2 is non-cube in Fq2 .
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Considering mod g0, x = b1 ±
√
α · b2. So,

√
x in Fq[x]/⟨g0⟩

is equivalent to b1 +
√
α · b2 being a square in Fq2 (recall: α is

non-square in Fq).
Clearly, {1,

√
α} is an Fq-basis of Fq2 . Since q is odd, we know

Fq2 \ {0} is a cyclic group of even order. Thus, the number of
squares in Fq2 \ {0} is (q2− 1)/2. Also, as 3 ∤ q, we have 3|(q2− 1),
and thus, the number of non-cubes is 2(q2−1)/3. Therefore, there
are ≥ (q2 − 1)/6 elements y’s in Fq2 \ {0} which are square but
non-cube.

As {1,
√
α} is a basis of Fq2 , each of these y’s give us a unique

(b1, b2) for which b1 +
√
α · b2 is a square but non-cube. □

Proof (of Lemma 3.6 for q = pk, p ≥ 5)). Set g(x) = gt(x) of
even degree d = 2 · 3t. Set ϵ = α · b22 which is non-square, as α is a
fixed non-square. To get L2 = ϵ ∈ Fq, we simply set L = (x3t − b1)
in Fq[x]/⟨gt(x)⟩; clearly L /∈ Fq. So properties (iii)-(iv) are satisfied
by our choice.

Lemma 3.9 shows that for our α, there exist ‘many’ b1, b2 ∈ Fq

such that properties (i)-(ii) are satisfied as well.
Thus, going over t ∈ Z≥0, we have constructed an infinite family

of explicit g as promised. □

3.4. Local Ramanujan graph of deg pk + 1, p ≥ 5. From
the previous section, we get that there exists b1, b2, for any non-
square α ∈ Fq, where q = pk for prime p ≥ 5, s.t. g = gt(x) =
(x3t − b1)

2 − α · b22 is an irreducible polynomial of even degree
d = 2 · 3t, modeling the field Fqd = Fq[x]/⟨gt(x)⟩. As mentioned

already, L = (x3t − b1) ∈ Fqd , so that L2 = α · b22 = ϵ. Denote
z := (1/

√
x) ∈ Fqd and matrices zΓ,

z·Γi :=
1√
x

(
1 γi − δiL

(γi + δiL)(x− 1) 1

)
∀i ∈ {1, . . . , q+1}

where γi, δi ∈ Fq are all the q + 1 solutions of: δ2i ϵ− γ2
i = 1.

Since x is a square mod g(x), from Theorem 3.5, we get that
the Cayley graph of PSL(2,Fqd) with respect to the above genera-
tors (i.e. Cay(PSL(2,Fqd),Γ)) is a q+1 regular Ramanujan graph.
The required b1, b2 can be found out by simply going over all the
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values in Fq, and checking the irreducibility of g0 (Lemma 3.7) and
the existence of

√
x ∈ Fq[x]/⟨g0⟩ (Lemma 3.8). Using Lemma 3.9,

we get see that a random b1, b2 satisfy this with probability 1
6
, which

means, All this is easily doable in poly(q) time (or in randomized
poly(log q)-time).

Note that the center of SL(2,Fqd) is ±1 (see Section 2.3). In-
spired by that, we define V := {{v,−v}|v ∈ (F2

qd
\{0})} and action

of A ∈ PSL(2,Fqd) as {v,−v} 7→ {Av,−Av}. As the matrices are
invertible, A acts like a permutation on the vertices. Now, we
consider the graph Sch(PSL(2,Fqd), zΓ,V). This means that the
number of Fq elements needed to represent each vertex in V will
be n = 2d = 4 · 3t. This new graph will remain a Ramanujan
graph as a result of Lemma 2.5. We add the normalization factor,
z = 1/

√
x which makes the determinants (of our generators) 1.

But the problem is that multiplication by z may not be local.

So, now we have Sch(PSL(2,Fqd), zΓ,V) as our graph. We
now convert this into a bipartite graph by taking a double cover
of it. Again, this new bipartite graph is a Ramanujan graph by
Lemma 2.7. The problem of multiplication by z remains to be
solved. To solve this, we take the twist of the graph, with the
multiplication by

√
x as the permutation chosen for the twist. As√

x is an element of Fq[x]/⟨g(x)⟩, multiplication by it is equivalent
to a permutation of the elements, which can be removed using the
appropriate twist. Now, as we have multiplied each node by

√
x,

we can see that we can remove the normalization factor z from
the functions (zΓ1, zΓ2, zΓ3, . . . , zΓq+1) to calculate the neighbor.
So only multiplication by (Γ1,Γ2,Γ3, . . . ,Γq+1) needs to be done,
which is local (as we will easily show). By Lemma 2.9, we have
this new graph as a Ramanujan graph as well.

Final graph parameters. Let n = 4 · 3t, t ∈ Z≥0, d = n/2, and
Fqd = Fq[x]/⟨gt⟩. We define G = Gt to be the graph obtained
as: start with Sch(PSL(2,Fqd), zΓ, V), take its double cover, and
apply the twist equivalent of multiplying with

√
x ∈ Fqd . Thus, G

is a bipartite graph on vertices V := {{v,−v}|v ∈ (F2
qd
\{0})} with

neighbors of ({v,−v}, 0) being ({Γiv,−Γiv}, 1), where matrices Γi

are as in Theorem 3.5.
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Lemma 3.10 (Locality). G is a q + 1 regular Ramanujan graph,
with the transition functions f1, . . . , fq+1, where (fi({v,−v}), 1) :=
({Γiv,−Γiv}, 1) is the i-th neighbor of ({v,−v}, 0), such that ∀i ∈
[q + 1], fi has constant locality (= O(log q)).

Proof. We get from Theorem 3.5 that Cay(PSL(2,Fqd), zΓ) is
a q + 1 regular graph. By Lemma 2.5 we know that Sch(PSL(2,
Fqd), zΓ, V ) is also a Ramanujan graph. By Lemma 2.7-Lemma 2.9,
we get that after applying double cover and twist, spectral gap re-
mains the same, and z gets removed. Therefore, G is a q+1 regular
Ramanujan graph. Now we need to show: each fi has constant lo-
cality.

Looking at the transition function Γi in detail, we see that the
only non-trivial steps are multiplication by L and x (multiplication
by Fq elements is independent of n). The multiplication with v and
−v has the only effect of doubling the locality. Multiplication by
x is just a combination of a cyclic shift and possibly one addition,
which can be done locally. Recall, L = xd/2 − b1 and g(x) =
(xd/2−b1)

2−α ·b22 = L2− ϵ. When L multiplies, the multiplication
by b1 is trivial (has O(log q)-locality, which is constant with respect
to n). So, only multiplication by xd/2 needs careful analysis. We
see that, in Fq[x]/⟨g(x)⟩, we can write xd =: p1x

d/2 + p2, where
p1 = 2b1 and p2 = α · b22 − b21; so p1, p2 ∈ Fq.

Write any element y ∈ Fq[x]/⟨g(x)⟩ as y =: (y2, y1), where
vector y2 (resp. y1) corresponds to the most (resp. least) significant
d/2 coefficients of powers of x. Write multiplication by xd/2 as:

xd/2 · y =
∑
j<d

cj · xj+d/2 =
∑

0≤j<d/2

cj · xj+d/2 +
∑

0≤j<d/2

cj+d/2 · xj+d

= xd/2 ·
∑

0≤j<d/2

cjx
j + (p1x

d/2 + p2) ·
∑

0≤j<d/2

cj+d/2 · xj

= xd/2 ·
∑

0≤j<d/2

(cj + p1cj+d/2) · xj + p2 ·
∑

0≤j<d/2

cj+d/2 · xj

= (p1y2 + y1, p2y2) .
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Since, p1, p2 are Fq elements, the locality of multiplication is
O(log q) = constant with respect to the size of the graph (as t, n
grow). This shows that all the operations in the transition func-
tions are local. The total number of additions required to calculate
Γiv is 8, hence the total locality will be 16 log q. □

This completes the construction of local Ramanujan graphs for
degree pk for prime p ≥ 5.

Theorem 3.11 (pk + 1 regular). For any fixed q = pk, k ∈ N,
prime p ≥ 5, and variable n = 4 · 3t, there exist q + 1 explicit
O(log q)-local functions f1, . . . , fq+1 such that the bipartite graph
on (qn−1) vertices V×{0, 1}, where V := {{v,−v}|v ∈ (Fn

q \{0})}
where {v,−v} denotes an unordered set, with ({v,−v}, 0) having
neighbors {(f1({v,−v}), 1), . . . , (fq+1({v,−v}), 1)}, is a degree q+
1 Ramanujan graph.

Proof (of Theorem 3.11). From Lemma 3.10 we saw that the
graph G is a q+1 regular bipartite Ramanujan graph with (qn−1)
vertices, and their transition functions having constant locality
(i.e. independent of n). Thus, neighbors of ({v,−v}, 0) can be com-
puted in constant locality. We can obtain the transition functions
for all sizes, using poly(q)-time preprocessing to find α, b1, b2 ∈ Fq.

We see that, similar to Viola &Wigderson (2018), our construc-
tion for Ramanujan graphs is also efficiently computable; as gen-
eration of (and multiplication by) x and L can be efficiently done.
Calculating fi’s require O(n) Fq-multiplications (while calculating
p1y2, p2y2) and O(n) additions, as sparsity of terms is constant (in
Γi). This makes the expander explicit with O(n · log q · log log q)-
time. This completes the proof of Theorem 3.11. □

3.5. Local Ramanujan graph of degree 3k + 1, k ≥ 2:. In
this case, we have q = 3k. This case needs a different treatment as
Fq has non-squares, but it does not have a non-cube!

We will look at q2 − 1 = (q − 1)(q + 1), q = 3k. We observe
that q2 − 1 will have a prime factor r > 3: as q − 1, q + 1 are
not divisible by 3 and they cannot be 2-power simultaneously (as
2(q − 1) > (q + 1)). We fix r to be the smallest such prime factor.
Eg. for even k, r = 5.
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We fix α to be a non-square in Fq, for b1, b2 ∈ Fq (yet to be
fixed) we define a family of polynomials gt(x) for t ≥ 1 as:

gt(x) := (xrt − b1)
2 − α · b22

Lemma 3.12 (Non-rth square). There exist ( (r−2)(q2−1)
2r

many)
b1, b2 ∈ Fq such that gt is irreducible and x is a square in Fq[x]/⟨gt⟩.

Proof. As done in Lemma 3.7, (xrt − b1)
2 − α · b22 factors into

the coprime factors (xrt − b1 −
√
α · b2) and (xrt − b1 +

√
α · b2).

Any factor dividing one of them will also divide the other under
the automorphism σ :

√
α 7→ −

√
α. Thus, (xrt − b1 −

√
α · b2)

must be irreducible over Fq2 for gt to be irreducible over Fq. By
Claim 2.15, we have xrt − b1 −

√
α · b2 irreducible if b1 +

√
α · b2 is

not r-th power in Fq2 , as r is a prime > 3.
Lemma 3.8 remains the same on replacing 3t by rt. Thus,√

x ∈ Fq[x]/⟨g0⟩ implies
√
x ∈ Fq[x]/⟨gt(x)⟩, ∀t ≥ 1. Considering

mod g0, x = b1 ±
√
α · b2, therefore

√
x ∈ Fq[x]/⟨g0⟩, is equivalent

to b1 +
√
α · b2 being a square in Fq2 .

Thus, the question boils down to showing the existence of b1, b2 ∈
Fq such that b1 +

√
α · b2 is square in Fq2 , but non-rth-power.

We know Fq2 \ {0} is a cyclic group of even order. Thus, the
number of squares in Fq2 \ {0} is (q2 − 1)/2. From our choice of
r, we know r|(q2 − 1), and thus, the number of non-rth-power is

(r−1)(q2−1)/r. Therefore, there are ≥ (r−2)
2r

elements y in Fq2\{0}
which are square but not-rth-power.

Clearly, {1,
√
α} is an Fq-basis of Fq2 . Each of the y’s obtained

above gives a unique (b1, b2) for which b1+
√
α · b2 is square in Fq2 ,

but non-rth-power. □

This give us the construction of local Ramanujan graphs for
degree 3k + 1 (k ≥ 2).

Theorem 3.13 (3k + 1 regular, k > 1). For any fixed q = 3k,
r such that r is the smallest prime > 3 dividing q2 − 1, and
variable n = 4 · rt, there exist q + 1 explicit O(log q)-local func-
tions f1, . . . , fq+1 such that the bipartite graph on (qn − 1) ver-
tices V × {0, 1}, where V := {{v,−v}|v ∈ (Fn

q \ {0})} where
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{v,−v} denotes an unordered set, with ({v,−v}, 0) having neigh-
bors {(f1({v,−v}), 1), . . . , (fq+1({v,−v}), 1)}, is a degree q+1 Ra-
manujan graph.

Proof (of Theorem 3.13). Following the proof of Lemma 3.10,
now with n = 2d = 4 · rt, we deduce that the graph G is a q + 1
regular bipartite Ramanujan graph with (qn−1) vertices, and their
transition functions having constant locality (namely, O(log q), in-
dependent of n). Thus, neighbors of ({v,−v}, 0) can be computed
in constant locality. We can obtain the transition functions for all
sizes, using poly(q)-time preprocessing to find α, b1, b2 ∈ Fq.

Exactly like in the proof of Theorem 3.11, our construction
for Ramanujan graphs is also efficiently computable. In fact, the
expander is explicit in O(n · log q · log log q)-time. This completes
the proof of Theorem 3.13. □

3.6. Local Ramanujan graphs of degree 4: Wrap-up The-
orem 1.2. For q = 3, the only non-square in Fq is 2. We need g
satisfying the conditions of Lemma 3.6, with ϵ fixed to 2. We use
the following family of polynomials for g as t ≥ 1:

gt(x) = (x5t + 1)4 + x5t

Lemma 3.14. For q = 3 and ϵ = 2, gt(x) = (x5t+1)4+x5t satisfies
all the properties of Lemma 3.6.

Proof. We know as 2 is non-square in F3,
√
2 generates F32 .

Looking in F32 = F3[x]/⟨x2 − 2⟩, we see that 1 ±
√
2 is a non-

square and hence
√

1±
√
2 will generate F34 . Denote the values

(1 ±
√

1±
√
2)2 by α1, α2, α3, α4. We consider the polynomial in

F3[x] with these roots in F34 , which is x4+x3−x+1 = (x+1)4+x,
i.e. g0. We know g0 is irreducible as its roots are in F34 but not in
lower extensions. Now if we consider gt, we can see that in F34 , it
factorizes as

∏4
i=1(x

5t − αi).
Let h be a factor of gt in Fq[x]. In Fq4 [x], h cannot divide a

product of three of the factors (x5t − αi): as a composition of the

two maps σ1 :
√
2 7→ −

√
2 or σ2 :

√
1 +

√
2 7→ −

√
1 +

√
2 will
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‘cover’ any remaining factor. Therefore, h must have 4 factors in
Fq4 , each of which will divide one of x5t − αi. So, proving anyone

irreducible, means gt is irreducible. It is easy to see that α
(q4−1)/5
1 =

α16
1 ̸= 1 in Fq4 and hence α1 is a non-5-th-power in Fq4 . Using

Claim 2.15, we get that x5t − α1 is irreducible over Fq4 , and hence
gt is irreducible in Fq.

Lemma 3.8 remains the same on replacing 3t by 5t. Thus,√
x ∈ Fq[x]/⟨g0⟩ implies

√
x ∈ Fq[x]/⟨gt(x)⟩, ∀t ≥ 1. Considering

mod g0, we have x = (1 +
√

1 +
√
2)2, which is a square of 1 +√

1 +
√
2 which is in Fq4 . Precisely,

√
x = x3 + x2 + 2x + 1 in

Fq[x]/⟨g0⟩.
We observe that (x3+x2+x+1)2 = 2 in Fq[x]/⟨g0(x)⟩. There-

fore, we set L := x3·5t +x2·5t +x5t +1, giving us L2 = 2 mod gt(x).
L also has constant sparsity of 4. Thus, gt = (x5t + 1)4 + x5t sat-
isfies all the four properties of Lemma 3.6. □

Using Theorem 3.5 we get that Cay(PSL(2,Fq[x]/⟨gt⟩),Γ) is
a Ramanujan graph. We consider Cay(PSL(2,Fq[x]/⟨gt⟩), zΓ),
after adding the normalization constant z equal to 1√

x
. Using

Lemma 2.5, we have Sch(PSL(2,Fq[x]/⟨gt⟩), zΓ,Fn
q ), where n =

2d = 8 · 5t. As we already have
√
x ∈ Fqd := Fq[x]/⟨gt⟩, z is an

element of Fqd , and multiplication by it can be removed by taking
double cover and applying the required twist. Thus, we have a bi-
partite Ramanujan graph G where neighbors of ({v,−v}, 0) being
{(f1({v,−v}), 1).

Lemma 3.15. Multiplication of Γ matrices with a vector in F2
qd
,

q = 3, d = 4 ·5t and gt(x) := (x5t +1)4+x5t = xd+x3d/4−xd/4+1
has constant locality.

Proof. Multiplication with Γ involves the main non-trivial steps
as multiplication with x and L. Multiplication with x is just a
cyclic shift among values of Fqd and possibly 3 additions, which

have O(log q) locality. Recall L = x3·5t + x2·5t + x5t + 1 = x3d/4 +
xd/2 + xd/4 + 1. So, we need to show multiplication with x3d/4,
xd/2, and xd/4 is local as well in Fqd . We also see that modulo gt,
xd = −x3d/4 + xd/4 − 1.
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Let the input be y ∈ Fqd , y =
∑

i<d ci · xi with which we will
consider multiplication with x3d/4. We write it as (y4, y3, y2, y1),
where vector y4 corresponds to the most significant d/4 coefficients
of power of x, y3 the next significant d/4 coefficients and y2 the next
d/4, while y1 to the d/4 least significant coefficients. Multiplication
with xd/4 is thus,

xd/4 · y =
∑
i<d

ci · xi+3d/4

=
∑
i<d/4

ci · xi+d/4 +
∑
i<d/4

ci+d/4 · xi+d/2 +
∑
i<d/4

ci+d/2 · xi+3d/4

+
∑
i<d/4

ci+3d/4 · xi+d

=
∑
i<d/4

ci · xi+d/4 +
∑
i<d/4

ci+d/4 · xi+d/2 +
∑
i<d/4

ci+d/2 · xi+3d/4

+ (−x3d/4 + xd/4 − 1) ·
∑
i<d/4

ci+3d/4 · xi

= x3d/4
∑
i<d/4

(ci+d/2 − ci+3d/4) · xi + xd/2
∑
i<d/4

ci+d/4 · xi

+ xd/4
∑
i<d/4

(ci + ci+3d/4) · xi −
∑
i<d/4

ci+3d/4 · xi

= (y3 − y4, y2, y1 + y4,−y4)

Thus, multiplication with xd/4 can easily be done in constant
locality. Similarly, it can be shown that xd/2 ·y = (y2−y3+y4, y1+
y4, y3 + y4, y4 − y3) and x3d/4 · y = (y1 − y2 + y3, y3 + y4, y2 + y3 −
y4, y3 − y2 − y4). Therefore, multiplication by L can be done in
constant locality and hence multiplication of Γ with an element of
(F3)

n can be done in constant locality. □

This leads to the following construction of Ramanujan graphs
for degree 3 + 1.

Theorem 3.16 (4 regular). For q = 3, and variable n = 8 · 5t,
there exist q + 1 explicit constant locality functions f1, . . . , fq+1
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such that the bipartite graph of such that the bipartite graph on
(qn − 1) vertices V × {0, 1}, where V := {{v,−v}|v ∈ (Fn

q \ {0})}
where {v,−v} denotes an unordered set, with ({v,−v}, 0) having
neighbors {(f1({v,−v}), 1), . . . , (fq+1({v,−v}), 1)}, is a degree 4
Ramanujan graph.

Proof (of Theorem 3.16). We get from Theorem 3.5 that Cay(PSL
(2,Fqd), zΓ) is a q + 1 regular graph. By Lemma 2.5 we know
that Sch(PSL(2,Fqd), zΓ, V = Fn

q \ {0} ) is also a Ramanujan
graph. By Lemma 2.7-Lemma 2.9, we get that after applying dou-
ble cover and twist, spectral gap remains the same, and z gets
removed. Therefore, G is a q + 1 regular Ramanujan graph. From
Lemma 3.15, we have that the neighbor of ({v,−v}, 0) in G can be
calculated using constant locality. Thus, G is our 4-regular con-
stant locality bipartite Ramanujan graph. □

Proof (of Theorem 1.2). Combining Theorem 3.11, Theorem 3.13
and Theorem 3.16, we get the construction for q+1-regular bipar-
tite local Ramanujan graph, for all odd prime powers q. This
completes the proof of Theorem 1.2. □

4. Conclusion

We give the first construction of bipartite Ramanujan graphs of
constant locality of degree q + 1, for any prime power q. This
solves the construction problem for constant-locality Ramanujan
graphs, which was previously known only for degree 3.

Our results allow the construction of local 3-regular, 4-regular
and 6-regular unique-neighbor expanders, and local ‘bipartite’ unique-
neighbor expanders, see Alon & Capalbo (2002).

Our work leaves the following questions still open:

1. Construct Ramanujan graphs of locality 1.

2. Construct non-bipartite constant-locality Ramanujan graphs.

3. Construct Ramanujan graphs of degree q + 1, where q is not
a prime-power.
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