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Abstract
Derandomization of blackbox identity testing reduces to extremely special circuit models. After
a line of work, it is known that focusing on circuits with constant-depth and constantly many
variables is enough (Agrawal,Ghosh,Saxena, STOC’18) to get to general hitting-sets and circuit
lower bounds. This inspires us to study circuits with few variables, eg. logarithmic in the size s.

We give the first poly(s)-time blackbox identity test for n = O(log s) variate size-s circuits
that have poly(s)-dimensional partial derivative space; eg. depth-3 diagonal circuits (or Σ∧Σn).
The former model is well-studied (Nisan,Wigderson, FOCS’95) but no poly(s2n)-time identity
test was known before us. We introduce the concept of cone-closed basis isolation and prove its
usefulness in studying log-variate circuits. It subsumes the previous notions of rank-concentration
studied extensively in the context of ROABP models.

Keywords and phrases hitting-set, depth-3, diagonal, derandomization, identity testing, VP,
VNP, log-variate, concentration, cone closed, basis isolation.
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1 Introduction
Polynomial Identity Testing (PIT) problem is to decide whether a multivariate polynomial is
zero, where the input polynomial is given as an algebraic circuit. Algebraic circuits are the
algebraic analog of boolean circuits that use ring operations {+,×} and computes polynomials
(say) over a field. Since a polynomial computed by a circuit can have exponentially many
monomials wrt the circuit size, one cannot solve PIT in polynomial time by explicitly
expanding the polynomial. On the other hand, using circuits we can efficiently evaluate
polynomials at any point. This helps us to get a polynomial time randomized algorithm for
PIT by evaluating the circuit at a random point, since any non-zero polynomial evaluated
at a random point outputs a non-zero value with high probability [10, 58, 54]. However,
finding a deterministic polynomial time algorithm for PIT is a longstanding open question in
algebraic complexity theory. The PIT problem has been studied in two different paradigms:
1) whitebox– allowed to see the internal structure of the circuit, and 2) blackbox– can only
use the circuit as an oracle to evaluate at points (from a small field extension). It has
deep connections with both circuit lower bounds [29, 31, 1, 2] and many other algorithmic
problems [41, 4, 35, 11, 13]. For more details on PIT, see the surveys [51, 52, 55] or review
articles [56, 42].

Despite a lot of effort, little progress has been made on the PIT problem in general.
However, efficient (deterministic poly-time) PIT algorithms are known for many special
circuit models. For example, blackbox PIT for depth-2 circuits (or sparse polynomials)
[8, 34, 39], PIT algorithms for subclasses of depth-3 circuits [33, 50, 53], subclasses of depth-4
circuits [5, 7, 46, 15, 36, 37, 45], read-once algebraic branching programs (ROABP) and
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related models [19, 6, 18, 3, 26, 25], certain types of symbolic determinants [12, 27], as well
as non-commutative models [38, 22].

1.1 Our results
In the first result, we give a polynomial time blackbox PIT algorithm of log-variate depth-3
diagonal circuits Σ ∧ Σ (i.e. number of variables is logarithmic wrt circuit size). Depth-3
diagonal circuits compute a sum of power of linear polynomials. This model was first
introduced by [51] and has since drawn significant attention of PIT research community.
Saxena [51] first gave a polynomial time whitebox algorithm and exponential lower bound
for this model, by introducing a duality trick. In a subsequent work Kayal [32] gave an
alternate polynomial time whitebox algorithm for depth-3 diagonal circuits based on the
partial derivative method, which was first introduced by [44] to prove circuit lower bounds; as,
Σ∧Σ circuits have a low-dimension partial derivative space. However, one limitation of these
approaches was that they depend on the characteristic of the underlying field. Later, [16]
gave an alternative proof of duality trick which depends only on the field size (as mentioned
in [24, Lem.4.7]) and Saptharishi [48, Chap.3] extended Kayal’s idea for large enough field.

Although this model is very weak (it cannot even compute x1 · · ·xn efficiently), studying
this model has proved quite fruitful. Duality trick was crucially used in the work by [23],
where they showed that depth-3 circuits, in some sense, capture the complexity of general
arithmetic circuits.

Like whitebox PIT, a series of work has been done on blackbox PIT for depth-3 diagonal
circuits. Both [6] and [19] gave two independent and different quasi-polynomial time blackbox
PIT algorithms for this model. Later, [18] gave an sO(log log s)-time (s is the circuit size)
blackbox PIT algorithm for this model. Mulmuley [43, 40] related depth-3 diagonal blackbox
PIT to construction of normalization maps for the invariants of the group SLm, for constant
m. We cannot give the detailed notation here and would like to refer to [40, Sec.9.3]. Despite
a lot of effort, no polynomial time blackbox PIT for this model is known. After depth-2
circuits (or sparse polynomials), this can be thought of as the simplest model for which no
polynomial time blackbox PIT is known. Because of its simplicity, this model is a good test
case for generating new ideas for the PIT problem.

Log-variate models: Now we discuss why studying PIT for log-variate models is so
important. The PIT algorithms in current literature always try to achieve a sub-exponential
dependence on n, the number of variables. In a recent development, [2] showed that for some
constant c a poly(s)-time blackbox PIT for size-s degree-s and log◦c s-variate 1 circuits is
sufficient to completely solve PIT. Most surprisingly, they also showed that a poly(s)-time
blackbox PIT for size-s and log? s-variate2 Σ ∧ ΣΠ circuits will ‘partially’ solve PIT (in
quasi-polynomial time) and prove that “either E 6⊆#P/poly or VP 6=VNP” (a weaker version of
[2, Thm.21]). For example, even a poly(s)-time blackbox PIT for size-s and (log log s)-variate
depth-4 circuits would be tremendous progress. A similar result also holds for Σ ∧a ΣΠ(n)
circuits, where both a and n are ‘arbitrarily small’ unbounded functions (i.e. time-complexity
may be arbitrary in terms of both a and n), see [2, Thm.21].

The above discussion motivates us to discover techniques and measures that are specialized
to this low-variate regime. Many previous works are based on ‘support size of a monomial’
as a measure for rank-concentration [6, 18, 26]. For a monomial m, its support is the set of

1 The function log◦c denotes c times composition of the log function. For e.g. log◦2 s = log log s.
2 For any positive integer s, log? s = min{i | log◦i s ≤ 1}.
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variables whose exponents are positive. We investigate a ‘larger’ measure: cone-size (see
Definition 3) which is the number of monomials that divide m (also see [14]). Using cone-size
as a measure for rank-concentration, we give a blackbox PIT algorithm for circuit models
with ‘low’ dimensional partial derivative space.

I Theorem 1. Let F be a field of characteristic 0 or greater than d. Let P be a set of
n-variate d-degree polynomials, over F, computed by circuits of bitsize s such that: ∀P ∈ P,
the dimension of the partial derivative space of P is at most k. Then, blackbox PIT for P
can be solved in (sdk)O(1) · (3n/ log k)O(log k) time.

Note that for n = O(log k) = O(log sd), the above bound is poly-time and we get a
polynomial time blackbox PIT algorithm for log-variate circuits (i.e. number of variables
is logarithmic wrt circuit size) with low-dimensional partial derivative space. This was not
known before our work. Prior to our work, [18] gave a (sdk)O(log log sdk)-time algorithm for
P, using support size as the measure in the proof. Unlike our algorithm, in the log-variate
case their algorithm remains super-polynomial time.

In particular, diagonal depth-3 circuit is a prominent model with low partial derivative
space. So, our method gives a polynomial time PIT algorithm for log-variate depth-3
diagonal circuits. No poly-time blackbox PIT for this model was known before our work;
again, sO(log log s) was the prior best [18].

Structure of log-variate polynomials? In the second result, we investigate a struc-
tural property of polynomials over vector spaces. For a polynomial f(x) with coefficients over
Fk, let sp(f) be the subspace spanned by its coefficients. Informally, in rank concentration
we try to concentrate the rank of sp(f) to the coefficients of “few” monomials. It was first
introduced by [6]. Many works in PIT achieve rank concentration on low-support monomials,
mainly, in the ROABP model [6, 18, 26, 25]. One way of strengthening low-support concen-
tration is through low-cone concentration, where rank is concentrated in the low cone-size
monomials. This concept was not used before in designing PIT algorithms. Our first result
(Theorem 1) can be seen from this point of view. There, we developed a method to get
polynomial time blackbox PIT for log-variate models which satisfy ‘low-cone concentration
property’.

We introduce the concept of cone-closed basis, a much stronger notion of concentration
than the previous ones. We say f has a cone-closed basis, if there is a set of monomials B
whose coefficients form a basis of sp(f) and B is closed under sub-monomials. This definition
is motivated by a special depth-3 diagonal model, which have this property naturally (see
Lemma 19). We prove that this notion is a strengthening of both low-support and low-cone
concentration ideas (see Lemma 12). Recently, and independently, this notion of closure has
also appeared as an ‘abstract simplicial complex’ in [21].

In the following result, we relate cone-closed basis with ‘basis isolating weight assignment’
(Defn.13)– another well studied concept in PIT. It was first introduced by [3] and also used
in many other subsequent works [26, 12, 28]. Here, we show that a general polynomial
f over Fk, when shifted by a basis isolating weight assignment [3], becomes cone-closed.
It strengthens some previously proven properties; eg., a polynomial over Fk when shifted
‘randomly’ becomes low-support concentrated [17, Cor.3.22] (extended version of [18]) or,
when shifted by a basis isolating weight assignment becomes low-support concentrated [26,
Lem.5.2].
Notations. For any n ∈ N, [n] denotes the set of first n positive integers. By x, we denote
(x1, . . . , xn), a tuple of n-variables. For any e = (e1, . . . , en) ∈ Nn, xe denotes the monomial∏n

i=1 x
ei
i . For a polynomial f and a monomial m, coefm(f) denotes the coefficient of the
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monomialm in f . An weight assignment w on the variables x is an n-tuple (w1, . . . , wn) ∈ Nn,
where wi is the weight assigned to the variable xi.

I Theorem 2. Let f(x) ∈ F[x]k be an n-variate d-degree polynomial over Fk and char F = 0
or > d. Let w = (w1, . . . , wn) ∈ Nn be a basis isolating weight assignment of f(x). Then,
f(x + tw) := f(x1 + tw1 , . . . , xn + twn) has a cone-closed basis over F(t).

1.2 Proof ideas

Proof idea of Theorem 1: The proof of Theorem 1 has two steps. In the first step, we
show that with respect to any monomial ordering (say lexicographic monomial ordering), the
dimension k of the partial derivative space of a polynomial is lower bounded by the cone-size
of its leading monomial. For a polynomial f ∈ F[x], the leading monomial, wrt a monomial
ordering, is the largest monomial in the set {xe | coefxe(f) 6= 0}. So, for every nonzero P ∈ P
there is a monomial with nonzero coefficient and cone-size ≤ k. The second step is to check
whether the coefficients of all the monomials in P , with cone-size ≤ k, are zero. We show
that the number of such monomials is small (Lemma 5); the number is quasi-polynomial
in general, but, merely polynomial in the log-variate case. Next, we give a new method
to efficiently extract a monomial of cone-size≤ k, out of a potentially exponential space of
monomials (Lemma 4). These facts, combined with the estimates stated in Theorem 1, prove
Corollary 6; which gives a polynomial time blackbox PIT algorithm for log-variate circuits
with low dimensional partial derivative space.

Next, we discuss the idea to get a polynomial time blackbox PIT algorithm for depth-3
diagonal circuits where rank of the linear polynomials is logarithmic wrt the circuit size (see
Definition 7 & Theorem 10). Here, the proof has two steps. First, in Lemma 8, we show how
to efficiently reduce a low-rank depth-3 diagonal circuit to a low-variate depth-3 diagonal
circuit while preserving nonzeroness. This we do by a Vandermonde based linear map on
the variables. Since a depth-3 diagonal circuit has low-dimensional partial derivative space
(i.e. polynomial wrt circuit size), we apply Corollary 6 on the low-variate depth-3 diagonal
circuits and get Theorem 10.

Proof idea of Theorem 2: First, wrt the weight assignment w, we define an ordering
among the set of bases (see Section 3). Then, we show that wrt the basis isolating weight
assignment w, there exists a unique minimum basis and its weight is strictly less than the
weight of every other basis (Lemma 14). Let B be the set of monomials whose coefficients
form the least basis, wrt w, of f .

Now, we consider the set of all sub-monomials of those in B and identify a subset A that
is cone-closed. We define A in an algorithmic way (see Algorithm 1). Besides the cone-closed
property, A also satisfies an algebraic property (Lemma 18)— In the transfer matrix T , that
captures the variable-shift transformation (Equation 3), the sub-matrix TA,B is full rank.
We prove that A is exactly a basis of the shifted f by studying the action of the shift on the
coefficient vectors. The properties proved above and Cauchy-Binet Formula [57] are crucially
used in the study of the coefficient vectors after the variable-shift.

Theorem 2 has an immediate consequence that any polynomial f over Fk, when shifted
by formal (or random) variables, becomes cone-closed; since the weight induced by the
formal variables on the monomials is a basis isolating weight assignment. This seems quite a
nontrivial and an interesting property of general polynomials (over vector spaces).
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2 Low-cone concentration and hitting-sets– Proof of Theorem 1
In this section we initiate a study of properties that are relevant for low-variate circuits (or
the log-variate regime).
Notations. For a circuit C, |C| denotes the size of C. For a monomial m, by coefm(C), we
denote the coefficient of monomial m in the polynomial computed by C. For a circuit C, we
also use C to denote the polynomial computed by C.

I Definition 3 (Cone of a monomial). A monomial xe is called a sub-monomial of xf , if
e ≤ f (i.e. coordinate-wise). We say that xe is a proper sub-monomial of xf , if e ≤ f and
e 6= f .

For a monomial xe, the cone of xe is the set of all sub-monomials of xe. The cardinality of
this set is called cone-size of xe. It equals

∏
(e + 1) :=

∏
i∈[n](ei+1), where e = (e1, . . . , en).

A set S of monomials is called cone-closed if for every monomial in S all its sub-monomials
are also in S.

I Lemma 4 (Coef. extraction). Let C be a blackbox circuit which computes an n-variate and
degree-d polynomial over a field of size greater than d. Then for any monomial m =

∏
i∈[n] x

ei
i ,

we have a poly(|C|d, cs(m))-time algorithm to compute the coefficient of m in C, where cs(m)
denotes the cone-size of m.

Proof. Our proof is in two steps. First, we inductively build a circuit computing a polynomial
which has two parts; one is coefm(C) ·m and the other one is a “junk” polynomial where
every monomial is a proper super-monomial of m. Second, we construct a circuit which
extracts the coefficient of m. In both these steps the key is a classic interpolation trick.

We induct on the variables. For each i ∈ [n], let m[i] denote
∏
j∈[i] x

ej

j . We will construct
a circuit C(i) which computes a polynomial of the form,

C(i)(x) = coefm[i](C) ·m[i] + C
(i)
junk (1)

where, for every monomial m′ in the support of C(i)
junk, m[i] is a proper submonomial of m′[i].

Base case: Since C =: C(0) computes an n-variate degree-d polynomial, C(x) can be
written as C(x) =

∑d
j=0 cjx

j
1 where, cj ∈ F[x2, . . . , xn]. Let α0, . . . , αe1 be some e1 + 1

distinct elements in F. For every αj , let Cαjx1 denote the circuit C(αjx1, x2, . . . , xn) which
computes c0 + c1αjx1 + . . .+ ce1α

e1
j x

e1
1 + · · ·+ cdα

d
jx
d
1 . Since

M =

1 α0 . . . αe1
0

...
...

...
...

1 αe1 . . . αe1
e1


is an invertible Vandermonde matrix, one can find an a = [a0, . . . , ae1 ] ∈ Fe1+1, a ·M =
[ 0, 0, . . . , 1] . Using this a, we get the circuit C(1) :=

∑e1
j=0 ajC

(0)
αjx1 . Its least monomial

wrt x1 has degx1 ≥ e1, which is the property that we wanted.
Induction step (i→ i+ 1): From induction hypothesis, we have the circuit C(i) with the

properties mentioned in Eqn.1. The polynomial can also be written as b0 + b1xi+1 + . . .+
bei+1x

ei+1
i+1 + . . . bdx

d
i+1 , where every bj is in F[x1, . . . , xi, xi+2, . . . , xn]. Like the proof of the

base case, for ei+1 + 1 distinct elements α0, . . . , αei+1 ∈ F, we get C(i+1) =
∑ei+1
j=0 ajC

(i)
αjxi+1 ,

for some a = [a0, . . . , aei+1 ] ∈ Fei+1+1 and the structural constraint of C(i+1) is easy to verify,
completing the induction.



XX:6 Blackbox identity testing of log-variate circuits

Now we describe the second step of the proof. After first step, we get

C(n)(x) = coefm(C) ·m + C
(n)
junk ,

where for every monomial m′ in the support of C(n)
junk , m is a proper submonomial of m′.

Consider the polynomial C(n)(x1t, . . . , xnt) for a fresh variable t. Then, using interpolation
wrt t we can construct a O(|C(n)| ·d)-size circuit for coefm(C) ·m, by extracting the coefficient
of tdeg(m), since the degree of every monomial appearing in C(n)

junk is > deg(m). Now evaluating
at 1, we get coefm(C). The size, or time, constraint of the final circuit clearly depends
polynomially on |C|, d and cs(m). J

But, how many low-cone monomials can there be? Fortunately, in the log-variate regime
they are not too many [47]. Though, in general, they are quasi-polynomially many.

I Lemma 5 (Counting low-cones). The number of n-variate monomials with cone-size at
most k is O(rk2), where r := (3n/ log k)log k

.

Proof. First, we prove that for any fixed support set, the number of cone-size ≤ k monomials
is less than k2. Next, we multiply by the number of possible support sets to get the estimate.

Let T (k, `) denote the number of cone-size≤ k monomials m with support set, say, exactly
{x1, . . . , x`}. Since the exponent of x` in such an m is at least 1 and at most k − 1, we have
the following by the disjoint-sum rule: T (k, `) ≤

∑k
i=2 T (k/i, `− 1). This recurrence affords

an easy inductive proof as, T (k, `) <
∑k
i=2(k/i)2 < k2 ·

∑k
i=2

(
1
i−1 −

1
i

)
< k2.

From the definition of cone, a cone-size ≤ k monomial can have support size at most
` := blog kc. The number of possible support sets, thus, is

∑`
i=0
(
n
i

)
. Using the binomial

estimates [30, Chapter 1], we get
∑`
i=0
(
n
i

)
≤ (3n/`)`. J

The partial derivative space of polynomials was first used by Nisan and Wigderson [44]
to prove circuit lower bounds. Later, it was used in many other works. For more details see
the following surveys [9, 49]. Here, using cone-size as a measure, we describe a blackbox PIT
algorithm for circuits models with low dimensional partial derivative space. This algorithm
runs in polynomial time when we are in log-variate regime. For a polynomial f(x) ∈ F[x], by
∂x<∞(f) we denote the space generated all partial derivatives of f .

Proof of Theorem 1. The proof has two steps. First, we show that with respect to any
monomial ordering ≺ (say lexicographic monomial ordering), for all nonzero P ∈ P, the
dimension of the partial derivative space of P is lower bounded by the cone-size of the
leading monomial in P . Using this, we can get a blackbox PIT algorithm for P by testing
the coefficients of all the monomials of P of cone-size ≤ k for zeroness. Next, we analyze the
time complexity to do this.

The first part is the same as the proof of [14, Corollary 4.14] (with origins in [20]). Here,
we give a brief outline. Let LM(·) be the leading monomial operator wrt the monomial
ordering ≺. It can be shown that for any polynomial f(x), the dimension of its partial
derivative space ∂x<∞(f) is the same as D := # {LM(g) | g ∈ ∂x<∞(f)} (see [14, Lemma
8.4.12]). This means that dim ∂x<∞(f) is lower-bounded by the cone-size of LM(f) [14,
Corollary 8.4.13], which completes the proof of our first part.

Next, we apply Lemma 4, on the circuit of P and a monomial m of cone-size ≤ k, to get
the coefficient of m in C in poly(sdk)-time. Finally, Lemma 5 tells that we have to access at
most k2 · (3n/ log k)log k many monomials m. Multiplying these two expressions gives us the
time bound. J
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This gives us immediately,

I Corollary 6. Let F be a field of characteristic 0 or > d. Let P be a set of n-variate d-degree
polynomials, over F, computable by circuits of bitsize s; with n = O(log sd). Suppose that,
for all P ∈ P, the dimension of the partial derivative space of P is poly(sd). Then, blackbox
PIT for P can be solved in poly(sd)-time.

Now we discuss our result regarding depth-3 diagonal circuits Σ ∧ Σ.

I Definition 7 (Depth-3 diagonal circuit and its rank). A depth-3 diagonal circuit is of the
form Σ ∧ Σ (sum-power-sum). It computes a polynomial presented as C(x) =

∑
i∈[k] ci`

di
i ,

where `i’s are linear polynomials over F and ci’s in F.
By rk(C) we denote the linear rank of the polynomials {`i}i∈[k].

The next lemma introduces an efficient nonzeroness preserving variable reduction map
(n 7→ rk(C)) for depth-3 diagonal circuits. For a set of n-variate circuits C over F, a polynomial
map Ψ : Fm → Fn is called nonzeroness preserving variable reduction map for C, if m < n

and for all C ∈ C, C 6= 0 if and only if Ψ(C) 6= 0.

I Lemma 8 (Variable reduction). Let P (x) be an n-variate d-degree polynomial computed
by a size-s depth-3 diagonal circuit over some sufficiently large field F. Then, there exists a
poly(nds)-time computable nonzeroness preserving variable reduction map which converts
P to another rk(P )-variate degree-d polynomial computed by poly(s)-size depth-3 diagonal
circuit.

Proof. The polynomial P (x) can be written as
∑
i∈[k] ci`

di
i , where `i’s are linear polynomials

over F, ci’s in F and k ≤ s. Let fi be the non-constant part of `i for all i ∈ [k]. Suppose
that r := rkF{f1, . . . fk}, which is ≤ rk(P ). Wlog, we can assume that f1, . . . , fr is a basis
of the space spanned by fi’s. Then there exists an r-variate polynomial A(z) such that
P (x) = A(f1, . . . , fr). Let LF[x], where x = (x1, . . . , xn), resp. LF[y], where y = (y1, . . . , yr),
be the vector space of linear forms (i.e. homogeneous and degree one) over F.

Using the construction of [53, Section 3.2], in poly(nr)-time, we can find a linear trans-
formation Ψ : LF[x] → LF[y] such that rkF{Ψ(f1), . . . ,Ψ(fr)} = r and gi := Ψ(fi). Now, we
show that P (x) 6= 0 implies P (Ψ(x)) = A(g1, . . . , gr) 6= 0. If P (x) 6= 0, then A is also a
non-zero polynomial. Next, applying Lemma 9, we can claim that A(g1, . . . , gr) 6= 0. This
completes the proof. J

I Lemma 9. Let g1, . . . , gr are linearly independent linear forms in y = (y1, . . . , yr) over
some field F. Let A(g1, . . . , gr) = 0. Then A is the zero polynomial.

Proof. Since g1, . . . , gr are linearly independent, there exists r linearly independent linear
forms p1, . . . , pr in y = (y1, . . . , yr) such that for all i ∈ [r],

pi(g1, . . . , gr) = yi.

We can express this data in matrix form as follows:

PG = I,

where

1. P and G are n×n matrix such that ith rows denote the linear forms pi and gi, respectively.
2. I is the n× n identity matrix. Its ith row denotes the linear form yi.
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From the above relation, we can say that P is the inverse of G and vice-versa. So GP is also
same as I. This gives us for all i ∈ [r], gi(p1, . . . , pr) = yi.

Now consider the homomorphism, θ from F[y] to F[y], defined as, θ(yi) := pi for all i ∈ [r].
From the above discussion, θ(gi) = gi(p1, . . . , pr) = yi. So, applying θ on A(g1, . . . , gr), we
get

θ(A(g1, . . . , gr)) = A(θ(g1), . . . , θ(gr)) = A(y1, . . . , yr).

Since θ maps identity to identity, A(g1, . . . , gr) = 0 implies A is the zero polynomial, which
completes the proof. J

I Theorem 10 (Log-rank Σ ∧ Σ). Let F be a field of characteristic 0 or > d. Let P be the
set of n-variate d-degree polynomials P , computable by depth-3 diagonal circuits of bitsize s,
with rk(P ) = O(log sd). Then, blackbox PIT for P can be solved in poly(sd)-time.

Proof. The above description gives us a non-zeroness preserving variable reduction (n 7→
rk(P )) method that reduces P to an O(log(sd))-variate and degree-d polynomial P ′ computed
by poly(s)-size depth-3 diagonal circuit.

Since the dimension of the partial derivative space of P ′ is poly(sd) [14, Lem.8.4.8],
Corollary 6 gives us a poly(sd)-time hitting-set for P ′. J

3 Cone-closed basis after shifting– Proof of Theorem 2
In this section we will consider polynomials over a vector space, say Fk. This viewpoint
has been useful in studying algebraic branching programs (ABP), eg. [6, 18, 3, 26]. Let
D ∈ Fk[x] and let sp(D) be the vector space spanned by its coefficients. Now, we formally
define various kinds of rank concentrations of D.

I Definition 11 (Rank Concentration). We say that D has a

1. cone-closed basis if there is a cone-closed set of monomials B (see Definition 3) whose
coefficients in D form a basis of sp(D).

2. `-support concentration, if there is a set of monomials B with support size less than `
whose coefficients form a basis of sp(D).

3. `-cone concentration, if there is a set of monomials B with cone size less than ` (see
Definition 3) whose coefficients form a basis of sp(D).

In the next lemma, we show that cone-closed basis notion subsumes the other two notions.

I Lemma 12. Let D(x) be a polynomial in Fk[x]. Suppose that D(x) has a cone-closed
basis. Then, D(x) has (k + 1)-cone concentration and (lg 2k)-support concentration.

Proof. Let B be a cone-closed set of monomials forming the basis of sp(D). Clearly, |B| ≤ k.
Thus, each m ∈ B has cone-size ≤ k. In other words, D is (k + 1)-cone concentrated.

Moreover, each m ∈ B has support-size ≤ lg k. In other words, D is (lg 2k)-support
concentrated. J

Next, we define the notions which will be used in the proof of Theorem 2.
Basis & weights. Consider a weight assignment w = (w1, . . . , wn) ∈ Nn on the variables
x = (x1, . . . , xn). It extends to monomials m = xe as w(m) := 〈e,w〉 =

∑n
i=1 eiwi.

Sometimes, we also use w(e) to denote w(m). Similarly, for a set of monomials B, the weight
of B is w(B) :=

∑
m∈B w(m).
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Let B = {m1, . . . ,m`} resp. B′ = {m′1, . . . ,m′`} be an ordered set of monomials (non-
decreasing wrt w) that forms a basis of the span of coefficients of f ∈ Fk[x]. Let w be a
weight assignment on the variables. We say that B < B′ wrt w, if there exists i ∈ [`] such
that ∀j < i, w(mj) = w(m′j) but w(mi) < w(m′i).

We say that B ≤ B′ if either B < B′ or if ∀i ∈ [`], w(mi) ≤ w(m′i). A basis B is called
a least basis, if for any other basis B′, B ≤ B′. Next, we describe a condition on w such that
least basis will be unique.

I Definition 13. (Basis Isolating Weight Assignment [3, Defn.5]). A weight assignment w
is called a basis isolating weight assignment for a polynomial f(x) ∈ Fk[x] if there exists a
set of monomials B such that:

1. the coefficients of the monomials in B form a basis for sp(f),
2. weights of all monomials in B are distinct, and
3. the coefficient of every m ∈ supp(f) \ B is in the linear span of {coefm′(f) | m′ ∈ B,

w(m′) < w(m)}.

I Lemma 14. If w is a basis isolating weight assignment for f ∈ Fk[x], then f has a unique
least basis B wrt w. In particular, for any other basis B′ of f , we have w(B) < w(B′).

Proof. Let ` be the dimension of sp(f). Since w is a basis isolating weight assignment, we
get a basis B that satisfies the two conditions (2 and 3) in the Definition 13. We will show
that B is the unique least basis. Let B = {m1, . . . ,m`} with w(m1) < . . . < w(m`).

Consider any other basis B′ = {m′1, . . . ,m′`}, with w(m′1) ≤ . . . ≤ w(m′`). Let j be the
minimum number such that mj 6= m′j (it exists as B 6= B′). Suppose w(mj) ≥ w(m′j). Since
m′j /∈ B, the coefficient of m′j can be written as a linear combination of the coefficients of
mi’s for i < j. From the definition of j, for all i < j, mi = m′i. So the coefficient of m′j can
also be written as a linear combination of the coefficients of m′i’s for i < j. This contradicts
that B′ is a basis and proves that w(mj) < w(m′j).

Now we move beyond j. First, we prove that for all i ∈ [`], w(mi) ≤ w(m′i). For the
sake of contradiction assume that there exists a number a such that w(ma) > w(m′a). Pick
the least such a. Let V be the span of the coefficients of monomials in f whose weights are
≤ w(m′a). Since, for all i ∈ [a], the coefficient of m′i is in V and all of them are linearly
independent, we know that dim(V ) ≥ a. On the other hand, for every monomial m in f of
w(m) ≤ w(m′a) < w(ma), the coefficient of m can be written as a linear combination of the
coefficients of mi’s where i < a. This implies that dim(V ) < a, which yields a contradiction.
Thus, for all i ∈ [`], w(mi) ≤ w(m′i). In other words, B ≤ B′.

Togetherwith w(mj) < w(m′j), we get that B < B′ and w(B) < w(B′). J

Next we want to study the effect of shifting f by a basis isolating weight assignment.
To do that we require an elaborate notation. As before f(x) is a n-variate and degree-d
polynomial over Fk. For a weight assignment w, by f(x + tw) we denote the polynomial
f(x1 + tw1 , . . . , xn + twn). For a = (a1, . . . , an) and b = (b1, . . . , bn) in Nn,

(a
b
)
denotes∏n

i=1
(
ai

bi

)
, where

(
ai

bi

)
= 1 for bi = 0 and

(
ai

bi

)
= 0 for ai < bi. Let Mn,d = {a ∈ Nn :

|a|1 ≤ d} corresponds to the set of all n-variate d-degree monomials. For every a ∈ Mn,d,
coefxa(f(x + tw)) can be expanded using the binomial expansion, and we get:∑

b∈Mn,d

(
b
a

)
· tw(b)−w(a) · coefxb(f(x)) . (2)

We express this data in matrix form as

F ′ = D−1TD · F, (3)
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where the matrices involved are,

1. F and F ′: rows are indexed by the elements of Mn,d and columns are indexed by [k]. In
F resp. F ′ the a-th row is coefxa(f(x)) resp. coefxa(f(x + tw)).

2. D: is a diagonal matrix with both the rows and columns indexed by Mn,d. For a ∈Mn,d,
Da,a := tw(xa) .

3. T : both the rows and columns are indexed by Mn,d. For a,b ∈Mn,d, Ta,b :=
(b

a
)
. It is

known as transfer matrix.

We will prove the following combinatorial property of T : For any B ⊆Mn,d, there is a
cone-closed A ⊆Mn,d such that the submatrix TA,B has full rank. Our proof is an involved
double-induction, so we describe the construction of A as Algorithm 1.

Algorithm 1 Finding cone-closed set
Input: A subset B of the n-tuples M .
Output: A cone-closed A ⊆M with full rank TA,B .
function Find-Cone-closed(B, n)

if n = 1 then
s← |B|;

return {0. . . . , s− 1};
else

Let πn be the map which projects the set of monomials B on the first n−1 variables;
Let ` be the maximum number of preimages under πn;
∀i ∈ [`], Fi collects those elements in Img(πn) whose preimage size≥ i;
A0 ← ∅;
for i← 1 to ` do

Si ← Find-Cone-closed(Fi, n− 1);
Ai ← Ai−1

⋃(
Si × {i− 1}

)
;

end for
return A;

end if
end function

I Lemma 15 (Comparison). Let B and B′ be two nonempty subsets of M such that B ⊆ B′.
Let A = Find-Cone-closed(B,n) and A′ = Find-Cone-closed(B′, n) in Algorithm 1.
Then A ⊆ A′.

Proof. We prove the lemma using induction on n.
Base case (n = 1): For n = 1, the set A is {0, . . . , |B| − 1} and the other one A′ is

{0, . . . , |B′| − 1}. Since B is a subset of B′, |B| ≤ |B′|. So A is also a subset of A′.
Induction step (n− 1→ n): Let ` resp. `′ be the bounds on the size of preimages of πn

in B resp. B′. To denote the set of all elements in Img(πn) whose preimage size ≥ i, we use
Fi resp. F ′i . Since B ⊆ B′, we have ` ≤ `′, and for all i ∈ [`′], Fi ⊆ F ′i . So from induction
hypothesis, Si ⊆ S′i. Since A =

⋃`
i=1 Si × {i − 1} and A′ =

⋃`′
i=1 S

′
i × {i − 1}, we deduce

that A ⊆ A′. J

I Lemma 16 (Closure). Let B be a nonempty subset of M . If A = Find-Cone-closed(B,n)
in Algorithm 1, then A is cone-closed. Moreover, |A| = |B|.
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Proof. We prove it by induction on n.
Base case (n = 1): For n = 1, A = {0, . . . , |B| − 1}. So A is cone-closed.
Induction step (n− 1→ n): Now A =

⋃`
i=1 Si × {i− 1}. Let f be an element in A and

xe be a submonomial of xf . We will show that e ∈ A. Let f =: (f ′, k) and e =: (e′, t). Then
t ≤ k. We divide our proof into the following two cases.

Case 1 (t = k): We have f ′ ∈ Sk+1 = Find-Cone-closed(Fk+1, n− 1). By induction
hypothesis, Sk+1 is cone-closed. Since e′ ≤ f ′, we get e′ ∈ Sk+1. So, e = (e′, k) ∈ Sk+1×{k},
which implies that it is also in A.

Case 2 (t < k): We have Fk+1 ⊆ Ft+1. By Lemma 15, we get Sk+1 ⊆ St+1. So f ′ ∈ St+1.
From induction hypothesis, St+1 is a cone-closed set. This implies that e′ ∈ St+1 and
e ∈ St+1 × {t}. Thus, e is also in A.

Since e was arbitrary, we deduce that A is cone-closed.
Note that |A| = |B| is true when n = 1. Let us prove the induction step from n − 1

to n. Since |A| =
∑
i∈[`] |Si|, and by induction hypothesis |Si| = |Fi|, we deduce that

|A| =
∑
i∈[`] |Fi|. From the definition of Fi’s we get that Img(πn) = F1 ⊇ F2 ⊇ · · · ⊇ F`. A

monomial m ∈ πn(B) that has preimage size j, is counted exactly once in each of F1, . . . , Fj ,
but is not counted in Fk for j < k ≤ `. Thus,

|A| =
∑
i∈[`]

|Fi| =
∑

m∈πn(B)

|π−1
n (m)| = |B|.

J

We recall a fact that has been used for ROABP PIT.

I Lemma 17. [25, Claim 3.3] Let a1, . . . , an be distinct non-negative integers and char F = 0
or greater than the maximum of all ais. Let A be an n×n matrix with, i, j ∈ [n], Ai,j :=

(
aj

i−1
)
.

Then, A is full rank.

In the following lemma, we prove that the sub-matrix TA,B has full rank, where B ⊆Mn,d

and A is the output of Algorithm 1 on input A. It requires char F = 0 or greater than d.

I Lemma 18 (Full rank). If A = Find-Cone-Closed(B,n), then TA,B has full rank.

Proof. The proof will be by double-induction– outer induction on n and an inner induction
on iteration i of the ‘for’ loop (Algorithm 1).

Base case: For n = 1, the claim is true due to Lemma 17.
Induction step (n−1→ n): To show TA,B full rank, we prove that for any vector b ∈ F|B|:

if TA,B · b = 0 then b = 0. For this we show that the following invariant holds at the end of
each iteration i of the ‘for’ loop (Algorithm 1). Here, we assume the coordinates of b are
indexed by the elements of B and for all f ∈ B, bf denotes the value of b at coordinate f .

Invariant (n-variate & i-th iteration): For each f ∈ B such that the preimage size of
πn(f) is at most i, the product TAi,B · b = 0 implies that bf = 0. Here,

At the end of iteration i = 1, we have the vector TA1,B · b. Recall that A1 = S1 × {0}
and F1 = πn(B). So TA1,B · b = TS1,F1 · c, where c ∈ F|F1| and for e ∈ F1, ce :=∑

(e,k) ∈ π−1
n (e)

(
k
0
)
b(e,k). Thus, TA1,B · b = 0 implies TS1,F1 · c = 0. Since S1 = Find-Cone-

closed(F1, n− 1), using induction hypothesis, we get that c = 0. This means that for e ∈ B
such that the preimage size of πn(e) is at most 1, we have ce = 0. This proves our invariant
at the end of the iteration i = 1.

(i − 1 → i): Suppose that at the end of (i − 1)-th iteration, the invariant holds. We
show that it also holds at the end of the i-th iteration. For each j ∈ [i], let vj denote the



XX:12 Blackbox identity testing of log-variate circuits

projection of TAi,B ·b on the coordinates indexed by Sj ×{j−1}. By focusing on the rows of
TAj ,B , we can see that vj = TSj ,F1 · cj where the vector cj ∈ F|F1| is defined as, for e ∈ F1,

cje :=
∑

(e,k) ∈ π−1
n (e)

(
k

j − 1

)
· b(e,k) . (4)

Suppose that TAi,B · b = 0. Because of the invariant at i − 1th round, for all f ∈ B with
preimage size of πn(f) is less than i, bf = 0. So all we have to argue is that for every f ∈ B
such that the preimage size of e := πn(f) is i, the coordinate bf = 0.

To prove our goal, first we show that each cj is a zero vector. Since TAi,B · b = 0, its
projection vj = TSj ,F1 · cj is zero too. By induction hypothesis (on i− 1), for each e ∈ F1
with preimage size < i, the coordinate cje = 0. Thus, the vector TSj ,F1 · cj = TSj ,Fj · c′j
where the vector c′j ∈ F|Fj | is defined as, for e ∈ Fj , c′je := cje. Consequently, TSj ,Fj

· c′j = 0,
for j ∈ [i]. By induction hypothesis (on n− 1), we know that TSj ,Fj

is full rank. So c′j = 0,
which tells us that cj = 0, for j ∈ [i].

Fix an e ∈ F1, with preimage size = i, and let the preimages be {(e, k1), . . . , (e, ki)}
where kj ’s are distinct nonnegative integers. From Equation 4, we can write

c1e
c2e
...

cie

 =


(
k1
0
) (

k2
0
)

. . .
(
ki

0
)(

k1
1
) (

k2
1
)

. . .
(
ki

1
)

...
... . . .

...(
k1
i−1
) (

k2
i−1
)

. . .
(
ki

i−1
)
 ·


b(e,k1)
b(e,k2)

...
b(e,ki)

 .
Since for each j ∈ [i], cj is a zero vector, from the above equation we get

0
0
...
0

 =


(
k1
0
) (

k2
0
)

. . .
(
ki

0
)(

k1
1
) (

k2
1
)

. . .
(
ki

1
)

...
... . . .

...(
k1
i−1
) (

k2
i−1
)

. . .
(
ki

i−1
)
 ·


b(e,k1)
b(e,k2)

...
b(e,ki)

 .
Now invoking Lemma 17, we get b(e,kj) = 0 for all j ∈ [i]. In other words, for any f ∈ B
such that the preimage size of πn(f) is i, the coordinate bf = 0.

(i = `): Since A = A`, the output of Find-Cone-closed(B,n), using our invariant at
the end of `-th iteration we deduce that TA,B · b = 0 implies b = 0. Thus, TA,B has full
rank. J

Now we are ready to prove our main theorem using the transfer matrix equation.

Proof of Theorem 2. As we mentioned in Equation 2, the shifted polynomial f(x + tw)
yields a matrix equation F ′ = D−1TD ·F . Let k′ be the rank of F . We consider the following
two cases.

Case 1 (k′ < k): We reduce this case to the other one where k′ = k. Let S be a
subset of k′ columns such that FM,S has rank k′. The matrix FM,S denotes the polynomial
fS(x) ∈ F[x]k′ , where fS(x) is the projection of the ‘vector’ f(x) on the coordinates indexed
by S. So, any linear dependence relation among the coefficients of f(x) is also valid for fS(x).
So w is also a basis isolating weight assignment for fS(x). Now from our Case 2, we can claim
that fS(x + tw) has a cone-closed basis A. Thus, coefficients of the monomials, corresponding
to A, in f(x) form a basis of sp(f). This implies that f(x + tw) has a cone-closed basis A.

Case 2 (k′ = k): Let B be the least basis of f(x) wrt w and A = Find-Cone-
closed(B,n). We prove that the coefficients of monomials in A form a basis of the coefficient
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space of f(x + tw). To prove this, we show that det(F ′A,[k]) 6= 0. Define T ′ := TDF so that
F ′ = D−1T ′. Using Cauchy-Binet formula [57], we get that

det(F ′A,[k]) =
∑

C∈(M
k )

det(D−1
A,C) · det(T ′C,[k]) .

Since for all C ∈
(
M
k

)
\ {A}, the matrix D−1

A,C is singular, we have det(F ′A,[k]) = det(D−1
A,A) ·

det(T ′A,[k]). Again applying Cauchy-Binet formula for det(T ′A,[k]), we get

det(F ′A,[k]) = det(D−1
A,A) ·

∑
C∈(M

k )
tw(C) det(TA,C) · det(FC,[k]) .

From Lemma 14, we have that for all basis C ∈
(
M
k

)
\ {B}, w(C) > w(B). The matrix

TA,B is nonsingular by Lemma 18, and the other one FB,[k] is nonsingular since B is a basis.
Hence, the sum is a nonzero polynomial in t. In particular, det(F ′A,[k]) 6= 0, which ensures
that the coefficients of the monomials corresponding to A form a basis of spF(t)(f(x + tw)).
Since Lemma 16 says that A is also cone-closed, we get that f(x + tw) has a cone-closed
basis. J

3.1 Models with a cone-closed basis
We give a simple proof showing that a typical diagonal depth-3 circuit is already cone-closed.
Consider the polynomial D(x) = (1 + a1x1 + . . .+ anxn)d in Fk[x], where Fk is seen as an
F-algebra with coordinate-wise multiplication.

I Lemma 19. D(x) has a cone-closed basis.

Proof. Consider the n-tuple L := (a1, . . . ,an). Then for every monomial xe, the coefficient
of xe in D is Le :=

∏n
i=1 aei

i , with some nonzero scalar factor (note: here we seem to
need char(F) zero or large). We ignore this constant factor, since it does not affect linear
dependence relations. Consider deg-lex monomial ordering, i.e. first order the monomials by
lower to higher total degree, then within each degree arrange them according to a lexicographic
order. Now we prove that the ‘least basis’ of D(x) with respect to this monomial ordering is
cone-closed.

We incrementally devise a monomial set B as follows: Arrange all the monomials in
ascending order. Starting from least monomial, put a monomial in B if its coefficient
cannot be written as a linear combination of its previous (thus, smaller) monomials. From
construction, the coefficients of monomials in B form the least basis for the coefficient space
of D(x). Now we show that B is cone-closed. We prove it by contradiction.

Let xf ∈ B and let xe be its submonomial that is not in B. Then we can write

Le =
∑

xb≺xe

cbL
b with cb’s in F .

Multiplying by Lf−e on both sides, we get

Lf =
∑

xb≺xe

cbL
b+f−e =

∑
xb′≺xf

c′b′L
b′ .

Note that xb′ ≺ xf holds true by the way a monomial ordering is defined. This equation
contradicts the fact that xf ∈ B, and completes the proof. J
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4 Conclusion

Since it is known that one could focus solely on the PIT of VP circuits that depend only on
the first o(log s) variables, we initiate a study of properties that are useful in that regime.
These properties are– low-cone concentration and cone-closed basis. Their usefulness is
proved in our monomial counting and coefficient extraction results. Using these concepts we
solve an interesting special case of diagonal depth-3 circuits.

An open question is to make our approach work for field characteristic smaller than the
degree. Another interesting problem is to employ the cone-closed basis properties of the
Σ ∧ Σn model to devise a poly-time blackbox PIT for general n.

In our second result, we proved that after shifting the variables by a basis isolating
weight assignment, a polynomial has a cone-closed basis. Basis isolating weight assignment
is much weaker than the one induced by lexicographic monomial ordering (or the Kronecker
map). An interesting open question is to efficiently design a weight assignment (or, in
general, polynomial map) that ensures a cone closed basis. Till now, no known blackbox PIT
algorithm for ROABPs gives a polynomial time blackbox PIT algorithm for log (or sub-log)
variate ROABPs. So, achieving cone-closed basis or low-cone concentration property (in
polynomial time) for log (or sub-log) variate ROABPs is also interesting; then, the counting
& extraction techniques developed in our first result will give a polynomial time blackbox
PIT. This will solve some open problems posed in [2, Sec.6].
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