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DETERMINISTIC POLYNOMIAL TIME ALGORITHMS FOR
MATRIX COMPLETION PROBLEMS∗

GÁBOR IVANYOS† , MAREK KARPINSKI‡ , AND NITIN SAXENA§

Abstract. We present new deterministic algorithms for several cases of the maximum rank
matrix completion problem (for short matrix completion), i.e., the problem of assigning values to
the variables in a given symbolic matrix to maximize the resulting matrix rank. Matrix completion
is one of the fundamental problems in computational complexity. It has numerous important algo-
rithmic applications, among others, in computing dynamic transitive closures or multicast network
codings [N. J. A. Harvey, D. R. Karger, and K. Murota, Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, 2005, pp. 489–498; N. J. A. Harvey, D. R. Karger, and
S. Yekhanin, Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2006, pp. 1103–1111]. We design efficient deterministic algorithms for common generalizations of the
results of Lovász and Geelen on this problem by allowing linear polynomials in the entries of the
input matrix such that the submatrices corresponding to each variable have rank one. Our methods
are algebraic and quite different from those of Lovász and Geelen. We look at the problem of matrix
completion in the more general setting of linear spaces of linear transformations and find a maximum
rank element there using a greedy method. Matrix algebras and modules play a crucial role in the
algorithm. We show (hardness) results for special instances of matrix completion naturally related
to matrix algebras; i.e., in contrast to computing isomorphisms of modules (for which there is a
known deterministic polynomial time algorithm), finding a surjective or an injective homomorphism
between two given modules is as hard as the general matrix completion problem. The same hardness
holds for finding a maximum dimension cyclic submodule (i.e., generated by a single element). For
the “dual” task, i.e., finding the minimal number of generators of a given module, we present a
deterministic polynomial time algorithm. The proof methods developed in this paper apply to fairly
general modules and could also be of independent interest.
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1. Introduction. A linear matrix is a matrix having linear polynomials as its
entries, say the linear polynomials are over a field F and in F[x1, . . . , xn]. The problem
of maximum rank matrix completion, or just matrix completion for short, is the prob-
lem of assigning values from the field F to the variables x1, . . . , xn such that the rank of
a given linear matrix is maximized (over all possible assignments). (Throughout this
paper for a matrix M we denote its rank by rkM .) The notion of linear matrices ap-
pears in several places including both theory and applications; see [HKM05, HKY06]
for several references. The problem of matrix completion is a well-studied problem,
dating back to the work of Edmonds [Edm67] and Lovász [Lov79]. A similar prob-
lem (basically an equivalent one) is nonsingular matrix completion, where we have a
square linear matrix and are interested in an assignment resulting in a nonsingular
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matrix. If the ground field is sufficiently large, then the maximum rank achieved
by completion coincides with the rank of the linear matrix considered as a matrix
over the function field F(x1, . . . , xn) and, hence, by standard linear algebra, finding
a maximum rank completion (equivalently, determining the maximum rank) is in de-
terministic polynomial time reducible to instances of finding (equivalently, deciding
the existence of) nonsingular completion of certain minors. Lovász gave an efficient
randomized algorithm to find a matrix completion using the Schwartz–Zippel lemma
[Sch80, Zip79], deducing that a random assignment of the variables will maximize the
rank if the field is large enough (see also [IM83]). This is a method also useful in
the fundamental problem of polynomial identity testing (PIT). Indeed matrix com-
pletion is equivalent to a special case of PIT: any arithmetic formula can be written
as the determinant of a linear matrix [Val79]; hence the formula would be nonzero if
and only if the corresponding matrix could attain full rank (assuming a large enough
field). Over large fields, this makes matrix completion an important problem in ZPP
(zero-error probabilistic polynomial time), as its derandomization would imply circuit
lower bounds (see Kabanets and Impagliazzo [KI03]).

Over small fields, matrix completion soon becomes a hard problem. This version
has some important practical applications, for example, in constructing multicast
network codes [HKM05], and hence there are several results in the literature specifying
the exact parameters for which the problem becomes NP-hard. The hardness of
matrix completion and various related problems was first studied by Buss, Frandsen,
and Shallit [BFS99] and more recently by Harvey, Karger, and Yekhanin [HKY06].
In the former paper nonsingular matrix completion is proved to be NP-hard over
fields of constant size, while the latter shows that matrix completion over the field
F2 is NP-hard even if we restrict the input to a matrix where each variable occurs
at most twice in its entries. This naturally raises the question, Can we solve matrix
completion by restricting the way the variables appear in the input matrix?

Few such cases are already known, and they all look at mixed matrices, i.e., linear
matrices where each entry is either a variable or a constant. Harvey, Karger, and
Murota [HKM05], building on the works of Geelen [Gee99] and Murota [Mur00],
give an efficient deterministic algorithm for matrix completion over any field if the
mixed matrix has each variable appearing at most once, while Geelen, Iwata, and
Murota [GIM03] and Geelen and Iwata [GI05] give an efficient deterministic algorithm
when the mixed matrix is skew-symmetric and has each variable appearing at most
twice.

Completion by rank one matrices. In this paper we are interested in cases
that are more general than the first case [HKM05]. Consider a linear matrix A ∈
F[x1, . . . , xn]

m×m, where the submatrix “induced” by each variable is of rank one,
i.e., A = B0+x1B1+ · · ·+xnBn, where B1, . . . , Bn are constant matrices of rank one
(note that B0 is also a constant matrix but of arbitrary rank). The case B0 = 0 was
first considered by Lovász in [Lov89], where it is shown how Edmonds’ matroid inter-
section algorithm can be applied to solve this special case in deterministic polynomial
time. The first main result in this paper is a common generalization of the results of
Lovász [Lov89] and Geelen [Gee99]: we show that the matrix completion problem for
an arbitrary B0 can be solved in deterministic polynomial time over any field.

Theorem 1.1. Let F be a field and let B0, . . . , Bn be m ×m matrices over F.
If B1, . . . , Bn are of rank one, then matrix completion for the matrix (B0 + x1B1 +
· · ·+ xnBn) can be done deterministically in poly(m,n) field operations.

The proof of this theorem basically involves looking at the linear space L :=
〈B0, B1, . . . , Bn〉 of matrices (i.e., we consider all linear combinations of these n + 1
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matrices over F) and showing that a greedy approach can be utilized to gradually
increase the rank of an element in L. Our methods are more algebraic and quite
different from those of Lovász and Geelen. In particular our method is robust enough
to check whether a given matrix in L has the largest possible rank without needing
the rank one generators of L; they are needed only if we want to increase the rank
(see section 2).

Matrix algebras or algebras of linear transformations (in this paper by an algebra
we mean a linear space of matrices or linear transformations that is also closed under
multiplication) play a crucial role in the algorithm for Theorem 1.1. We consider spe-
cial instances of matrix completion problems where algebras of linear transformations
arise naturally. These are certain module problems.

Preliminaries about modules. If U and V are vector spaces over the field
F, then we denote the vector space of linear maps from U to V by Lin(U, V ). For
Lin(U,U) we use the notation Lin(U). For simplicity, in this paper we consider mod-
ules over finite sets. (Actually, we work with modules over free associative algebras;
however, the main concepts and computational tasks we are concerned with can be
understood without any knowledge from the theory of abstract associative algebras.)
Let S be a finite set. A vector space V over the field F together with a map ν from
S into Lin(V ) is called an F{S}-module (or an S-module for short if F is clear from
the context). We assume that the data for an S-module is input by an |S|-tuple of
dimV by dimV matrices. In cases when the map ν is clear from the context—most
typically when S is itself a set of linear transformations—we omit ν and denote the
result ν(B)v of the action of B ∈ S on v ∈ V by Bv. For a set S ′ ⊆ Lin(V ) of lin-
ear transformations the enveloping algebra Env(S ′) is the smallest algebra containing
S ′. It is the linear span of finite products of transformations from S ′ (and may be
noncommutative).

In the context of S-modules the algebra A = Env(ν(S) ∪ I) is of special interest
(I is the identity in Lin(V )). An S-submodule of V is a linear subspace closed under
the action of all the transformations in ν(S). Obviously, the intersection of a family of
submodules is again a submodule. In particular, if T is a subset of V , then there is a
smallest submodule of V containing T : the submodule generated by T . It is AT , the
linear span of vectors obtained by application of transformations from A to vectors
from T . The set T ⊆ V is a system of generators for the S-module V if V = AT .

Cyclic submodules, i.e., those generated by a single element, are of particular
interest. For v ∈ V we consider the map μv : A → V given by μv(B) = Bv.
Obviously, μv is a linear map from A into V , and the set {μv | v ∈ V } is a linear
space of linear maps from A to V . The rank of μv is the rank of its image, i.e., the
dimension of the submodule Av generated by v.

A “universal” module problem. The matrix completion problem in this con-
text is finding an element v which generates a submodule of maximum dimension. It
turns out that this problem, which we call cyclic submodule optimization, is universal
in matrix completion: there is a deterministic polynomial time reduction from max-
imum rank matrix completion to cyclic submodule optimization (over an arbitrary
base field). We show this universality in section 3. Universality implies two hard-
ness results. First, existence of a deterministic polynomial time algorithm for cyclic
submodule optimization would imply deterministic solvability of the matrix comple-
tion problem over sufficiently large fields. Also, over small fields, cyclic submodule
optimization is NP-hard. Second, we get analogous hardness results for the existence
of injective (resp., surjective) homomorphisms between modules (an S-module homo-
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morphism from V to V ′ is a linear map in Lin(V, V ′) that commutes with the action
of S).

Theorem 1.2. There is a deterministic polynomial time reduction from the
existence of (resp., finding) a nonsingular matrix completion to the problem of checking
for the existence of (resp., finding) a surjective (or injective) homomorphism between
two modules.

This result is remarkable in view of the recent deterministic polynomial time
algorithm of Brooksbank and Luks [BL08] for the module isomorphism problem (see
also Chistov, Ivanyos, and Karpinski [CIK97] regarding special base fields).

A “dual” problem. In section 4 we consider a problem which is in some sense
“dual” to the cyclic submodule optimization. This is finding a system of generators
of smallest size for a module. In contrast to hardness of the former problem, we have
an efficient solution to the generator problem.

Theorem 1.3. Given a module structure on the n-dimensional vector space V
over the field F in terms of m n× n matrices S, one can find the minimum number
of generators of V deterministically using poly(m,n) field operations.

Note that the above result includes efficiently testing the cyclicity of modules
over any field, a special instance of cyclic submodule optimization. This problem
was considered in [CIK97] as a tool for constructing isomorphisms between modules
and was efficiently solved over special fields. Together with the reduction given in
[CIK97], Theorem 1.3 gives a method, completely different from that of [BL08], for
constructing isomorphisms between modules in polynomial time over arbitrary fields.
The algorithm of Theorem 1.3 is based on a greedy approach analogous to the method
for Theorem 1.1, and it implicitly uses certain submodule dimension optimization
techniques for a special class of (so-called semisimple) modules.

2. Matrix completion with rank one matrices. In this section we prove
Theorem 1.1. The iterative step (formulated in Theorem 2.4 below) provides a tool
for increasing the rank of a matrix by adding some matrices from a collection of rank
one matrices, if possible. The proof is based on the special case (see Lemma 2.1) where
we have square matrices and the matrix whose rank is to be increased is idempotent
(equals its square). This assumption enables us to use matrix multiplication and
matrix algebras. In the general case we will achieve this situation by padding and
multiplying all of our matrices by an appropriate matrix.

Let V be a finite dimensional vector space over the field F and let L ≤ Lin(V )
be an F-linear subspace of linear transformations. Recall that Env(L), the envelop-
ing algebra of L, is the linear span of products h1h2 · · ·hs (s ≥ 1, h1, . . . , hs ∈ L).
Obviously, Env(L) is also spanned by products of elements from an arbitrary basis of
L. We will use the action of the enveloping algebra on the kernel of an idempotent
transformation to optimize rank in a linear space; to that effect we present the follow-
ing lemma. Its proof will also suggest how to greedily increment the rank. Broadly
speaking, Lemma 2.1 and Fact 2.3 are used to show in Theorem 2.4 that an h ∈ L is
of maximum rank if and only if Env(L) maps the kernel of h in the image set of h, a
condition which is then easy to check algorithmically.

Lemma 2.1. Let V be a finite dimensional vector space over the field F, let
L ≤ Lin(V ), and assume that e ∈ L is an idempotent (e2 = e) such that rk e ≥ rk h
for every h ∈ L. If L is spanned by e and certain rank one transformations, then
Env(L) ker e ⊆ eV .

Proof. Assume, for contradiction, that Env(L) ker e is not contained in eV . Then
there exists a vector v ∈ ker e such that Lsv 
⊆ eV for some integer s. Let s ≥ 1
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be the smallest among such integers. Then there are matrices h1, . . . , hs ∈ L with
hs · · ·h2h1v 
∈ eV such that, for every i, the matrix hi is either e or has rank one.
Assume that hj = e for some j ≤ s. Then j > 1 as ev = 0. Furthermore, the
minimality of s implies

(2.1) hj−1 · · ·h1v ∈ eV ;

therefore, as ew = w for every w ∈ eV , we have hs · · ·hj+1hjhj−1 · · ·h1v = hs · · ·
hj+1ehj−1 · · ·h1v = hs · · ·hj+1hj−1 · · ·h1v, contradicting the minimality of s. Thus
all the matrices h1, . . . , hs are of rank one. Set v0 = v and for 1 ≤ i ≤ s, vi = hivi−1.
The minimality of s implies that for every 1 ≤ i ≤ s we have vi ∈ Liv \ ∑i−1

j=0 L
jv.

In particular, the vectors v0, . . . , vs are linearly independent. Since hi is a rank one
transformation on V ,

(2.2) hiV = Fvi for all 1 ≤ i ≤ s.

From this, and from the minimality of s, we infer hjvi−1 = 0 for every 1 ≤ i < j ≤ s
(otherwise vj ∈ hjL

i−1v ⊆ Liv). We show below that a := e + h1 + · · · + hs is of a
rank higher than e, leading to the desired contradiction.

Informally, we build a basis in which the matrix of a is upper triangular. First,
we see that (keep in mind (2.1) and (2.2)) avi−1 = evi−1 +

∑
j<i hjvi−1 + vi +∑

j>i hjvi−1 = vi+ evi−1+
∑

j<i hjvi−1 ∈ vi+ evi−1+
∑

j<i Fvj ⊆ vi+ 〈v1, . . . , vi−1〉
(i = 1, . . . , s). (With some abuse of notation, for i = 1, by 〈v1, . . . , vi−1〉 we mean the
zero subspace.) Hence the vectors av0, . . . , avs−1 span the subspace 〈v1, . . . , vs〉. Let
W be a direct complement to the subspace 〈v1, . . . , vs−1〉 in eV and let w1, . . . , wt be
a basis ofW (t = rk e−s+1). Then awi = ewi+

∑s
j=1 hjwi = wi+

∑s
j=1 hjwi ∈ wi+

〈v1, . . . , vs〉 (by (2.2)). Therefore the vectors aw1, . . . , awt are linearly independent
even modulo the subspace 〈v1, . . . , vs〉. Together with the fact that 〈av0, . . . , avs−1〉 =
〈v1, . . . , vs〉, this implies that 〈av0, . . . , avs−1, aw1, . . . , awt〉 = 〈v1, . . . , vs, w1, . . . , wt〉 =
〈eV, vs〉. Thus the image of a contains a subspace of dimension rk e + 1, and hence
rk a ≥ rk e+ 1, as claimed.

In the above proof, the special case s = 1 deserves special attention. In that case
we have a simple method for increasing the rank over sufficiently large fields which
works even without any assumption on the presence of rank one matrices. We will
use this simple observation later in section 4.

Lemma 2.2. If h, h′′ ∈ Lin(U, V ) are transformations such that h′′ kerh 
⊆ hU ,
then h′ := h + αh′′ will be of a higher rank than h except for at most (rk h + 1)
elements α ∈ F.

Proof. Let k = rk h, and let U0 be a subspace of U complementary to kerh. Let
u1, . . . , uk be a basis of U0, and let v1, . . . , vk be a basis of the image hU . Choose
a vector uk+1 ∈ kerh such that vk+1 := h′′uk+1 
∈ hU . Consider the matrix of the
restriction of h+xh′′ to U0+Fuk+1 in the bases u1, . . . , uk, uk+1 and v1, . . . , vk, vk+1.
The last row of the constant term (the matrix of h) is zero, while the lower right entry
of the linear term (the matrix of xh′′) is x. Expanding by the last row, we obtain
that the linear term of the determinant of this (k + 1)× (k + 1) matrix is dx, where
d 
= 0 is the determinant of the upper left k × k block of h. Thus the determinant
is a nonzero polynomial in x of degree at most (k + 1), and hence the corresponding
(k+1)× (k+1) block of h′ = h+αh′′ is nonsingular, showing that h′ has rank higher
than k unless α is a root of this polynomial.

We state below a simple fact about the linear spaces of matrices that is useful in
providing a certificate for the rank maximality of a given matrix.
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Fact 2.3. Let L ≤ Lin(U, V ), where U and V are finite dimensional spaces over
the field F. Then for every h ∈ L we have rk h ≤ dimU −max{dimW − dimLW |
W ≤ U}.

Proof. For any subspace W ≤ U pick a direct complement W ′ of W in U . Now
dimU − rk h = dimU − dimhU ≥ (dimW − dimhW ) + (dimW ′ − dimhW ′) ≥
(dimW − dimLW ) + 0.

Using Edmonds’ matroid intersection theorem, Lovász (section 3 of [Lov89]) has
shown that equality holds provided that h is of maximum rank and if L is spanned by
rank one matrices. We give the following algorithmic generalization to the case when
L is spanned by rank one matrices and an arbitrary rank matrix.

Theorem 2.4. Let U and V be two finite dimensional vector spaces over the field
F, let L ≤ Lin(U, V ) be given by a basis, and let an h ∈ L also be given. Suppose that
L is spanned by h and certain (unknown) transformations of rank one.

1. Then there exists a deterministic polynomial time algorithm which decides
whether h is an element of L of maximum rank. If h is of maximum rank, then a
subspace W of U is constructed such that rk h = dimU − (dimW − dimLW ).

2. If h is not of maximum rank, then, given rank one transformations that together
with h span L, we can compute an element h′ ∈ L with rk h′ > rk h in deterministic
polynomial time.

Proof. We may assume without loss of generality that dimU = dimV , for other-
wise we can pad transformations from L with zeros to obtain a space L′ ≤ Lin(U ⊕
U ′, V ⊕V ′), where dimU ⊕U ′ = dimV ⊕V ′ with some (possibly zero) spaces U ′, V ′.
By padding a transformation b ∈ Lin(U, V ) we mean the map b′ ∈ Lin(U⊕U ′, V ⊕V ′)
which is the direct sum of b and the zero map: b′(u, u′) = (bu, 0).

Let g : V → U be an arbitrary nonsingular linear map such that gh : U → U is
an idempotent. (The matrix of such a map g can be obtained as the product of the
matrices corresponding to the pivoting steps in Gaussian elimination for the matrix
of h.) As g is invertible, h is of maximum rank within L if and only if gh is of
maximum rank within gL. Also, rank one generators of L are mapped to rank one
generators of gL. If gh is of maximum rank, then by Lemma 2.1, Env(gL) ker gh ≤
ghU . Conversely, if Env(gL) ker gh ≤ ghU , then, with W0 := Env(gL) ker gh and
W1 := ker gh, we have gLW0, gLW1 ≤W0 ≤ ghU and W0 ∩W1 = 0 (if v ∈W0 ∩W1,
then v = ghu for some u ∈ U and ghv = 0, implying 0 = ghghu = ghu = v).
Therefore, withW :=W0+W1 ≤ U we have gLW ≤W0 and dimU−rk gh = ker gh =
dimW1 = dimW −dimW0 ≤ dimW −dim gLW . Now g being invertible also implies
that dimU − rk h ≤ dimW − dimLW , which together with Fact 2.3 implies that h
has maximal rank. Thus if Env(gL) ker gh ≤ ghU , then we can efficiently construct
W with the required property that it is a witness of the maximality of the rank of
gh (resp., h) in gL (resp., L). Thus, h and hence gh are not of maximum rank if and
only if Env(gL) ker gh is not contained in ghU . This can be easily decided, e.g., by
the following breadth-first-search–like algorithm.
Algorithm:

(0) Let A, B, and C be bases for gL, ker gh, and ghU , respectively, and set
D := ∅. Also initialize Q to be an empty FIFO list.

(1) Enqueue all elements of B into Q.
Outer loop, repeat until Q becomes empty

(2) Dequeue front element u from Q.
Inner loop, do for each a ∈ A:

(3) If au is linearly independent of C, then output “not contained” and exit.
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(4) If au is linearly independent of D, then add au to D and enqueue au into Q.
End of inner loop

End of outer loop

(5) Output “contained” and exit.
Furthermore, if L is spanned by h and (known) rank one matrices h1, . . . , h�,

we use {gh1, . . . , gh�} as basis A in the above algorithm, and supplement step (4)
with keeping track of a and u along au when it is enqueued, then, by the proof of
Lemma 2.1, we can easily find a linear combination of gh and gh1, . . . , gh� of higher
rank if the algorithm exits in step (3). Multiplying by g−1 we obtain an element of L
of rank larger than rk h.

Note that initially dimQ = |B|, and it is always dequeued in the outer loop, while
sometimes it is enqueued in the inner loop. However, whenever enqueuing happens,
dimD increases; thus Q can be enqueued at most dim ghU = rk h times. Thus
the number of iterations in the algorithm is at most (|B| + rk h) · |A| = (dimU)·
(dimL).

It is obvious that repeated applications of Theorem 2.4 complete the proof of
Theorem 1.1.

We remark that the shortest product Π = gh1 · · · gh� with Πkerh 
⊆ hU found by
the above algorithm can be interpreted as a generalization of the notion of augmenting
paths in the classical bipartite matching algorithms. Indeed, let G = (V1, V2, E) be
a bipartite graph. For simplicity we assume |V1| = |V2|. We take vector spaces
U and V over F with bases V1 and V2, respectively. For an edge (v1, v2) ∈ E we
define the linear map a(v1,v2), which maps v1 to v2 and the other basis elements
from V1 to zero, and let L be the space of linear maps spanned by a(v1,v2), where
(v1, v2) ∈ E. Let H be a (partial) matching in G, and let h be its adjacency matrix,
i.e., h =

∑
(v1,v2)∈H a(v1,v2). We define a bijection Γ : V2 → V1 by reversing the edges

in H and supplementing this system to a perfect matching by some independent pairs
from V2 × V1. Let g be the linear map V → U extending Γ. We run the above
algorithm, where A = {a(v1,v2) | (v1, v2) ∈ E}, B consists of the elements of V1 which
are unmatched by H , and C is the set of matched elements of V2. In this setting
the algorithm literally behaves like the classical method, which builds alternating
forests, and the edges corresponding to the maps hi taking part in the product Π
form (together with the appropriate edges from H) an augmenting path.

Skew-symmetric matrices of odd size are perhaps the best known examples show-
ing that the inequality in Fact 2.3 cannot be replaced by equality in general; see
[Lov79]. These examples can be used to demonstrate that the assertion of Lemma 2.1
fails as well if we omit the assumption that L is generated by e and rank one matrices.
To see a small counterexample, let L′ be the set of skew-symmetric 3 × 3 matrices
and let V = F

3. Then, as skew-symmetric matrices have even rank, all the nonzero
matrices in L′ have rank two. Put

h =

⎛
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎠ , g =

⎛
⎝
0 −1 0
1 0 0
0 0 1

⎞
⎠ , and e := gh =

⎛
⎝
1 0 0
0 1 0
0 0 0

⎞
⎠ .

Then e is an idempotent of rank two, and in L = gL′ all the matrices have rank at
most two. On the other hand, it is straightforward to check that Env(L) is the whole
algebra of the 3 × 3 matrices. Therefore Env(L) ker e is the whole three-dimensional
space V and is not contained in eV .
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3. Module morphism problems and matrix completion. In this section we
present hardness results of certain problems concerning modules. The key construc-
tions are modules that we call bipartite modules as they resemble bipartite graphs.

3.1. Bipartite modules. Let W1 and W2 be two linear spaces over F, and
assume that we are given a linear subspace R ≤ Lin(W1,W2) of linear maps from W1

to W2. We assume that R is spanned by � maps: r1, . . . , r�. We consider the direct
sum W = W1 ⊕W2. We extend transformations r ∈ R to linear transformations of
W by letting r act on W2 as the zero map. (That is, the extension maps (w1, w2) to
(0, rw1).) With some abuse of notation, we denote the extended map also by r and
consider R as a subspace of Lin(W ). Let S be the set {r1, . . . , r�}, and let the (now
identity) map ν : S → Lin(W ) define the S-module structure on W (more precisely,
W is an F{S}-module). This S-module W is a bipartite module.

3.2. Universality of cyclic submodule optimization. In this section we
show the following result.

Theorem 3.1. There is a deterministic polynomial time reduction from maxi-
mum rank matrix completion to cyclic submodule optimization.

Proof. Let L be a linear space of F-linear maps from U to V . As a first idea, it
would be straightforward to consider the bipartite module W for W1 = U , W2 = V ,
and R = L. However, this module does not turn out to be useful for our purposes.
The main idea is based on the insight that the data for L can be considered as an
element of the tensor product space U ⊗V ⊗L′, where L′ is a vector space isomorphic
to L. Such a tensor can be viewed as a linear space of linear maps in six ways: a
space of linear maps from U to V , a space of linear maps from V to U , a space of
linear maps from U to L′, a space of linear maps from L′ to U , a space of linear maps
from V to L′, and finally a space of linear maps from L′ to V . We consider here the
last view; that is (identifying L′ with L), we give linear maps from L to V .

For every vector u the map μu : L → V given as μu(h) := h(u) is a linear
map, and {μu | u ∈ U} is a linear space of linear maps from L to V . We use the
bipartite module construction with W1 = L, W2 = V , and R = {μu | u ∈ U}.
Assume that U is spanned by u1, . . . , u�. Then we put S := {μu1 , . . . , μu�

}. There is
a relation between the rank of h ∈ L and the dimension of the S-submodule of the
bipartite module W = L ⊕ V generated by (h, v). This submodule is the subspace
F(h, v) + (0, hU). (Indeed, (h, v) must be included in the submodule generated by
itself, and application of μui to (h, v) gives (0, μui(h)) = (0, hui) (i = 1, . . . , �). These
vectors span the subspace F(h, v) + (0, hU), and this space remains invariant under
the action of elements of F{S}.) The dimension of F(h, v)+(0, hU) is clearly (1+rk h)
if h is not the zero map. Therefore the maximum dimension of a cyclic submodule
of W is one plus the maximum rank in L, and this optimum is taken at generators
of the form (h, v), where h is of maximum rank. Thus our construction transforms
matrix completion in L to cyclic submodule optimization in W .

3.3. Module morphisms. Let U and V be two F{S}-modules. An F-linear
map φ ∈ Lin(U, V ) is an S-module homomorphism if for every s ∈ S and u ∈ U
we have φ(su) = sφ(u). The module homomorphism from U to V forms a linear
subspace HomF{S}(U, V ) of Lin(U, V ). Given the S-module structure on U and V in
terms of matrices over bases, a basis for the matrix space representing HomF{S}(U, V )
can be computed with poly(dimU +dimV + |S|) field operations by solving a system
of homogeneous linear equations.

It is not difficult to construct subspaces of Lin(U, V ) which do not arise as spaces
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of module homomorphisms. Thus it is natural to ask how difficult are the matrix com-
pletion problems in spaces of module morphisms. It turns out (as shown below) that
the cyclic submodules of a bipartite moduleW (defined as L⊕V in the last subsection)
arise as homomorphic images of another S-module W0, where S = {r1, . . . , r�} and
W0 has basis b0, b1, . . . , b� that by definition satisfy rib0 = bi, ribj = 0 (i, j = 1, . . . , �).

This shows that hard matrix completion problems do arise in module morphism
spaces. However, curiously enough, deciding existence and construction of module
isomorphisms, i.e., module homomorphisms which are bijective linear maps, can be
accomplished in polynomial time (see [CIK97] with some restriction for the base field
and [BL08] for arbitrary fields). We show that this is not the case for testing existence
of injective or surjective module morphisms.

Module injection. For the injective case, consider the bipartite modulesW and
W0 discussed above. The module W0 is cyclic; i.e., it is generated by b0. Therefore
a module homomorphism is determined by the image of b0. In this case for every
pair (w1, w2) there is indeed a homomorphism with ψ(b0) = (w1, w2). (For i > 0 set
ψ(bi) = (0, riw1).) Consider the special case of the bipartite module W used in the
proof of Theorem 3.1: let L be a space of linear maps from U to V , and put W1 = L
and W2 = V . Then the image of W0 at the map ψ, under which the image of b0
is (h, v), is the subspace spanned by (h, v), (0, hu1), . . . , (0, hu�). This ψ is injective
if and only if h is. This construction reduces both deciding and finding an injective
transformation in L (and also nonsingular matrix completion as a special case) to
deciding and finding an injective homomorphism from W0 to W .

Module surjection. Existence of (resp., finding) injective module morphisms
can be transformed to the existence of (resp., finding) surjective morphisms between
modules by standard dualization. IfM is a vector space over F, then byM∗ we denote
the space of (homogeneous) linear functions from M to F (that is, M∗ = Lin(M,F)).
If φ is an F-linear map from the spaceM1 toM2, then the map φ∗ :M∗

2 →M∗
1 given as

(φ∗f)v = φ(fv) is again a linear map. (Note that if φ is interpreted as multiplication of
column vectors by a matrix from the left, then φ∗ can be interpreted as multiplication
of row vectors by the transposed matrix from the right.) Furthermore, if both M1

andM2 are finite dimensional, then φ is injective (resp., surjective) if and only if φ∗ is
surjective (resp., injective). IfM1 andM2 are S-modules given by the maps ν1 and ν2,
then ν∗1 and ν∗2 given as ν∗i (s) = νi(s)

∗ make M∗
1 and M∗

2 S-modules. Furthermore,
the linear map φ ∈ Lin(M1,M2) is a module homomorphism from M1 to M2 if and
only if φ∗ is a module homomorphism from M∗

2 to M∗
1 .

So when given vector spaces U, V over F, and a linear subspace L of Lin(U, V )
with � := dimU , we first construct modules W and W0 as in the previous reduction
so that the module homomorphism ψ fromW0 toW is injective if and only if h ∈ L is
an injective map where ψ(b0) = (h, v). Therefore Ψ ∈ HomF{S}(W ∗,W ∗

0 ) is surjective
if and only if for the unique F-linear map ψ : W0 → W such that Ψ = ψ∗ we have
that h is injective, where ψ(b0) = (h, v). This completes the proof of Theorem 1.2.

4. Minimizing number of generators in modules. We saw that cyclic sub-
module optimization is matrix completion hard. Now we will study the “dual” prob-
lem of finding the minimal number of generators of a given module. In this section
we give an efficient algorithm for minimizing the number of generators in a given
F{S}-module. It depends on a greedy property of the dimension of submodules in so-
called semisimple modules (which will be vaguely similar to the property in section 2).
But first we need to summarize some basic notions and facts from the representation
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theory of algebras needed in the proof. For details, we refer the reader to the first few
chapters of the textbook [Pie82].

4.1. Preliminaries: Algebras, modules, and their decompositions. Let
F be an arbitrary field. An associative algebra with identity, or algebra for short, is a
vector space A over F equipped with an associative F-bilinear multiplication having
a two-sided identity element 1A with respect to the multiplicative structure. If V is
a finite dimensional vector space of F, then the F-linear transformations of V form a
finite dimensional algebra Lin(V ). Subalgebras of Lin(V ), that is, subspaces closed
under multiplication, containing the identity matrix are further examples. (In contrast
to section 2, where we considered algebras of linear transformations not necessarily
having an identity, in this section it will be convenient to consider algebras with
identity only.) An algebra homomorphism from A to B is an F-linear map φ : A → B
also satisfying φ(a1 · a2) = φ(a1) · φ(a2) and φ(1A) = 1B.

A left A-module, or an A-module for short, is an F-linear space V equipped with a
bilinear multiplication · : A×V → V which commutes with the multiplication within
A (that is, a1 · (a2 · v) = (a1 ·a2) · v). (In [Pie82], right modules are used. Here we use
left modules, which are somewhat more common in the literature.) A module V is
unital if 1Av = v for every v ∈ V . All modules in this work are assumed to be unital
and finite dimensional over F.

If V is an A-module, then the map ν : A → Lin(V ) defined as ν(a)v = a · v is
a homomorphism from A into Lin(V ). We say that V is a faithful A-module if the
kernel of ν is zero; that is, if a ∈ A such that av = 0 for every v ∈ V , then a = 0.
If S is a finite set, then F{S}, the algebra of noncommutative polynomials over F

with indeterminates from S, is an example of an infinite dimensional F-algebra. It
is the free algebra generated by S: if A is an algebra and ν is a map from S into
A, then ν can be extended to a unique algebra homomorphism from F{S} to A.
In view of this, an F{S}-module structure on V can be given by an arbitrary map
ν : S → Lin(V ). Thus the notion of S-module used in this paper is consistent with
the notion of modules over free algebras.

A submodule of an A-module is a linear subspace also closed under multiplication
by elements of A. The factor space of a submodule inherits the A-module structure
in a natural way and so do direct sums of linear spaces which are A-modules. An A-
module V is called simple if it has exactly two submodules: the whole V and the zero
submodule. The radical of a module is the intersection of its maximal (more precisely,
maximal proper) submodules. A module V is called semisimple if it is isomorphic
to a direct sum of simple modules. By section 2.7 of [Pie82], V is semisimple if and
only if its radical is the zero submodule. Furthermore, the factor module of V by its
radical is always semisimple. By section 2.5 of [Pie82], the isomorphism classes of the
constituents and their multiplicities in a decomposition of a semisimple module into a
direct sum of simple modules are uniquely determined. Direct sums and homomorphic
images of semisimple modules are semisimple.

Let V be a finite dimensional F{S}-module, and let A be the enveloping alge-
bra Env(I ∪ ν(S)) (the subalgebra of Lin(V ) generated by the identity and ν(S)).
Then A is the image of F{S} under the unique algebra homomorphism from F{S}
to Lin(V ) extending ν, and V is a faithful A-module in the natural way. We work
with the A-module structures of V , its submodules, and factors as they coincide with
the S-module structures of the same objects. Assume that V is semisimple. Then
by section 4.1 of [Pie82], A considered as a left module over itself by the algebra
multiplication is also semisimple. Such algebras are called semisimple. Modules over
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semisimple algebras are semisimple, again by section 4.1 of [Pie82].
Let A be a semisimple algebra over F, and let A as a left module over itself be

isomorphic to the direct sum:

(4.1)
t⊕

i=1

V mi

i ,

where Vi are pairwise nonisomorphic A-modules. Let V be an A-module. As V is a
homomorphic image of at most dimV copies of the module A, we have

(4.2) V ∼=
t⊕

i=1

V si
i ,

where the multiplicities si are nonnegative integers.
Lemma 4.1. Let A and V be as above, and let � be a positive integer. Let U be a

submodule of V generated by � elements. Then U is of maximum dimension among the
�-generated submodules of V if and only if U ∼= ⊕t

i=1 V
di

i , where di := min(si, �mi).
Proof. Let Wi be the sum of all simple submodules of V not isomorphic to Vi.

Then the A-module V/Wi is isomorphic to V si
i and the submodule dimension in V is

maximized if and only if it is maximized in V/Wi for all i ∈ [t]. As a single generator

in V si
i can generate a submodule of dimension at most that of V

min(si,mi)
i , we get

that � generators in V si
i can generate a submodule of dimension at most that of V di

i .
Repeating this for every i ∈ {1, . . . , t}, we obtain that the maximum dimension is at
most the dimension of the direct sum in the statement.

To see that this module occurs in fact as a submodule of V , let W be the direct
sum of � copies of A (as a left A-module), and let w1 = (1A, 0, . . . , 0), . . . , w� =
(0, . . . , 0, 1A). Let W0 be a submodule of W isomorphic to

⊕t
i=1 V

�mi−di

i , and let

V0 be a submodule of V isomorphic to
⊕t

i=1 V
di

i . Then V0 ∼= W/W0 and W/W0

is generated by � elements: the images of w1, . . . , w� under the projection W →
W/W0. Thus V0 can be generated by the images of the latter � elements under any
isomorphism W/W0

∼= V0.

4.2. A greedy optimization of the submodule dimension in semisimple
modules. In this section V denotes a finite dimensional F{S}-module, and A stands
for the enveloping algebra Env(ν(S) ∪ I). For subsets B ⊆ A and U ⊆ V by BU we
denote the linear span of the products bu, where b ∈ B and u ∈ U . In this context
we omit braces around one-element sets. In particular, for v ∈ V , the submodule
generated by v is Av.

The annihilator AnnA(U) of U ⊆ V is {a ∈ A | au = 0 for every u ∈ U}. Note
that the annihilator AnnA(v) of the single element v ∈ V is just the kernel of the
linear map μv : A → V given as μv(a) = av. The following lemma states that if the
rank of μv is not maximal, then we are in the situation of Lemma 2.2.

Lemma 4.2. Assume that V is semisimple. Then, for an arbitrary u ∈ V ,
dimAu = max{dimAu′ | u′ ∈ V } if and only if AnnA(u)V ⊆ Au.

Furthermore, if AnnA(u)V 
⊆ Au, then an element u′ with dimAu′ > dimAu
can be constructed using poly(|S|+ dimV ) operations in F.

Remark 4.3. The lemma generalizes a result of Babai and Rónyai which was
used in [BR90] for solving the cyclic submodule optimization in modules over simple
algebras. The proof can be found in [CIK97]. For completeness, we discuss it here
as well. The second part of the lemma is especially interesting for small base fields
where Lemma 2.2 does not apply.
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Proof. Let V be a semisimple S-module, and let A = Env(I ∪ ν(S)). Let A
(resp., V ) be decomposed as in (4.1) (resp., (4.2)). Let u ∈ V . Assume that the
dimension of the submodule Au is not maximal. Then, by Lemma 4.1, there exists an
index i such that the multiplicity of Vi in Au is less than both si and mi. Let W be
the submodule of V which is the direct sum of the constituents of V not isomorphic
to Vi. Then V/W ∼= V si

i and V/(W + Au) is isomorphic to V h
i with some h > 0.

Recall that for a subset X of V the annihilator of X in A, denoted by AnnA(X),
is {a ∈ A | ax = 0 for every x ∈ X}. Assume that AnnA(u)V ⊆ Au. Then
every element of AnnA(u) acts as zero on the factor module V/Au and hence also on
the factor V/(W + Au). As the latter module is isomorphic to V h

i , we obtain that
AnnA(u) ⊆ AnnA(Vi). Recall that the map μu : A → V is given as μu(a) = au. It is
an A-module homomorphism from the left module A to V . Its kernel is AnnA(u), and
its image is Au. Therefore Au ∼= A/AnnA(u). Now AnnA(Vi) is also an A-submodule
of A. Let L be a submodule of A isomorphic to Vi. We claim that LVi 
= 0. Indeed,
if LVi = 0, then, by the assumed isomorphism, LL = 0 as well, which is impossible
by section 3.2 of [Pie82]. The claim implies that the multiplicity of Vi in AnnA(Vi) is
zero and the same holds in AnnA(u) ⊆ AnnA(Vi). But then the multiplicity of Vi in
the factor module A/AnnA(u) ∼= Au is mi. This contradiction finishes the proof of
the statement that if Au is not of maximum dimension, then in fact AnnA(u)V 
⊆ Au.

To see the reverse implication, assume that AnnA(u)V 
⊆ Au, and let w ∈ V and
b ∈ AnnA(u) such that bw 
∈ Au. By section 2.4 of [Pie82], there exists a submodule
W ′ of V such that W ′ ∩Au = 0 and W ′ +Au = V . Write w = au+w′, where a ∈ A
and w′ ∈ W ′. Put u′ = u+w′. As Aw′ ∈W ′, we have Au′ +W ′ = Au+W ′. On the
other hand, from bw 
∈ Au but bau ∈ Au, we infer that bw′ is a nonzero element of
W ′, and by the equality bu′ = bu+ bw′ = bw′, it is also an element of Au′. Therefore
dimAu′ > dimV − dimW ′ = dimAu, as required.

For a polynomial time implementation of the construction above, notice that a
basis for AnnA(u) can be found by solving a system of linear equations. Then b
and w can be found by testing membership of products of pairs of basis elements for
AnnA(u) and those for V . To compute a direct complement of Au, we first compute
a projection π of V onto Au such that πa = aπ for every element a ∈ A (equivalently,
for every element of a system of generators for A, say ν(S)). (Recall that a projection
π onto a subspace V ′ of V is a map whose image is V ′ and which acts as the identity
on V ′. If W ′ is submodule complementary to Au, then the unique linear map which
is the identity on Au and zero on W ′ is a projection onto Au which commutes with
the action of A on V .) Once π is constructed we take π′ = I−π. It is straightforward
to see that the image W ′ = π′V is in fact a direct complement of Au. The element
w′ in the argument above is then just π′w and u′ = u+ π′w. This finishes the proof
of Lemma 4.2.

The next lemma can be used to give a generalization for submodules generated
by larger systems (e.g., noncyclic modules).

Lemma 4.4. Assume that V is semisimple. Then, for arbitrary positive integer
� and for elements u1, . . . , u� ∈ V , dimA{u1, . . . , u�} = max{dimAU | U ⊆ V,
#U ≤ �} if and only if for every i ∈ [�], the S-submodule generated by ui +Wi in
the factor module V/Wi is of maximum dimension, where Wi denotes the submodule
generated by u1, . . . , ui−1, ui+1, . . . , u�.

Proof. Let V be a semisimple S-module, and let A = Env(I ∪ ν(S)). Let A
(resp., V ) be decomposed as in (4.1) (resp., (4.2)). Let u1, . . . , u� ∈ V , and let
Wi = A({u1, . . . , u�} \ {ui}). As A{u1, . . . , u�} = Aui +Wi, it is obvious that if, for
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some index i there is an element u′i such that modulo Wi, Au′i has a larger dimension
than Aui, then replacing ui with u′i results in a system generating a submodule of
larger dimension.

To see the reverse implication letW = A{u1, . . . , u�} and assume that for every i,
the submodule of V/Wi generated by ui+Wi, that is,W/Wi, is a maximal dimensional
cyclic submodule of V/Wi. Let j ∈ {1, . . . , t}. By Lemma 4.1, for every i, the
multiplicity of Vj in W/Wi either equals the multiplicity of Vj in V/Wi or is just mj .
If for some index i the former is the case, then the multiplicity of Vj in V/W is zero.
Otherwise the multiplicity of Vj in W/Wi is mj for every index i. In the former case
the multiplicity of Vj in W is the maximum possible among all submodules. Assume
the latter case and let Uij denote the direct sum of the constituents of Aui isomorphic
to Vj . Then, for every index i, we have that Uij ∩Wi = 0 and Uij is isomorphic to
a direct sum of mj copies of Vj , as otherwise the multiplicity of Vj in W/Wi would
be less than mj . Thus Uij intersects

∑
i′ �=i Ui′j trivially; therefore they form an

independent system and hence
∑�

i=1 Uij
∼= V

�mj

j , showing that the multiplicity of Vj
is optimal in this case as well. Repeating this for every irreducible module Vj , we
obtain that the dimension of W is indeed the maximum possible. This finishes the
proof of Lemma 4.4.

The two lemmas above together with Lemma 2.2 immediately give the following.
Proposition 4.5. Let v1, . . . , vn be a basis of the semisimple F{S}-module V .

Assume that u1, . . . , u� are elements of V such that the submodule generated by u1, . . . ,
u� is not of maximum dimension among the submodules of V generated by at most �
elements. If the F{S}-module structure on V is given by an array of matrices, then
we can find an index i and construct u′i ∈ V using poly(|S|+ n) operations such that
replacing ui with u

′
i results in a submodule of larger dimension.

Furthermore, if |F| > n, then there exist indices i ∈ [�], j ∈ [n] such that replacing
ui with (ui + ωvj) results in a submodule of larger dimension except for at most n
elements ω from F.

The above greedy property for the submodules of a semisimple module gives us
the following technical lemma for general modules. It will be useful in the subsequent
algorithm for optimizing the number of generators in any module without computing
the radical explicitly.

Lemma 4.6. Let v1, . . . , vn be a basis of the S-module V which can be generated
by � elements, and let u1, . . . , u� be elements of V such that U = A{u1, . . . , u�} < V .
If W is a nonzero submodule such that V = U ⊕W , then there exist i ∈ [�], j ∈ [n]
such that for U ′ := A{u1, . . . , ui+λvj , . . . , u�}, V = U ′+W , but U ′∩W 
= {0} except
for at most 2n elements λ ∈ F.

Proof. Let U0,W0 be the radicals of U,W , respectively. Let V0 = U0 ⊕ W0.
Then the factor module V/V0 ∼= U/U0 ⊕ W/W0 is semisimple, and we can apply
Proposition 4.5 to choose i ∈ [�], j ∈ [n] such that the number of λ’s, for which the
dimension of (U ′+V0)/V0 is not larger than the dimension of (U +V0)/V0, is at most
dimV/V0. Also for the same i, j the λ’s, for which {u1, . . . , ui + λvj , . . . , u�} ∪ W
do not span the whole of V , are the roots of a nonzero F-polynomial of degree at
most dimV . Thus for this i, j the number of λ’s, for which either dimU ′ ≤ dimU or
V 
= U ′ +W , is at most dimV/V0 + dimV ≤ 2n.

4.3. Algorithm for finding � generators. Using the previous lemma, now
we describe an iterative algorithm for finding a minimal set of generators of a given
module over a sufficiently large ground field.
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Input: An A-module V given in terms of a set of generators. We assume that A is
an F-algebra where |F| > 2 dimV .
Output: A set of at most � elements generating V over A.
Algorithm:

(0) Initially pick any irredundant generating set {u1, . . . , u�, u�+1, . . .}, and set
U := A{u1, . . . , u�} and W := A{u�+1, . . .}. Then V = U +W .
Outer loop:

(1) Set W ′ := U ∩W .
(2) If W ′ =W , then output U and exit.

Inner loop:

(3) Apply Lemma 4.6 in V/W ′ to obtain U ′ generated by � elements and satisfying
U ′ +W = V and (U ′ +W ′) ∩W > W ′.

(4) If such a U ′ cannot be found, then report “� generators are insufficient for
V ” and exit.
Else set U := U ′.

(5) If W 
≤ U +W ′, then continue inner loop with W ′ = (U +W ′) ∩W .
Else continue outer loop with W =W ′.

Analysis of the algorithm. At each step of the algorithm there is a pair (U,W ) of
S-modules such that V = U +W and U is known in terms of � generators. At every
repetition of the inner loop, W ′ becomes a larger submodule of W , since at step (5)
we know (from step (3)) that (U + W ′) ∩ W is strictly larger than W ′. At every
repetition of the outer loop, W becomes a smaller submodule of V , since at step (5)
we know (again from step (3)) that W ′ is strictly smaller than W . Thus, the number
of times the algorithm can loop is bounded by (dimV )2, which makes the algorithm
polynomial time. This gives a proof of Theorem 1.3 over large base fields.

Over small base fields we use the algorithm of [FR85] or [CIW97] to compute the
radical of A and the radical V0 of V therefrom and compute a minimal generating
set Γ0 of the factor module V/V0 using Proposition 4.5 directly. For each u0 ∈ Γ0

we pick a representative u ∈ u0 + V0 and obtain a subset Γ ⊆ V such that |Γ| = |Γ0|
and Γ∪ V0 generates V . By a standard property of the radical, we show that Γ itself
generates V . Indeed, let U be the submodule generated by Γ. If U 
= V , then there
is a maximal (proper) submodule U ′ ⊇ U ⊇ Γ. But U ′ ≥ V0 by the definition of V0,
and therefore U ′ ⊇ Γ ∪ V0, implying U ′ ⊇ V , which is a contradiction to U ′ being
proper. This ends the proof of Theorem 1.3.

5. Concluding remarks. We have shown that the maximum rank matrix in a
linear space generated by rank one matrices and a further matrix of arbitrary rank
can be found in deterministic polynomial time if the rank one generators are given. It
would be interesting to know if there is an efficient deterministic method in the case
where the rank one generators are not known. In this direction we have a deterministic
polynomial time algorithm, which, given a matrix of maximum rank, constructs a
certificate that the rank is in fact maximal (see Theorem 2.4) without knowing the
rank one generators. This implies that, over sufficiently large base fields, the maximum
rank matrix can be constructed in Las Vegas polynomial time. The best result of
this flavor is the deterministic polynomial time algorithm of Gurvits [Gur03, Gur04]
which decides whether there exists a nonsingular matrix in the space generated by
rational matrices under the assumption that the span over the complex numbers can
be generated by unknown rank one matrices (with not necessarily rational entries).
Unfortunately, this algorithm decides the mere existence of a nonsingular matrix
without explicitly constructing one.
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The space of the maps μv : A → V , where V is a semisimple S-module and
A is the corresponding enveloping algebra, has a curious property that if μv is not
of maximum rank, there is a v′′ ∈ V such that Lemma 2.2 applies for h = μv and
h′′ = μv′′ (see Lemma 4.2). In particular, over a sufficiently large field F the rank
of μv + αμv′′ will be higher for some v′′ chosen from an arbitrary basis of V and a
“generic” α ∈ F.

It would be interesting to find more classes L of spaces of linear maps with such a
“local rank incrementing” property: there is a constant c such that, for every L ∈ L,
if h ∈ L is not of maximum rank, then from an arbitrary basis h1, . . . , h� of L one can
choose maps hi1 , . . . , hic such that h + α1hi1 + · · · + αchic has higher rank for some
α1, . . . , αc ∈ F (F is large enough).
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