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1. INTRODUCTION

Polynomial identity testing (PIT) ranks as one of the most important open problems
in the intersection of algebra and computer science. We are provided an arithmetic
circuit that computes a polynomial p(x1, x2, · · · , xn) over a field F, and we wish to test
if p is identically zero (in other words, if p is the zero polynomial). In the blackbox
setting, we do not have access to the circuit. We are only allowed to evaluate the
polynomial p at various domain points. The main goal is to devise a deterministic
(preferably blackbox) polynomial time algorithm for PIT. [Heintz and Schnorr 1980;
Kabanets and Impagliazzo 2004] and Agrawal [2005; 2006] have shown connections
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between deterministic algorithms for identity testing and circuit lower bounds, em-
phasizing the importance of this problem. For a detailed exposition, see surveys
[Shpilka and Yehudayoff 2010; Saxena 2009; Agrawal and Saptharishi 2009]. Also,
[Mulmuley 2011; Mulmuley 2012] discusses blackbox identity testing and the arith-
metic P vs NP question, in the language of geometric complexity theory.
Even for the special case of depth-3 circuits (cf. Section 1.1), this question is still

open. This may seem quite depressing. It is. Nonetheless, there exist concrete results
that justify both our ignorance and the acceptance of results on depth-3 PIT in major
publishing venues. [Agrawal and Vinay 2008] showed that an efficient blackbox iden-
tity test for depth-4 essentially leads to exponential lower bounds. The importance of
depth-3 circuits is underscored by a result of [Raz 2010], who proved that strong lower
bounds for depth-3 circuits imply super-polynomial lower bounds for general arith-
metic formulas.
A depth-3 circuit C over a field F is of the form C(x1, · · · , xn) =

∑k
i=1 Ti, where Ti

(a multiplication term) is a product of at most d linear polynomials with coefficients
in F. We are especially interested in the case F = Q. In this section, we will just
assume this unless explicitly mentioned otherwise. The size of the circuit C can be
expressed in three parameters: the number of variables n, the degree d, and the top
fanin (or the number of terms) k. Such a circuit is referred to as a ΣΠΣ(k, d, n) cir-
cuit. PIT algorithms for depth-3 circuits were first studied by [Dvir and Shpilka 2006].
There have been many recent results in this area by [Kayal and Saxena 2007] (in the
non-blackbox setting) and [Karnin and Shpilka 2008; Saxena and Seshadhri 2011a;
Kayal and Saraf 2009]. Our main result is a better blackbox tester for ΣΠΣ circuits

over Q. We get a running time of ndk
2

, an exponential improvement (in k) over the

previous best of ndk
k

[Kayal and Saraf 2009]. Table I details the time complexities of
previous algorithms1.

THEOREM 1.1. Consider circuits over Q. There exists a deterministic blackbox al-

gorithm for PIT on ΣΠΣ(k, d, n) circuits, whose time complexity is poly(ndk
2

).

Table I: Depth-3 blackbox PIT algorithms over Q

Paper Time complexity

[Karnin and Shpilka 2008] nd(2
k2

logk−2 d)

[Saxena and Seshadhri 2011a] ndk
3 log d

[Kayal and Saraf 2009] nd(k
k)

This paper ndk
2

This is the first result that gives a time complexity both polynomial in d and singly-
exponential in k forQ. This is not too far from the best non-blackbox algorithm for ΣΠΣ
circuits, which runs in poly(ndk) time [Kayal and Saxena 2007]. This result closes the
gap (almost) between blackbox and non-blackbox algorithms. Recently, this gap was
closed (for all fields) by a different blackbox algorithm [Saxena and Seshadhri 2011b]
borrowing the algebraic techniques developed in this paper.
All these results go via rank bounds for depth-3 identities, introduced by

[Dvir and Shpilka 2006]. This is a very interesting quantity associated with these cir-
cuits, and roughly speaking, bounds the maximum number of “free variables” that

1These time complexities are actually bounds on the total number of bit operations. Also, the running times
are technically polynomial in the stated times.
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can be present in a depth-3 identity. If a ΣΠΣ(k, d, n) circuit has rank r, then there
exists a linear transformation that converts this to an equivalent ΣΠΣ(k, d, r) cir-
cuit. (This linear transformation is very easy to determine.) The remarkable insight
of [Dvir and Shpilka 2006] was that the rank of every ΣΠΣ(k, d, n) identity is very low.
Any ΣΠΣ(k, d, r)-circuit can be completely expanded out in poly(kdr) time. Hence, low
rank bounds for identities imply efficient non-blackbox PIT algorithms.
[Karnin and Shpilka 2008] showed how small rank bounds for identities imply effi-

cient blackbox PIT algorithms. This opened the door for blackbox algorithms for depth-
3 PIT. Indeed, a majority of the known algorithms for this problem come as a conse-
quence of their result. Rank bounds have also found applications in learning ΣΠΣ cir-
cuits [Shpilka 2009; Karnin and Shpilka 2009]. Hence, the rank and file of researchers
studying this problem are interested in proving small rank bounds. As mentioned ear-
lier, we focus on the fieldQ. [Dvir and Shpilka 2006] initiated this line of work by show-

ing that the rank of a simple, minimal2 ΣΠΣ(k, d) identity is 2O(k2)(log d)k−2. There are
basic constructions of rank Ω(k) identities over Q [Dvir and Shpilka 2006]. They con-
jectured that the rank should be bounded by poly(k). This rank bound was improved
to O(k3 log d) by [Saxena and Seshadhri 2011a]. [Kayal and Saraf 2009] achieved a
breakthrough by proving a rank bound independent of d. Their bound was kO(k). We
finally settle the Dvir-Shpilka conjecture and show a rank bound of O(k2).
The advances of Kayal & Saraf were obtained through the use of incidence ge-

ometry theorems, like the famous Sylvester-Gallai theorem. This theorem states
that for any set S of points in the Euclidean plane, not all collinear, there ex-
ists a line passing through exactly two points in S. Higher dimensional general-
izations are called Sylvester-Gallai theorems (see survey [Borwein and Moser 1990]).
These theorems have connections to rank bounds for depth-3 circuits. The result
of [Kayal and Saraf 2009] gave an intricate combinatorial construction that converts
depth-3 identities to sets of colored points in Euclidean space. This allowed the use of
Sylvester-Gallai theorems to bound the rank.
Our contribution comes through a new algebraic framework for studying depth-

3 identities. It allows for a much more “efficient” use of Sylvester-Gallai theo-
rems to bound the rank. This leads to nearly optimal rank bounds. The connec-
tion between Sylvester-Gallai theorems and rank bounds is far more transparent,
at the loss of some color from the theorems. Theorem 1.4 gives a simple formula
that relates the depth-3 rank to Sylvester-Gallai bounds. A nice byproduct of this
connection is the improvement of rank bounds over arbitrary fields. Most impor-
tantly, we develop a Chinese Remainder Theorem for depth-3 identities, inspired
by techniques in [Kayal and Saxena 2007]. As we mentioned earlier, there have
been some recent improvements for blackbox PIT algorithms for depth-3 circuits
[Saxena and Seshadhri 2011b]. This algorithm does not go via the usual route of rank
bounds, so this result does not subsume the rank bounds given in this paper. Nonethe-
less, one of the main ingredients for [Saxena and Seshadhri 2011b] is the Chinese Re-
mainder Theorem given in this paper.

1.1. Definitions and results

We recall that a depth-3 circuit C over a field F is: C(x1, . . . , xn) =
∑k

i=1 Ti, where Ti

is a product of di linear polynomials ℓi,j over F. For the purposes of studying identities
we can assume, by homogenization, that ℓi,j ’s are linear forms (i.e. linear polynomials
with a zero constant coefficient) and ∀i, di = d. Eg. (x1+1)x2+x3x4 can be homogenized
via the map xi 7→ xi/z to get (x1 + z)x2 + x3x4. Obviously, it preserves non-zeroness
and increases the number of useful variables by at most one.

2These are small technical conditions that need to be imposed. We give details shortly.
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It will be convenient to state our results in terms of arbitrary fields.

Definition 1.2. [Dvir and Shpilka 2006]

— Simple Circuit: C is a simple circuit if there is no nonzero linear form dividing all
the Ti’s.

— Minimal Circuit: C is a minimal circuit if for every proper subset S ⊂ [k],
∑

i∈S Ti

is nonzero.
— Rank of a circuit: The coefficients of ℓi,j form an n-dimensional vector over F. The

rank of the circuit, rk(C), is defined as the rank of the set of all linear forms ℓi,j
viewed as vectors.

The rank of a circuit can be interpreted as the minimum number of independent
variables required to express C. The definition of simple and minimal circuits are used
to remove certain pathological cases. The rank question is: For a simple and minimal
ΣΠΣ(k, d, n) identity over field F, what is the maximal possible rank? A trivial upper
bound on the rank (for any ΣΠΣ-circuit) is min(kd, n), since that is the total number
of linear forms involved in C. A substantially smaller rank bound than kd shows that
identities do not have as many “degrees of freedom” as general circuits.
Before we state our results, it will be helpful to explain Sylvester-Gallai configu-

rations. A set of points S with the property that every line through two points of S
passes through a third point in S is called a Sylvester-Gallai configuration. The famous
Sylvester-Gallai theorem states that the only Sylvester-Gallai configuration in R2 is a
set of collinear points. This basic theorem about point-line incidences was extended to
higher dimensions [Hansen 1965; Bonnice and Edelstein 1967]. We define the notion
of Sylvester-Gallai rank bounds. This is a clean and convenient way of expressing these
theorems.

Definition 1.3. Let S be a finite subset of the projective space FPn. Alternately, S
is a set of non-zero vectors in Fn+1 without multiples: No two vectors in S are scalar
multiples of each other3. Suppose, for every set V ⊂ S of k linearly independent vectors,
the linear span of V contains at least k + 1 vectors of S. Then, the set S is said to be
SGk-closed.
The largest possible rank of an SGk-closed set of at most m vectors in Fn (for any n)

is denoted by SGk(F,m).

The Sylvester-Gallai theorem states4 that for all m, SG2(R,m) ≤ 2. Higher dimen-
sional analogues [Hansen 1965; Bonnice and Edelstein 1967] can be interpreted to say
SGk(R,m) ≤ 2(k−1). Our main theorem is a simple, clean expression of how Sylvester-
Gallai influences identities. We state this for general fields.

THEOREM 1.4 (FROM SGk TO RANK). Let |F| > d. The rank of a simple and mini-
mal ΣΠΣ(k, d) identity over F is at most 2k2 + k · SGk(F, d).

Remarks: (1) We make the field assumption due to the technicalities of the projective
space. If F is small, then we choose an extension F′ ⊃ F of size > d and get a rank bound
with SGk(F′, d). Clearly, SGk(F, d) ≤ SGk(F′, d) (where the inequality can be strict in
certain cases, eg. R ⊂ C). Thus, an upper bound on SGk(F′, d) implies one on SGk(F, d),
which suffices for our applications.

3When |F| > |S|, such an S is, wlog, a subset of distinct vectors with first coordinate 1.
4To see this, take an SG2-closed set S of vectors. Think of each vector being represented by an infinite line
through the origin, hence giving a set S in the projective space. Take a 2-dimensional plane P not passing
through the origin and take the set of intersection points I of the lines in S with P . Observe that the coplanar
points I have the property that a line passing through two points of I passes through a third point of I.
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(2) A relevant special case is that of syntactically multilinear ΣΠΣ(k, d) identities
[Shpilka and Volkovich 2008; Shpilka and Volkovich 2009; Karnin et al. 2010]. Since
each product gate here comprises of linear forms over disjoint variables, it rules out
the existence of any nontrivial closed set in Theorem 2.9. Thus, we can save on the
contribution arising from SGk(F, d) to the rank bound. Finally, we get: The rank of a
simple, minimal, multilinear ΣΠΣ(k, d) identity over F is at most 2k2.

A direct application of the SGk(R,m) bound yields an almost optimal rank bound for
real depth-3 identities. For completeness, we state the exact rank bound obtained. We
have a slightly stronger version (Theorem 2.11) of the above theorem that gives better
constants.

THEOREM 1.5 (DEPTH-3 RANK BOUNDS). Let C be a ΣΠΣ(k, d) circuit, over field
R, that is simple, minimal and zero. Then, rk(C) < 3k2.

As discussed before, an application of this result to Lemma 4.10 of
[Karnin and Shpilka 2008] gives an efficient deterministic blackbox identity test
for ΣΠΣ(k, d, n) circuits over Q. Formally, we get the following hitting set generator for
ΣΠΣ circuits with real coefficients.

COROLLARY 1.6 (BLACKBOX PIT OVER Q). There is a deterministic algorithm that

takes as input a triple (k, d, n) of natural numbers and in time poly(ndk
2

), outputs a
hitting set H ⊂ Zn with the following properties:

1) Any ΣΠΣ(k, d, n) circuit C over R computes the zero polynomial iff ∀a ∈ H, C(a) = 0.

2) H has at most poly(ndk
2

) points.
3) The total bit-length of each point in H is poly(kn log d).

1.1.1. Other fields. What about other fields? The rank bounds
of [Dvir and Shpilka 2006; Saxena and Seshadhri 2011a] hold for arbitrary fields,
whereas the rank bound of [Kayal and Saraf 2009] holds only for R. It has been
observed that for finite fields, the rank of an ΣΠΣ identity can be as large
as Ω(k log d) [Kayal and Saxena 2007; Saxena and Seshadhri 2011a]. Hence, the
O(k3 log d) bound proved by [Saxena and Seshadhri 2011a] is almost optimal. As a
small bonus, we give a slight improvement upon this bound using our approach. This
requires Sylvester-Gallai theorems over arbitrary fields, an interesting question in
itself. It was shown that SG2(C,m) ≤ 3 [Elkies et al. 2006], and certain lower bounds
for locally decodable codes implied SG2(F,m) = O(logm). (Concretely, Corollary 2.9
of [Dvir and Shpilka 2006] can be used to prove that SG2(F,m) = O(logm). This
is an extension of theorems in [Goldreich et al. 2002] that prove this for F2.) Other
than this, nothing was previously known. One of our auxiliary theorems gives a
high-dimensional Sylvester-Gallai bound for all fields. Applying the stronger version
of Theorem 1.4, we get our rank bound. [Bhattacharyya et al. 2011] subsequently
proved new 2-dimensional Sylvester-Gallai bounds, for finite fields, that are optimal
for small p.

THEOREM 1.7 (SGk FOR ALL FIELDS). For any field F and k,m ∈ N>1, SGk(F,m) ≤
(k − 1) log2(2m).
Let C be a ΣΠΣ(k, d) circuit, over an arbitrary field F, that is simple, minimal and

zero. Then, rk(C) < 3k2 + k2

4 lg d.

We provide a construction showing that SGk(Fp,m) = Ω(k logp(m/k)). Recently,
it has been shown that SG2(Fp,m) = O(poly(p) + logp m) (Corollary 1.3 of
[Bhattacharyya et al. 2011]).
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1.2. History

And now, for a brief history of PIT algorithms. The first randomized poly-
nomial time PIT algorithm, which was a blackbox algorithm, was given (in-
dependently) by [Schwartz 1980; Zippel 1979; DeMillo and Lipton 1978]. Random-
ized algorithms that use less randomness were given by [Chen and Kao 2000;
Lewin and Vadhan 1998; Agrawal and Biswas 2003]. [Klivans and Spielman 2001] ob-
served that even for depth-3 circuits of bounded top fanin, deterministic iden-
tity testing was open. Progress towards this was first made by the quasi-
polynomial time algorithm of [Dvir and Shpilka 2006]. The problem was resolved
by a polynomial time algorithm given by [Kayal and Saxena 2007], with a run-
ning time exponential in the top fanin. Both these algorithms were non-
blackbox. As for blackbox algorithms, the authors are quite sure that the reader
has heard enough history. Identity tests are known only for special depth-
4 circuits [Arvind and Mukhopadhyay 2010; Saxena 2008], Shpilka and Volkovich
[2008; 2009], [Karnin et al. 2010; Saraf and Volkovich 2011; Anderson et al. 2011;
Beecken et al. 2011; Saha et al. 2012]. Recently, [Agrawal et al. 2012] presents a uni-
fied approach to study diverse circuit restrictions, by generalizing the notion of rank
and employing Jacobian techniques. [Agrawal and Vinay 2008] showed that an effi-
cient blackbox identity test for depth-4 circuits will actually give a quasi-polynomial
time blackbox test, and exponential lower bounds, for circuits of all depths that com-
pute low degree polynomials. Thus, understanding depth-3 identities seems to be a
natural first step towards the goal of PIT.

2. PROOF OUTLINE, IDEAS, AND ORGANIZATION

Our proof of the rank bound comprises of several new ideas. Initially, we will not pro-
vide any proofs. Instead we will only provide the intuition and the overall argument.
The full proof of Theorem 1.4 is extremely technical, requires many definitions, and
involves many algebraic arguments. Our attempt is to first convey with main ideas
without getting into too much formalism or mathematical details. We describe all the
major milestones, many of which are interesting in their own right. Indeed, it is the
authors’ opinion that the reader has little to gain from simply reading the detailed
proofs without getting the essence of the ideas.
The intuition portion is divided into three subsections, each dealing with a separate

component of the final proof. Each portion proves an interesting structural theorem.
The three notions that are crucially used and developed are: ideal Chinese remainder-
ing, ideal matchings, and Sylvester-Gallai rank bounds. Related notions have appeared
(in some form) in the works of [Kayal and Saxena 2007; Saxena and Seshadhri 2011a;
Kayal and Saraf 2009] respectively, to prove different kinds of results. The first two
steps set up the algebraic framework and prove theorems that hold for all fields. The
third step is where the Sylvester-Gallai theorems are brought in.
The main result, Theorem 1.5, will be proven in Sections 4, 5, and 6. Each section

will take up one of the three notions listed above. For each of these sections, there will
be a subsection here that provides the intuitive ideas. Section 7 will give the proof of
Theorem 1.7. We have some preliminary technical lemmas that are collected in Sec-
tion 3, preceding the main sections. The proofs for these are not provided there, and
instead moved to the end in Section 8. We have done this because we feel the proofs
are not representative of our contributions, and moreover have little to do with depth-3
circuits specifically. Nonetheless, we will reference them quite heavily throughout the
different proofs. A few “secondary” technical and algebraic lemmas will appear in the
main sections, and their proofs will also be deferred to Section 8.
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2.1. Notation and definitions

We will denote the set {1, . . . , n} by [n], and {a, . . . , n} by [a, n]. We fix the base field
to be F, so the circuits compute multivariate polynomials in the polynomial ring R :=
F[x1, . . . , xn]. We use F∗ to denote F \ {0}.
A linear form is a linear polynomial inR with zero constant term. We will denote the

set of all linear forms by L(R) := {
∑n

i=1 aixi | a1, . . . , an ∈ F}, and the nonzero ones by
L(R)∗. Clearly, L(R) is a vector (or linear) space over F and that will be quite useful.
Much of what we do shall deal with multi-sets of linear forms (sometimes polynomials
in R), equivalence classes inside them, and various maps across them. A list of linear
forms is a multi-set of forms with an arbitrary order associated with them. The actual
ordering is unimportant: We will heavily use maps between lists, and the ordering
allows us to define these maps unambiguously. The usual set operations between lists
can be naturally defined.
Our analysis requires various ideal-theoretic notions. One can think of ideals (for

our purposes) as some kind of generalization of linear subspaces.

Definition 2.1. We collect some important definitions, mostly from
[Saxena and Seshadhri 2011a]:
[Ideal] An ideal is an additive subgroup of R closed under multiplication by ele-

ments in R. The ideal generated by the set S ⊆ R is the set {
∑

s∈S sfs|fs ∈ R}. The
ideal generated by the elements s1, s2, . . . is denoted by 〈s1, s2, . . .〉.
[Multiplication term, L(·) & M(·)] A multiplication term f is an expression in R

given as, f := c ·
∏

ℓ∈S ℓ, where c ∈ F∗ and S is a list of nonzero linear forms. The list

of linear forms in f , L(f), is just the list S. For a list S of linear forms we define the
multiplication term of S, M(S), as

∏

ℓ∈S ℓ. (Conventionally, L(c) = ∅ and M(∅) = 1.)
[Forms in a Circuit] We will represent a ΣΠΣ(k, d) circuit C as a sum of k mul-

tiplication terms of degree d, C =
∑k

i=1 Ti. The list of linear forms occurring in C is
L(C) :=

⋃

i∈[k] L(Ti). Note that L(C) is a list of size exactly kd. The rank of C, rk(C), is

just the number of linearly independent linear forms in L(C). (For the purposes of this
paper Ti’s are given in circuit representation and thus the list L(Ti) is unambiguously
defined from C.)
[Similar forms] For any two polynomials f, g ∈ R, f is similar to g if there exists

c ∈ F∗ such that f = cg. We say f is similar to g mod I, for some ideal I of R, if there
exists c ∈ F∗ such that f ≡ cg(mod I). Note that “similarity mod I” is an equivalence
relation and partitions any list of polynomials into equivalence classes.
[Span sp(·)] For any S ⊆ L(R) we let sp(S) ⊆ L(R) be the linear span of the linear

forms in S over the field F. (Conventionally, sp(∅) = {0}.)
[Matchings] Let U, V be lists of linear forms and I be a subspace of L(R). An I-

matching π between U, V is a bijection π between lists U, V such that: For all ℓ ∈ U ,
π(ℓ) ∈ F∗ℓ + I. (In particular, π : U → V satisfies the property that ℓ and π(ℓ) are
similar mod I.)
When f, g are multiplication terms, an I-matching between f, g means an I-matching

between L(f), L(g).

2.2. Step 1: Chinese Remaindering for ΣΠΣ-circuits and Matchings

The first step involves a generalization of the Chinese Remainder Theorem (CRT)
for depth-3 circuits (Theorem 4.6). This formalizes the white-box algorithm of
[Kayal and Saxena 2007] as a CRT over very specific ideals generated using the forms
of L(C). They also discuss their algorithm in terms of Chinese Remaindering. We dis-
till all of it down to a single theorem, and give a new self-contained proof. A formal
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discussion of this theorem will require introducing many new definitions, so we will
skip that and discuss matchings.
The CRT is used to prove that all multiplication terms of a minimal ΣΠΣ identity

can be matched by a low rank space K, spanned by “few” linear forms in L(R).

THEOREM 2.2 (MATCHING-NUCLEUS). Let C = T1+ · · ·+Tk be a ΣΠΣ(k, d) circuit
that is minimal and zero. Then there exists a linear subspace K of L(R) such that:
1) rk(K) < k2.
2) ∀i ∈ [k], there is a K-matching πi between T1, Ti.

The idea of matchings within identities was first introduced
in [Saxena and Seshadhri 2011a], but nothing as powerful as this theorem was
proven. This theorem gives us a space of small rank, independent of d, that contains
most of the “complexity” of C. All forms in C outsideK are just mirrored in the various
terms. This starts connecting the algebra of depth-3 identities to a combinatorial
structure. Indeed, the graphical picture (explained in detail below) that this theorem
provides gives an intuitive picture of these identities.
We now provide a very informal description of the ideas involved in Step 1.

Definition 2.3 (mat-nucleus). Let C be a minimal ΣΠΣ(k, d) identity. A linear sub-
space K given by Theorem 2.2 is called a mat-nucleus of C.

The notion of mat-nucleus is easier to see in the representation of the ΣΠΣ(4, d) circuit
C =

∑

i∈[4] Ti given in Figure 1a. The four bubbles refer to the fourmultiplication terms

of C and the points inside the bubbles refer to the linear forms in the terms. The proof
of Theorem 2.2 gives the mat-nucleus as the space generated by the linear forms in the
dotted box. The linear forms not in the mat-nucleus lie “above” the mat-nucleus and
are all (mat-nucleus)-matched, i.e. ∀ℓ ∈ (L(T1)\mat-nucleus), there is a form similar to
ℓ modulo the mat-nucleus in each (L(Ti) \mat-nucleus). Thus the essence of Theorem
2.2 is: The mat-nucleus part of the terms of C has low rank k2, while the part of the
terms above mat-nucleus all look “similar”.

T1 T2 T3 T4

(a) Mat-nucleus

T1 T2 T3 T4

v1

v2 v3

(b) Paths
Fig. 1

Proof Idea for Theorem 2.2. As a full disclosure to the reader, we declare that almost all
statements and definitions given in the next few paragraphs are false. Nonetheless,
they convey the right idea.
As mentioned earlier, the key insight in the construction of mat-nucleus is a reinter-

pretation of the non-blackbox identity test of [Kayal and Saxena 2007] as a structural
result for ΣΠΣ identities. Let a path be a sequence of forms (v1, v2, . . . , vk−1), where
vi ∈ Ti. The path also generates an associated path-ideal 〈v1, v2, . . .〉. Paths are de-
picted in Figure 1b. Quite naturally, one can think of it graphically as a path that
intersects each term (except for Tk) exactly once.
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Roughly speaking, [Kayal and Saxena 2007] showed that C = 0 iff for every path
(v1, v2, v3) (where vi ∈ L(Ti)): T4 ≡ 0(mod v1, v2, v3) or in ideal terms, T4 ∈ 〈v1, v2, v3〉.
Thus, it is enough to go through all the d3 paths to certify the zeroness of C. This is
why the time complexity of the identity test of [Kayal and Saxena 2007] is dominated
by dk. This implies a variant of the Chinese Remainder Theorem. If C is zero modulo
all path ideals, then C is identically zero. More importantly for our result, if C is non-
zero, there must exist a path-ideal modulo which C is non-zero. This is the essence
of Theorem 4.6 (which, incidentally, is the key structural property on which our later
work [Saxena and Seshadhri 2011b] builds on.).
If we are given a ΣΠΣ(4, d) identity C which is minimal, then we know that T1 +

T2 + T3 6= 0. Thus, by applying the above interpretation of [Kayal and Saxena 2007] to
T1 + T2 + T3 we will get a path (v1, v2) such that T3 /∈ 〈v1, v2〉. Since C = 0, T3 + T4 ≡
0(mod v1, v2). But if T4 is in 〈v1, v2〉 then so will be T3. Hence, T3, T4 6≡ 0(mod v1, v2). We
deduce that T3 ≡ −T4(mod v1, v2) is a nontrivial congruence and this gives a 〈v1, v2〉-
matching between T3, T4 (see Lemma 3.5). By repeating this argument with a different
permutation of the terms we could match different terms (by a different ideal), and
finally we expect to match all the terms (by the union of the various ideals).
This argument has numerous technical problems, the most important one being that

it does not really work. But all issues can be taken care of by suitable algebraic gener-
alizations. A major stumbling block is the presence of repeating forms. It could happen
that (mod v1), v2 occurs in many terms, or in the same term with a higher power. The
most important tool developed is an ideal version of Chinese remaindering that forces
us to consider not just linear forms v1, v2, but multiplication terms v1, v2 dividing T1, T2

respectively. We give the full proof in Section 4.

2.3. Step 2: Certificate for Linear Independence of Gates

Theorem 2.2 gives us a space K of rank < k2 that matches T1 to each term Ti. We
increase the rank of this space to make it have a much stronger property. Consider
LK(Ti) := L(Ti)∩K and letKi be the product of these forms. Formally,Ki = M(LK(Ti));
it is the sub-product of forms that belong to K. Consider any index set I such that
{Ti|i ∈ I} is linearly independent (i.e. ∄ nonzero β s.t.

∑

i∈I βiTi = 0). Then, we want
the corresponding {Ki|i ∈ I} to be also linearly independent.
Because the space K matches T1 to each Ti, the corresponding multiplication terms

Ki, i ∈ [k], themselves form a ΣΠΣ(k, d′) identity. Formally, C′ =
∑

i∈[k] αiKi for some

αi’s in F∗ (see Lemma 5.2) is an identity. This “sub-identity” C′ is called the nucleus
of C. In some sense, it contains most of the complexity of C. It mirrors the linear
dependencies (or lack thereof) among the Ti’s, and matches all of them.

THEOREM 2.4 (NUCLEUS). Let C =
∑

i∈[k] Ti be a minimal ΣΠΣ(k, d) identity and

let {Ti|i ∈ I} be a maximal set of linearly independent terms (1 ≤ k′ := |I| < k). Then
there exists a linear subspace K of L(R) such that:

1) rk(K) < 2k2.
2) ∀i ∈ [k], there is a K-matching πi between T1, Ti.
3) (Define ∀i ∈ I, Ki := M(LK(Ti)).) The terms {Ki|i ∈ I} are linearly independent.

Definition 2.5 (nucleus). Let C be a minimal ΣΠΣ(k, d) identity. A linear subspace
K given by Theorem 2.4 is called a nucleus ofC. By Lemma 5.2, the subspaceK induces
an identity C′ =

∑

i∈[k] αiKi which we call the nucleus identity.

Proof Idea for Theorem 2.4. The first two properties in the theorem statement are al-
ready satisfied by mat-nucleus of C. So we incrementally add linear forms to the space
mat-nucleus till it satisfies property (3) and becomes the nucleus. The addition of lin-
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ear forms is guided by the ideal version of Chinese remaindering. Suppose the terms
T1, T2, T3 are linearly independent, so C′ = T1 + T2 + T3 6= 0. By Chinese Remainder-
ing, there exists a path-ideal I such that C′ 6= 0 (mod I). This implies there are forms
v1 ∈ L(T1), v2 ∈ L(T2) such that C′ 6= 0 (mod 〈v1, v2〉). We have that T2 /∈ 〈v1〉 and
T3 /∈ 〈v1, v2〉. We now add these forms v1, v2 to the space mat-nucleus, and call the new
space K. We can show that the new K1,K2,K3 are now linearly independent.
Not surprisingly, the above argument has numerous technical problems. But it can

be made to work by careful applications of the ideal version of Chinese remaindering.
We give the full proof in Section 5.

2.4. Step 3: Invoking Sylvester-Gallai Theorems

As explained in Section 1.1, we rephrase the standard Sylvester-Gallai theorems in
terms of Sylvester-Gallai closure and rank bounds (Definition 1.3). We state and prove
the first ever general Sylvester-Gallai bound for all fields. The original version of this
paper [Saxena and Seshadhri 2010] had a somewhat involved proof, but a much sim-
pler one was suggested by [Saks 2010]. The proof with a detailed discussion is given in
Section 7.

THEOREM 2.6 (GENERAL SYLVESTER-GALLAI). For any field F and k,m ∈ N>1,
SGk(F,m) ≤ (k − 1) lg 2m.

The following definition is very helpful in applying Sylvester-Gallai rank bounds to
our scenario.

Definition 2.7 (SG operator). [SGk(·)] Let k,m ∈ N>1. Suppose a set S ⊆ FPn has
rank greater than SGk(F,m) (where |S| ≤ m). Then, by definition, S is not SGk-closed.
The k-dimensional Sylvester-Gallai operator SGk(S) (i.e. applied on S) returns a set of
k linearly independent vectors V in S whose span has no point in S \ V .

Let C be a simple and strongly minimal ΣΠΣ(k, d) identity (i.e. T1, . . . , Tk−1 are lin-
early independent). Theorem 2.4 gives us a nucleus K, of rank < 2k2, that matches
T1 to each term Ti. As seen in Step 2, if we look at the corresponding multiplication
terms Ki := M(LK(Ti)), i ∈ [k], then they again form a ΣΠΣ(k, d′) “nucleus identity”
C′ =

∑

i∈[k] αiKi, for some αi’s in F∗, which is simple and strongly minimal. Define the

non-nucleus part of Ti as Lc
K(Ti) := L(Ti) \ K, for all i ∈ [k] (c in the exponent anno-

tates “complement”, since L(Ti) = LK(Ti) ⊔ Lc
K(Ti)). What can we say about the rank

of Lc
K(Ti) ?

Define the non-nucleus part of C as Lc
K(C) :=

⋃

i∈[k] L
c
K(Ti). Our goal in Step 3 is

to bound rk(Lc
K(C) mod K) by 2k when the field is R. This will give us a rank bound

of rk(K)+ rk(Lc
K(C)mod K) < (2k2 + 2k) for simple and strongly minimal ΣΠΣ(k, d)

identities over R. The proof is mainly combinatorial, based on higher dimensional
Sylvester-Gallai theorems and a property of set partitions, with a sprinkling of al-
gebra.
We apply the SGk operator not directly on the forms in L(C) but on a suitable trun-

cation of those forms. So we need another definition.

Definition 2.8 (Non-K rank). Let K be a linear subspace of L(R). Then L(R)/K is
again a linear space (the quotient space). Let S be a list of forms in L(R). The non-K
rank of S is defined to be rk(S mod K) (i.e. the rank of S when viewed as a subset of
L(R)/K).
Let C be a ΣΠΣ(k, d) identity with nucleus K. The non-K rank of the non-nucleus

part Lc
K(Ti) is called the non-nucleus rank of Ti. Similarly, the non-K rank of the non-

nucleus part Lc
K(C) is called the non-nucleus rank of C.
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We give an example to explain the non-K rank. Let R := F[z1, · · · , zn, y1, · · · , ym].
Suppose K = sp(z1, · · · , zn) and S ⊂ L(R). We can take any element ℓ in S and simply
drop all the zi terms, i.e. ‘truncate’ the z-part of ℓ. This gives a set of linear forms over
the y variables. The rank of these is the non-K rank of S, which we need to bound to
prove our final bound.
We are now ready to state the theorem that is proved in Step 3. It basically shows a

neat relationship between the non-nucleus part and Sylvester-Gallai.

THEOREM 2.9 (BOUND FOR SIMPLE, STRONGLY MINIMAL IDENTITIES). Let |F| >
d. The non-nucleus rank of a simple and strongly minimal ΣΠΣ(k, d) identity over F is
at most SGk−1(F, d). More specifically, (for nucleus K) the vectors in L(C) \K form an

SGk−1-closed set5.

Observe that this theorem together with Theorem 2.4 gives a complete structure
theorem for strongly minimal depth-3 identities. One can make suitable claims for
identities that are not strongly minimal. Essentially, we just take a subset of linearly
independent terms, say T1, . . . , Tk′ , that form a basis for {Ti|i ∈ [k]}. We can now con-
struct strongly minimal identities using these terms and apply the above theorem.
Section 6.4 deals with this case and bounds the non-nucleus rank for all simple, mini-
mal identities. Specifically, we get the following.

Definition 2.10 (Independent-fanin). Let C =
∑

i∈[k] Ti be a ΣΠΣ(k, d) circuit. The

independent-fanin of C, ind-fanin(C), is defined to be the size of the maximal I ⊆ [k]
such that {Ti|i ∈ I} are linearly independent polynomials6.

We now state the following stronger version of the main theorem.

THEOREM 2.11 (FINAL BOUND). Let |F| > d. The rank of a simple, minimal
ΣΠΣ(k, d), independent-fanin k′, identity is at most 2k2 + (k − k′) · SGk′(F, d).

Remark: In particular, the rank of a simple, minimal ΣΠΣ(k, d) identity over reals is
at most 2k2+(k−k′)·SGk′ (R, d)≤ 2k2+(k−k′)2(k′−1)< 3k2, proving the main theorem
over reals. Likewise, for any F, we get the rank bound of 2k2 + (k − k′) · SGk′(F, d) ≤
2k2 + (k − k′)(k′ − 1) lg 2d ≤ 2k2 + k2

4 lg 2d < 3k2 + k2

4 lg d, proving the main theorem.

Proof Idea for Theorem 2.9. We treat the non-nucleus part of the term T1. Each form
can be thought of as a point in an appropriate high-dimensional space. We essen-
tially construct a proof by contradiction. Assuming the non-nucleus rank is more than
SGk(F, d), we apply the SGk-operator on Lc

K(T1). The tuple obtained is used to elicit a
contradiction. Modulo the nucleus, all multiplication terms look essentially the same
(i.e. rk(T1mod K) = rk(Cmod K)), so it suffices to focus attention on just one of them.
Hence, we apply the SGk-operator on a single multiplication term.
Assume C is a simple, strongly minimal ΣΠΣ(k, d) identity with terms {Ti|i ∈ [k]}

and let K be its nucleus given by Step 2. It will be convenient for us to fix a linear
form y0 ∈ L(R)∗ and a subspace U of L(R) such that we have the following orthogonal
vector space decomposition L(R) = Fy0 ⊕ U ⊕ K. This means for any form ℓ ∈ L(R),
there is a unique way to express ℓ = αy0 + u + v, where α ∈ F, u ∈ U and v ∈ K.
Furthermore, we will assume wlog that for every form ℓ ∈ Lc

K(T1) the corresponding α
is nonzero, i.e. each form in Lc

K(T1) is monic wrt y0 (see Lemma 6.3). Technically, we
do not need the extra variable y0 and can work in a projective space. Nonetheless, it
makes the presentation easier.

5Technically, we must convert L(C) \K into a multiple-free set of vectors, and then make this claim.
6If ind-fanin(C) = k then C 6= 0. Also, for an identity C, C is strongly minimal iff ind-fanin(C) = k − 1.
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Definition 2.12 (trun(·)). Fix a decomposition L(R) = Fy0 ⊕ U ⊕ K. For any form
ℓ ∈ Lc

K(T1), there is a unique way to express ℓ = αy0 + u + v, where α ∈ F∗, u ∈ U and
v ∈ K.
The truncated form trun(ℓ) is the linear form obtained by dropping the K part and

normalizing, i.e. trun(ℓ) := y0 + α−1u. (In particular, ℓ, trun(ℓ) are similar mod K.)
Given a list of forms S we define trun(S) to be the corresponding set (thus no repeti-

tions) of truncated forms.

To be precise, we fix a basis {y1, . . . , yrk(U)} of U so that each form in trun(Lc
K(T1))

has representation y0 +
∑

i≥1 aiyi (ai’s ∈ F). We view each such form as the point

(1, a1, . . . , ark(U)) while applying Sylvester-Gallai on trun(Lc
K(T1)). Assume, for the

sake of contradiction, that the non-nucleus rank of T1, rk(trun(L
c
K(T1))) > SGk−1(F, d).

Therefore, SGk−1(trun(L
c
K(T1))) gives (k− 1) linearly independent forms ℓ1, . . . , ℓk−1 ∈

(y0 + U) whose span contains no other linear form of trun(Lc
K(T1)).

For simplicity of exposition, let us fix k = 4, K spanned by z’s, U spanned by y’s and
ℓi = y0+yi (i ∈ [3]). Note that (by definition) trun(αy0+

∑

i αizi+
∑

i βiyi) = y0+
∑

i
βi

α yi.
We want to derive a contradiction using the SG3-operator output (y0+y1, y0+y2, y0+y3)
and the fact that C is a simple, strongly minimal ΣΠΣ(4, d) identity. Consider the
setting given in Figure 2. (The circuit given is not identically zero, but it helps to
explain our argument.) Suppose the linear forms in C that are similar to a form in
{y0 + yi + K|i ∈ [3]} are exactly those depicted in the figure. All forms within a row
are K-matched. We would like to find forms ℓ′1, ℓ

′
2, ℓ

′
3 with the following properties:

(1) ℓ′i ≡ ciℓi(mod K) (for some constant ci). (2) There exists some j such that no ℓ′i
divides Tj but for each Tl (l 6= j), some ℓ′i divides Tl. In this situation, we can choose
ℓ′1 = y0 + y1 + z1, ℓ

′
2 = y0 + y2 + z2, and ℓ′3 = −y0 − y3 + z2. None of these divides T4.

Observe that the triple (y0 + y1 + z1, y0 + y2 + z2, y0 + y3 + z1) does not satisfy these
conditions, since no appropriate Tj can be found.
Take C modulo the ideal I := 〈y0 + y1 + z1, y0 + y2 + z2,−y0 − y3 + z2〉. It is easy to

see that C ≡ T4(mod I), so I “kills” the first three terms. Since C is an assumed iden-
tity, T4 ∈ I. Thus, there is a form ℓ ∈ L(T4) such that ℓ ∈ sp(ℓ′1, ℓ

′
2, ℓ

′
3). Since no form

from ℓ′i divides T4, so ℓ must be a non-trivial combination of these forms. By the match-

ing property, there exists some form ℓ̂ ∈ L(T1) such that trun(ℓ) = trun(ℓ̂). In other
words, trun(ℓ) ∈ trun(Lc

K(T1)). But that contradicts the fact that (ℓ1, ℓ2, ℓ3) forms an
SG3-tuple. This implies that the non-nucleus rank of C is at most SG3(F, d).

T1 T2 T3 T4

y0 + y1 + z1

y0 + y2 + z2

y0 + y3 + 2z2
y0 + y4 − z1 + z2

z2

2y0 + 2y1

y0 + y2 + z2

y0 + y3 − z1 + z3
y0 + y4 + z2

z1 + z3

y0 + y1 + z1

y0 + y2 + z1

−y0 − y3 + z2
y0 + y4 + z2

z3 − 2z2

y0 + y1 + z2

3y0 + 3y2

y0 + y3 + z1
y0 + y4 + z3

z1LK(Ti)

Lc
K(Ti)

Fig. 2
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The approach above worked because we were lucky enough to find ℓ′1, ℓ
′
2, ℓ

′
3 with the

right properties. Can we always do this? No, because of repeating forms. Suppose, after
going modulo form ℓ, the circuit looks like x3y + 2x2y2 + xy3. This is not simple, but it
does not have to be. We are only guaranteed that the original circuit is simple. Once
we go modulo ℓ, that property is lost. Now, the choice of any form kills all terms. We
will use our Chinese remaindering tools and the nucleus properties to deal with this.
The minimality of the nucleus identity plays a crucial role here and helps us deal with
such situations. We have to prove a special theorem about partitions of [k] and use
strong minimality (which we did not use in the above sketch). The full proof is given
in Section 6.1.

3. SOME ALGEBRAIC LEMMAS

These are some algebraic claims that will be used throughout the various sections.
They are proven through some standard algebraic degree arguments. The proofs are
given in Section 8.
We remind the reader that an ideal I of R with generators fi, i ∈ [m], is the set
{
∑

i∈[m] qifi|qi’s ∈ R}. It is denoted by 〈f1, . . . , fm〉. For any f ∈ R, the following nota-

tions mean the same: f ≡ 0(mod I), f ≡ 0(mod f1, . . . , fm), and f ∈ I.
An f ∈ R is called a zerodivisor of an ideal I (or mod I) if f /∈ I and there exists a

g ∈ R \ I such that fg ∈ I. Let u, v ∈ R. It is easy to see that if u is nonzero mod I
and is a non-zerodivisor mod I then: uv ∈ I iff v ∈ I. This can be seen as some sort of
a “cancellation rule” for non-zerodivisors. We show such a cancellation rule in the case
of special ideals arising in ΣΠΣ circuits.

Definition 3.1 (Radical-span). Let S := {f1, . . . , fm} be multiplication terms gener-
ating an ideal I. Define the linear space radsp(S) := sp(L(f1) ∪ . . . ∪ L(fm)).
When the set of generators S are clear from the context we will also use the notation

radsp(I). Similarly, radsp(I, f) is shorthand for radsp(S ∪ {f}).

Remark. Radical-span is motivated by the radical of an ideal but it is not quite that,
for example, radical(x2

1, x1x2) = 〈x1〉 but radsp(x2
1, x1x2) = sp(x1, x2). It is easy to see

that the ideal generated by radsp always contains the radical ideal.

LEMMA 3.2 (NON-ZERODIVISOR). Let f1, . . . , fm be multiplication terms generat-
ing an ideal I, let ℓ ∈ L(R) and g ∈ R. If ℓ /∈ radsp(I) then: ℓg ∈ I iff g ∈ I.

All the ideals arising in this work are homogeneous, i.e. their generators are homo-
geneous polynomials. These ideals have some nice properties, as shown below. Degree
deg(·) refers to the total degree unless there is a subscript specifying the variable.

LEMMA 3.3 (HOMOGENEOUS IDEALS). Say, f1, . . . , fm, g are homogeneous polyno-
mials in R. Then,
1) If deg(g) < deg(fm) then: g ∈ 〈f1, . . . , fm〉 iff g ∈ 〈f1, . . . , fm−1〉.
2) If deg(g) = deg(fm) then: g ∈ 〈f1, . . . , fm〉 iff ∃a ∈ F, (g + afm) ∈ 〈f1, . . . , fm−1〉.

We give an important lemma about matchings. Intuitively, a matching represents
linear relationships between forms in two multiplication terms. Algebraically, we will
often encounter multiplication terms that are similar modulo an ideal. We show that
these are basically equivalent.

Definition 3.4 (LU (·), L
c
U (·)). For a multiplication term f and a subspace U ⊆ L(R)

define LU (f) := L(f) ∩ U and Lc
U (f) := L(f) \ U .

LEMMA 3.5 (FROM CONGRUENCE TO MATCHING). Let I be an ideal generated by
multiplication terms {f1, . . . , fm} and define U := radsp(I). Let g, h be multiplication
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terms such that g ≡ h 6≡ 0 (mod I). Then there is a U -matching between LU (g), LU (h)
and one between Lc

U (g), L
c
U (h).

4. MATCHING THE TERMS IN AN IDENTITY: CONSTRUCTION OF MAT-NU CLEUS

4.1. Chinese Remaindering for Multiplication Terms

Traditionally, Chinese remaindering states: If two coprime polynomials (resp. integers)
f, g divide a polynomial (resp. integer) h, then fg divides h. The key tool in constructing
mat-nucleus is a version of Chinese remaindering specialized for multiplication terms
but generalized to ideals. Similar methods appeared first in [Kayal and Saxena 2007]
but we make this more formal and give a simpler proof. In particular, we avoid the use
of local rings and Hensel lifting. We state our Chinese remaindering for multiplication
terms as a neat ideal decomposition statement.

THEOREM 4.1 (IDEAL CHINESE REMAINDERING). Let f1, . . . , fm, z, f, g be multi-
plication terms. Define the ideal I := 〈f1, . . . , fm〉. Assume L(z) ⊆ radsp(I) while,
L(f) ∩ radsp(I) = ∅ and L(g) ∩ radsp(I, f) = ∅. Then,

〈I, zfg〉 = 〈I, z〉 ∩ 〈I, f〉 ∩ 〈I, g〉.

PROOF. If h is a polynomial in 〈I, zfg〉 then clearly it is in each of the ideals 〈I, z〉,
〈I, f〉 and 〈I, g〉.
Suppose h is a polynomial in 〈I, z〉∩ 〈I, f〉∩ 〈I, g〉. There exist i1, i2, i3 ∈ I and a, b, c ∈
R such that,

h = i1 + az = i2 + bf = i3 + cg.

The second equation gives bf ∈ 〈I, z〉. Since radsp(I, z) = radsp(I), we get L(f) ∩

radsp(I, z) = ∅. We can express f =
∏j

i=1 ℓi, for ℓi ∈ R. We have (b
∏j−1

i=1 ℓi)ℓj ∈ 〈I, z〉,

and ℓj /∈ radsp(I, z). By Lemma 3.2, b
∏j−1

i=1 ℓi ∈ 〈I, z〉. We repeat this argument for all
ℓis and deduce that b ∈ 〈I, z〉. Hence bf ∈ 〈I, z〉f ⊆ 〈I, zf〉, and h = i2 + bf ∈ 〈I, zf〉.
This ensures the existence of i′2 ∈ I and a polynomial b′ such that,

h = i′2 + b′zf = i3 + cg.

We repeat the argument for cg ∈ 〈I, zf〉. Since L(g) ∩ radsp(I, zf) = L(g) ∩
radsp(I, f) = ∅, repeated applications of Lemma 3.2 give us c ∈ 〈I, zf〉. Hence
cg ∈ 〈I, zf〉g ⊆ 〈I, zfg〉 and h = i3 + cg ∈ 〈I, zfg〉. This finishes the proof.

We now come to one of the most important definitions in this paper. We break up a
multiplication term into “nodes” with respect to an ideal.

Definition 4.2 (Nodes). Let f be a multiplication term and let I be an ideal gener-
ated by some multiplication terms. Since the relation “similarity mod radsp(I)” is an
equivalence relation on L(R), it partitions the list L(f) into equivalence classes.
[repI(f)] For each such class pick a representative ℓi and define repI(f) :=
{ℓ1, . . . , ℓr}. (Note that form 0 can also appear in this set, it represents the class
L(f) ∩ radsp(I).) This definition is not unique, but it would not be an issue.
[nodI(f)] For each ℓi ∈ repI(f), we multiply the forms in f that are similar to

ℓi mod radsp(I). We define nodes of f mod I as the set of polynomials nodI(f) :=
{M(L(f)∩ (F∗ℓ+ radsp(I))) | ℓ ∈ repI(f)}. (Remark: When I = {0}, nodes of f are just
the coprime powers-of-forms dividing f .)
[...wrt a subspace] Let K be a linear subspace of L(R). Clearly, the relation “simi-

larity modK” is an equivalence relation on L(R). It will be convenient for us to also use
notations repK(f) and nodK(f). They are defined by replacing radsp(I) in the above
definitions by K.
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Observe that the product of polynomials in nodI(f) just gives f . Also, modulo
radsp(I), each node is just a form-power ℓr. In other words, modulo radsp(I), a node is
rank-one term. The choice of the word “node” might seem a bit mysterious, but we will
eventually construct paths through these. To pictorially see what is going on, think of
each term Ti as a set of its constituent nodes.
We prove some consequences of the ideal Chinese remaindering theorem that will

be very helpful in both Steps 1 and 2.

THEOREM 4.3. Let I be an ideal and f a multiplication term. Let the set nodI(f) be
{g1, . . . , gr}. Then

〈I, f〉 =
⋂

i∈[r]

〈I, gi〉.

PROOF. We have f =
∏

i∈[r] gi. Let the corresponding representatives repI(f) =

{ℓ1, . . . , ℓr}. If r = 1, then the theorem is trivially true. So assume r ≥ 2. If L(f) has
a form in radsp(I), then assume wlog that ℓ1 is the representative of the class L(f) ∩
radsp(I). Define Gi :=

∏

i<j≤r gi, for all i ∈ [r − 1].

We claim that for all i ∈ [r − 1], L(Gi) ∩ radsp(I, gi) = ∅. Let us complete the proof,
given this statement. Start with representing f = g1G1. By Theorem 4.1, 〈I, f〉 =
〈I, g1〉∩ 〈I,G1〉. Now, we write G1 = g2G2, and again apply Theorem 4.1 to get 〈I,G1〉 =
〈I, g2〉 ∩ 〈I,G2〉. By repeated applications of Theorem 4.1, we finally prove that 〈I, f〉 =
⋂

i∈[r]〈I, gi〉.

Now we show that L(Gi) ∩ radsp(I, gi) = ∅. Since ℓ1 is the representative of the
class L(f) ∩ radsp(I), no form in L(Gi) (for any i) can be in radsp(I). This means
that if L(Gi) ∩ radsp(I, gi) has some ℓ, then ℓ ∈ (F∗ℓi + radsp(I)). But this contradicts
ℓi+1, . . . , ℓr not being similar to ℓi mod radsp(I).

We state a more useful corollary of this theorem.

COROLLARY 4.4. Let h ∈ R, f be a multiplication term, and let I be an ideal gener-
ated by some multiplication terms. Then, h /∈ 〈I, f〉 iff ∃g ∈ nodI(f) such that h /∈ 〈I, g〉.

4.2. Applying Chinese Remaindering to ΣΠΣ Circuits

We showed the effect of ideal Chinese remaindering on a single multiplication term
f in Theorem 4.3. Now we show the effect on a tuple of sub-products, for example,
appearing in a ΣΠΣ circuit. Towards that we consider a tuple of iteratively defined
ideals and nodes; this tuple of nodes we call a path.

Definition 4.5 (Paths). Let I be an ideal generated by some multiplication terms.
Let S = {s1 < . . . < sk} be an ordered index set. Let D =

∑

s∈S Ts be a ΣΠΣ(k, d)
circuit. Let vs be a sub-term of Ts (i.e. L(vs) ⊆ L(Ts)), for all s ∈ S. We call the tuple
(I, vs1 , . . . , vsk) a path ofD mod I if, for all i ∈ [k], vsi ∈ nod〈I,vs1 ,...,vsi−1

〉(Tsi). The length

is the number of nodes in the path (here k).

We have defined path p as a tuple but, for convenience, we will sometimes treat
it as a set of multiplication terms, eg. when operated upon by sp(·), 〈·〉, radsp(·), etc.
Abusing notation, when we say (mod p), we mean modulo the ideal generated by I and
the nodes in p. Conventionally, when k = 0 the circuit C has just “one” gate: 0. In that
case, the only path C has is (I), which is of length 0.
We also set some notation. For any subset S ⊆ [k], the sub-circuitCS :=

∑

s∈S Ts. For
an i ∈ {0, . . . , k − 1}, define [i]′ := [k] \ [i]. Conventionally, [0] := ∅ and C∅ := 0.
Our following version of ‘Chinese Remainder Theorem’, vaguely inspired by

[Kayal and Saxena 2007], states that if C is a nonzero ΣΠΣ(k, d) circuit then there
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is a path that “certifies” that C is nonzero by reducing the whole circuit to a single
nonzero multiplication term. Technically, it is a path of a subcircuit. A path consists of
at most k nodes, so that rank of all the forms in the path is at most k + rk(radsp(I)).
Hence, it is a low-rank certificate for the nonzeroness of C. We would like to stress
the importance of this theorem, especially since it is central to later improvements for
depth-3 PIT [Saxena and Seshadhri 2011b].

THEOREM 4.6 (CERTIFICATE FOR A NON-IDENTITY). Let I be an ideal generated
by some multiplication terms. Let C =

∑

i∈[k] Ti be a ΣΠΣ(k, d) circuit that is nonzero

modulo I. Then ∃i ∈ {0, . . . , k − 1} such that C[i] mod I has a path p satisfying: C[i]′ ≡
α · Ti+1 6≡ 0 (mod p) for some α ∈ F∗.

Suppose the reader has kept the mental picture of the terms as consisting of rank-
one (modulo radsp(I)) nodes. A path p “kills” the terms that it passes through, and
collapses the remaining circuit into a single term. This is very reminiscent of the poly-
time algorithm of [Kayal and Saxena 2007]. Indeed, this theorem is a (shorter) proof
of the correctness of the algorithm. Why? Consider the path p given by the theorem
when I is the zero ideal. The path p can be represented by a list of at most k ‘forms’
in L(C). This path comes from some C[i], which means that C[i] = 0(mod p). So, we
get that C ≡ α · Ti+1 6≡ 0(mod p). Since Ti+1 is a product of linear forms, it is easy to
algorithmically check if C ≡ 0(mod p). If C is identically zero, such a path cannot exist.
Since there are at most dk different paths, we can exhaustively check all of them. That
yields an alternative view of the [Kayal and Saxena 2007] test.
Before giving the formal proof, we explain the main idea. Let us for convenience

assume that no term is contained in I. We know that C = T1+· · ·+Tk is not in I. We can
argue that C[1]′ /∈ 〈I, T1〉 (otherwise we are done). By our Chinese Remainder Theorem
(specifically, Corollary 4.4), there exists a node g1 ∈ nodI(T1) such that C[1]′ /∈ 〈I, g1〉.
We then repeat the above argument considering C[1]′ and the ideal 〈I, g1〉. This yields
the second node g2. As we continue this argument, we will end up at the desired path.
For technical reasons, we construct a more direct proof avoiding induction.

PROOF. Fix an i ∈ {0, . . . , k − 1} and a path p of C[i] mod I such that:
(1) C[i]′ /∈ 〈p〉.
(2) The cardinality of the set Jp := {j ∈ [i]′ | Tj /∈ 〈p〉} is the smallest possible (over

all i).
(3) The index i is the largest one that attains the smallest cardinality described

above.

Note that whenever the first condition is satisfied, Jp 6= ∅. Hence for i = 0, p = (I),
the first condition is satisfied and the corresponding Jp 6= ∅. Thus, the desired i and p
exist. We will argue that this path satisfies the conditions of the theorem.
Suppose C[i]′ /∈ 〈p, Ti+1〉. By Corollary 4.4, there exists v ∈ nod〈p〉(Ti+1) such that

C[i]′ /∈ 〈p, v〉. Note that q := (p, v) forms a path of C[i+1](mod I). Since Ti+1 ∈ 〈q〉,
C[i+1]′ = C[i]′−Ti+1 /∈ 〈q〉. We also have Jq ⊆ Jp (so |Jq| ≤ |Jp|) simply because 〈q〉 ⊇ 〈p〉.
This violates either the second or third condition given above.
Thus, C[i]′ ∈ 〈p, Ti+1〉. The polynomials generating 〈p, Ti+1〉 are all homogeneous, and

so is C[i]′ . By Lemma 3.3, there exists an α ∈ F such that (C[i]′ − αTi+1) ∈ 〈p〉. Since
C[i]′ /∈ 〈p〉, the above equation can be rewritten as:

C[i]′ ≡ αTi+1 6≡ 0 (mod 〈p〉).

This completes the proof (α nonzero is implied).
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Remark. The above theorem only needs the non-zeroness of C mod I and has no
simplicity or minimality requirements.

4.3. Using Minimality to get mat-nucleus

If we are given a circuit that is zero and minimal (not necessarily simple), then a
repeated application of Theorem 4.6 gives us a space mat-nucleus that matches all the
multiplication terms of C.

Theorem 2.2 (restated). Let C = T1 + · · ·+ Tk be a ΣΠΣ(k, d) circuit that is minimal
and zero. Then there exists a linear subspace K of L(R) such that:

1) rk(K) < k2.
2) ∀i ∈ [k], there is a K-matching πi between T1, Ti.

PROOF. We construct a set U , consisting of forms in L(C), through an iterative pro-
cess. Consider the relation in the set [k], where i and j are related if Ti and Tj are
U -matched. Note that this is an equivalence relation and hence partitions [k]. We will
refer to this as the partition induced by U , denoted by P(U). The size of P(U) is the
number of sets in this partition. As we add forms to U , P(U) cannot increase. We will
show how to add at most k forms to U to (strictly) decrease P(U). This suffices to com-
plete the proof. When U = ∅, |P(U)| is at most k. When P(U) reaches 1, the linear span
of U will be our desired K, and the rank of K will be smaller than k2.
We now show how to decrease |P(U)| by adding at most k forms to U . Let S be

some set in the current partition P(U). Since CS 6= 0 (by minimality), we can apply
Theorem 4.6 on CS mod 〈0〉 to get a path pS inside CS mod 〈0〉 such that ∃i ∈ S,
CS ≡ αTi 6≡ 0 (mod 〈pS〉) for some α ∈ F∗.
Define S′ := [k] \ S. Now,

C ≡ CS′ + αTi ≡ 0 (mod 〈pS〉). (1)

This means CS′ /∈ 〈pS〉 (otherwise αTi ∈ 〈pS〉, a contradiction). Thus, we can apply
Theorem 4.6 on CS′ mod 〈pS〉 to get a path pS′ inside CS′ mod 〈pS〉 and j ∈ S′ such
that, CS′ ≡ βTj 6≡ 0(mod 〈pS′〉), for some β ∈ F∗. Note that the ideal 〈pS′〉 contains 〈pS〉,
since the path pS′ is constructed in CS′ mod 〈pS〉. This allows us to rewrite Equation
(1) as:

αTi ≡ −βTj 6≡ 0 (mod 〈pS′〉)

Define K ′ := radsp(pS′). Observe that pS′ is a path of some sub-circuit of C mod 〈0〉
and has length at most |S| − 1 + |S′| − 1 = k − 2. Hence, rk(K ′) < (k − 1). Also, by
Lemma 3.5, the above congruence implies a K ′-matching between Ti and Tj.
We add a basis of K ′ to U . Before adding K ′, i ∈ S and j ∈ S′ were not related, but

they are related after this addition. Hence P(U) must have decreased in size.

5. CERTIFICATE FOR LINEAR INDEPENDENCE: THE NUCLEUS

Suppose we have multiplication gates T1, . . . , Tk′ and a space K ′ of L(R) such that
T1, Ti is K ′-matched, for all i ∈ [k′]. We show in this section that if T1, . . . , Tk′ are

linearly independent (i.e. ∄ β ∈ Fk′

\ {0} s.t.
∑

i∈[k′] βiTi = 0) then K ′ can be extended

to a linear spaceK of rank at most (rk(K ′)+k′2) such that:M(LK(T1)), . . . ,M(LK(Tk′ ))
are also linearly independent.

Theorem 2.4 (restated). Let C =
∑

i∈[k] Ti be a minimal ΣΠΣ(k, d) identity and let

{Ti|i ∈ I} be a maximal set of linearly independent terms (1 ≤ k′ := |I| < k). Then
there exists a linear subspace K of L(R) such that:

1) rk(K) < 2k2.
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2) ∀i ∈ [k], there is a K-matching πi between T1, Ti.
3) (Define ∀i ∈ I, Ki := M(LK(Ti)).) The terms {Ki|i ∈ I} are linearly independent.

PROOF. For convenience, and wlog, assume I = [k′] and k′ > 2. The proof is an
iterative process with at most k′2 iterations, and gradually builds the promised space
K. Each iteration of the process maintains a space U of L(R) that is intended to grow
at each step and bring us closer to K. For convenience, define Ui := M(LU (Ti)), for all
i ∈ [k′]. Also for each i ∈ {2, . . . , k′}, define ideal Ii := 〈U1, . . . , Ui−1〉.
The process has two nested iterations, or phrased differently, a double induction. We

will call the outer “loop” a phase, and the inner loop a round. In each round the rank
of U increases by at most 1, and the i-th phase has at most i rounds. At the end of the
i-th phase (i ≥ 2), we will ensure Ti /∈ Ii. (By Lemma 3.2, this is equivalent to ensuring
Ui /∈ Ii, implying Ui is linearly independent of U1, . . . , Ui−1.)
In the first phase we set U := K ′, where K ′ is the matching-nucleus obtained by

applying Theorem 2.2 on C. This immediately gives us property (2) promised in the
theorem statement, i.e. the matching property. Also, rk(U) < k2 at the end of the first
phase.
Now the second phase. As T1, T2 are linearly independent, we get, by Lemma 3.3,

that T2 /∈ 〈T1〉. By an application of Corollary 4.4, ∃v ∈ nod〈0〉(T1) such that T2 /∈ 〈v〉.
We update U ← (U + radsp(v)). Note that after updating, T2 /∈ 〈U1〉 = I2 (otherwise
T2 ∈ 〈U1〉 ⊆ 〈v〉, since v|U1).
Now, for the i > 2 phase. Inductively, we assume that ∀r < i, Tr /∈ Ir (remember that

all these ideals are wrt the current U ). The phase consists of various rounds. At the end
of the j-th round (1 ≤ j < i), we just want to ensure Ti /∈ 〈U1, . . . , Uj, Tj+1, · · · , Ti−1〉.
So we do nothing in the j-th round unless this is violated. What do we do when it is
violated? The following is the technical core of the proof.

CLAIM 5.1. Let i > 2 and 1 ≤ j < i. Suppose ∀r < i, Tr /∈ 〈U1, . . . , Ur−1〉. Sup-
pose Ti ∈ 〈U1, · · · , Uj , Tj+1, · · · , Ti−1〉 but Ti /∈ 〈U1, · · · , Uj−1, Tj , · · · , Ti−1〉. There ex-
ists a v ∈ nod〈U1,··· ,Uj−1〉(Tj) such that for the updated U ′ ← (U + radsp(v)) we have

Ti /∈ 〈U
′
1, · · · , U

′
j , Tj+1, · · · , Ti−1〉.

Proof of Claim 5.1. Since Ti ∈ 〈U1, · · · , Uj , Tj+1, · · · , Ti−1〉, by Lemma 3.3, we get Ti +
∑i−1

r=j+1 αrTr ∈ 〈U1, · · · , Uj〉 for some αr-s in F. Suppose there are two distinct choices

for αr-s (we will call them αr and α′
r). Then,



Ti +

i−1
∑

r=j+1

αrTr



 ,



Ti +

i−1
∑

r=j+1

α′
rTr



 ∈ 〈U1, · · · , Uj〉.

Subtracting, we get
∑i−1

r=j+1(α − α′
r)Tr ∈ 〈U1, · · · , Uj〉. Let s be the largest index such

that αs − α′
s 6= 0. (By the distinctness of the sequences, such an index exists.) We get

that Ts ∈ 〈U1, · · · , Uj, Tj+1, · · · , Ts−1〉 ⊆ 〈U1, · · · , Us−1〉. Since s ≤ i− 1, this contradicts
the hypothesis. Hence, the sequence {αr} is unique.
The claim hypothesis says that Ti /∈ 〈U1, · · · , Uj−1, Tj , · · · , Ti−1〉. That implies Ti +

∑i−1
r=j+1 αrTr /∈ 〈U1, · · · , Uj−1, Tj〉. Thus, by Corollary 4.4, ∃v ∈ nod〈U1,··· ,Uj−1〉(Tj) such

that Ti+
∑i−1

r=j+1 αrTr /∈ 〈U1, · · · , Uj−1, v〉. Let us update U to U ′ ← (U+radsp(v)). (This

updates Ur-s to U ′
r-s.)

We now argue that Ti /∈ 〈U ′
1, . . . , U

′
j , Tj+1, · · · , Ti−1〉. Suppose not. Then, by Lemma

3.3, for some sequence βr, Ti +
∑i−1

r=j+1 βrTr ∈ 〈U
′
1, . . . , U

′
j〉 ⊆ 〈U1, . . . , Uj〉 (since for

all r, Ur|U ′
r). By the uniqueness of {αr}, we have βr = αr, for all r. But that implies
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Ti +
∑i−1

r=j+1 αrTr ∈ 〈U ′
1, . . . , U

′
j〉 ⊆ 〈U1, · · · , Uj−1, v〉. This is a contradiction and hence

completes the proof. 2

Let us look at the first round (i.e. j = 1). Suppose Ti /∈ 〈U1, T2, · · · , Ti−1〉. Then,
we move directly to the second round, since we have already satisfied the round in-
variant. Otherwise, Ti ∈ 〈U1, T2, · · · , Ti−1〉. Furthermore, by linear independence of
T1, . . . , Ti and Lemma 3.3, we have Ti /∈ 〈T1, · · · , Ti−1〉, so we can invoke Claim 5.1
to get a v ∈ nod〈0〉(T1). This allows us to update U ← (U + radsp(v)) such that
Ti /∈ 〈U1, T2, · · · , Ti−1〉.
Now for the induction step. We assume that, by the end of the (j − 1)th round, Ti /∈
〈U1, · · · , Uj−1, Tj, · · · , Ti−1〉. For the j-th round, either we would have to do nothing or
have to apply Claim 5.1 and update U . In either case, rk(U) increases by at most 1. At
the end of the round, Ti /∈ 〈U1, · · · , Uj, Tj+1, · · · , Ti−1〉.
This continues till j = i − 1. We finally have Ti /∈ 〈U1, · · · , Ui−1〉 = Ii, giving us the

required invariant for the i-th phase. This completes the proof.

The following lemma proves the existence of the nucleus identity. The proof is given
in Section 8.

LEMMA 5.2 (NUCLEUS IDENTITY). Suppose C =
∑

i Ti is a ΣΠΣ(k, d) identity and
K is a subspace of L(R) such that T1, Ti are K-matched, for all i ∈ [k]. Then the terms
M(LK(Ti)), for i ∈ [k], are all of the same degree, say d′, and form a ΣΠΣ(k, d′) identity
∑

i∈[k] αiM(LK(Ti)), for some αi ∈ F∗.

6. INVOKING SYLVESTER-GALLAI THEOREMS: THE FINAL RANK BOUN D

In this section we will bound the non-nucleus rank of a simple, minimal ΣΠΣ(k, d),
independent-fanin k′, identity C by (k− k′) · SGk′(F, d). That proves Theorem 2.11. We
begin by dealing with strongly minimal case, which is really the hard part. The exten-
sion to simple, minimal identities follows with a little work. We will begin with some
preliminaries definition. Then, we will give a high level picture of the overall strat-
egy. The formal proof will follow, after which we show how to generalize to minimal
identities.
Recall that if C :=

∑

i∈[k] Ti is a strongly minimal ΣΠΣ(k, d) identity then

T1, . . . , Tk−1 are linearly independent polynomials. Our aim is to bound the non-nucleus
rank of such a simple C by SGk−1(F, d), finishing the proof of Theorem 2.9.

6.1. Preliminaries

Fix K as the nucleus of C given by Theorem 2.4 with I = [k − 1]. There are two
important properties of this nucleus that we restate (and elaborate upon) for emphasis.
The first is thematching property. For any i ∈ [k], Lc

K(T1) (= L(T1)\K) isK-matched
to Lc

K(Ti) (= L(Ti) \K). In other words for any ℓ ∈ Lc
K(T1), the degrees of M(Lc

K(T1) ∩
(F∗ℓ + K)) and M(Lc

K(Ti) ∩ (F∗ℓ + K)) are equal (these are polynomials in nodK(T1)
and nodK(Ti) respectively). This observation motivates the following definition.

Definition 6.1 (Family). Let C be a ΣΠΣ(k, d) identity and K be its nucleus. For
ℓ ∈ Lc

K(C), the family of ℓ is defined to be the list, fam(ℓ) := {M(Lc
K(Ti)∩(F∗ℓ+K)) | i ∈

[k]}. Note that fam(ℓ) is a multiset of size exactly k, having equal degree polynomials
corresponding to each term Ti, we fix this ordering on the list (i.e. i-th element in fam(ℓ)
corresponds & divides the multiplication term Ti).

Verify that any two forms in Lc
K(C) that are “similar modK” have the same families.
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[Partition, Class, Split & Preserve] Let us focus on a list fam(ℓ). The equiva-
lence relation of similarity (i.e. mod 〈0〉) on fam(ℓ), induces a partition of [k] (i.e. if
fi, fj ∈ fam(ℓ) are similar then place i and j in the same partition-class). Denote this
partition induced on [k], by Part(ℓ). Observe that Part(ℓ)must contain at least 2 classes
(otherwise simplicity of C is violated).
Each set in this partition is called a class, and we naturally have a class cl(f) asso-

ciated with each member of f ∈ fam(ℓ).
We say that Part(ℓ) splits a subset S ⊆ [k] if there is some class X ∈ Part(ℓ) such

that X ∩ S 6= ∅, S. Otherwise, we say that Part(ℓ) preserves S. Note that a singleton is
always preserved.
For classes A1 ∈ Part(ℓ1) and A2 ∈ Part(ℓ2), the complement A1 ∪ A2 is just the set

[k] \ (A1 ∪ A2). We will be later interested in the properties of this complement set wrt
the two partitions.

The second property of the nucleus, the linear independence, will be used via the follow-
ing claim. We defineKi = M(LK(Ti)), for all i ∈ [k], and by Lemma 5.2:

∑

i∈[k] αiKi = 0

for some αi’s ∈ F∗. The following holds quite directly from the nucleus properties.

CLAIM 6.2. Suppose C is strongly minimal. For 1 < r < k, let {s1, · · · , sr} be a
subset S ( [k]. Then Ksr /∈ 〈Ks1 , · · · ,Ksr−1〉.

PROOF. Wlog assume s1 < s2 < · · · < sr. If sr < k, then this just holds from the
linear independence of {K1, . . . ,Kk−1} and Lemma 3.3. So, we can assume sr = k
and Kk ∈ 〈Ks1 , · · · ,Ksr−1〉. By Lemma 3.3, this means Kk =

∑

i∈[r−1] βsiKsi for some

β’s ∈ F. The nucleus identity gives us Kk = −
∑

i∈[k−1]
αi

αk
Ki =

∑

i∈[r−1] βsiKsi . Since

r < k, this implies that for some γ’s in F, not all zero,
∑

i∈[k−1] γiKi = 0. This contradicts

the linear independence of {K1, . . . ,Kk−1}, finishing the proof.

Before applying Sylvester-Gallai-type theorems (i.e. the SGk−1 operator) we empha-
size that, as discussed in Section 2.4, we fix a linear form y0 ∈ L(R)∗ and a subspace U
of L(R) such that L(R) = Fy0 ⊕U ⊕K and every form in Lc

K(C) is monic wrt y0. Thus,
for every ℓ ∈ Lc

K(C) there exists a unique way to express ℓ = αy0 + u+ v (α ∈ F∗, u ∈ U
and v ∈ K). This is formalized in the following lemma, which is proven in Section 8.
We can now define the truncation operator: trun(ℓ) = y0+ α−1u.

LEMMA 6.3 (MONIC FORMS). Let |F| > d and C be a ΣΠΣ(k, d) identity, over F, with
nucleus K. Let y0 ∈ L(R)∗ and U be a subspace of L(R) such that L(R) = Fy0 ⊕ U ⊕K.
Then there exists an invertible linear transformation τ : L(R)→ L(R) that fixes K and
satisfies:

1) τ(C) is also a ΣΠΣ(k, d) identity with nucleusK and the same simplicity, minimality
properties.

2) Every form in Lc
K(τ(C)) = τ(Lc

K(C)) is monic wrt y0.

6.2. Proof strategy

We describe the overall proof strategy for Theorem 2.9. The formal proof actually goes
through a (somewhat) convoluted contradiction. So we give an intuitive explanation of
the ideas with the caveat that the actual proof may not follow the same argument.
As we mentioned earlier, we wish to bound the non-nucleus rank of C by SGk−1(F, d).

All the non-nucleus parts of the individual terms are matched modulo K, by Theo-
rem 2.4. Hence, it suffices to bound the rank of trun(Lc

K(T1)), the truncated forms
of the non-nucleus part of T1. We will show that this set is SGk−1-closed. Consider
some linearly independent forms {ℓ′1, . . . , ℓ

′
k−1} in trun(Lc

K(T1)). By the matching
property, there exists ℓi ∈ L(Ti) such that trun(ℓi) = ℓ′i. Let us look at C modulo
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I := 〈ℓ1, . . . , ℓk−1〉. This equals Tk(mod I). This, with the zeroness of C, will imply that
there exists ℓk ∈ L(Tk) such that {ℓi|i ∈ [k]} are linearly dependent. Suppose that ℓk is
non-similar to ℓi, for all i < k. So ℓ′k := trun(ℓk) cannot be equal to ℓ′i for any other i.
By the matching property, there must be an ℓ′′k ∈ L(T1) such that trun(ℓ′′k) = ℓ′k. Hence,
we have shown that within trun(Lc

K(T1)), there exists a non-trivial linear combina-
tion of {ℓ′1, . . . , ℓ

′
k−1}. If this would happen for all such sets, then we would prove that

trun(Lc
K(T1)) is SGk−1-closed.

But we were very lucky that ℓk was non-similar to the other ℓi’s. So let us further
generalize the argument. Consider some linearly independent forms {ℓ′1, . . . , ℓ

′
r} (for

r < k) in trun(Lc
K(T1)). Suppose there exist forms {ℓ1, . . . , ℓr} with the following prop-

erties. First define for all i ≤ r, Ai := {j|ℓi divides Tj}. For all i ≤ r, trun(ℓi) = ℓ′i.

Furthermore,
⋃

i≤r Ai is a singleton, say {s}. Again, set I := 〈ℓ1, . . . , ℓr〉. If we look at

C(mod I), then every Ti, i ∈
⋃

i≤r Ai is trivially “killed”. We are left with Ts = 0 (mod I),

and some form ℓ ∈ L(Ts) such that ℓ ∈ I. Since ℓ cannot be similar to any one of the
ℓi’s, we will get a non-trivial linear dependence in trun(Lc

K(T1)).

But luck has consistenly been with us, since we get
⋃

i≤r Ai to be a singleton. Ideally,

we would like a very controlled way of killing terms. If we can add generators to our
ideal I such that each generator only kills one term, then we can make this argument
work. But we also want the generator to be of low rank, so that we can get linear
dependencies. One of the main hurdles with this approach is that there might be sub-
circuits of the form x3y+ x2y2 + xy3, where it is not possible to kill a single term using
a single form. It is possible to go modulo (say) x3 and selectively kill the first term.
Since, in the end, we are only after linear dependencies modulo K, we might even go
modulo polynomials that are form-powers modulo K. These are exactly members of a
family.
So let us start with a set of forms {ℓ1, ℓ2, . . . , ℓr} (for r < k) in Lc

K(T1). We wish to find
some ℓr+1 ∈ Lc

K(T1) that is a non-trivial linear combination of these modulo K. Let
us select polynomials pi ∈ fam(ℓi), and set I = 〈p1, . . . , pr〉 and Ai = {j|pi divides Tj}.

Let S =
⋃

i≤r Ai and so we get CS = 0 (mod I). For each i ≤ r and s ∈ S, there is

some member of fam(ℓi) dividing Ts. Suppose we were able to choose the pi’s such that
for each i, the members of fam(ℓi) dividing each Ts is the same polynomial. Then we
can divide by all these polynomials, and get C′

S = 0 (mod I), where none of the linear
forms involved are equal to any ℓi modulo K. So we are setting ourselves up to find a
non-trivial linear dependency. But, what if S is not a singleton?
The linear independence properties of the nucleus portion, theKi’s, will save the day.

Let S = {s1, s2, . . . , sa}. For each s ∈ S, we can selectively kill Ts by going modulo Ks.
In other words, going modulo 〈I,Ks1〉 will only kill terms Tj , where j ∈

⋃

i≤r Ai ∪ {s1}.

By going modulo I ′ := 〈I,Ks1 ,Ks2 , . . . ,Ksa−1〉, we will get Tsa = 0 (mod I ′) without
“trivially” killing Tsa . So we can pull out a linear dependencemoduloK involving some
ℓr+1 ∈ Lc

K(T1) and the {ℓ1, ℓ2, . . . , ℓr}.
All of this hinged on the choice of the pi’s in the respective families so that we get the

special property that members of fam(ℓi) dividing each Ts are the same. Amazingly, we
can always choose the pi’s to ensure this. This we prove through a contradiction. If
the rank of trun(Lc

K(T1)) is too large, then (using the SGk−1 operator) we show that
a family of (k − 1) partitions must have a peculiar property (Lemma 6.5). Lemma 6.7
shows that this property can never hold.

6.3. The actual proof

We first state a technical cancellation lemma, whose proof is in Section 8.
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LEMMA 6.4 (CANCELLATION). Let K be some subspace of L(R) and let ℓ1, . . . , ℓm ∈
L(R) \ K be linearly independent modulo K. Let f1, . . . , fm be multiplication terms
similar to powers of ℓ1, . . . , ℓm respectivelymoduloK (i.e. each form in fi is in (F∗ℓi+K)).
Let ℓ ∈ L(R)∗ such that for some s ∈ [m], ℓ ∈ Fℓs +K. Then, for any polynomial f ∈ R,

ℓf ∈ 〈f1, . . . , fm〉 iff f ∈ 〈f1, . . . ,
fs

gcd(fs, ℓ)
, . . . , fm〉.

LEMMA 6.5 (PARTITIONS FROM SGk−1-TUPLE). Suppose rk(trun(Lc
K(T1)))

> SGk−1(F, d). There exists a set {ℓ1, ℓ2, . . . , ℓk−1} of k − 1 forms in Lc
K(T1) with

the following property. For any non-empty subset I ⊆ [k − 1] and any collection of sets

{Ai|i ∈ I} where Ai ∈ Part(ℓi), the set S :=
⋃

i∈I Ai is either empty or split by Part(ℓc),
for some c ∈ I.

PROOF. Since rk(trun(Lc
K(T1))) > SGk−1(F, d), we can apply the SGk−1 operator

on this set. Let the output of SGk−1(trun(L
c
K(T1))) be the set {ℓ′1, ℓ

′
2, · · · , ℓ

′
k−1}. For

all i ∈ [k − 1], let ℓi ∈ Lc
K(T1) be a form satisfying trun(ℓi) = ℓ′i. We will prove that

this is the desired set of forms. We show that for all choices of I and the sets Ai, if
S =

⋃

i∈I Ai 6= ∅, then S is split by some Part(ℓc).
This is shown by contradiction. Suppose there is some choice of I and sets Ai, where

S 6= ∅ and S is preserved by Part(ℓi), for all i ∈ I. For all i ∈ I, there exists an
fi ∈ fam(ℓi) such that Ai = cl(fi). Similarly, for all i ∈ I, there exists a gi ∈ fam(ℓi)
such that S ⊆ cl(gi). The sets Ai and S are disjoint, so the classes cl(fi) and cl(gi) are
different. The polynomials fi, gi are not similar, for all i ∈ I. Let S = {s1, s2, . . . , sr}.

The meat of the proof is the following claim. Define K̂ to be the set
⋃

i∈I(F
∗ℓi +K).

Claim: There exists a form ℓ ∈ L(Tsr ) such that ℓ ∈ (sp(ℓi|i ∈ I) +K) \ K̂.

Proof: Define ideal I := 〈fi|i ∈ I〉. Let us focus on the sub-circuit CS =
∑

j∈S Tj.

Since C = 0 and S =
⋃

i∈I cl(fi), we deduce CS ∈ I (as fi “kills” the term Tr for all
r ∈ cl(fi)). For all i ∈ I, since S ⊆ cl(gi), gi divides Tj (j ∈ S). But all these gi’s are
pairwise coprime, since they come from different families. Hence,

∏

i∈I gi divides Tj,

for all j ∈ S. The multiplication term T ′
j := Tj/(

∏

i∈I gi) has no form in K̂. Rewrite,

CS =

(

∏

i∈I

gi

)

·





∑

j∈S

T ′
j



 ∈ 〈fi | i ∈ I〉.

By a repeated application of Lemma 6.4 on the above system, we get:
∑

j∈S

T ′
j ∈ 〈f

′
i | i ∈ I〉 =: I ′, where, f ′

i :=
fi

gcd(fi, gi)
, ∀i ∈ I. (2)

Since fi, gi are not similar, f ′
i has degree≥ 1, for all i ∈ I. Since we have only changed

the non-nucleus part of Tj to get T ′
j, we deduce Ksi |T

′
si , for all i ∈ [r]. Define the ideal

I ′′ := 〈I ′,Ks1 , · · · ,Ksr−1〉. By Equation (2), T ′
sr ∈ I ′′. We have radsp(I ′′) ⊆ sp(ℓi | i ∈

I) +K. Let us factor T ′
sr = B0B1, where B0 is the product of all forms in radsp(I ′′) and

B1 is the remaining product. Thus, B0B1 ∈ I ′′. By Lemma 3.2, B1 can be cancelled out
and we get B0 ∈ I ′′.
Suppose all forms of B0 are in K, so B0 = Ksr . This means Ksr ∈ I ′′ implying,

Ksr ∈ 〈Ks1 , · · · ,Ksr−1 , {f
′
i | i ∈ I}〉. (3)

Recall that each form in f ′
i is similar to some form in (F∗ℓi +K), for all i ∈ I. Suppose

form (βiℓi + ui)|f ′
i , for all i ∈ I, for some β’s in F∗ and u’s in K. In Equation (3) make
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the evaluation: ℓi ← −β
−1
i ui, for all i ∈ I. This is a valid evaluation since {ℓi | i ∈

I} are linearly independent mod K, and values substituted are from K. Clearly, this
evaluation leaves the linear subspaces Ks (s ∈ S) unchanged, but zeroes out f ′

i . Thus,
we get Ksr ∈ 〈Ks1 , · · · ,Ksr−1〉, contradicting Claim 6.2.
As a result, we have a form ℓ|B0 such that ℓ /∈ K. We have ℓ ∈ radsp(I ′′)

⊆ sp(ℓi | i ∈ I) +K. Since T ′
sr has no form in K̂, ℓ /∈ K̂. 2

By the matching property of the nucleus, this in turn gives us an ℓ ∈ Lc
K(T1) such

that: ℓ ∈ (sp(ℓi|i ∈ I) +K) \ K̂. This means that there exist constants βi’s in F, not all
zero, such that ℓ ∈

∑

i∈I βiℓi+K. Hence, trun(ℓ) is a linear combination of {trun(ℓi)|i ∈
I}. Because trun(ℓ) /∈

⋃

i∈I(F
∗trun(ℓi)), this must be a non-trivial combination. But

this contradicts the fact that {ℓ1, · · · , ℓk−1} were obtained from SGk−1(trun(L
c
K(T1))).

This contradiction proves that S is split by Part(ℓi), for some i ∈ I.

We will prove that the conditions on partitions given by Lemma 6.5 cannot occur..
Since the proof is fairly involved, we present that in the next subsection. For now,
we give the necessary definitions and claims and complete the rank bound proof for
Theorem 2.9. We have a universe U := [k] of elements.

Definition 6.6 (Unbroken chain). A partition of U is trivial if it contains the single
set U .
Let P be a collection of non-trivial partitions of U (here a collection refers to a

multiset, i.e. P can have partitions repeated). A chain in P is a sequence of sets
A1, A2, · · · , As (for some s) such that each set comes from a different element of P
(say Ai ∈ Pi ∈ P).

The chain A1, A2, · · · , As is an unbroken chain, if
⋃

i∈[s] Ai is non-empty and pre-

served in Pj, for each j ∈ [s]. (Here, we use the natural extension of the previous
definition of ‘preserve’ to all partitions.)

Note that if
⋃

i≤s Ai is a singleton then it is trivially preserved in any partition,

therefore, such a chain would be unbroken. By Lemma 6.5, the collection {Part(ℓi)|i ∈
[k − 1]} has no unbroken chain. We will show that this is impossible. The following
combinatorial lemma implies Theorem 2.9.

LEMMA 6.7 (PARTITIONS HAVE UNBROKEN CHAIN). Let P be a collection of non-
trivial partitions of U . If P contains at least |U| − 1 partitions then P contains an
unbroken chain.

We put it together to prove that the non-nucleus rank of a simple and strongly min-
imal ΣΠΣ(k, d) identity over F is at most SGk−1(F, d).

PROOF. (of Theorem 2.9) Let C =
∑

i∈[k] Ti be a simple and strongly minimal

ΣΠΣ(k, d) identity over F, and letK be the nucleus provided by Theorem 2.4. As |F| > d
we can assume (wlog by Lemma 6.3) the existence of a truncation operator on Lc

K(T1).
We will show that the rank of trun(Lc

K(T1)) is at most SGk−1(F, d). By the matching
property of the nucleus, trun(Lc

K(T1)) together with K span L(C). Therefore, a non-
nucleus rank bound of the former suffices to bound the non-nucleus rank of L(C).
Assuming that the rank of trun(Lc

K(T1)) is greater than SGk−1(F, d), as in
Lemma 6.5, we invoke SGk−1(trun(L

c
K(T1))) to get {ℓ1, · · · , ℓk−1} in Lc

K(T1). Associ-
ated with each of these, we have the partition Part(ℓi). There are k − 1 partitions in
the collection P := {Part(ℓi)|i ∈ [k − 1]}, which are all non-trivial by the simplicity of
C. Lemma 6.7 tells us that P has an unbroken chain, while Lemma 6.5 says that P
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has none. This contradiction implies the rank of trun(Lc
K(T1)) is at most SGk−1(F, d),

thus finishing the proof.
Our proof shows an even stronger property: trun(Lc

K(T1)) is SGk−1-closed.

6.3.1. Proof of Lemma 6.7. Intuitively, when the partitions inP have many classes then
an unbroken chain should be easy to find. For example, when (k−1) partitions inP are
all equal to {{1}, . . . , {k}} then there is an easy unbroken chain, namely {1}, . . . , {k−1}.
On the other hand, when the partitions inP contain few classes then we can effectively
decrease the universe and apply induction. Most of this subsection would deal with the
former case. Let us first define the splitting property.

Definition 6.8 (Splitting property). Let P be a collection of partitions of U . Suppose
for all non-empty S ⊂ U , S is split by at least (|S| − 1) partitions of P. Then P is said
to have the splitting property.

LEMMA 6.9. Let P be a collection of at least (k− 1) non-trivial partitions of [k]. If P

has the splitting property then there is a chain A1, · · · , Ak−1 inP such that
⋃

i≤k−1 Ai =

{k}. (In particular, P has an unbroken chain.)

We defer its proof and, instead, first show why this lemma would suffice.

PROOF. (of Lemma 6.7) We will prove this by induction on the universe size k. For
the base case, suppose k = 3 and P = {P1,P2, . . .}. So we have at least two partitions.
If any partition (say P1) contains exactly 2 sets, it must be a pair and a singleton
(say P1 = {{1, 2}, {3}}). But then {1, 2} is itself an unbroken chain in P. So, all the
partitions can be assumed to consist only of singletons. But then we can take the set,
say, {1} from P1 and, say, {2} from P2 to get an unbroken chain.
Now for the induction step. Suppose P has at least (k − 1) partitions. We assume

that the claim is true for universes of size upto (k − 1). If P has the splitting property,
then we are done by Lemma 6.9. If not, then for some subset S ⊂ U of size at least 2, S
is split in at most (|S|− 2) partitions. Let the collection of partitions in P that preserve
S be P′. So P′ contains at least (k − 1) − (|S| − 2) = (k − |S| + 1) partitions. Merge
the elements of S into a new element, to get a new universe U ′ of size (k − |S| + 1).
The partitions in P′ are valid partitions of U ′, and still maintain their structure. We
now have a universe of size k − |S| + 1 < k, and at least k − |S| + 1 partitions. By the
induction hypothesis, there is an unbroken chain in P′. Observe that it is (under the
natural correspondence) still an unbroken chain in the original collection P, and we
are done.

PROOF. (of Lemma 6.9) We will find partitions P1, · · · ,Pk−1 in P such that Pi splits
{i, k}, for all i ∈ [k− 1]. Thus, there is a set Ai ∈ Pi that contains i but not k. Naturally,
⋃

i≤k Ai = {k}.
This labelling is constructed through an iterative process that goes through phases.

In the ith phase, we will find Pi. At the beginning of this phase, we have already deter-
mined P1, · · · ,Pi−1 with the desired property and the remaining pool P′ of unlabelled
partitions. During this phase, we may label some partition from P′ as Pb (for some
b < i) and move the “old” Pb to P′. The property that Pb splits {b, k} is always main-
tained. We will repeatedly perform this swapping until we find an unlabelled partition
that splits {i, k}. At this point, we label this Pi and end this phase.
The first phase is easy to understand. By the splitting property, there is some parti-

tion that splits {1, k}. We set this to P1 and end Phase 1.
For all the other phases, we have some auxiliary data that is maintained. In the

ith phase, we maintain a partition (for convenience, we will call this a “division”)
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of [i − 1], E1, · · · , Ei−1. Think of these as indices of the currently labelled partitions
P1,P2, . . . ,Pi−1, as well as elements in the universe U . We set E0 = {i, k}, which will
be fixed throughout this phase. Corresponding to each set Ej , we have a set of par-
titions Cj corresponding to this index set (:= {Pb|b ∈ Ej}). We fix C0 = ∅. We set
E≤j =

⋃

0≤l≤j El. We get a similar set of partitions C≤j =
⋃

1≤l≤j Cl. Note the differ-

ence, because the indices for this start from 1. This is because there is no partition
associated with elements i and k.
The ith phase will continually change this division by “promoting” elements. This

means that an element in Ej will be put in Ej+1, and this is the only way in the which
the division changes. At the beginning of the ith phase, we initialize E0 = {i, k} and
E1 = [i−1] (so naturally, all otherEi’s are empty). We set lim = 1, which is the largest j
such that Ej is non-empty. We define a recursive procedure Update, and prove certain
properties about its behavior. These will suffice to complete the proof.

THE PROCEDURE Update

(1) Check if there is a partition P ∈ P′ that splits E0 = {i, k}. If so, label P as Pi,
output success and terminate entire program.

(2) For all 1 ≤ j ≤ lim in increasing order
— For all c ∈ Ej

— If there is a partition P ∈ P′ that splits E≤j−1 ∪ {c}
— Label P as Pc, and move the old Pc to P′. Move c from Ej to Ej+1. If

Ej+1 is now a singleton, add 1 to lim. Call Update recursively.
(3) Output failure and terminate entire program.

A few comments. When Update outputs success, it has indeed found a partition that
splits {i, k} so we are truly done. Although the procedure makes recursive calls, it
never returns to an older call. This is because it reaches the failure step and the whole
program terminates. The only possibilities for this program are success, failure, or
infinite running. We will argue that a call to Update from the initialization always
results in a success. The proof of this is broken down into some simpler claims.

CLAIM 6.10. If, during a call to Update, the procedure completes jth iteration in
Step 2, then all partitions in P′ preserve E≤j . Hence, the partitions labelled Pc will
always split {c, k}.

Proof of Claim 6.10. The current run ofUpdatewent through the jth iteration of Step 2
without making a recursive call. Hence, all partitions in P′ preserve E≤j−1 ∪ {c}, for
all c ∈ Ej . Therefore, all partitions in P′ must preserve E≤j−1 ∪ Ej = E≤j .
Whenever a partition is labelled Pc (in say the jth iteration), Pc splits E≤j−1 ∪ {c}

but preserves E≤j−1. Hence, it splits {c, k}. 2

CLAIM 6.11. At all times, for l ≥ 2, Cl preserves E≤l−2.

Proof of Claim 6.11. Initially, this is vacuously true, since El is empty for l ≥ 2. We
will show that this is maintained whenever the division sets Ei’s (and the labelled
partitions) change. The promotion of an element by moving from Ej to Ej+1 can only
decrease E≤l for all l. Hence, a labelled partition that originally preserved some E≤l

continues to do so. Consider the new partition that is swapped in to become Pc, during
iteration (say) j. This will be a part of Cj+1, because c will be moved to Ej+1. If j = 1,
then this partition Pc must preserve {i, k} = E≤0 (otherwise, we would have detected
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it in Step 1). Suppose j ≥ 2. Since iteration j − 1 is complete, by the previous claim Pc

must preserve Ej−1. 2

Armed with these claims, we can show that Update can never fail and cannot run
forever. (Hence, it must output success.) Suppose it fails. Then it must have completed
the iteration numbered lim (for whatever its current value). By Claim 6.10, all par-
titions in P′ must preserve E≤lim = [i] ∪ {k}. So the only partitions that split E≤lim

are the labeled ones, which are at most i − 1 is number. This contradicts the splitting
property.
Suppose Update does not terminate. Then it definitely makes > (i+ 2)2 promotions.

At some stage, an element must be added to Ei+1, so the ith iteration of Step 2 is
reached. (This means that (i − 1) iteration is completed.) Consider the situation just
before this element is moved. During this iteration, some Ea must be empty for some
1 ≤ a ≤ i. This is because {E1, E2, . . . , Ei} form a division of [i− 1]. So Ca is also empty.
Consider the set E≤a−1. By Claim 6.10, all partitions in P′ preserve E≤i−1 ⊇ E≤a−1.
By Claim 6.11, for l ≥ a+1, all partitions in Cl preserve E≤a−1. The only partitions that
splitE≤a−1 must be C≤a = C≤a−1. But |C≤a−1| = |E≤a−1|−2 (the difference of two occurs
because we do not consider {i, k} in C≤a−1), contradicting the splitting property.

6.4. The general case

Now, we deal with simple, minimal identities and remove the strong minimality con-
dition. This will come at a cost of an extra k factor in the rank bound. First, we recall
the definition of gcd and simple parts of a general ΣΠΣ circuit, as given in older works
[Dvir and Shpilka 2006; Saxena and Seshadhri 2011a].

Definition 6.12 (Gcd & Simple part). Let C =
∑

i∈[k] Ti be a ΣΠΣ(k, d) circuit over a

field F. The gcd of C is defined to be the usual gcd of the polynomials Ti’s, i.e. gcd(C) :=
gcd(Ti|i ∈ [k]).
The simple part of C is the ΣΠΣ(k, d′) circuit, sim(C) := C/ gcd(C), where d′ :=

d− deg(gcd(C)).

Theorem 2.11 will be shown to be a consequence of Theorem 2.9. We prove that when
|F| > d, the rank of a simple, minimal ΣΠΣ(k, d), independent-fanin k′, identity is at
most 2k2 + (k − k′) · SGk′(F, d).

PROOF. (of Theorem 2.11) Let circuit C be T1 + · · · + Tk = 0. Wlog let T1, · · · , Tk′

be a linear basis for T1, · · · , Tk. Obviously, we have 1 < k′ < k (first by simplicity and
second by zeroness). By Theorem 2.4, there exists a nucleus K wrt the set I := [k′].
The rank of K is at most 2k2. So, it remains to bound the non-nucleus rank of C by
(k − k′) · SGk′(F, d).
As T1, · · · , Tk′ form a basis, for each i ∈ [k′ +1, k], there exists αi,j ’s in F such that we

have a zero circuit Di :=
∑

j∈[k′] αi,jTj + Ti = 0. Define Ni to be the set of j’s for which

αi,j 6= 0. Thus,

∀i ∈ [k′ + 1, k], Di =
∑

j∈Ni

αi,jTj + Ti = 0 (4)

Since {αi,jTj | j ∈ Ni} are |Ni| linearly independent terms, we get that Di is a
strongly minimal ΣΠΣ(|Ni| + 1, d) identity, for all i ∈ [k′ + 1, k]. By nucleus prop-
erties (recall Theorem 2.4-(3)), {Kj|j ∈ Ni} are linearly independent polynomials,
implying that the polynomials {Kj/gi|j ∈ Ni} are also linearly independent, where
gi := M(LK(gcd(Di))). Thus, the linear space K remains a nucleus of the new iden-
tity sim(Di), showing at the same time that it is strongly minimal. We conclude that
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sim(Di) is a simple, strongly minimal ΣΠΣ(ki, di) identity with nucleusK (although of
rk < 2k2), ki ≤ (k′+1), di ≤ d, for all i ∈ [k′+1, k]. Theorem 2.9 bounds the non-nucleus
(non-K to be precise) rank of each of these identities by SGk′(F, d).
Suppose a linear form ℓ| gcd(Di) for all i ∈ [k′ + 1, k]. Then ℓ divides Tj for all j ∈

⋃

i∈[k′+1,k] Ni ∪[k
′+1, k]. Obviously, S :=

⋃

i∈[k′+1,k] Ni ⊆ [k′]. Consider the case S = [k′],

it means that ℓ divides every term in C, contradicting simplicity. Thus, each linear
form ℓ of C does not divide some gcd(Di), and so, appears in at least one of the circuits
{sim(Di)|i ∈ [k′ + 1, k]}, whose total non-nucleus rank we have already bounded by
(k − k′) · SGk′ (F, d). We are done in this case.
The case, left to handle, is when: S ( [k′]. This means, by summing over i in Equation

(4),
∑

i∈[k′+1,k] Ti =
∑

s∈S βsTs, for some β’s in F. Substituting this in the equationC = 0
we get,

C = C[k′] + C[k′+1,k] =
∑

i∈[k′]

Ti +
∑

s∈S

βsTs = 0.

As S is a proper subset of [k′], the above equation could only mean that a nontrivial
combination of Ti (i ∈ [k′]) is vanishing, contradicting the linear independence of those
polynomials. Thus, S = [k′]. This completes the proof.

7. SYLVESTER-GALLAI RANK BOUNDS FOR ANY F

We wish to bound SGk(F,m), for any field F. We will prove the following theorem,
which can be seen as the first Sylvester-Gallai Theorem holding for all fields. A set of
vectors in the projective space FPn can be thought of as a multiple-free set of vectors
S in Fn+1. This means that no two vectors in S are scalar multiples of each other.
The proof we present was given by [Saks 2010] (in our opinion, truly a proof from The
Book [Erdös ]). It is far more elegant and yields a much better constant factor that our
original proof.
In some sense, bounds for SG2(F,m) are already implicit in known theorems (used to

prove lower bounds for LDCs). Concretely, Corollary 2.9 of [Dvir and Shpilka 2006] can
be interpreted as a proof that SG2(F,m) = O(logm). This is an extension of theorems
in [Goldreich et al. 2002] that prove this for F2. In the context of SG2, these proofs can
be interpreted as a “doubling trick”. In essence, each time we want to increase the rank
of an SG2-closed set by 1, we are forced to double the number of vectors.

THEOREM 7.1 (HIGH DIMENSION SYLVESTER-GALLAI FOR ANY FIELD). Suppose
k ∈ N>1 and S is an SGk-closed set of vectors in FPn and rank r ≥ 1. Then,
|S| ≥ 2(r/(k−1))−1. In other words, for every m ∈ N>1, SGk(F,m) ≤ (k − 1) lg 2m.

PROOF. Let F (r, k) := 2(r/(k−1))−1, where k ≥ 2 and r ≥ 1. We prove by induction
on lexicographic order on (r, k) that a multiple-free SGk-closed set of rank r has size
at least F (r, k). For the base case, note that when r ≤ k − 1, then F (r, k) ≤ 1. Since
|S| ≥ r ≥ 1, the bound is true. So, we assume that r ≥ k.
If S is SGk−1-closed, then we are done by the induction hypothesis. This is because
|S| ≥ F (r, k − 1) and F (r, k − 1) ≥ F (r, k). So, we can assume that S is not SGk−1-
closed, and there exists a linearly independent set of vectors v1, v2, . . . , vk−1 ∈ S that
span no other vector in S. (Note that we include the case k = 2 in this proof.) Since
the rank is r, we extend this to a set of r linearly independent vectors in S, denoted
by v1, v2, . . . , vr. Let T be the subset of S spanned by vk, . . . , vr. Since S is SGk-closed,
T is also SGk-closed. The rank of T is r − (k − 1) < r, so we can apply the induction
hypothesis. This yields that |T | ≥ F (r − (k − 1), k).
For each v ∈ T , the set v, v1, v2, . . . , vk−1 must span another vector in S. Call this

vector f(v), which must be a non-trivial combination of the above vectors. The vec-
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tor f(v) cannot lie in T , because this would imply that some linear combination of
v1, v2, . . . , vk−1 lies in T . But T was chosen to be independent to all these vectors. Simi-
larly, vector f(v) cannot lie in the span of v1, v2, . . . , vk−1. Hence, f(v) can be expressed
as αvv +

∑

i≤k−1 βv,ivi, where αv 6= 0 and some βv,i 6= 0.

Suppose for v 6= v′ (v, v′ ∈ T ), f(v) = f(v′). Then αvv − αv′v′ =
∑

i≤k−1(βv′,i − βv,i)vi.

Since both αv, αv′ 6= 0 and S is multiple-free, the left hand side is a non-zero vector
spanned by T . But the right hand side is independent to T or is zero. Therefore, by
contradiction, we deduce that for v 6= v′, f(v) 6= f(v′).
We can bound |S| ≥ 2|T | ≥ 2F (r − (k − 1), k). This is 2(r−k+1)/(k−1) = 2(r/(k−1))−1 =

F (r, k).

We give a simple construction providing a lower bound for SGk(Fp,m).

THEOREM 7.2. For every k ≥ 2, d ≥ 2, and prime p, there exists a (multiple-free) set
of (k − 1)(pd − 1)/(p− 1) vectors of rank (k − 1)d that form an SGk-closed set. In other
words, SGk(Fp,m) ≥ (k − 1) logp(m/(k − 1)).

PROOF. We will construct vectors over Fn
p , where n = (k − 1)d. Think of the coor-

dinates as broken into (k − 1) contiguous blocks, where each block has d coordinates.
The final set S will comprise of (k − 1) subsets S1, S2, . . . , Sk−1. The vectors in subset
Si will have non-zero coordinates only in the ith block of coordinates. So we can think
of each Si as vectors in Fd

p, with each Si being defined over disjoint sets of coordinates.

The set Si will just be the multiple-free, maximal subset of Fd
p \ {0}. Naturally, each Si

is SG2-closed.
The overall set S has rank r := (k−1)d and sizem := (k−1)(pd−1)/(p−1). Consider

any k vectors in S. By the pigeonhole-principle, two of these vectors must lie in the
same set (say) Si. Since Si is SG2-closed, there is a non-trivial combination of these
vectors inside Si. Hence, S is SGk-closed.

8. PROOFS FOR ALGEBRAIC LEMMAS

For convenience, we restate the lemmas before the proofs.

Lemma 3.2 (restated). Let f1, . . . , fm be multiplication terms generating an ideal I,
let ℓ ∈ L(R) and g ∈ R. If ℓ /∈ radsp(I) then: ℓg ∈ I iff g ∈ I.

PROOF. Assume ℓ /∈ radsp(I). If I = {0} then the lemma is of course true. So let us
assume that I 6= {0} and rk(radsp(I)) =: r ∈ [n − 1]. As ℓ /∈ radsp(I) there exists an
invertible linear transformation τ : L(R) → L(R) that maps each form of radsp(I) to
sp(x1, . . . , xr) and maps ℓ to xn. Now suppose that ℓg ∈ I. This means that there are
q1, . . . , qm ∈ R such that ℓg =

∑m
i=1 qifi. Apply τ on this to get:

xng
′ =

m
∑

i=1

q′iτ(fi). (5)

We know that τ(fi)’s are free of xn. Express g
′, q′i-s as polynomials wrt xn, say

g′ =
∑

j≥0

ajx
j
n, where aj ∈ F[x1, . . . , xn−1] (6)

q′i =
∑

j≥0

bi,jx
j
n, where bi,j ∈ F[x1, . . . , xn−1] (7)

Now for some d ≥ 1 compare the coefficients of xd
n on both sides of Equation (5). We

get ad−1 =
∑m

i=1 bi,dτ(fi), thus ad−1 and ad−1x
d−1
n are in 〈τ(f1), . . . , τ(fm)〉. Doing this
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for all d ≥ 1, we get g′ ∈ 〈τ(f1), . . . , τ(fm)〉, hence g = τ−1(g′) ∈ 〈f1, . . . , fm〉 = I. This
finishes the proof.

Lemma 3.3 (restated). Suppose f1, . . . , fm, g are homogeneous polynomials in R.
Then,
1) If deg(g) < deg(fm) then: g ∈ 〈f1, . . . , fm〉 iff g ∈ 〈f1, . . . , fm−1〉.
2) If deg(g) = deg(fm) then: g ∈ 〈f1, . . . , fm〉 iff ∃a ∈ F, (g + afm) ∈ 〈f1, . . . , fm−1〉.

PROOF. Say, g ∈ 〈f1, . . . , fm〉. Then, by definition, there exist q’s in R such that,

g =
m
∑

i=1

qifi. (8)

Let d := deg(g). If we compare the monomials of degree d on both sides of Equation (8)
then the LHS gives g. In the RHS we see that an fi of degree di contributes [qi](d−di)fi,
where [q]j is defined to be the sum of the degree j terms of q (and, zero if j < 0). Thus,
g =

∑m
i=1[qi]d−di

fi. This equation proves both the properties at once.

Lemma 3.5 (restated). Let I be an ideal generated by multiplication terms
{f1, . . . , fm} and define U := radsp(I). Let g, h be multiplication terms such that
g ≡ h 6≡ 0 (mod I). Then there is a U -matching between LU (g), LU (h) and one between
Lc
U (g), L

c
U (h).

PROOF. Define g0 := M(LU (g)) and h0 := M(LU (h)). Suppose the list LU (g) is larger
than the list LU (h). By the congruence we have h ∈ 〈I, g0〉. As radsp(I, g0) = U , by
Lemma 3.2 we can drop the non-U forms of h, one by one, to get h0 ∈ 〈I, g0〉. As 〈I, g0〉
is a homogeneous ideal and deg(h0) < deg(g0) we get by Lemma 3.3 that h0 ∈ I.
But this means h ∈ I, which contradicts the hypothesis. Thus, deg(h0) ≥ deg(g0) and
by symmetry we get them infact equal. Thus, the lists LU (g), LU (h) are of equal size,
which trivially U -matches them.
We will show that for any ℓ ∈ L(R) \ U , the number of forms that are similar to ℓ

mod U in Lc
U (g) is equal to that in Lc

U (h). This fact will prove the lemma as it shows
that every form in Lc

U (g) can be U -matched to a distinct form in Lc
U (h).

Pick an ℓ ∈ L(R) \ U . Let g1 be the product of the forms that are similar to ℓ mod U
in Lc

U (g) (if none exist then set g1 = 1), similarly define h1 from h. Suppose deg(h1) <
deg(g1) =: d. By the congruence we have h ∈ 〈I, g0g1〉. As radsp(I, g0g1) = U ⊕ Fℓ, by
Lemma 3.2 we can drop the non sp(U, ℓ) forms of h to get

h0h1 ∈ 〈I, g0g1〉. (9)

As we have already shown deg(h0) = deg(g0), we have deg(h0h1) < deg(g0g1). Thus, by
Lemma 3.3, the above Equation entails h0h1 ∈ I. So h ∈ I, contradicting the hypoth-
esis. This shows the number of forms that are similar to ℓ mod U in Lc

U (g) is equal to
that in Lc

U (h), finishing the proof.

To prove Lemma 5.2, we need a metric associated with matchings, first introduced
in Section 2.4.2 of [Saxena and Seshadhri 2011a]. It is essentially the factor by which
a matching scales-up a linear form (modulo the ideal).

Definition 8.1 (Scaling factor). Let K be a subspace of L(R) and L1, L2 be two lists
of linear forms in L(R) \ K. Let π be a K-matching between L1, L2. Then for every
ℓ ∈ L1, there is a unique cℓ ∈ F∗ such that π(ℓ) ∈ cℓℓ+K (if there is another d ∈ F with
π(ℓ) ∈ dℓ +K, then (cℓ − d)ℓ ∈ K, implying ℓ ∈ K, a contradiction).
We define the scaling factor of π, sc(π) :=

∏

ℓ∈L1
cℓ.
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Lemma 5.2 (restated). Suppose C =
∑

i Ti is a ΣΠΣ(k, d) identity andK is a subspace
of L(R) such that T1, Ti areK-matched, for all i ∈ [k]. Then the termsM(LK(Ti)), for i ∈
[k], are all of the same degree, say d′, and form a ΣΠΣ(k, d′) identity

∑

i∈[k] αiM(LK(Ti)),

for some αi ∈ F∗.

PROOF. Since T1, Ti are K-matched, we get from the definition of matching that
terms M(LK(T1)), M(LK(Ti)) have the same degree d′ ≥ 0. Furthermore, M(Lc

K(T1))
and M(Lc

K(Ti)) are also K-matched, call this induced matching πi. As all the forms in
Lc
K(T1) are outside K, the scaling factor sc(πi) is well defined, for all i ∈ [k].
Fix a subspace U such that L(R) = K⊕U and let r := rk(K). Fix an invertible linear

transformation τ : L(R) → L(R) that maps K to sp(x1, . . . , xr). It follows that for any
form ℓ ∈ Lc

K(T1), τ(ℓ) is a form with a nonzero coefficient wrt some xi, i > r (otherwise
τ(ℓ) ∈ sp(x1, . . . , xr), thus ℓ ∈ K, a contradiction). Call the largest such i, jℓ. If we look
at the product (note: it is over a list so it could have repeated factors),

α1 :=
∏

ℓ∈Lc
K
(T1)

[xjℓ ]τ(ℓ) (10)

([xi]f gives the coefficient of the monomial xi in f ), then it is the coefficient of
∏

ℓ∈Lc
K
(T1)

xjℓ in τ(M(Lc
K(T1))), in other words, α1 is its leading coefficient wrt

lexicographic ordering of variables. Note that, for i ∈ [k], πi still τ(K)-matches
τ(Lc

K(T1)), τ(L
c
K(Ti)) with the same scaling factor (if πi(ℓ) ∈ cℓℓ + K then τ(πi(ℓ)) ∈

cℓτ(ℓ) + τ(K)). This means that the leading coefficient of τ(M(Lc
K(Ti))) is sc(πi) ·

α1 =: αi, for all i > 1. Thus, we have pinpointed the coefficient of
∏

ℓ∈Lc
K
(T1)

xjℓ in

τ(M(Lc
K(Ti))) as αi, for all i ∈ [k]. Now compare the coefficients of

∏

ℓ∈Lc
K
(T1)

xjℓ in the

identity τ(C) = 0. This gives
∑

i∈[k] αi · τ(M(LK(Ti))) = 0. Applying the inverse of τ ,

we get the nucleus identity.

Lemma 6.3 (restated). Let |F| > d and C be a ΣΠΣ(k, d) identity, over F, with nucleus
K. Let y0 ∈ L(R)∗ and U be a subspace of L(R) such that L(R) = Fy0 ⊕ U ⊕ K. Then
there exists an invertible linear transformation τ : L(R)→ L(R) that fixes K and :

1) τ(C) is also a ΣΠΣ(k, d) identity with nucleusK and the same simplicity, minimality
properties.

2) Every form in Lc
K(τ(C)) = τ(Lc

K(C)) is monic wrt y0.

PROOF. Let r := rk(Fy0⊕U). Fix a basis {y0, . . . , yr−1} of Fy0⊕U and let y denote the
column vector [y0, · · · , yr−1]

T of forms. Let ℓ ∈ Lc
K(T1). Then there is a unique nonzero

(column) vector αℓ ∈ Fr and a vℓ ∈ K, such that ℓ = αℓ
T · y +vℓ. We intend τ to be a

linear transformation that fixes each element in K and maps y to Ay where A ∈ Fr×r.
Such a τ will map ℓ to τ(αℓ

T ·y)+vℓ = αℓ
T ·τ(y)+vℓ = αℓ

TAy+vℓ. To make τ(ℓ) monic in
y0 we need to choose A such that the first coordinate in αℓ

TA is nonzero, i.e. αℓ
TA∗1 6= 0

whereA∗1 is the first column ofA. Thus, we want an A such that
∏

ℓ∈Lc
K
(T1)

αℓ
TA∗1 6= 0.

Now the nonzero multivariate polynomial f(Y ) :=
∏

ℓ∈Lc
K
(T1)

αℓ
TY has degree at

most d < |F|. Hence, by [Schwartz 1980; Zippel 1979; DeMillo and Lipton 1978] lemma
there exists a point Y ∈ Fr at which f is nonzero. We can fix A∗1 to be that point.
This fixes just one column of A to a nonzero vector and we can arbitrarily fix the rest
such that A is an invertible matrix. Thus, the corresponding invertible τ makes each
ℓ ∈ Lc

K(T1) monic in y0. Since τ fixes the nucleus K, matching property of the nucleus
tells us that every form in Lc

K(τ(C)) = τ(Lc
K(C)) is monic in y0.
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Since τ is an invertible linear transformation, it is actually an automorphism of
L(R) and, in particular, the zeroness, simplicity and minimality properties of C are
invariant under it.

In Lemma 3.2, we have seen a cancellation rule for non-zerodivisors. The following
is a stronger form of cancellation.

Lemma 6.4 (restated). Let K be some subspace of L(R) and let ℓ1, . . . , ℓm ∈ L(R) \K
be linearly independent modulo K. Let f1, . . . , fm be multiplication terms similar to
powers of ℓ1, . . . , ℓm respectively modulo K (i.e. each form in fi is in (F∗ℓi + K)). Let
ℓ ∈ L(R)∗ such that for some s ∈ [m], ℓ ∈ Fℓs +K. Then, for any polynomial f ∈ R,

ℓf ∈ 〈f1, . . . , fm〉 iff f ∈ 〈f1, . . . ,
fs

gcd(fs, ℓ)
, . . . , fm〉.

PROOF. Suppose ℓf ∈ 〈f1, . . . , fm〉. Then, by definition, there exist q’s inR such that,

ℓf =

m
∑

i=1

qifi. (11)

Additionally assume these qi’s to be such that the set J := {j ∈ [m] \ {s} | ℓ ∤ qj} is the
smallest possible. If ℓ|qi, for all i ∈ [m] \ {s}, then ℓ has to divide qsfs. This means that
ℓ has to divide qs gcd(ℓ, fs), thus we get,

f =
∑

i∈[m]\{s}

qi
ℓ
fi +

qs gcd(ℓ, fs)

ℓ
·

fs
gcd(fs, ℓ)

and we are done.
So the remaining case is when the set J := {j ∈ [m] \ {s} | ℓ ∤ qj} is nonempty.

Fix an element j∗ ∈ J . Consider the ideal I := 〈{ℓ, fs} ∪ {fj|j
∗ 6= j ∈ J}〉. Reducing

Equation (11) modulo I we get, qj∗fj∗ ≡ 0(mod I). Note that radsp(I) ⊆ K+sp({ℓj|j∗ 6=
j ∈ [m]}) while each form in L(fj∗) is in (F∗ℓj∗ + K) which is disjoint from radsp(I),
thus by Lemma 3.2 we can drop fj∗ from the last congruence and get qj∗ ∈ I. This
means qj∗fj∗ ∈ 〈{ℓfj∗ , fs} ∪ {fj|j∗ 6= j ∈ J}〉. We plug this in the j∗-th summand of
Equation (11) and after simplifications get (verify that the [m] \ ({s} ∪ J) summands
are unaffected):

ℓf =
m
∑

i=1

qifi

= q′sfs + (ℓq′j∗)fj∗ +
∑

j∈J\{j∗}

q′jfj +
∑

j∈[m]\({s}∪J)

qjfj

Notice that for j ∈ [m] \ ({s} ∪ J), ℓ divides qj , thus the above equation contradicts the
assumed minimality of J . This shows that J was empty to begin with, thus finishing
the proof.

9. CONCLUSION

In this work we developed new methods to study depth-3 identities. These ideal meth-
ods hinge on a classification of zerodivisors of the ideals generated by gates of a ΣΠΣ
circuit (eg. Lemmas 3.2, 3.5 and 6.4). That is useful in proving an ideal version of
Chinese remaindering tailor-made for ΣΠΣ circuits. As a byproduct, it shows the ex-
istence of a low rank nucleus identity C′ inside any given ΣΠΣ(k, d) identity C (when
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C is not minimal, C′ can still be defined but it might not be homogeneous). The prop-
erties of the nucleus identity are an important part of an identity and it might be
useful for PIT to understand (or classify) it further. Can the rank bound for the nu-
cleus identity be improved to O(k)? More importantly, can the rank bound for simple
minimal real ΣΠΣ(k, d) identities be improved to O(k)? The best constructions known,
since [Dvir and Shpilka 2006], have rank 4(k − 2). Over other fields, our upper bound
of O(k2 log d) still leaves some gap in understanding the exact dependence on k. Of
course, the most important question is whether our techniques can help construct a
truly polynomial time deterministic (even non-blackbox) algorithm for PIT.
We generalize the notion of Sylvester-Gallai configurations to any field and define a

parameter SGk(F,m) associated with field F. This number seems to be a fundamental
property of a field, and as we show, is very closely related to ΣΠΣ identities. It would be
interesting to obtain bounds for SGk(F,m) for different F. For example, as also asked by
[Kayal and Saraf 2009], can we nontrivially bound the number SGk(F,m) for other in-
teresting fields: C, finite fields with large characteristic, or even p-adic fields? The only
known SGk rank bounds are those for R, SG2(C,m) ≤ 3, and SG2(F,m) = O(logm).
We shed (a little) light on SG rank bounds by showing SGk(F,m) = O(k logm), which
was subsequently improved for finite fields in [Bhattacharyya et al. 2011]. It would be
interesting to generalize their bound of SG2(Fp,m) = O(poly(p) + logp m) to one for
SGk(Fp,m).
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