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Abstract
We show that any product-depth ∆ algebraic circuit for the Iterated Matrix Multiplication

Polynomial IMMn,d (when d = O(log n)) must be of size at least n
Ω
(

d1/(ϕ2)∆
)
where ϕ = 1.618 . . .

is the golden ratio. This improves the recent breakthrough result of Limaye, Srinivasan and Tavenas

(FOCS’21) who showed a super polynomial lower bound of the form n
Ω
(

d1/4∆)
for constant-depth

circuits.
One crucial idea of the (LST21) result was to use set-multilinear polynomials where each of the

sets in the underlying partition of the variables could be of different sizes. By picking the set sizes
more carefully (depending on the depth we are working with), we first show that any product-depth

∆ set-multilinear circuit for IMMn,d (when d = O(log n)) needs size at least n
Ω
(

d1/ϕ∆)
. This

improves the n
Ω
(

d1/2∆)
lower bound of (LST21). We then use their Hardness Escalation technique

to lift this to general circuits.
We also show that our lower bound cannot be improved significantly using these same techniques.

For the specific two set sizes used in (LST21), they showed that their lower bound cannot be
improved. We show that for any do(1) set sizes (out of maximum possible d), the scope for improving
our lower bound is minuscule: there exists a set-multilinear formula that has product-depth ∆ and
size almost matching our lower bound such that the value of the measure used to prove the lower
bound is maximum for this formula. This results in a barrier to further improvement using the same
measure.
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1 Introduction

An Arithmetic Circuit is a natural model to compute multivariate polynomials over a field F.
It is a layered directed acyclic graph with leaves labelled by variables x1, . . . , xn or elements
from F. The internal nodes are alternating layers of either addition (+) or multiplication (×)
gates. The circuit computes a polynomial in F[x1, . . . , xn] in the natural way: the + gates
compute arbitrary F-linear combination of their inputs and the × gates compute the product.
The depth of the circuit is the number of layers in the circuit and by product-depth, we mean
the number of layers of multiplication gates (depth is twice the product-depth). Arithmetic
Formulas are a subclass of circuits whose underlying graph is a tree. For general survey of
the field of Algebraic Complexity Theory, see [3, 30, 20].

Valiant [33], in a very influential work defined the classes VP and VNP which can be
considered the arithmetic analogues of P and NP. Much like in the Boolean world, the
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question of whether VP and VNP are the same is one of the central open problems of algebraic
complexity theory. Though the best known lower bounds for general arithmetic circuits [2]
(Ω(n logn)) and formulas [10] (Ω(n2)) fall far short of the super polynomial lower bounds
that we hope to prove, there have been many super polynomial lower bounds known for
various restricted classes [22, 23, 24]. See [4, 26] for excellent survey of lower bounds.

One of the most interesting restrictions is that of bounding the depth of circuits and
formulas. When the depth is a constant, circuits and formulas are equivalent upto polynomial
blow up in their size and hence we use them interchangeably in this paper. Unlike the
Boolean world though, a very curious phenomenon of depth reduction occurs in arithmetic
circuits [34, 1, 16, 31, 8] which essentially says that depth 3 and depth 4 circuits are almost
as powerful as general ones. Formally, any degree d polynomial f that has a size s circuit can
also be computed by a depth 4 homogeneous circuit or a depth 3 (possibly non homogeneous)
circuit of size sO(

√
d). Hence proving an nω(

√
d) lower bound on these special circuits is

enough to separate VP from VNP. The extreme importance of bounded depth circuits
has led to a large body of work proving lower bounds for these models and their variants
[28, 29, 25, 11, 7, 13, 17, 6, 18, 14, 12, 15, 9].
The LST breakthrough. Recently in a remarkable work, Limaye, Srinivasan and Tavenas
[19] proved the first superpolynomial lower bound for general constant depth circuits. More
precisely, they showed that the Iterated Matrix Multiplication polynomial IMMn,d (where
d = O(logn)) has no product-depth ∆ circuits of size ndexp(−O(∆)) . The polynomial IMMn,d

is defined on N = dn2 variables. The variables are partitioned into d sets X1, . . . , Xd of n2

variables each (viewed as n× n matrices). The polynomial is defined as the (1, 1)-th entry of
the matrix product X1X2 · · ·Xd. All monomials of the polynomial are of the same degree
and so IMMn,d is homogeneous. As the the individual degree of any variable is at most 1, it
is also multilinear. Moreover, every monomial has exactly one variable from each of the sets
X1, . . . , Xd. Hence the polynomial is also set-multilinear. For any ∆ ≤ log d, IMMn,d has
a set-multilinear circuit of product-depth ∆ and size nO(d1/∆). There are no significantly
better upper bounds known even if we allow general circuits. It makes sense to conjecture
that this upper bound is tight (see [5] for improvement limitations in special cases).

The lower bound of [19] proceeds by first transforming size s, product-depth ∆, general
algebraic circuits computing a set-multilinear polynomial of degree d to set-multilinear
algebraic circuits of product-depth 2∆ and size poly(s)dO(d) (which is not huge if d is small).
Hence lower bounds on bounded depth set-multilinear circuits translate to bounded depth
general circuit lower bounds albeit with some loss. Then they consider set-multilinear circuits
with variables partitioned into sets of different sizes and crucially use this discrepancy of set
sizes to obtain strong set-multilinear lower bounds.

In a more recent work [32], the same authors prove a product-depth ∆ set-multilinear
formula lower bound of (logn)Ω(∆d1/∆) for IMMn,d. There is no restriction of degree here,
but in the small degree regime, the bound is much weaker than [19] and cannot be used
for escalation. We will only be interested in the low degree regime where we can translate
set-multilinear circuit lower bounds to general circuits.
Our Results. In this work, we improve the lower bound for IMM against constant depth
circuits. We also exhibit barriers to improving the bound further using these techniques,
which is of importance as this is the only known approach to achieve super polynomial lower
bounds for general low depth circuits.

For the rest of this paper, let µ(∆) = 1/(F (∆) − 1) where F (n) = Θ(ϕn) is the n-th
Fibonacci number (starting with F (0) = 1, F (1) = 2) and ϕ = (1 +

√
5)/2 = 1.618 . . . is the

golden ratio.
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I Theorem 1. (General circuit lower bound) Fix a field F of characteristic 0 or characteristic
> d. Let N, d,∆ be such that d = o(logN). Then, any product-depth ∆ circuit computing
IMMn,d on N = dn2 variables must have size at least NΩ(dµ(2∆)/∆).

I Remark. Theorem 1 improves on the lower bound of N
Ω
(
d1/(22∆−1)/∆

)
of [19] since

F (2∆) = Θ(ϕ2∆)� 22∆.
To prove Theorem 1, we use the hardness escalation given by (Lemma 6) which allows

for a way to convert general circuits to set-multilinear ones without too much size blow up,
provided the degree is small. The actual lower bound is proved on set-multilinear circuits.

I Theorem 2. (Set-multilinear circuit lower bound) Let d ≤ (logn)/4. Any product-depth ∆
set-multilinear circuit computing IMMn,d must have size at least nΩ(dµ(∆)/∆).

I Remark. This is an improvement over the n
Ω
(
d1/(2∆−1)/∆

)
bound of [19, Lemma 15]. Also,

the result holds over any field F. The restriction on the characteristic in Theorem 1 comes
from the conversion to set-multilinear circuits. The difference between µ(2∆) in Theorem 1
and µ(∆) in Theorem 2 is also due to the doubling of product-depth during this conversion.

Proof of Theorem 1. From Lemma 6 and Theorem 2, for a circuit of product-depth ∆ and
size s computing IMMn,d we get that dO(d)poly(s) ≥ NΩ(dµ(2∆)/2∆). Following the proof of
[19, Corollary 4], if 2∆ ≥ 1

2 logϕ log2 d, then dµ(2∆) = d(1/ log d)Θ(1)
< 1 and hence the Ndµ(2∆)

bound is trivial. Otherwise dµ(2∆) ≥ d1/ϕ2∆ ≥ ω(log d) and by the assumption logN ≥ d,
we get Ndµ(2∆) = 2dµ(2∆) logN ≥ 2ω(d log d) ≥ dω(d). Hence poly(s) ≥ NΩ(dµ(2∆)/2∆)/dO(d) =
NΩ(dµ(2∆)/4∆) implying the required lower bound on s and thus, also Theorem 1. J

The hard polynomial for which we prove set-multilinear lower bound is actually a word
polynomial (Definition 4) which is a set-multilinear restriction of IMM (Lemma 5). Hence
the lower bound gets translated to IMMn,d. These word polynomials are set-multilinear with
respect to (X1, . . . , Xd) where each of the Xis could potentially have different sizes.

For the two specific set sizes that they consider in [19], they also exhibit polynomials that
match their lower bound. It still leaves open the question whether we can improve the lower
bound if we choose some other set sizes. We show that this is indeed possible in Theorem 2.
It is plausible that using many more set sizes could improve the lower bound further. We
answer this question in the negative for most cases. Suppose there are γ different set sizes
among the Xis. We show that there are set-multilinear polynomials which can be computed
by product-depth ∆ circuits having roughly the same size as the size lower bound of Theorem
2, provided γ is not too large. Formally,

I Theorem 3. (Barrier) Let s1, . . . , sγ be positive integers. Fix sets X1, . . . , Xd where for
all i, |Xi| ∈ {s1, . . . , sγ}. For any fixed positive integer ∆, there exist polynomials P∆ and
Q∆ that are set-multilinear with respect to X1, . . . , Xd such that P∆ can be computed by
product-depth ∆ circuits of size nO(∆γdµ(∆)) and Q∆ can be computed by product-depth ∆
circuits of size nO(∆dµ(∆−1)+γ). Moreover, both P∆ and Q∆ maximise the measure used to
prove lower bounds.
I Remark. The two different polynomials with slightly different sizes will imply barriers to
improving the lower bound in different regimes of γ. When γ = O(1), the size of P∆ matches
our lower bound essentially implying the tightness of the bound. When γ is do(1), the size of
Q∆ is only slightly larger than the lower bound (note µ(∆− 1) vs µ(∆)). Hence even using
multiple set sizes, the scope for improvement is tiny.
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2 Preliminaries
For any positive integer n, we denote by F (n) the n-th Fibonacci number with F (0) = 1,
F (1) = 2 and F (n) = F (n − 1) + F (n − 2). The nearest integer to any real number r is
denoted by bre. We follow the notation of [19] as much as possible for better readability.

Consider set-multilinear polynomials in the sets (X1, . . . , Xd). Words are defined as tuples
(w1, . . . , wd) of length d where the wi’s are real numbers. These words define the actual set
sizes of the set-multilinear polynomials we will be working with. Given a word w, let X(w)
denote the tuple of sets of variables (X1(w), . . . , Xd(w)) where the size of each Xi(w) is 2|wi|,
obtained by arbitrarily removing the rest of the variables. We denote the space of these
polynomials by Fsm[X(w)].

For any subset S ⊆ [d], the sum of weights at its indices is denoted by wS =
∑
i∈S wi. If

for all t ≤ d, |w[t]| ≤ b, then we call w b-unbiased. Denote by w|S the sub-word indexed by w.
The positive and negative indices of w are denoted Pw = {i | wi ≥ 0} and Nw = {i | wi < 0}
respectively. Furthermore,MPw (resp. MNw ) is the set of all multilinear monomials over the
positive (resp. negative) variables.

The partial derivative matrix Mw(f) has rows indexed by MPw and columns by MNw .
The entry corresponding to row m+ ∈MPw and m− ∈MNw is the coefficient of the monomial
m+m− in f . The complexity measure we use is the relative rank, same as [19]:

relrkw(f) := rank(Mw(f))√
|MPw | · |MNw |

= rank(Mw(f))

2
1
2

∑
i∈[d]

|wi|
≤ 1

The following properties of relrkw will be useful (see [19] for the proofs).

1. (Imbalance) For any f ∈ Fsm[X(w)], relrkw(f) ≤ 2−|w[d]|/2.
2. (Additivity) For any f, g ∈ Fsm[X(w)], relrkw(f + g) ≤ relrkw(f) + relrkw(g).
3. (Multiplicativity) Suppose f = f1f2 · · · ft where fi ∈ Fsm[X(w|Si)] and (S1, . . . , St) is a

partition of [d]. Then, relrkw(f) = relrkw(f1f2 · · · ft) =
∏
i∈[t] relrkw|Si (fi)

We define the hard polynomials we prove lower bounds for. For any monomial m ∈
Fsm[X(w)], let m+ ∈MPw and m− ∈MNw be as above. As |Xi| = 2|wi|, the variables of Xi

can be indexed using boolean strings of length |wi|. This gives a way to associate a boolean
string with any monomial. Let σ(m+) and σ(m−) be the strings associated with m+ and
m− respectively. We write σ(m+) ∼ σ(m−) if one is a prefix of the other.

I Definition 4. [19, Word polynomials] Let w be any word. The polynomial Pw is defined
as the sum of all monomials m such that σ(m+) ∼ σ(m−).

The matrices Mw(Pw) have full rank (equal to either the number of rows or columns,
whichever is smaller) and hence relrkw(Pw) = 2−w[d]/2. We also note (without proof) that
these polynomials can be obtained as set-multilinear restrictions of IMMn,d.

I Lemma 5. [19, Lemma 8] Let w be any b-unbiased word. If there is a set-multilinear
circuit computing IMM2b,d of size s and product-depth ∆, then there is also a set-multilinear
circuit of size s and product-depth ∆ computing a polynomial Pw ∈ Fsm[X(w)] such that
relrkw(Pw) ≥ 2−b/2.

We also state the set-multilinearization lemma alluded to before:

I Lemma 6. [19, Proposition 9] Let s,N, d,∆ be growing parameters with s ≥ Nd. If C is a
circuit of size at most s and product-depth at most ∆ computing a set-multilinear polynomial
P over the sets of variables (X1, . . . , Xd) (with |Xi| ≤ N), then there is a set-multilinear
circuit C̃ of size dO(d)poly(s) and product-depth at most 2∆ computing P .
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3 Proof outline

From the discussion in Section 1 and Lemmas 5 and 6, in order to prove general circuit
lower bounds, it suffices to prove that there is a high rank word polynomial that needs large
set-multilinear formula. For a word (and hence set sizes) of our choice, we show that relrkw
is small for set-multilinear formulas of a certain size.

Let k be an integer close to log2 n. In [19], the authors choose the positive entries of
the word w to be an integer close to k/

√
2 and the negative entries to be −k. Evidently,

these entries are independent of the product-depth ∆. In this paper, we take the positive
entries to be (1− p/q)k and the negative entries to be −k where p and q are suitable integers
dependent on ∆. This depth-dependent construction of the word enables us to improve the
lower bound. We demonstrate the high level proof strategy of the lower bound for the case
of product-depth 3.
Proof overview of Theorem 2 for ∆ = 3. Define G(i) = 1/µ(i) = F (i)− 1 for all i and
let λ = bd1/G(3)c. Consider a set-multilinear forumula C of product-depth 3 and let v be a
gate in it. Suppose that the subformula C(v) rooted at v has product-depth δ ≤ 3, size s and
degree ≥ λG(δ)/2. We will prove that relrkw(C(v)) ≤ s2−kλ/48 by induction on δ. This will
give us the desired upper bound of the form s2−kλ/48 = sn−Ω(dµ(3)) on the relative rank of
the whole formula when v is taken to be the output gate. Write C(v) = C1 + · · ·+ Ct where
each Ci is a subformula of size si rooted at a product gate. Because of the subadditivity of
relrkw, it suffices to show that relrkw(Ci) ≤ si2−kλ/48 for all i.

Base case: If δ = 1, then Ci is a product of linear forms. Thus, it has rank 1 and hence
low relative rank.

Induction step: δ ∈ {2, 3}. Write Ci = Ci,1 . . . Ci,t where each Ci,j is a subformula of
product-depth δ − 1. If any Ci,j has degree ≥ λG(δ−1)/2, then by induction hypothesis, the
relative rank of Ci,j and hence Ci will have the desired upper bound and we are done.

Otherwise each Ci,j has degree Dij < λG(δ−1)/2. As the formula is set-multilinear, there
is a collection of variable-sets (Xl)l∈Sj with respect to which Ci,j is set-multilinear. For
j ∈ [ti], let aij be the number of positive indices in Sj i.e. the number of positive sets in the
collection (Xl)l∈Sj . Then the number of negative indices is (Dij − aij).

We consider two cases: if aij ≤ Dij/3, then wSj ≤ (Dij/3)·αk+(2Dij/3)·(−k) ≤ −Dijk/3.
Otherwise aij > Dij/3 and if we can prove that |wSj | ≥ aijk/(4λG(δ)−1) ,then in both of the
above cases, we would have |wSj | ≥ Dijk/(12λG(δ)−1). By the multiplicativity and imbalance

property of relrkw, it would follow that relrkw(Ci) ≤ 2
∑ti

j=1
− 1

2 |wSj | ≤ 2−kλ/48 and we would
be done. Thus, we now only have to show that |wSj | ≥ aijk/(4λG(δ)−1). We have

|wSj | = |aij(1− p/q)− (Dij − aij)| k.

Notice that |wSj |/k is the distance of aijp/q from some integer, so it must be at least the
minimum of {aijp/q} and 1− {aijp/q} where {.} denotes the fractional part. The number
aijp/q being rational, has a fractional part ζ = (aijp mod q)/q and hence it comes down to
solving the following system of inequalities:

min (ζ, 1− ζ) ≥ aij/(4λG(δ)−1) for δ ∈ {2, 3} when aij ≤ Dij < λG(δ−1)/2

Assign p = λ, q = λ2 + 1. The δ = 2 case is clearly satisfied as (aijλ mod (λ2 + 1)) = aijλ

when 0 ≤ aij ≤ λ/2.
Consider the case of δ = 3 and aij < λ2/2. Write aij = y1λ+ y0 for integers

y1 = baij/λc < λ/2 and y0 ≤ λ − 1. Thus, aijλ ≡ −y1 + y0λ mod (λ2 + 1). Through

some case analysis, one can show that min
(
|y0λ − y1|, λ2 + 1 − |y0λ − y1|

)
≥ y1 which

Draf t



23:6 Improved lower bound, and proof barrier, for constant depth algebraic circuits

immediately implies the inequality for the δ = 3 case as y1 = baij/λc ≥ aij/(2λ).
We can attempt to extend this proof technique to product-depth 4 as follows:

We would similarly want to express aij as aij = y2λ
2+y1λ+y0 for integers y2 = baij/λ2c, y0 ≤

λ− 1 and y1 ≤ λ− 1. Ideally, we would want that for some q ≈ λ4,

pλ2 ≡ 1 mod q, pλ ≡ λ2 mod q and p ≡ λ3 mod q

so that aijp ≡ y2 − y1λ+ y0λ
2 mod q and then we can carry out a similar analysis as in the

∆ = 3 case. But this is not possible since multiplying the second congruence equation by λ
gives pλ2 ≡ λ3 mod q, which contradicts with the first congruence equation. So we decide to
express aij as aij = y2b2 + y1b1 + b0 where b2, b1, b0 are close to λ2, λ, 1 respectively instead
of being precisely equal to these powers of λ. Then we choose c2 ≈ 1, c1 ≈ −λ, c0 ≈ λ2 and
we assign values to p and q such that

pb2 ≡ c2 mod q, pb1 ≡ c1 mod q and pb0 ≡ c0 mod q.

It’s easy to verify that all these conditions are satisfied if we define
b0 = 1, b1 = λ, b2 = b1(λ− 1) + b0; c2 = 1, c1 = −λ, c0 = c2 − c1(λ− 1);
p = c0 and q = pb1 − c1.
This inspired our construction of the sequences {bm} and {cm} for general product-depth ∆.

Proof overview of Theorem 3. As mentioned before, we would like to find a family of
polynomials for which our lower bound is tight. All the same, we want to maintain high
relative rank of these polynomials. If we are able to achieve this and find the appropriate
small sized formulas for the said polynomials, we will have that the lower bound cannot be
improved using the relative rank measure.

The polynomial P we define will be a close variant of the word polynomials from before.
This will ensure that the partial derivative matrix has the maximum possible rank for a
matrix of its dimension. From the Imbalance property, the relative rank we obtain is 2−|w[d]|/2

where we have ensured that w[d] is small. We want to construct the formula F for P such
that it has a nice inductive structure. That is, we want the polynomials computed by the
subformulas of F to also have high relative rank. This will help us construct a formula from
its sub formulas while maintaining high relative rank.

Suppose a subformula F ′ of F is set multilinear with respect to a subtuple T of the sets
of variables X(w). Let these sets in T be indexed by a set ST ⊆ [d]. As we would like high
relative rank of PF ′ , the Imbalance property again suggests that |wST | be small. And we
desire this of every subformula, their subformulas, and so on. So roughly, we want a way to
partition our intial index set [d] into some number of index sets S1, . . . , Sr such that each
|wSi | is small. Suppose we are then able to create subformulas of rank 2−|wSi |/2. It turns out
that we will have to add roughly 2

∑
i
|wSi | many of them to get a polynomial of high relative

rank. So to control the size of the formula, we would like
∑
i |wSi | to be small as well.

In their Depth Hierarchy section, [19] use Dirichlet’s approximation principle [27] to pick
these nice index sets {Si}. Their procedure only works for the particular two variable-set
sizes they choose. We extend this to any two set sizes in Claim 13. Interestingly, we do not
use Dirichlet to pick the index sets but rather to obtain a lower bound on the size of the
sets that we do eventually pick. We think of picking sets as an investment process: when we
pick a set S, we buy the |S| elements in it for a cost of |wS |. Hence the cost per element is
|wS |/|S|. At each product-depth, we are only allowed to pick sets of size under a certain
threshold and we pick the ones with the lowest cost per element. It turns out that this lowest
cost decreases exponentially as the depth increases and helps us build a small formula. The
decrease is captured by the Fibonacci numbers and is the reason why they emerge in our
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lower bound and upper bound.
Making these ideas precise requires extensive notation and we postpone further discussion

to Section 5.
4 The lower bound: Proof of Theorem 2
In this section we prove the set-multilinear lower bound of Theorem 2.

Fix the product-depth ∆ for which we want to prove the lower bound. Define G(i) :=
F (i)− 1 for all i and λ = bd1/G(∆)c. We can assume that λ ≥ 2 because otherwise dµ(∆) < 2
and in that case, the lower bound is uninteresting. The lower bound we aim to prove is
nΩ(d1/G(∆)). We first define the sequences {bm} and {cm} mentioned in the proof overview:

Let rm := λG(m+1)−G(m) − 1 for 0 ≤ m ≤ ∆− 2.
Define b0 := 1, b1 := λ and bm := bm−2 + rm−1bm−1 for 2 ≤ m ≤ ∆− 2

Define c∆−2 := (−1)∆−2, c∆−3 := (−1)∆−3λG(∆−1)−G(∆−2) and
cm := (−1)m(|cm+2|+ rm+1|cm+1|) for ∆− 4 ≥ m ≥ 0.

Note that the sign parity of cm is (−1)m for all m.
Thus, cm−2 = (−1)m−2(|cm|+ rm−1|cm−1|) = cm − rm−1cm−1 which implies

cm = cm−2 + rm−1cm−1 for 2 ≤ m ≤ ∆− 2

Each bm is close to λGm and each |cm| is close to λG(∆−1)−G(m+1):

λG(m)

2 ≤ bm ≤ λG(m) and λG(∆−1)−G(m+1)

2 ≤ |cm| ≤ λG(∆−1)−G(m+1) for all m (1)

We prove this as Lemma 17 in Section A.
Define

p := c0 and q := pb1 − c1 = c0(r0 + 1)− c1
By defining p and q this way, we have ensured that pb0 ≡ c0 mod q and pb1 ≡ c1 mod q.

Hence from the relations bm = bm−2 + rm−1bm−1 and cm = cm−2 + rm−1cm−1, it inductively
follows that

pbm ≡ cm mod q for 0 ≤ m ≤ ∆− 2 (2)

Constructing the word: Define α = 1− p/q. As p
q
≤ c0
c0(r0 + 1) = 1/λ, we have α ≥ 1/2.

Since q = c0λ− c1, it implies that

q ≤ |c0|λ+ |c1| ≤ 2λG(∆−1) ≤ d < blog2 nc/2

where the second inequality follows from the upper bound on each |cm| in (1). Therefore,
there exists a multiple of q in the interval

[
blog2 nc

2 , blog2 nc
]
. Let k be this multiple of q.

Then αk is an integer. We can construct a word w over the alphabet {αk,−k} such that w
is k-unbiased. This can be done using induction: if |w[i]| ≤ 0, set wi+1 = αk, otherwise set
wi+1 = −k.

With these definitions in place, we are ready to prove Theorem 2. Assume the following
lemma:

I Lemma 7. Let δ ≤ ∆ be an integer and α, k be as defined above. Let w be any word of
length d over the alphabet {αk,−k}. Then any set-multilinear formula C of product-depth δ,
degree D ≥ λG(δ)/8 and size at most s satisfies

relrkw(C) ≤ s2−kλ/256.

Proof of Theorem 2. By lemma 5, there exists a set-multilinear projection Pw of IMM2k,d
such that relrkw(Pw) ≥ 2−k. If there is a set-multilinear circuit of size s and product-depth
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∆ computing IMMn,d, then we can expand it to a set-multilinear formula of size at most
s2∆ which computes the same polynomial. Hence we will also have a set-multilinear formula
of size at most s2∆ computing Pw. As d ≥ λG(∆)/8, taking the particular case of δ = ∆ in
lemma 7, we obtain relrkw(Pw) ≤ s2∆2−kλ/256. This gives the desired lower bound

s2∆ ≥ 2−k2kλ/256 ≥
(n

4

) d1/G(∆)
512

/n = nΩ(dµ(∆)).

J

Proof of Lemma 7. We proceed by induction on δ. We can write C = C1 + · · ·+ Ct where
each Ci is a subformula of size si rooted at a product gate. Because of the subadditivity of
relrkw, it suffices to show that

relrkw(Ci) ≤ si2−kλ/256 for all i.

Base case: C has product-depth δ = 1 and degree D ≥ λ/8.
Then C is a product of linear forms. If L is linear form on some variable set X(wi), then
relrkw(L) ≤ 2−|wi|/2 ≤ 2−k/4. Therefore by the multiplicativity of relrkw,

relrkw(Ci) ≤ 2−kD/4 ≤ 2−kλ/32

Induction hypothesis: Assume that the lemma is true for all product-depths ≤ δ − 1.
Induction step: Let C be a formula of product-depth δ and degree D ≥ λG(δ)/8.
We can write Ci = Ci,1 . . . Ci,ti where each Ci,j is a subformula of product-depth δ − 1.
If Ci has a factor, say Ci,1, of degree ≥ λG(δ−1)/8, then by induction hypothesis,

relrkw(Ci) ≤ relrkw(Ci,1) ≤ si2−kλ/256

Otherwise every factor of Ci has has degree < λG(δ−1)/8. Let Ci = Ci,1 . . . Ci,ti where
each Ci,j has degree Dij < λG(δ−1)/8. If C is set-multilinear with respect to (Xl)l∈S , then
let (S1, . . . , Sti) be the partition of S such that each Ci,j is set-multilinear with respect to
(Xl)l∈Sj .
For j ∈ [ti], let aij be the number of positive indices in Sj . We have two cases: If aij ≤ Dij/2,
then

wSj ≤
Dij

2 · αk + Dij

2 · (−k) = −Dijp

2q k ≤ −Dijk

4λ
where the last inequality follows from p

q ≥
c0

2c0(r0+1) = 1
2λ . The other case is aij > Dij/2.

If we can prove that |wSj | ≥ aijk/(8λG(δ)−1) ,then in both of the above cases, we would
have |wSj | ≥ Dijk/(16λG(δ)−1). By the multiplicativity and imbalance property of relrkw, it
would follow that

relrkw(Ci) ≤
∏ti

j=1
2−

1
2 |wSj | ≤ 2−

∑ti

j=1
Dijk/(32λG(δ)−1) = 2−Dk/(32λG(δ)−1) ≤ 2−kλ/256

and we would be done. Thus, we now only have to show that |wSj | ≥ aijk/(8λG(δ)−1).

|wSj | = |aij · αk + (Dij − aij) · (−k)| =
∣∣∣∣aij pq − (2aij −Dij)

∣∣∣∣ k as α = 1− p/q

≥
∣∣∣∣aijpq −

⌊
aijp

q

⌉∣∣∣∣ k where b.e denotes the nearest integer

The fractional part of aijp
q

is aijp mod q
q

. Hence in order to prove that |wSj |, it is enough
to verify that the following inequality is satisfied:

min
(
aijp mod q

q
, 1− aijp mod q

q

)
≥ aij

8λG(δ)−1 (3)
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Showing that the p, q we defined satisfy the inequality (3): We will first find what
we call the base (b0, . . . , b∆−2) representation of the number aij . For 0 ≤ m ≤ ∆ − 2,

inductively define ym to be the integer quotient when
(
aij −

∆−2∑
m′=m+1

bm′ym′

)
is divided

by bm. Then we can express aij as aij =
∆−2∑
m=0

bmym. Since bm ≥ λG(m)/2 for all m and

aij ≤ Dij < λG(δ−1)/8, we have the following bounds on the values of ym:

ym = 0 for m ≥ δ − 1, (4)

yδ−2 =
⌊
aij
bδ−2

⌋
<

λG(δ−1)

8
λG(δ−2)

2
≤ λG(δ−1)−G(δ−2) − 1

2 = rδ−2

2 , (5)

ym ≤
⌊
bm+1 − 1

bm

⌋
= rm for m < δ − 2 (6)

By (2), aijp ≡
∆−2∑
m=0

cmym mod q. Therefore,

min
(
aijp mod q

q
, 1− aijp mod q

q

)
= min

(∣∣∣∣∣
∆−2∑
m=0

cmym

∣∣∣∣∣ /q, 1−

∣∣∣∣∣
∆−2∑
m=0

cmym

∣∣∣∣∣ /q
)

(7)

if
∣∣∣∑∆−2

m=0 cmym

∣∣∣ /q ≤ 1, which is true by the following claim (proved in Section A):

B Claim 8. If 0 ≤ ym ≤ rm for all m, then
∣∣∣∣∆−2∑
m=0

cmym

∣∣∣∣ < q − c0.

Now let f be the highest index such that yf ≥ 1 (by (4), f ≤ δ− 2) and e be the smallest
index such that ye ≥ 1. Then

∣∣∣∑∆−2
m=0 cmym

∣∣∣ =
∣∣∣∑f

m=e cmym

∣∣∣. We need two more claims
whose proofs we postpone to section A.

B Claim 9. Let ym be non-negative integers such that ye ≥ 1. Then
∣∣∣∑f

m=e cmym

∣∣∣ ≥
min

(
|cfyf |, |cf−1| − |cfyf |

)
.

B Claim 10. Let 0 ≤ e ≤ f ≤ δ − 2. If yf ≥ 1, yδ−2 = b aijbδ−2
c ≤ rδ−2/2 and 0 ≤ ym ≤ rm

for all m ≤ δ − 2, then min
(
|cfyf |, |cf−1| − |cfyf |

)
≥ |cδ−2aij/(2bδ−2)|.

If δ = 2, then f = 0 by (4). Thus q −
∣∣∣∑f

m=e cmym

∣∣∣ > c0r0 − |c0y0| > c0r0/2 > |cfyf |
where the last two inequalities follow from (5).

Otherwise δ > 2. By Claim 8, q−
∣∣∣∑f

m=e cmym

∣∣∣ > c0. From the definition of the sequence
{cm}, we have c0 ≥ |cfrf | ≥ |cfyf | when f > 0. But when f = 0, it follows that yδ−2 = 0
implying aij < bδ−2. This further implies c0 ≥ |cδ−2| ≥ |cδ−2aij/bδ−2|.

From the analysis of the two cases above and by Claims 9 and 10, we get that

min
( ∣∣∣∑f

m=e cmym

∣∣∣ , q − ∣∣∣∑f
m=e cmym

∣∣∣ )/q ≥ ∣∣∣∣cδ−2aij
2bδ−2q

∣∣∣∣ .
The bounds on each bm and |cm| given in (1) imply the following:

|cδ−2| ≥ λG(∆−1)−G(δ−1)/2, bδ−2 ≤ λG(δ−2), q ≤ |c0|λ+ |c1| ≤ 2λG(∆−1)

Hence min
( ∣∣∣∑f

m=e cmym

∣∣∣ /q, 1 −
∣∣∣∑f

m=e cmym

∣∣∣ /q) ≥ aij
8λG(δ−1)+G(δ−2) = aij

8λG(δ)−1

which together with (7) implies (3). J
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5 Limitations on improving the bounds: Proof of Theorem 3
We will show here that the techniques used by [19] cannot hope to prove much stronger lower
bounds. We do this by constructing polynomials for which the lower bound we proved earlier
is tight. We begin by showing this in the case of two different set sizes. We can normalize
with respect to the bigger set size to assume that the weights are −k and αk (α ∈ [0, 1])
without loss of generality. Clearly, k ≤ logn.

I Lemma 11. Let n, d,∆ be such that d ≤ n. For any α ∈ [0, 1] let w ∈ {−k, αk}d be a word.
There is a polynomial P∆ ∈ Fsm[X(w)] which is computable by a set-multilinear formula of
size at most nO(∆dµ(∆)) and has the maximum possible relative rank.

I Remark. We can replace αk with bαkc and assume that the weights in w are integers. It
can be shown that this will not change the arguments in any significant way (Claim 21).

We will need the extensive notation from [19]. We restate it here.
Notation.

As in Section 2 and from the remark above, we assume |X(wi)| = 2|wi| and that the
variables are indexed by binary strings {0, 1}|wi|.
Given any subset S ⊆ [d], we denote by S+ = {i ∈ S | wi > 0} the positive indices of S
and similarly by S−, the negative indices.
We let K =

∑
i∈[d] |wi|, k+ =

∑
i∈S+

|wi| and k− =
∑
i∈S− |wi|. We say S is P-heavy if

k+ ≥ k− and N -heavy otherwise.
Setting I = [K], we partition the index set I = I1 ∪ . . . Id where Ij is an interval of length
|wj | that starts at

∑
i<j |wj |+ 1. Given a T ⊆ [d], we let I(T ) =

⋃
j∈T Ij .

Let m = m+m− ∈MS
w be any monomial. The indices of the string associated with the

positive monomial, σ(m+) can be thought of as labelled by elements of I(S+) in the
natural way - σ(m+) : I(S+)→ {0, 1}. Similarly for σ(m−).

Given a set S, we define a sequence of polynomials that we will later show to have small
size set multilinear formulas but large rank.

Fix J+ ⊆ I(S+) and J− ⊆ I(S−) such that |J+| = |J−| = min{k+, k−}. Let π be a
bijection from J+ to J−. Such a tuple (S, J+, J−, π) is called valid. Fix a valid (S, J+, J−, π).

A string τ ∈ {0, 1}|k+−k−| defines a map I(S+) \ J+ → {0, 1} if S is P-heavy and a map
I(S−) \ J− → {0, 1} if S is N -heavy.

The polynomial P(S,J+,J−,π,τ) is the sum of all monomials m such that

1. σ(m+)(j) = σ(m−)(π(j)) for all j ∈ J+, and
2. σ(m+)(j) = τ(j) for all j ∈ I(S+) \ J+ if S is P-heavy or σ(m−)(j) = τ(j) for all

j ∈ I(S−) \ J− if S is N -heavy.

These polynomials have high relative rank and a few more useful properties (as observed
in [19]) that help us in building formulas for these polynomials inductively (See Section B).

To proceed, we will need a few notions that help make the ideas in the proof overview
above precise. Fix ∆ as in Claim 12. We define the fractional cost fc. Set fc(0) = 1 and

fc(δ) := min
q<dµ(∆)/fc(δ−1)

|qα− bqαe|/q for 1 ≤ δ ≤ ∆− 1

The quantity |qα− bqαe| is the distance to the nearest integer from qα. For 1 ≤ δ ≤ ∆− 1,
we denote by pδ the (least) value of q for which the above expression attains the minimum.
We also denote by nδ := bpδαe the nearest integer to pδα. Finally, we set p∆ := |Pw| (total
number of positive sets) and n∆ := |Nw| (total number of negative sets).

We state a few properties of the terms defined above (See Section B for the proof)
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(C1) (Exponential decline) The fractional cost falls exponentially with depth i.e., fc(δ) ≤
1/(dµ(∆))F (δ+1)−2 for 1 ≤ δ ≤ ∆ − 1. This exponential decline causes fc(∆ − 1) to be
very small: fc(∆− 1) ≤ 2dµ(∆)/p∆. (Claim 19).

(C2) (Monotonicity) Let ∆′ ≤ ∆−1 be the smallest integer for which fc(∆′) ≤ 2dµ(∆)/p∆ holds
(such a ∆′ exists from the second part of (C1)). Redefine p∆′+1 := p∆ and n∆′+1 := n∆.
We have that pδ−1 ≤ pδ and nδ−1 ≤ nδ for all δ ≤ ∆′ + 1 (Claim 20).

With the notation in place ,we can now state the following central claim that constructs the
polynomial needed for Lemma 11:

B Claim 12. Let S ⊆ [d] such that |wS | ≤ k. Then, there exist J+, J−, π such that
(S, J+, J−, π) is valid and for any integer δ ≤ ∆′ + 1 and for all τ ∈ {0, 1}|k+−k−|, the
polynomial P(S,J+,J−,π,τ)) can be computed by a set-multilinear formula of product-depth δ
and size at most |S|δ25kδdµ(∆) .

We finish the proof of Lemma 11 assuming the above claim:

Proof of Lemma 11. As w[d] ≤ k, applying Claim 12 to S = [d] and δ = ∆′ + 1, gives
a polynomial P∆′+1 ∈ Fsm[X(w)] with relrkw(P∆′+1) = 2−|w[d]|/2 (using property (P1) in
Section B), and it is computable by a set-multilinear formula of product-depth at most ∆ of
size at most d∆210k∆dµ(∆) ≤ nO(∆dµ(∆)), since ∆′ + 1 ≤ ∆ by definition. J

The following claim is the main technical result that helps in proving Claim 12. It is in
the same spirit as [19, Claim 28], but we show the existence of a better partition with a more
careful analysis. Our analysis holds for any α ∈ [0, 1].

B Claim 13. Fix δ ≤ ∆′ + 1. Let S ⊆ [d] with |wS | ≤ k such that |S+| ≤ pδ and |S−| ≤ nδ.
Then there exists a partition of S as S1 ∪ S2 ∪ . . . Sr where the following conditions hold:

1. |Si,+| ≤ pδ−1 and |Si,−| ≤ nδ−1
2.
∑r
i=1 |wSi | ≤ 5kdµ(∆)

3. |wSi | ≤ k for all i ∈ [r]

Proof of Claim 13. As long as possible, pick sets Si with |Si,+| = pδ−1 positive indices and
|Si,−| = nδ−1 negative indices. For all such sets picked, we have

|wSi | =
∣∣∣∑

j∈Si
wj

∣∣∣ = k · |pδ−1α− nδ−1| = k · |pδ−1α− nδ−1| ≤ k (8)

Suppose the sets chosen after the procedure are S1, . . . , Sm, wherem = min
{⌊
|S+|
pδ−1

⌋
,
⌊
|S−|
nδ−1

⌋}
and we are left with the set S′. Since we cannot pick the sets any more, we must have that
|S′+| < pδ−1 or |S′−| < nδ−1 (or both). We analyze one case, others being analogous.

Say m =
⌊
|S+|
pδ−1

⌋
(i.e. |S′+| < pδ−1). Also suppose |S′−| > nδ−1. We pick a set Sm+1 with

|S′+| positive indices and p ≤ (|S−| −m · nδ−1) negative indices such that
|wSm+1 | = k

∣∣α|S′+| − p∣∣ = k |α(|S+| −m · pδ−1)− p| ≤ k (9)

Note that we can always choose α|S′+| − 1 ≤ p ≤ α|S′+|+ 1 to satisfy the desired constraints.
This follows from noting that |pδ−1α− nδ−1| ≤ 1 which gives pδ−1α− 1 ≤ nδ−1 ≤ pδ−1α+ 1.
Now use the fact that |S′−| > nδ−1.

The remaining set T = S′ \ Sm+1 has only negative values which we split into singletons
Sm+2, . . . , Sr (there are (|S−| − mnδ−1 − p) of these sets). As these are singletons, for
m+ 2 ≤ j ≤ r we trivially have |wSj | ≤ k.

We also note that since (|S−|−m ·nδ−1−p) is positive, it is equal to |m ·nδ−1 +p−|S−||,
which can be rewritten as |(α|S+| − |S−|)− (m(pδ−1α− nδ−1))− (α(|S+| −m · pδ−1)− p)|.
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Using the triangle inequality, we have that this quantity is at most the sum of |α|S+| − |S−||,
|m(pδ−1α− nδ−1)| and |α(|S+| −mpδ−1)− p|. The first term is less than 1 since |wS | ≤ k

and the last term is less than 1 from (9). Putting it all together, we have

(|S−| −m · nδ−1 − p) ≤ |m(pδ−1α− nδ−1)|+ 2 (10)

Finally, we get
r∑
i=1
|wSi | =

m∑
i=1
|wSi |+ |wSm+1 |+

r∑
i=m+2

|wSi |

≤ km|pδ−1α− nδ−1|+ k + k(|S−| −m · nδ−1 − p)
≤ km|pδ−1α− nδ−1|+ k + k |m(pδ−1α− nδ−1)|+ 2k (using (10))

≤ k
(

2
⌊
|S+|
pδ−1

⌋
|pδ−1α− nδ−1|+ 3

)
≤ k

(
2|S+|

|pδ−1α− nδ−1|
pδ−1

+ 3
)

≤ k (2pδ · fc(δ − 1) + 3) (By definition of fc)

≤ 5kdµ(∆)

where the last inequality is true because fc(δ − 1) ≤ 2dµ(∆)/pδ holds for δ ≤ ∆′ by the
definition of fc and pδ; it also holds for δ = ∆′ + 1 by the definition of ∆′. J

Armed with all this, the proof of Claim 12 becomes quite similar to the proof of Claim
27 in [19]. See Section B for details.
Handling more than two weights. To handle the case when there are multiple weights,
we partition the index set [d] into sets {Si} such that the sub-word indexed by each Si
contains at most two distinct weights (See Section B for the proof). We can assume without
loss of generality that all entries of w are integers as before.
I Lemma 14. Let w ∈ {α1, . . . , αγ}d (|αi| ≤ k for all i) be a word with γ ≤ d different
weights and |w[d]| ≤ k. Then, the index set [d] can be partitioned as S1 ∪ . . .∪Sη with η ≤ 6γ
such that for all i ∈ [η], the sub-word w|Si has at most two distinct weights and |wSi | ≤ k.

We can now use Claim 12 to construct polynomials with small set-multilinear formula
size but large rank, even when the number of distinct set sizes is not two.
B Claim 15. Let S ⊆ [d] and let w ∈ {α1, . . . , αγ}d (|αi| ≤ k for all i) be a word with γ ≤ d dif-
ferent weights and |wS | ≤ k. Then, there exist (J+, J−, π), (J ′+, J ′−, π′) such that (S, J+, J−, π)
and (S, J ′+, J ′−, π′) are valid. For any fixed integer ∆ and for all τ ∈ {0, 1}|k+−k−|, the poly-
nomial P(S,J+,J−,π,τ)) can be computed by a set-multilinear formula of product-depth ∆ and
size at most |S|∆230kγ∆dµ(∆) while the polynomial P(S,J ′+,J′−,π′,τ)) can be computed by a
set-multilinear formula of product-depth ∆ and size at most |S|∆25k∆dµ(∆−1)+6γk.

The proof of Claim 15 is quite similar to that of Claim 12 and we prove it in Section B.
Assuming it, we can finally prove Theorem 3:

Proof of Theorem 3. As w[d] ≤ k, applying Claim 15 to S = [d], gives polynomials P∆, Q∆ ∈
Fsm[X(w)] with relative rank relrkw(P∆) = relrkw(Q∆) = 2−|w[d]|/2 (using property (P1) in
Section B). Hence the lower bound measures are maximum.

The polynomial P∆ has product-depth ∆ set-multilinear formula size of at most

d∆230kγ∆dµ(∆)
≤ nO(γ∆dµ(∆))

The polynomial Q∆ has product-depth ∆ set-multilinear formula size of at most

d∆25k∆dµ(∆−1)+6γk ≤ nO(∆dµ(∆−1)+γ)

J
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≤ λG(m)−G(m−1)bm−1

≤ λG(m)−G(m−1).λG(m−1)−G(m−2) . . . λG(2)−G(1)b1

= λG(m)

bm = (λG(m)−G(m−1) − 1)bm−1 + bm−2

≥ (λG(m)−G(m−1) − 1)bm−1

≥ (λG(m)−G(m−1) − 1).(λG(m−1)−G(m−2) − 1) . . . (λG(2)−G(1) − 1)b1

= λG(m)−G(1)b1.

(
1− 1

λG(m)−G(m−1)

)(
1− 1

λG(m−1)−G(m−2)

)
. . .

(
1− 1

λG(2)−G(1)

)
≥ λG(m).

(
1− 1

λG(m)−G(m−1) −
1

λG(m−1)−G(m−2) − · · · −
1

λG(2)−G(1)

)
[By Claim 16]

≥ λG(m).

(
1− 1

λm−1 −
1

λm−2 − · · · −
1
λ

)
= λG(m).

(
1− 1

λ− 1

(
1− 1

λm−1

))
≥ λG(m)

2
Clearly, |cm| satisfies the bounds when m = ∆− 2 or ∆− 3. For m ≤ ∆− 4,

|cm| = (λG(m+2)−G(m+1) − 1)|cm+1|+ |cm+2|

≤ λG(m+2)−G(m+1)|cm+1|

≤ λG(m+2)−G(m+1) · λG(m+3)−G(m+2) . . . λG(∆−2)−G(∆−3)|c∆−3|

= λG(∆−2)−G(m+1) · λG(∆−1)−G(∆−2) = λG(∆−1)−G(m+1)

|cm| = (λG(m+2)−G(m+1) − 1)|cm+1|+ |cm+2|

≥ (λG(m+2)−G(m+1) − 1)|cm+1|

≥ (λG(m+2)−G(m+1) − 1) · (λG(m+3)−G(m+2) − 1) . . . (λG(∆−2)−G(∆−3) − 1)|c∆−3|

= λG(∆−2)−G(m+1)|c∆−3| ·
(

1− 1
λG(m+2)−G(m+1)

)(
1− 1

λG(m+3)−G(m+2)

)
. . .

. . .

(
1− 1

λG(∆−2)−G(∆−3)

)
≥ λG(∆−2)−G(m+1)|c∆−3|.

(
1− 1

λG(m+2)−G(m+1) − · · · −
1

λG(∆−2)−G(∆−3)

)
[By Claim 16]

≥ λG(∆−2)−G(m+1)|c∆−3|.
(

1− 1
λm+1 −

1
λm+2 − · · · −

1
λ∆−3

)
= λG(∆−1)−G(m+1).

(
1− 1

λm(λ− 1)

(
1− 1

λ∆−3−m

))
≥ λG(∆−1)−G(m+1)

2
J

B Claim 8. If 0 ≤ ym ≤ rm for all m, then
∣∣∣∣∆−2∑
m=0

cmym

∣∣∣∣ < q − c0.

Proof.
∆−2∑
m=0

cmym =
b∆−2

2 c∑
m=0

c2my2m +
d∆−2

2 e∑
m=1

c2m−1y2m−1

Draf t
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where the first summand is ≥ 0 and the second summand is ≤ 0 as ci takes positive values

at even indices and negative values at odd indices. Hence
∣∣∣∣∆−2∑
m=0

cmym

∣∣∣∣ is upper bounded by

the maximum of the absolute values of these two summands.∣∣∣∣∣∣
b∆−2

2 c∑
m=0

c2my2m

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
b∆−2

2 c∑
m=0

c2mr2m

∣∣∣∣∣∣ =

∣∣∣∣∣∣c0r0 − c1 +
(
c1 +

b∆−2
2 c∑

m=1
c2mr2m

)∣∣∣∣∣∣
and

∣∣∣∣∣∣
d∆−2

2 e∑
m=1

c2m−1y2m−1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
d∆−2

2 e∑
m=1

c2m−1r2m−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣−c0 +
(
c0 +

d∆−2
2 e∑

m=1
c2m−1r2m−1

)∣∣∣∣∣∣
By repeated substitution of the form cm + cm+1rm+1 = cm+2, the first equation becomes
equal to (c0r0− c1)+ c2b∆−2

2 c+1 and the second equation becomes equal to
∣∣∣−c0 + c2d∆−2

2 e

∣∣∣ =
c0 − c2d∆−2

2 e
[We might need to define c∆−1 := c∆−2r∆−2 + c∆−3 for this as we have not

defined it earlier. It’s easy to see that the sign parity of c∆−1 will be (−1)∆−1].
Finally,

(c0r0 − c1) + c2b∆−2
2 c+1 < q − c0 as q − c0 = c0r0 − c1 and c2b∆−2

2 c+1 is negative;

c0 − c2d∆−2
2 e

< q − c0 as q − c0 = c0r0 − c1 > c0r0 > c0 and c2d∆−2
2 e

is positive.

J

We will need the following lemma for proving Claim 9.

I Lemma 18. Let ze, . . . , zf be integers with 0 ≤ zm ≤ rm ∀m and f ≥ e+ 2. Also let Y be
an integer of the same sign as ce such that |Y | ≥ |ce|. Then there exists an integer Y ′ of the
same sign as ce+2 such that |Y ′| ≥ |ce+2| and

|Y + ceze +
f∑

m=e+1
cmzm| = |Y ′ + ce+2ze+2 +

f∑
m=e+3

cmzm|

Proof.

|Y + ceze +
f∑

m=e+1
cmzm|

=|(Y − ce) + ceze + (ce + ce+1re+1)− ce+1(re+1 − ze+1) +
f∑

m=e+2
cmzm|

=|(Y − ce) + ceze + ce+2 − ce+1(re+1 − ze+1) +
f∑

m=e+2
cmzm|

=|Y ′ + ce+2ze+2 +
f∑

m=e+3
cmzm| where Y ′ = (Y − ce) + ceze + ce+2 − ce+1(re+1 − ze+1)

Each of the terms (Y − ce), ceze, ce+2 and −ce+1(re+1 − ze+1) is either zero or has the same
sign as ce+2 because
1. Y and ce are of the same sign and |Y | ≥ |ce|
2. ze+1 ≤ re+1
3. ce,−ce+1 and ce+2 have the same sign
Hence Y ′ = (Y − ce) + ceze + ce+2 − ce+1(re+1 − ze+1) has the same sign as ce+2 and

|Y ′| = |Y − ce|+ |ceze|+ |ce+2|+ | − ce+1(re+1 − ze+1)| ≥ |ce+2|.
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J

B Claim 9. Let ym be non-negative integers such that ye ≥ 1. Then
∣∣∣∑f

m=e cmym

∣∣∣ ≥
min

(
|cfyf |, |cf−1| − |cfyf |

)
.

Proof. If e = f , then∣∣∣∣∣
f∑

m=e
cmym

∣∣∣∣∣ = |cfyf |

If e = f − 1, then∣∣∣∣∣
f∑

m=e
cmym

∣∣∣∣∣ = |cfyf + cf−1yf−1| ≥ |cf−1yf−1| − |cfyf |

≥ |cf−1| − |cfyf | [∵ yf−1 = ye ≥ 1]

If f − e ≥ 2 and f − e is even, then∣∣∣∣∣
f∑

m=e
cmym

∣∣∣∣∣ =

∣∣∣∣∣Y + ce(ye − 1) +
f∑

m=e+1
cmym

∣∣∣∣∣ where Y = ce

= |Y ′ + cfyf | where Y ′ has the same sign as cf
[By repeated application of Lemma 18]

≥ |cfyf |

If f − e ≥ 2 and f − e is odd, then∣∣∣∣∣
f∑

m=e
cmym

∣∣∣∣∣ =

∣∣∣∣∣Y + ce(ye − 1) +
f∑

m=e+1
cmym

∣∣∣∣∣ where Y = ce

= |Y ′ + cf−1yf−1 + cfyf | where Y ′ has the same sign as cf−1

and |Y ′| ≥ |cf−1|
[By repeated application of Lemma 18]

≥ |Y ′ + cf−1yf−1| − |cfyf |
≥ |Y ′| − |cfyf |
≥ |cf−1| − |cfyf |

Hence in all four cases,
∣∣∣∑f

m=e cmym

∣∣∣ ≥ min (|cfyf |, |cf−1| − |cfyf |). J

B Claim 10. Let 0 ≤ e ≤ f ≤ δ − 2. If yf ≥ 1, yδ−2 = b aijbδ−2
c ≤ rδ−2/2 and 0 ≤ ym ≤ rm

for all m ≤ δ − 2, then min
(
|cfyf |, |cf−1| − |cfyf |

)
≥ |cδ−2aij/(2bδ−2)|.

Proof. If f = δ − 2 i.e. yδ−2 ≥ 1, then

|cfyf | = |cδ−2yδ−2| and

|cf−1| − |cfyf | = |cδ−3| − |cδ−2yδ−2| ≥ |cδ−3| −
∣∣∣cδ−2

rδ−2

2

∣∣∣ ≥ ∣∣∣cδ−2
rδ−2

2

∣∣∣ ≥ |cδ−2yδ−2|

where the the second inquality follows from the definition of the sequence {cm}. As yδ−2 ≥ 1,

we obtain |cδ−2yδ−2| =
∣∣∣∣cδ−2

⌊
aij
bδ−2

⌋∣∣∣∣ ≥ ∣∣∣∣cδ−2aij
2bδ−2

∣∣∣∣.

Draf t
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Otherwise if f < δ − 2 i.e. yδ−2 = 0 i.e. aij < bδ−2, then

|cfyf | ≥ |cf | ≥ |cδ−2| and
|cf−1| − |cfyf | ≥ |cf−1| − |cfrf | = |cf+1| ≥ |cδ−2|

As aij < bδ−2, we get |cδ−2| >
∣∣∣∣cδ−2aij
bδ−2

∣∣∣∣ .
Hence in both the cases, min

(
|cfyf |, |cf−1| − |cfyf |

)
≥ |cδ−2aij/(2bδ−2)|. J

B Proofs of Section 5: Upper bound

We state some properties of the polynomials we defined in Section 5.

(P1) For any valid (S, J+, J−, π) and any τ ∈ {0, 1}|k+−k−| the matrix Mw|S
(P(S,J+,J−,π,τ))

has the maximum possible rank for a matrix with its dimensions:

rank(Mw|S
(P(S,J+,J−,π,τ))) = min{| MP∩Sw |, | MN∩Sw |} = 2min{k+,k−}

(P2) Let (Si, Ji,+, Ji,−, πi) (i ∈ [r]) be valid tuples with Si(i ∈ [r]) being all P-heavy and pari-
wise disjoint. Also assume that we have τi ∈ {0, 1}ki,+−ki,− where ki,+ =

∑
j∈I(Si,+) wj .

We can construct a new polynomial using these. Let S =
⋃
i Si (also P-heavy by defin-

ition), J+ =
⋃
i Ji,+, J− =

⋃
i Ji,−, π =

⋃
i πi and τ =

⋃
i τi. Then, (S, J+, J−, π) is a

valid tuple and moreover

P(S,J+,J−,π,τ) =
r∏
i=1

P(Si,Ji,+,Ji,−,πi,τi)

If each Si is N -heavy, an analogous fact can be shown to hold.
(P3) Say S′, S′′ are disjoint sets where S′ is P-heavy and S′′ is N -heavy. Also fix any valid

(S′, J ′+, J ′−, π′) and (S′′, J ′′+, J ′′−, π′′).
Assume that S = S′ ∪ S′′ is P-heavy. Let J− = I(S−) and J+ = J ′+ ∪ J ′′+ ∪ J ′′′ where
J ′′′ ⊆ I(S′+) is any set of size |I(S′′−)| − |I(S′′+)| disjoint from J ′+ ∪ J ′′+ (As S is P-heavy,
a set like this exists). Fix any bijection π′′′ : J ′′′ → I(S′′−) \ J ′′− Assume π : J+ → J− is
defined to be (π ∪ π′′ ∪ π′′′)(j) for j ∈ J ′+ ∪ J ′′+ ∪ J ′′′
Also, fix any τ : I(S+) \ J+ → {0, 1}. Any τ ′ : I(S′+) \ J ′+ → {0, 1} is said to extend
τ if τ ′ restricts to τ on the set I(S+) \ J+ (note that J+ contains J ′′+ = I(S′′+) and
hence I(S+) \ J+ ⊆ I(S′+) \ J ′+, so this definition makes sense). We denote by τ ′ \ τ the
restriction of τ ′ to the set J ′′′. We thus obtain

P(S,J+,J−,π,τ) =
∑

τ ′ extends τ
P(S′,J′+,J′−,π′,τ ′) · P(S′′,J′′+,J′′−,π′′,(τ ′\τ)◦π′′′−1)

The size of this sum is 2|J′′′| − 2k
′′
−−k

′′
+ . An analogous identity holds in the case that S is

N -heavy.
For the rest of this section, ∆ will refer to the same integer as in that Section 5. We now

prove some properties of the notions introduced in that section.

B Claim 19. (Property (C1)) The fractional cost falls exponentially with depth i.e., fc(δ) ≤
1/(dµ(∆))F (δ+1)−2 for 1 ≤ δ ≤ ∆− 1. Also, fc(∆− 1) ≤ 2dµ(∆)/p∆.

Proof. The second part of the claim is true for all δ < ∆− 1 by definition. We show it for
∆− 1.
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For any δ ≤ ∆, using Dirichlet’s approximation principle ([27]), we get that there exists
an integer q′ ≤ dµ(∆)/fc(δ − 1) such that

|q′α− bq′αe| < fc(δ − 1)/dµ(∆) (11)

We claim that the q′ obtained from Dirichlet isn’t too small:

q′ ≥ dµ(∆)/fc(δ − 2) (12)

Indeed if not, then

aδ−1 = min
q<dµ(∆)/fc(δ−2)

|qα− bqαe|
q

≤ fc(δ − 1)/dµ(∆). from (11) and q′ is now a candidate

This leads to a contradiction since dµ(∆) > 1. So q′ ≥ dµ(∆)/fc(δ − 2) and we obtain the
following bound on fc(δ) using (11) and (12):

fc(δ) ≤ |q
′α− bq′αe|

q′
≤ fc(δ − 1)

dµ(∆) · fc(δ − 2)
dµ(∆) (13)

Solving (13) readily gives

fc(δ) ≤ 1
df(δ)µ(∆) where f(i) ≥ f(i− 1) + f(i− 2) + 2 (14)

Rearranging, we have f(i) + 1 ≥ (f(i− 1) + 1) + (f(i− 2) + 1) + 1 whence we see that
setting f(i− 1) + 1 := F (i)− 1 satisfies the required constraints.

This also proves the first part of the claim.
As µ(∆) = 1

F (∆)−1 = 1
f(∆−1)+1 this implies f(∆ − 1)µ(∆) ≥ 1 − µ(∆) from which we

obtain

fc(∆− 1) ≤ 1/df(∆−1)µ(∆) ≤ 1/d1−µ(∆) = dµ(∆)/d ≤ 2dµ(∆)/p∆ (15)

where the last inequality follows since d ≥ p∆/2. Hence the first part of the claim holds for
∆− 1 as well. J

B Claim 20. (Property (C2)) For all δ ≤ ∆′ + 1, pδ−1 ≤ pδ and nδ−1 ≤ nδ.

Proof. Consider any δ < ∆′. From the definition, we know that

pδ < dµ(∆)/fc(δ − 1) and pδ−1 < dµ(∆)/fc(δ − 2)

Using Dirichlet, we get an integer dµ(∆)

fc(δ−2) ≤ q′ < dµ(∆)

fc(δ−1) such that |q′α − bq′αe| ≤
fc(δ − 1)/dµ(∆).

We claim that pδ ≥ dµ(∆)/fc(δ − 2). When pδ ≥ q′, this follows from above.
If pδ < q′, we claim that |pδα− bpδαe| ≤ fc(δ − 1)/dµ(∆). Suppose not. We have,

|pδα− bpδαe|
pδ

>
fc(δ − 1)
dµ(∆)pδ

.

But then
|q′α− bq′αe|

q′
≤ fc(δ − 1)

dµ(∆)q′
≤ fc(δ − 1)

dµ(∆)pδ
<
|pδα− bpδαe|

pδ

which is a contradiction to the definition of pδ.
Now, if pδ < dµ(∆)/fc(δ − 2)

fc(δ − 1) = min
q<dµ(∆)/fc(δ−2)

|qα− bqαe|
q

≤ |pδα− bpδαe|
pδ

≤ fc(δ − 1)/dµ(∆)

Draf t
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which is a contradiction.
In either case, pδ ≥ dµ(∆)/fc(δ−2) > pδ−1. Thus we also have pδ−1α ≤ pδα which implies

nδ−1 = bpδ−1αe ≤ bpδαe = nδ.
Now consider the case when δ = ∆′ + 1: We have that p∆′+1 = p∆ and n∆′+1 = n∆

We know that fc(∆′ − 1) > 2dµ(∆)/p∆ which implies

p∆′ < dµ(∆)/fc(∆′ − 1) < p∆/2 = p∆′+1/2 (16)

This means |p∆′+1α− p∆′α| ≥ p∆′+1α/2.
Suppose there was an integer between p∆α and p∆′ . As p∆′α < p∆α, this forces

n∆′ ≤ n∆′+1 = n∆ and we’re done.
But if |p∆α−p∆′α| ≤ 1, along with (16), we get that p∆′+1α/2 ≤ 1. So we have p∆α ≤ 2

and also n∆ ≤ 3 since |p∆α− n∆| ≤ 1. The total monomials in the original polynomial then
is np∆α+n∆ ≤ n5 which is not the case as it would already have a small sized formula. J

The following claim shows that when the entries of the word w are not integers, we can still
take a word w′ with integer entries such that the small sized formula maximizing the relative
rank for w′ also nearly maximizes it for w. By “nearly maximizes”, we mean that it differs
from the maximum attainable relative rank by at most a factor of 2d, which isn’t much since
d = o(logn).

B Claim 21. Let S ⊆ [d] and let w ∈ {α1k, . . . , αγk,−β1k, . . . ,−βγ′k}d,(|αi|, |βi| ≤ 1 for all
i) be a word with γ ≤ d different weights. Consider the word w′ where every αik of w is
replaced by bkαic and every −βjk of w is replaced by −bβjkc. Let P ′ be the polynomial
obtained using Claim 15 for the word w′. Then, relrkw(P ′) ≥ 2−d2−|w[d]|/2.

Proof. From the definition of w′, we have |w′i| ≤ |wi| ≤ |w′i|+ 1. Hence
∑
i(|wi| − |w′i|) ≤ d.

Using the definition of relative rank and noting that rank(Mw(P ′)) = rank(Mw′(P ′)) ,

relrkw(P ′)/relrkw′(P ′) = = 1

2
∑

i
(|wi|−|w′i|)/2

≥ 2−d/2.

As P ′ is the polynomial obtained using Claim 15 for the word w′, we have

relrkw′(P ′) = 2−|w
′
[d]|/2.

Thus it suffices to show that |w′[d]| ≤ |w[d]|+ d.
By triangle inequality, |

∑
i w
′
i| ≤ |

∑
i wi|+ |

∑
i w
′
i − wi| which implies

|w′[d]| ≤ |w[d]|+

∣∣∣∣∣∑
i

wi − w′i

∣∣∣∣∣ ≤ |w[d]|+
∑
i

|wi| − |w′i| ≤ |w[d]|+ d

where the second inequality holds because |wi| ≥ |w′i| for all i. J

We now prove the claims that build the required polynomials for Section 5.

B Claim 12. Let S ⊆ [d] such that |wS | ≤ k. Then, there exist J+, J−, π such that
(S, J+, J−, π) is valid and for any integer δ ≤ ∆′ + 1 and for all τ ∈ {0, 1}|k+−k−|, the
polynomial P(S,J+,J−,π,τ)) can be computed by a set-multilinear formula of product-depth δ
and size at most |S|δ25kδdµ(∆) .

Proof. The proof is by induction on the product-depth δ for all δ ≤ ∆′ + 1 where ∆′ + 1 is
as defined in property (C2) above.

Base Case: When δ = 1, we use the trivial expression for P(S,J+,J−,π,τ) as sum of
monomials. This is a product-depth one

∑∏
set-multilinear formula of size at most

2kd + 1 ≤ |S|25kd. So the claim is true in the base case.
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Induction step: Consider some δ > 1. Let k+ := |I(S+)| and k− := |I(S−)|. Without
loss of generality, we can assume S is P-heavy. Using Claim 13, we obtain a partition of
S = S1 ∪ . . . ∪ Sr where for all i ∈ [r], |wSi | ≤ k and

r∑
i=1
|wSi | ≤ 5kdµ(∆) (17)

By induction hypothesis, there exist Ji,+, Ji,−, πi such that (Si, Ji,+, Ji,−, πi) are valid
tuples and for each τi ∈ {0, 1}|ki,+−ki,−|, the polynomial P(Si,Ji,+,Ji,−,πi,τi) has a set-
multilinear formula Fi,τi of product-depth δ − 1 and size si ≤ |Si|δ−125k(δ−1)dµ(∆) .
We can assume that S1, . . . , Sγ are P-heavy and Sγ+1, . . . , Sr are N -heavy. Using (P2)
above, we get that

P(S′,J′+,J′−,π′,τ ′) =
γ∏
i=1

P(Si,Ji,+,Ji,−,πi,τi) , P(S′′,J′′+,J′′−,π′′,τ ′′) =
r∏

i=γ+1
P(Si,Ji,+,Ji,−,πi,τi)

(18)

where

(S′, J ′+, J ′−, π′) =

 ⋃
i∈[γ]

Si,
⋃
i∈[γ]

Ji,+,
⋃
i∈[γ]

Ji,−,
⋃
i∈[γ]

πi


(S′′, J ′′+, J ′′−, π′′) =

 r⋃
i=γ+1

Si,

r⋃
i=γ+1

Ji,+,

r⋃
i=γ+1

Ji,−,

r⋃
i=γ+1

πi


and for i ∈ [γ], each τi is a restriction of τ ′ to I(Si,+) \Ji,+ whereas for i ∈ {γ+ 1, . . . , r},
each τi is a restriction of τ ′′ to I(Si,−) \ Ji,+.
Note that both these tuples are valid and S′ is P-heavy and S′′ is N -heavy. Then using
(P3), we construct the polynomial

P(S,J+,J−,π,τ) =
∑

τ ′ extends τ
P(S′,J′+,J′−,π′,τ ′) · P(S′′,J′′+,J′′−,π′′,τ ′′)

=
∑

τ ′ extends τ

r∏
i=1

P(Si,Ji,+,Ji,−,πi,τi)

(19)

where (S′, J ′+, J ′−, π′) and (S′′, J ′′+, J ′′−, π′′) are constructed as in (P3). We can now use the
formulas Fi,τi we had before from induction and construct a set-multilinear product-depth
δ formula for P(S,J+,J−,π,τ) of size at most

r · 2|k
′′
−−k

′′
+| ·max

i∈[r]
si ≤ |S| · 2

∑
i
|wSi | · |Si|δ−125k(δ−1)dµ(∆)

≤ |S| · 25kdµ(∆)
· |S|δ−125k(δ−1)dµ(∆)

≤ |S|δ25kδdµ(∆)

(20)

where the second inequality follows from Lemma 13.

J

I Lemma 14. Let w ∈ {α1, . . . , αγ}d (|αi| ≤ k for all i) be a word with γ ≤ d different
weights and |w[d]| ≤ k. Then, the index set [d] can be partitioned as S1 ∪ . . .∪Sη with η ≤ 6γ
such that for all i ∈ [η], the sub-word w|Si has at most two distinct weights and |wSi | ≤ k.

Proof. Let {T1, . . . , Tγ} be a partition of [d] where every set Tj in the partition corresponds
to one weight (i.e. for every i ∈ Tj , wi = αj). We give an algorithm to obtain the desired

Draf t
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partition of [d].

1. Initialize j = 1. Initialize π := {T1, . . . , Tγ}. Repeat the following steps until π is empty.
2. If possible, pick some set Tp and some set Tn from π such that αp is positive and αn is

negative .
3. If |Tp|αp + |Tn|αn ≤ 0, then it’s easy to see that we can pick a subset T ′n ⊆ Tn such that∣∣∣∣|Tp|αp + |Tn|αn

∣∣∣∣ ≤ k as |αp|, |αn| ≤ k.

4. Set Sj := Tp ∪ T ′n. We have |wSj | =
∣∣∣∣|Tp|αp + |Tn|αn

∣∣∣∣ ≤ k as required. Set Tn := Tn \ T ′n.

Drop Tp from π. If |Tp|αp + |Tn|αn ≥ 0, we proceed analogously.
5. If we can’t pick two sets Tp and Tn as above, it means that for the remaining sets in π,

either their corresponding weights are all positive or all negative. We consider the case
when they are all positive (the other case can be dealt with analogously).

a. If there exists a set Tp such that |Tp|αp ≤ k, then set Sj := Tp and drop Tp from π.
b. Otherwise consider any remaining set Tp. We have |Tp|αp > k. Since αp ≤ k, there

exist T ′p ⊆ T ′p ∪ {q} ⊆ Tp such that |T ′p|αp ≤ k and (|T ′p| + 1)αp > k. Set Sj := T ′p,
Sj+1 = {q} and Tp := Tp \ (T ′p ∪ {q}). Increment j = j + 1.

6. Increment j = j + 1 and continue.

We have ensured that |wSi | ≤ k for all i. It suffices to show that the steps 2-6 are
repeated at most 3γ times. Every time step 4 or step 5.a is executed, the size of π
reduces by at least 1. Hence they can be repeated at most γ times in total. When
step 5.b is executed for the first time, we know that the remaining collection of sets is
π = {T1, . . . , Tβ} where each Tj corresponds to a positive weight. Let us denote the weight
of this collection by wπ =

∑β
j=1 wTj =

∑β
j=1 |Tj |αj . Suppose till now we have picked the

sets S1, . . . , Sβ′ for some β′ ≤ γ. Then wπ = wS −
∑β′

i=1 wSi . Using triangle inequality,
wπ ≤ |wS |+

∑β′

i=1 |wSi | ≤ k + γk. Every time we remove two sets Sj = T ′p and Sj+1 = {q}
as in step 5.b, the value of wπ reduces by (|T ′p|+ 1)αp > k. Hence this can be repeated at
most γ + 1 times. J

B Claim 15. Let S ⊆ [d] and let w ∈ {α1, . . . , αγ}d (|αi| ≤ k for all i) be a word with γ ≤ d dif-
ferent weights and |wS | ≤ k. Then, there exist (J+, J−, π), (J ′+, J ′−, π′) such that (S, J+, J−, π)
and (S, J ′+, J ′−, π′) are valid. For any fixed integer ∆ and for all τ ∈ {0, 1}|k+−k−|, the poly-
nomial P(S,J+,J−,π,τ)) can be computed by a set-multilinear formula of product-depth ∆ and
size at most |S|∆230kγ∆dµ(∆) while the polynomial P(S,J ′+,J′−,π′,τ)) can be computed by a
set-multilinear formula of product-depth ∆ and size at most |S|∆25k∆dµ(∆−1)+6γk.

Proof. As |w[d]| ≤ k, by Lemma 14, we get a partition of the index set [d] into sets S1, . . . , Sη
(η ≤ 6γ) such that the sub-word corresponding to each Si contains at most two weights and
|wSi | ≤ k.

Constructing P∆: We apply Claim 13 to each Si to get a partition Si = Si,1, . . . , Si,ri
where

∑
j∈ri |wSi,j | ≤ 5kdµ(∆). We club all the P-heavy sets together and all the N -heavy

sets together across all Sis. We obtain depth ∆− 1 formulas for each Si,j with size at
most

|Sij |∆−125k(∆−1)dµ(∆)
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Using the exact same construction as in the proof of Claim 12, we obtain the polynomial
P∆ := P([d],J+,J−,π,τ) of product-depth ∆ and size at most∑

i

ri · 2k
′′
−−k

′′
+ · max

j∈
∑

i
ri

sj ≤ d · 2
∑

i∈[η],j∈[ri]
|wSi,j | · d∆−125k(∆−1)dµ(∆)

≤ d∆230kγ∆dµ(∆)

Constructing Q∆: We can now apply Lemma 11 to each of these Sis where we set the
product depth to ∆ − 1. For all i ∈ [η], we obtain polynomials P(Si,Ji,+,Ji,−,πi,τi) with
formulas of size

|Si|∆−125k(∆−1)dµ(∆−1)

and product depth ∆− 1.
Using the exact same construction as in the proof of Claim 12, we obtain the polynomial
Q∆ := P ′([d],J+,J−,π,τ) of product-depth ∆ and size at most

η · 2k
′′
−−k

′′
+ ·max

i∈[η]
si ≤ d · 2

∑
i∈[η]

|wSi | · d∆−125k(∆−1)dµ(∆−1)

≤ d∆25k(∆−1)dµ(∆−1)+6γk

J
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