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JACOBIAN HITS CIRCUITS: HITTING SETS, LOWER BOUNDS
FOR DEPTH-D OCCUR-k FORMULAS AND DEPTH-3

TRANSCENDENCE DEGREE-k CIRCUITS∗

MANINDRA AGRAWAL† , CHANDAN SAHA‡ , RAMPRASAD SAPTHARISHI§ , AND NITIN

SAXENA¶

Abstract. We present a single common tool to strictly subsume all known cases of polynomial
time black box polynomial identity testing (PIT), that have been hitherto solved using diverse tools
and techniques, over fields of zero or large characteristic. In particular, we show that polynomial (in
the size of the circuit) time hitting-set generators for identity testing of the two seemingly different
and well studied models—depth-3 circuits with bounded top fanin, and constant-depth constant-
read multilinear formulas—can be constructed using one common algebraic-geometry theme: Ja-
cobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient
hitting-set generators for broad generalizations of the above-mentioned models, namely, (a) depth-3
(ΣΠΣ) circuits with constant transcendence degree of the polynomials computed by the product
gates (no bounded top fanin restriction), and (b) constant-depth constant-occur formulas (no mul-
tilinear restriction). Constant occur of a variable, as we define it, is a more general concept than
constant read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus,
our work goes further beyond the related results obtained by Saxena and Seshadhri [STOC, ACM,
New York, 2011, pp. 431–440], Saraf and Volkovich [STOC, ACM, New York, 2011, pp. 421–430],
Anderson, van Melkebeek, and Volkovich, [IEEE Conference on Computational Complexity, IEEE,
Piscataway, NJ, 2011, pp. 273–282], Beecken, Mittmann, and Saxena [ICALP, Springer, New York,
2011, pp. 134–148] and Grenet et al. [Proceedings of the 30th Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), Schloss Dagstuhl–Liebniz–Zentrum für Informatik,
Wadern, Germany, 2011, pp. 127–139] and brings them under one unifying technique. In addition, us-
ing the same Jacobian-based approach, we prove exponential lower bounds for the immanant (which
includes permanent and determinant) on the same depth-3 and depth-4 models for which we give
efficient PIT algorithms. Our results reinforce the intimate connection between identity testing and
lower bounds by exhibiting a concrete mathematical tool—the Jacobian. The Jacobian is equally
effective in solving both the problems on certain interesting and previously well-investigated (but
not well understood) models of computation.
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1. Introduction and examples. A polynomial in many variables, when writ-
ten down verbosely as a sum of monomials, might have a large expression. Arithmetic
circuits, on the other hand, provide a succinct way to represent multivariate polyno-
mials. An arithmetic circuit, consisting of addition (+) and multiplication (×) gates,
takes several variables as input and computes a polynomial in those variables. The
study of arithmetic circuits—as to which algorithmic questions on polynomials can
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be resolved efficiently in this model of computation, and which polynomials do not
admit any polynomial-sized circuit representation—forms the foundation of algebraic
complexity theory.

One particular algorithmic question, the problem of polynomial identity testing
(PIT), occupies a pivotal position in the theory of arithmetic circuit complexity. It is
the problem of deciding if the output of a given arithmetic circuit is the identically
zero polynomial. Being such an elementary problem, identity testing has enjoyed
its status of prime importance by appearing in several fundamental results including
primality testing [AKS04], the PCP theorem [ALM+98] and the IP = PSPACE re-
sult [LFKN90, Sha90], among many others like graph matching [Lov79, MVV87],
polynomial interpolation [CDGK91], matrix completion [IKS10], polynomial solv-
ability [KY08], factorization [SV10], learning of arithmetic circuits [KS06], and the
geometric complexity theory approach [Mul12, Mul11]. What is more intriguing
is that there is an intimate connection between identity testing and lower bounds
[KI03, HS80, AvM10], especially the problem of separating the complexity classes VP
from VNP (which must necessarily be shown before showing P �= NP [Val79, SV85]).
Proving VP �= VNP amounts to showing that an explicit class of polynomials, like
the permanent, cannot be represented by polynomial-sized arithmetic circuits, which
in turn would follow if identity testing can be derandomized using a certain kind of
pseudo random generator [Agr05, KI03]. (Note that identity testing has a simple and
efficient randomized algorithm—pick a random point and evaluate the circuit at it
[Sch80, Zip79, DL78].)

During the past decade, the quest for derandomization of PIT has yielded several
results on restricted models of circuits. But, fortunately, the search has been made
more focused by a line of work [GKKS13, Koi12, AV08, VSBR83] which states that a
polynomial time black box derandomization of identity testing for depth-3 circuits (via
a certain pseudorandom generator) implies a quasi-polynomial time derandomization
of PIT for polydegree1 circuits. By a polynomial time black box test for a circuit class
C, we mean the following.

• Construct a polynomial-sized list of points with small integer coordinates
such that any nonzero circuit in C evaluates to a nonzero value on one of
the points. (For characteristic p > 0, one works with a small field extension,
where each coordinate of a point is an element of the extension field.)

• A Turing machine that runs in time polynomial in the parameters defining C
(precisely, size of circuits in C) and outputs such a list of points is also called
a polynomial time hitting-set generator for C.

With depth-3 as the final frontier, the results that have been achieved so far
include polynomial time hitting-set generators for the following models:

• depth-2 (ΣΠ) circuits (equivalently, the class of sparse polynomials) [KS01];
• depth-3 (ΣΠΣ) circuits with constant top fanin [SS11];
• constant-depth constant-readmultilinear formulas [AvMV11, SV11] (and their
sparse-substituted variants);

• circuits generated by sparse polynomials with constant transcendence degree
[BMS11].

To our knowledge, these are the only instances for which polynomial time hitting-set
generators are known. The result on depth-3 bounded top fanin circuits is based
upon the Chinese remaindering technique of [KS07] and the ideal-theory framework
studied in [SS10]. Their work followed after a sequence of developments in rank

1Circuits computing polynomials with degree bounded by a polynomial function in the size of
the circuit.
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bound estimates [DS05, KS08, SS09, KS09b, SS10], some using incidence geometry—
although, this result [SS11] in particular is not rank based. On the other hand, the
work on constant-depth multilinear formulas [AvMV11, SV11] is obtained by building
upon and extending the techniques of other earlier results [KMSV10, SV09, SV08]
on “read-once” models. At a high level, this involved a study of the structure of
multilinear formulas under the application of partial derivatives with respect to a
carefully chosen set of variables and invoking depth-3 rank bounds (survey [SY10]).
More recently, a third technique has emerged in [BMS11] which is based upon the
abstract concept of algebraic independence of polynomials and a related computational
handle called the Jacobian. They showed that for any given polydegree circuit C and
sparse polynomials f1, . . . , fm with constant transcendence degree, a hitting set for
C(f1, . . . , fm) can be constructed in polynomial time.

Our contribution. With these diverse techniques floating around the study of
hitting-set generators, one wonders, could there be one single tool that is sufficiently
powerful to capture all these models? Is there a common feature in these different
models that can be used to construct unified PITs? The answer to both these ques-
tions, as we show in this work, is yes. The key to this lies in studying the properties
of the Jacobian, a mathematical object lying at the very core of algebraic geometry.
As for the “unique feature,” notice that in the above four models some “parameter”
of the circuit is “bounded”—be it bounded top fanin, bounded read of variables, or
bounded transcendence degree. (Bounded depth should not be seen as an extra re-
striction on the circuit model because of [GKKS13, AV08]). At an intuitive level, it
seems to us that it is this “bounded parameter”-ness of the circuit that makes the
Jacobian perform at its best.

In the process of finding a universal technique, we significantly strengthen the
earlier results. We construct hitting-set generators not only for depth-3 circuits with
bounded top fanin, but also for circuits of the form C(T1, . . . , Tm), where C is a
polydegree circuit and T1, . . . , Tm are products, of linear polynomials, with bounded
transcendence degree. In case of depth-3 circuits, C(T1, . . . , Tm) is simply T1+· · ·+Tm.
Further, we remove the restriction of multilinearity totally from the constant-depth
constant-read model and construct the first efficient hitting-set generator for this class.
The condition of constant read is also replaced by the more general notion of constant
occur.

At this point, one is faced with a natural question, how effective is the Jaco-
bian in proving lower bounds? The intimate connection between efficient algorithms
and lower bounds has recurrently appeared in various contexts [Wil11, Rag08, Uma03,
PSZ00, IW97]. For arithmetic circuits, this link is provably tight [KI03, Agr05, AV08]:
Derandomizing identity testing is equivalent to proving circuit lower bounds. This
means, one might have to look for techniques that are powerful enough to handle the
dual worlds of algorithm design and lower bounds with equal effectiveness—e.g., the
partial derivative technique has been used to prove lower bounds and identity test-
ing (albeit non-black box) on restricted models (survey [CKW11]); the τ-conjecture
is another such example [GKPS11]. In this work, we demonstrate the utility of the
Jacobian in proving exponential lower bounds for the immanant (which includes de-
terminant and permanent) on the same depth-3 and depth-4 models for which we
give efficient PIT algorithms. In particular, this includes depth-4 constant-occur for-
mulas, depth-4 circuits with constant transcendence degree of the underlying sparse
polynomials (which significantly generalizes the lower bound result in [GKPS11]), and
depth-3 circuits with constant transcendence degree of the polynomials computed by
the product gates. To our knowledge, all these lower bounds are new and it is not



1536 M. AGRAWAL, C. SAHA, R. SAPTHARISHI, AND N. SAXENA

Table 1

Comparison with the earlier efficient hitting sets.

Previous best This paper

Model Running time1 Extended Model2 Running time1 Immn lower bound

ΣΠΣ(k) circuits: sk C(T1, . . . , Tm)
?
= 0

sk trdeg {Ti} = Ω(n)
T1 + · · ·+ Tk

?
= 0 [SS11] polydegree C and

trdeg {Ti} ≤ k

ΣΠΣΠ(k) sk
3

ΣΠΣΠ
sk

2
s = 2Ω(n/k2)

multilinear circuits [SV11] occur-k formulas

depth-D, read-k sR depth-D, occur-k sR s = 2Ω(n)

multilinear formulas where R = kk2
+ kD formulas where R = k2D for constant k, D

[AvMV11] assuming Conjecture 6.1

C(f1, . . . , fm)
?
= 0 sk

polydegree C, [BMS11] – – s = 2Ω(n/k)

ΣΠ circuits fi’s
& trdeg {fi} ≤ k

1Estimates the bit complexity of the hitting-set generator; constant factors not stressed (also in higher exponents).
2We assume a zero or large characteristic.

known how to prove them using earlier techniques. A summary of the results in this
paper is provided in Table 1.

Remark. The algorithms of [SS11], [SV11], and [AvMV11] work over any field,
whereas ours work under the assumption that the field characteristic is zero or large.
Also, [AvMV11] presents a quasi-polynomial time algorithm for arbitrary depth, con-
stant read, multilinear formula—a result which we do not know yet how to capture
using our technique. Two other quasi-polynomial hitting sets that our work does not
capture are the hitting sets for constant-depth set-multilinear circuits [ASS13] and
read-once oblivious algebraic branching programs [FS13].

1.1. A tale of two PITs (and three lower bounds). A set of polynomials
f = {f1, . . . , fm} ⊂ F[x1, . . . , xn] (in short, F[x]) is said to be algebraically independent
over F if there is no nonzero polynomial H ∈ F[y1, . . . , ym] such that H(f1, . . . , fm)
is identically zero. A maximal subset of f that is algebraically independent is a
transcendence basis of f and the size of such a basis is the transcendence degree2 of f
(denoted trdeg

F
f). Our first theorem states the following.

Theorem 1.1. Let C be a polydegree circuit of size s and each of T1, . . . , Tm be
a product of d linear polynomials in F[x1, . . . , xn] such that trdeg

F
{T1, . . . , Tm} ≤ r.

A hitting set for such C(T1, . . . , Tm) can be constructed in time polynomial in n and
(sd)r, assuming char(F) = 0 or > dr.

If C is a single + gate, we get a hitting-set generator for depth-3 circuits with
constant transcendence degree of the polynomials computed by the product gates
(there is no restriction on top fanin).

Our second result uses the following generalization of read-k formulas (where
every variable appears in at most k leaf nodes of the formula) to occur-k formu-
las. Two reasons behind this generalization are one, to accommodate the power of
exponentiation—if we take the eth power of a read-k formula using a product gate,
the “read” of the resulting formula goes up to ek—we would like to avoid this super-
fluous blow up in read. Two, a read-k formula has size O(kn), which severely hinders
its power of computation—for instance, determinant and permanent cannot even be
expressed in this model when k is a constant [Kal85]. This calls for the following
definition.

2Since algebraic independence satisfies the matroid property (cf. [Oxl92]), transcendence degree
is well-defined.
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Definition 1.2. An occur-k formula is a rooted tree with internal nodes labeled
by + and ×� (power-product gate). A ×� gate, on inputs g1, . . . , gm with incoming
edges labeled e1, . . . , em ∈ N, computes ge11 · · · gemm . At the leaves of this tree are depth-
2 formulas computing sparse polynomials (leaf nodes), where every variable occurs in
at most k of these sparse polynomials.

The size of a ×� gate is defined as the integer (e1 + · · ·+ em) associated with its
incoming edges, while the size of a + gate is counted as one. The size of a leaf node is
the size of the corresponding depth-2 formula. With these conventions, the size of an
occur-k formula is defined to be the total size of all its gates (and leaf nodes) plus the
number of edges. Note that any polynomial can be expressed as an occur-1 formula,
albeit of exponential size.

Depth is defined to be the number of layers of + and ×� gates plus 2 (the “plus 2”
accounts for the depth-2 formulas at the leaves). Thus, occur-k is more relaxed than
the traditional read-k as it packs the “power of powering” (to borrow from [GKPS11]),
and the leaves are sparse polynomials (at most kn many) whose dependence on its
variables is arbitrary; e.g., (x3

1x2+x2
1x

2
3+x1x4)

e is not read-1 but is trivially depth-3
occur-1.

Theorem 1.3. A hitting set for any depth-D occur-k formula of size s can be

constructed in time polynomial in sR, where R = (2k)2D·2D (assuming char(F) = 0
or > sR).

A tighter analysis for depth-4 occur-k formulas yields a better time complexity.
Note that a depth-4 occur-k formula allows unbounded top fanin. Also, it can be
easily seen to subsume ΣΠΣΠ(k) multilinear formulas studied by [SV11, KMSV10].
This is because any multilinear ΣΠΣΠ(k) formula is a sum of k products of sparse
polynomials and every variable appears in at most one of the sparse polynomials in
every such product.

Theorem 1.4. A hitting set for any depth-4 occur-k formula of size s can be
constructed in time polynomial in sk

2

(assuming char(F) = 0 or > s4k).

For constant depth, the above theorems not only remove the restriction of multi-
linearity (and relax read-k to occur-k), but further improve upon the time complex-
ity of [AvMV11] and [SV11]. The hitting-set generator of [AvMV11] works in time

nkO(k2)+O(kD), and hence is superexponential when k = Ω(sε/2D·2D ) for any positive
ε < 1 and a constant D, whereas the generator in Theorem 1.3 runs in subexponential
time for the same choice of parameters. The running time of [SV11] is sO(k3), which
is slightly worse than that of Theorem 1.4.

Since any polynomial has an exponential-sized depth-2, occur-1 formula (just the
sparse representation), proving lower bounds on this model is an interesting proposi-
tion in its own right.

Definition 1.5 (see [LR34]). Let Sn denote the permutation group on n points
and C× be the nonzero complex numbers. For any map χ : Sn → C×, the im-
manant of a matrix M = (xij)n×n with respect to χ is defined as Immχ(M) =∑

σ∈Sn
χ(σ)

∏n
i=1 xiσ(i).

Determinant and permanent are special cases of the immanant with χ as the
alternating sign character and the identity character, respectively. Denote Immχ(M)
by Immn for an arbitrarily fixed χ.
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Theorem 1.6. Any depth-4 occur-k formula that computes Immn must have size

s = 2Ω(n/k
2) over any field of characteristic zero (even counting each ×� gate as size

one).

Thus, if each variable occurs in at most n1/2−ε (0 < ε < 1/2) many underlying
sparse polynomials, it takes an exponential-sized depth-4 circuit to compute Immn.
Our next result is an exponential lower bound on the model for which the hitting set
was developed in [BMS11] (but no lower bound was shown). It is also an improvement
over the result obtained in [GKPS11] which holds only for more restricted depth-4
circuits over reals.

Theorem 1.7. Let C be any circuit. Let f1, . . . , fm be sparse polynomials (of
any degree) with sparsity bounded by s and their trdeg bounded by r. If C(f1, . . . , fm)
computes Immn, then s = 2Ω(n/r) over any field of characteristic zero.

Which means, any circuit involving fewer than n1−ε ΣΠ-polynomials at the last
levels, must have exponential size to compute Immn. (The models of Theorems 1.6
and 1.7 are incomparable.) The next result is on the model for which the hitting set
is given by Theorem 1.1.

Theorem 1.8. Let C be any circuit and T1, . . . , Tm be products of linear polyno-
mials. If C(T1, . . . , Tm) computes Immn, then trdeg

F
{T1, . . . , Tm} = Ω(n) over any

field of characteristic zero.

Which means, any circuit involving only o(n) many algebraically independent
ΠΣ-polynomials at the last levels cannot compute Immn.

A related lower bound is one by Shpilka and Wigderson [SW02] who showed that
any depth-3 circuit computing Detn (the determinant of an n × n symbolic matrix)

requires top fanin Ω(n2) and size Ω( n4

logn ). Theorem 1.8 implies a top fanin lower

bound of Ω(n) and size lower bound of Ω(n2) for depth-3 circuits computing Detn.
In this regard, Shpilka and Wigderson’s result is stronger than the above theorem.
On the other hand, Theorem 1.8 states that Detn cannot be computed by a depth-
3 circuit with a large (possibly ω(n2)) number of product gates T1, . . . , Tm whose
transcendence degree is o(n). In this sense, the theorem says something stronger than
a top fanin lower bound.

1.2. Deterministic testing of algebraic independence. The construction
of hitting-set generators (stated in the previous section) also implies deterministic al-
gorithms for certain special cases of the following problem: Given a set of polynomials
as arithmetic circuits, check deterministically if they are algebraically independent.
In fact, for these special cases we only require a black box access to the input circuits.3

In this respect, it can be said that our hitting-set generators (and to some extent the
lower bounds) exist because these independence testers exist.

The proof of Theorem 1.1 yields the following tester.

Theorem 1.9. Given black box access to polynomials T1, . . . , Tr that are products
of d linear polynomials in F[x1, . . . , xn], there is a poly((nd)r)-time algorithm to test
whether they are algebraically independent, assuming char(F) = 0 or > dr.

Similarly, the proof of Theorem 1.3 yields the following tester.

3The classical (Jacobian-based) efficient algorithm for testing the algebraic independence of gen-
eral circuits, over large or zero characteristic, is randomized and whitebox.



JACOBIAN HITS CIRCUITS 1539

Theorem 1.10. Let T1, . . . , Tr be n-variate degree d polynomials computed by
depth-D occur-k formulas of size s and presented as black boxes. There is an (sdn)R-

time algorithm, where R = r · (2k)2D·2D , to test whether {T1, . . . , Tr} are algebraically
independent, assuming char(F) = 0 or > sR.

1.3. Our ideas. The exact reasons why our techniques work, where older ones
failed, are extremely technical. However, we now give the motivating, but impre-
cise, ideas. To a set of products of sparse polynomials {T1, . . . , Tm} we associate a
polynomial—the Jacobian J(T1, . . . , Tr). It captures the algebraic independence of
T1, . . . , Tr (assuming this to be a transcendence basis of the Ti’s). If we could find an
r-variate linear map ϕ that keeps ϕ◦J(T1, . . . , Tr) nonzero, then ϕ(T1), . . . , ϕ(Tr) are
again algebraically independent and it can be shown that for any C: C(T1, . . . , Tm) =
0 iff C(ϕ(T1), . . . , ϕ(Tm)) = 0. Since the Ti’s are not sparse, the Jacobian is usually a
difficult polynomial to work with, and so is finding ϕ. However, for the special models
in this paper we are able to design ϕ—mainly because the Jacobian (being defined
via partial derivatives) has a nice “linearizing effect,” on the circuit product gates,
that factors itself. The map ϕ ultimately provides a hitting set for C(T1, . . . , Tm), as
we reduce to a PIT of a polynomial over “few” (roughly equal to r) variables.

The initial idea for lower bounds is similar. Suppose Immn = C(T1, . . . , Tm).
Then, by algebraic dependence, J(Immn, T1, . . . , Tr) = 0. Our proofs then exploit
the nature of this identity for the special models. This part requires proving certain
combinatorial properties of the immanant.

Remark. The dependence of our results on the field characteristic is because the
Jacobian criterion, which involves taking derivatives, is used to characterize algebraic
independence. We believe that the condition on the field characteristic in our results
is probably not a fundamental requirement—rather, lifting this condition is perhaps
a technical hurdle due to the lack of a suitable criterion that captures algebraic inde-
pendence for low characteristic fields. (Intuitively, a low characteristic enables more
“cancellations,” polynomial identities, and configurations [SS10].) Recently, this di-
rection of research was investigated in [MSS14], where a new criterion for algebraic
independence, namely, the Witt–Jacobian, is presented that works even for small
characteristic. Applying this new criterion it is shown in [MSS14] that the problem
of testing algebraic independence is in NP#P. However, it seems that this criterion is
not yet effective enough to be applied to our problem and lift the restriction on field
characteristic from our results.

2. Preliminaries: Jacobian and faithful homomorphisms. Our contribu-
tion, in this section, is an elementary proof of Theorem 2.4, which was originally
proved in [BMS11] using Krull’s hauptidealsatz. Here, we state the main properties
of the Jacobian and faithful homomorphisms without proofs—for details, refer to
[BMS13].

Definition 2.1. The Jacobian of a set of polynomials f = {f1, . . . , fm} in
F[x1, . . . , xn] is defined to be the matrix Jx(f) = (∂xjfi)m×n, where ∂xjfi = ∂fi/∂xj.
Let S ⊆ x = {x1, . . . , xn} and |S| = m. Then JS(f) denotes the minor (i.e., determi-
nant of the submatrix) of Jx(f) formed by the columns corresponding to the variables
in S.

Fact 2.2 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of
degree at most d, and trdeg

F
f ≤ r. If char(F) = 0 or char(F) > dr, then trdeg

F
f =

rankF(x)Jx(f).

The proof of this fact may be found in [BMS13].
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Definition 2.3. A homomorphism Φ : F[x] → F[y] (y is another set of variables)
is said to be faithful for a finite set of polynomials f ⊂ F[x] if trdeg

F
f = trdeg

F
Φ(f).

Theorem 2.4 (faithful is useful). Let Φ be a homomorphism faithful for f =
{f1, . . . , fm} ⊂ F[x]. Then for any C ∈ F[y1, . . . , ym], C(f) = 0 ⇔ C(Φ(f)) = 0.

Proof. It is trivial to see that C(f) = 0 ⇒ C(Φ(f)) = 0. Since Φ is faithful
for f , there is a transcendence basis (say, f1, . . . , fs) of f such that Φ(f1), . . . ,Φ(fs)
is a transcendence basis of Φ(f). Since {f1, . . . , fs} are algebraically independent,
the field F(f1, . . . , fs) is isomorphic to F(y1, . . . , ys). Further, since every other fi is
algebraically dependent on {f1, . . . , fs}, it is also algebraic over F(f1, . . . , fs). Hence,

F(f1, . . . , fm) ≡ (F(f1, . . . , fs)) (fs+1, . . . , fm) ≡ (F(f1, . . . , fs)) [fs+1, . . . , fm].

In other words, the elements of the field K = F(f) can be written as polynomials in
fs+1, . . . , fm with coefficients from F(f1, . . . , fs). Suppose C(f) is a nonzero element
of K, then there is an inverse Q ∈ K such that Q ·C(f) = 1. Since Q is a polynomial
in fs+1, . . . , fm with coefficients from F(f1, . . . , fs), by clearing off the denominators
of these coefficients in Q, we get an equation Q̃ · C(f) = P (f1, . . . , fs), where Q̃ is
a nonzero polynomial in f and P is a nonzero polynomial in f1, . . . , fs. Applying Φ
to both sides of the equation, we conclude that C(Φ(f)) = Φ(C(f)) �= 0, otherwise
P (Φ(f1), . . . ,Φ(fs)) = Φ(P (f1, . . . , fs)) = 0 which is not possible as Φ(f1), . . . ,Φ(fs)
are algebraically independent and P is a nontrivial polynomial.

Recipe for faithful homomorphisms. All the PITs in this paper proceed by
constructing faithful homomorphisms for a certain set of polynomials. The following
fact describes the changes in the Jacobian after a “change of variables.”

Fact 2.5 (chain rule). For any finite set of polynomials f ⊂ F[x] and a homo-
morphism Φ : F[x] → F[y], we have Jy(Φ(f)) = Φ (Jx(f)) ·Jy(Φ(x)) (where Φ applied
to a matrix/set refers to the matrix obtained by applying Φ to every entry).

Proof. Follows directly from the chain rule of differentiation.

The recipe for faithful homomorphisms uses the following “rank preserving linear
maps” studied by Gabizon and Raz [GR05, Theorem 5].

Lemma 2.6 (Theorem 5 of [GR05]). Let A be an r × n matrix with entries in a
field F, and let t be an indeterminate. Then, rankF(t)(A · (tij)i∈[n],j∈[r]) = rankFA.

Lemma 2.7 (recipe for faithful maps). Let f ⊂ F[x] be a finite set of polynomials
of degree at most d, trdeg

F
f ≤ r, and char(F) = 0 or > dr. Let Ψ : F[x] → F[z] be a

homomorphism such that rankF(x)Jx(f) = rankF(z)Ψ(Jx(f)).
Then, the map Φ : F[x] → F[z, t, y1, . . . , yr] that maps, for all i, xi �→

(
∑r

j=1 yjt
ij) + Ψ(xi) is a homomorphism faithful for f .

We stress that in the above lemma all we require from Ψ is that the rank of Jx(f)
equals the rank of Ψ(Jx(f)), which is just Ψ applied on each entry of Ψ(Jx(f)). Note
that Ψ(Jx(f)) is not the Jacobian of Ψ(f), and hence Ψ is not necessarily faithful for
f . Here Ψ is just a map that preserves the nonzeroness of some minor of Jx(f) and
hence Ψ could in principle be a scalar map. Of course, a scalar map can never be
faithful to any nontrivial set of polynomials f . Nevertheless, the above recipe allows
us to take any such map Ψ and modify it to a map Φ that is faithful for f .

Proof. Without loss of generality, let trdeg
F
f = r, which then (by the Jacobian

criterion) is the rank of Jx(f). We show that the matrix Jy(Φ(f)) is of rank r,
which would imply (by the Jacobian criterion) that trdeg

F(t,z) Φ(f) = r. Note that if
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trdeg
F(t,z) Φ(f) = r, then we also have trdeg

F
Φ(f) ≥ r. Since we know trdeg

F
(f) = r,

this would force trdeg
F
Φ(f) = r as well.

Consider the projection J ′ of Jy(Φ(f)) obtained by setting y1 = · · · = yr = 0.

J ′ = [Jy(Φ(f))]y=0

= [Φ (Jx(f)) · Jy(Φ(x))]y=0

= Ψ(Jx(f)) · Jy(Φ(x)),

where the second line follows simply by Fact 2.5, and the third line uses the fact that
Φ(xi) is linear in y.

Observe that the matrix Jy(Φ(x)) is exactly the Vandermonde matrix that is
present in Lemma 2.6. Also, Ψ(Jx(f)) has entries in F(z), and by assumption has the
same rank as Jx(f). Hence, by Lemma 2.6,

rankF(t,z)J ′ = rankF(t,z) (Ψ(Jx(f)) · Jy(Φ(x)))

= rankF(z)Ψ(Jx(f)) = r.

And since J ′ is just a projection of Jy(Φ(f)), the rank of the latter must also be r.
Hence, Φ is indeed faithful.

3. Hitting set for depth-3 circuits of constant transcendence degree.
Let C be any circuit and D be the circuit C(T1, . . . , Tm), where each Ti is of the

form
∏d

j=1 	ij , every 	ij is a linear polynomial in F[x1, . . . , xn]. For simplicity, assume
without loss of generality that all the 	i’s are monic with respect to the lexicographic
ordering x1 � . . . � xn. Denote by T the set {T1, . . . , Tm} and by L(Ti) the multiset
of linear polynomials that constitute Ti. Suppose trdegF T = k and Tk = {T1, . . . , Tk}
is a transcendence basis of T.

Since Jx(Tk) has full rank (char(F) = 0 or char(F) > dk), without loss of gen-
erality assume that the columns corresponding to xk = {x1, . . . , xk} form a nonzero
k × k minor of Jx(Tk). By Lemma 2.7, if we construct a Ψ : F[x] → F[z] that keeps
Jxk

(Tk) nonzero, then Ψ can easily be extended to a homomorphism Φ : F[x] →
F[z, t, y1, . . . , yk] that is faithful for T. And hence, by Theorem 2.4, it would follow
that Φ(D) = 0 iff D = 0.

The linearity of the determinant would allow us to express Jxk
(Tk) as a depth-3

circuit.

Fact 3.1. For any set of vectors v11, . . . , vkn ∈ Fn,

det

[
k∑

i=1

v1i, . . . ,

k∑
i=1

vni

]
=

∑
1≤i1,...,in≤k

det [v1i1 , . . . , vnin ] .

Note that if Ti =
∏d

j=1 	ij , then

∂xTi = Ti ·
⎛
⎝ d∑

j=1

∂x	ij
	ij

⎞
⎠ .
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Using this with the linearity of the determinant, Jxk
(Tk) takes the following form,

Jxk
(Tk) =

∑
�1∈L(T1),...,�k∈L(Tk)

T1 · · ·Tk

	1 · · · 	k · det

⎡
⎢⎣

∂x1	1 . . . ∂xk
	1

...
. . .

...
∂x1	k . . . ∂xk

	k

⎤
⎥⎦

=
∑

�1∈L(T1),...,�k∈L(Tk)

T1 · · ·Tk

	1 · · · 	k · Jxk
(	1, . . . , 	k).(3.1)

Call a set of linear polynomials independent if the corresponding homogeneous linear
parts (i.e., the constant-free parts) are F-linearly independent. The term Jxk

(	1, . . . , 	k)
ensures that the above sum is only over those 	1, . . . , 	k that are independent linear
polynomials (otherwise the Jacobian vanishes). Note that this implies that no 	i
can repeat in any denominator of (3.1). The sum has the form of a depth-3 circuit,
call it H0, and we construct a low variate Ψ such that Ψ(H0) �= 0. We show that
this is achieved by a Ψ that preserves the independence of a “small” set of linear
polynomials—which we call a certificate of H0. (The certifying path technique is
from [SS11].)

Certificate of H0. We can assume that each of the terms Jxk
(	1, . . . , 	k) in (3.1)

is a nonzero field constant. Let L(H0) be the set of all linear polynomials occurring
in the denominator terms “	1 · · · 	k” of all the summands in sum (3.1). Hence, L(H0)
is the set of all distinct 	i’s that occur in the denominator of (3.1). This means, the

depth-3 circuit H0 has the form H0 = T ·∑L αL/	1 · · · 	k, where T :=
∏k

i=1 Ti, αL

is a nonzero field constant and the sum runs over some sets L = {	1, . . . , 	k} of k
independent linear polynomials contained in L(H0).

Define, content of a depth-3 circuit G =
∑

i Pi, where Pi is a product of linear
polynomials, as cont(G) := gcdi{Pi}, and let the simple part, denoted by sim(G), be
defined as G/cont(G). Hence cont(H0) = gcdL{T/	1 · · · 	k} and

(3.2) sim(H0) = F0 ·
∑
L

αL

	1 · · · 	k , where F0 =
T

cont(H0)
.

Note that F0 is the least common multiple of the denominators in (3.1), and hence
equal to the product of the linear polynomials in L(H0). Thus, deg(F0) = |L(H0)|.
For any 	 ∈ L(H0), the terms in sim(H0) that survive modulo 	 are those with 	 in
the denominator “	1 · · · 	k” of the above expression. Hence,

H1 := sim(H0) mod 	1 =
F0

	1
·

∑
L:={�2,...,�k}

αL

	2 · · · 	k .

We can treat H1 as a depth-3 circuit in one less variable: Suppose that 	1 = c1x1 +∑n
i=2 cixi, where ci’s ∈ F and c1 �= 0, then we can replace x1 by −∑n

i=2 cixi/c1 in
sim(H0), particularly in F0/	1 (of course, after dividing F0 by 	1) as well as in each of
	2, . . . , 	k in the denominators, so that H1 becomes a depth-3 circuit in F[x2, . . . , xn].
Therefore, it makes perfect sense to talk about cont(H1) and sim(H1). Observe that
	2, . . . , 	k remain independent linear polynomials modulo 	1, and so H1 is a depth-3
circuit of the “same nature” as H0 but with one less linear polynomial in the de-
nominators. Also, the set of linear polynomials L(H1) is a subset of the set of linear
polynomials L(H0) modulo 	1. Extending the above argument, it is possible to define
a sequence of circuits Hi := sim(Hi−1) mod 	̃i, (1 ≤ i ≤ k), where 	̃i ∈ L(Hi−1).
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Further, L(Hi) is a subset of L(Hi−1) modulo 	̃i, which implies that essentially
there are independent linear polynomials, say 	1, . . . , 	k, in L(H0) such that 	̃i =
	i mod (	1, . . . , 	i−1) and therefore Hi = sim(Hi−1) mod (	1, . . . , 	i).

Lemma 3.2 (certifying path). There exist independent linear polynomials {	1,
. . . , 	k} ⊆ L(H0) such that Hi �= 0 mod (	1, . . . , 	i) ∀i ∈ [k], and Hk is a nonzero
product of linear polynomials in L(H0) modulo (	1, . . . , 	k).

Proof. Since T1, . . . , Tk is a transcendence basis, we start with H0 �= 0. The proof
is by induction on k and follows the sketch given while defining sim(·).

The degree of the nonzero polynomial sim(H0) is |L(H0)| − k. By Chinese re-
maindering, there exists an 	1 ∈ L(H0) such that H1 := sim(H0) mod 	1 �= 0. In the
base case (k = 1), it is easy to see that H1 is a nonzero product of linear polynomials
modulo 	1. For any larger k, the depth-3 polynomial H1 has exactly the same form
as H0 but with k− 1 independent linear polynomials in the denominators. Inducting
on this smaller value k− 1, keeping in mind that L(Hi) ⊂ L(H0) modulo (	1, . . . , 	i),
completes the proof.

A set {	1, . . . , 	k}, satisfying Lemma 3.2, is called a certifying path of H0. Fix a
certifying path {	1, . . . , 	k}. Let Ψ : F[x] → F[z1, . . . , zk+1] be such that Ψ(	1), . . . ,
Ψ(	k) are independent linear polynomials in F[z] and for every 	 ∈ ∪k

i=1L(Ti), 	 �=
0 mod (	1, . . . , 	k) iff Ψ(	) �= 0 mod (Ψ(	1), . . . ,Ψ(	k)). We call such a Ψ a rank-(k+1)

preserving map for L(H0). It can be shown that one of the maps Ψb : xi �→
∑k+1

j=1 zjb
ij ,

where b runs over dkn(k+1)2 distinct elements of F, is a rank-(k+1) preserving map
for H0. (It is a simple corollary of Lemma 2.6).

Theorem 3.3. If Ψ : F[x] → F[z1, . . . , zk+1] is a rank-(k+ 1) preserving map for
L(H0), then Ψ(H0) �= 0.

Proof. Let {	1, . . . , 	k} be the certifying path of H0 fixed above. Let Ii :=
〈	1, . . . , 	i〉, the ideal generated by the linear forms {	1, . . . , 	i}. The proof is by
reverse induction on k: Assuming Ψ(Hi) �= 0 mod Ψ(Ii), we show that Ψ(Hi−1) �=
0 mod Ψ(Ii−1) for k ≥ i ≥ 2. The base case is easy, as by Lemma 3.2, Hk is a
nonzero product of linear polynomials in L(H0) modulo Ik. Hence, by the definition
of a rank-(k + 1) preserving map, Ψ(Hk) �= 0 mod Ψ(Ik) (the ideal generated by
independent linear polynomials is an integral domain).

The proof of the inductive step proceeds as follows. Assume that we know
Ψ(Hi) �= 0 mod Ψ(Ii). By construction,

Hi−1 = cont(Hi−1) · sim(Hi−1) = cont(Hi−1) · [qi	i +Hi] mod Ii−1

for some polynomial qi, which means, Ψ(Hi−1) = Ψ(cont(Hi−1)) ·
[Ψ(qi)Ψ(	i) + Ψ(Hi)] mod Ψ(Ii−1).

If [Ψ(qi)Ψ(	i) + Ψ(Hi)] = 0 mod Ψ(Ii−1),

then Ψ(Hi) = [Ψ(qi)Ψ(	i) + Ψ(Hi)] = 0 mod Ψ(Ii)
which contradicts the induction hypothesis. Also, by Lemma 3.2, Hi−1 �= 0 mod Ii−1

implies that cont(Hi−1) �= 0 mod Ii−1. Note that cont(Hi−1) is a product of linear
polynomials in L(H0) modulo Ii−1, and hence each factor 	 of cont(Hi−1) is not in
Ii−1. Since Ψ is a rank-(k+ 1) preserving map, Ψ(	) continues to not be in Ψ(Ii−1).
Therefore,

Ψ(Hi−1) = Ψ(cont(Hi−1)) · [Ψ(qi)Ψ(	i) + Ψ(Hi)] �= 0 mod Ψ(Ii−1)

as Ii−1 is generated by (i− 1) independent linear polynomials.
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Finally, to obtain Ψ(H0) �= 0 from Ψ(H1) �= 0 mod Ψ(I1), use the same argument
as above and that Ψ(	) �= 0 for every 	 ∈ ∪k

i=1L(Ti).

Since H0 was just a maximal nonzero minor of J (T1, . . . , Tr), we have the follow-
ing corollary (using Fact 2.2).

Corollary 3.4. Let Ψ : F[x] → F[z1, . . . , zr+1] be a rank-(r+1) preserving map
for L(T1) ∪ · · · ∪ L(Tm) (where {T1, . . . , Tm} are products of linear functions with
transcendence degree bounded by r). Then, Φ : F[x] → F[z1, . . . , zr+1, t, y1, . . . , yr+1]

defined as Φ(xi) �→ Ψ(xi) +
∑r+1

j=1 t
ijyj is a faithful homomorphism for {T1, . . . , Tm}.

Proof. Let trdeg {T1, . . . , Tm} = k ≤ r. Since any rank-(r+ 1) preserving map Ψ
is also a rank-(k + 1) preserving map, Theorem 3.3 states that Ψ preserves the rank
of J (T1, . . . , Tm). Hence by Lemma 2.7 we have that Φ is a faithful homomorphism
for {T1, . . . , Tr}.

With this, we can prove both Theorems 1.1 and 1.9.

Theorem 1.1 (restated). Let C be a polydegree circuit of size s and each of
T1, . . . , Tm be a product of d linear polynomials in F[x1, . . . , xn] such that
trdeg

F
{T1, . . . , Tm} ≤ r. A hitting set for such C(T1, . . . , Tm) can be constructed

in time polynomial in n and (sd)r, assuming char(F) = 0 or > dr.

Proof of Theorem 1.1. Corollary 3.4 gives a homomorphism

Φ : F[x] → F[z1, . . . , zr+1, t, y1, . . . , yr+1]

that is faithful for {T1, . . . , Tm}. By Theorem 2.4, we have that C(T1, . . . , Tm) = 0
iff Φ(C(T1, . . . , Tm)) = 0. Since C is a polydegree circuit of size s, Φ(C(T1, . . . , Tm))
is a polynomial of degree at most dsO(1) and nrdsO(1) in the variables {y, z} and t,
respectively. Using [Sch80, Zip79, DL78], we can construct a hitting set for Φ(D) in
time polynomial in n(sd)r. Since construction of Ψ takes time poly(ndr), the total
time taken is poly(n, (sd)r).

Theorem 1.9 (restated). Given black box access to polynomials T1, . . . , Tr that
are products of d linear polynomials in F[x1, . . . , xn], there is a poly((nd)r) time al-
gorithm to test whether they are algebraically independent, assuming char(F) = 0 or
> dr.

Proof of Theorem 1.9. Corollary 3.4 gives a homomorphism

Φ : F[x] → F[z1, . . . , zr+1, t, y1, . . . , yr+1]

that is faithful for {T1, . . . , Tr}. Hence it suffices to check if {Φ(T1), . . . ,Φ(Tr)} are
algebraically independent or not. Since each Φ(Ti) is an O(r)-variate polynomial
of degree poly(nd), they have at most poly((nd)r) monomials. It is well known
[KS01, BOT88] that an n-variate degree d multivariate polynomial with R monomials
can be reconstructed from poly(n, d,R) evaluations. Hence, using poly((nd)r) eval-
uations, each Φ(Ti) can be explicitly written down as a sum of monomials. Hence,
the Jacobian J (Φ(T1), . . . ,Φ(Tr)) can be written down explicitly, and an applica-
tion of the Schwartz–Zippel lemma in [Sch80, Zip79, DL78] allows us to check if
J (Φ(T1), . . . ,Φ(Tr)) has full rank in deterministic poly((nd)r) time.

4. Hitting set for constant-depth constant-occur formulas.
Bounding the top fanin. Let C belong to the class C of depth-D occur-k formulas

of size s, with potentially large top fanin. The following easy observation allows us to
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slightly modify C to work with a bounded top fanin formula (without increasing the
other parameters too much).

Observation 4.1. If C(x1, . . . , xn) is nonconstant and nonzero, then there is an
i such that C̃ := C(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn) − C(x1, . . . , xn) �= 0, assuming
char(F) > sD (i.e., the bound on the degree of C).

Corollary 4.2. Let H be a hitting set for the class of occur-2k, top fanin 2k,
depth-(D+1), and size (s2 + s) formulas. Then, there is a hitting set H′ with |H′| =
|H|O(1)

for the class of occur-k, depth-D, size s formulas of unbounded top fanin.

Proof. Let C be an occur-k, depth-D formula of size s that computes a nonzero
polynomial. By Observation 4.1, there exists some i such that

C̃ := C(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn)− C(x1, . . . , xn) �= 0.

If C has a + gate on top, then C(x) =
∑m

i=1 Ti, where the Ti’s are computed by

×� gates at the next level. Since xi occurs in at most k of the Ti’s, C̃ has top fanin
at most 2k. If C has a ×� gate on top, then C̃ has a + gate on top with fanin 2
and depth(C̃) = D + 1. Therefore, C̃ belongs to the class of depth-(D + 1) occur-2k
formulas of size at most (s2 + s), and a + gate on top with fanin bounded by 2k.
(The size of C(x1, . . . , xi−1, xi+1, xi+1, . . . , xn) is bounded by s2 as the total sparsity
of the polynomials corresponding to the leaves of C(x1, . . . , xn) can grow at most
quadratically as xi is replaced by xi + 1.)

Since H is a hitting set for the class of occur-2k, top fanin 2k, depth-(D + 1),
size (s2 + s) formulas, define H′ ⊃ H by including points (α1 + 1, α2, . . . , αn),
(α1, α2+1, . . . , αn), . . . , (α1, . . . , αn−1, αn+1) in H′ for every point (α1, α2, . . . , αn) ∈
H. Observe that H′ is a hitting set for C and |H′| = n · |H|.

Therefore, it is sufficient to construct a hitting set for the class of bounded top-
fanin bounded-occur formulas. By reusing symbols, assume that C is a depth-D
occur-k formula of size s with a + gate on top having top fanin at most k.

In order to construct a hitting set for C(x) =
∑k

i=1 Ti, we shall solve the following
slightly more generalized goal.

Goal: Let T1, . . . , Tk be polynomials computed by occur-k depth-
D circuits of size s each. Construct a map Φ that is faithful for
{T1, . . . , Tk}.

Theorem 2.4 asserts that any such faithful map would preserve the nonzeroness
of C. Let Tr = {T1, . . . , Tr} be a transcendence basis of T. Since Jx(Tr) has full
rank (char(F) = 0 or > sDr, by Lemma 2.7), assume that the columns corresponding
to xr = {x1, . . . , xr} form a nonzero minor of Jx(Tr). By Lemma 2.7, it suffices to
construct a Ψ that keeps Jxr (Tr) �= 0.

Proof idea. Identify a gate with the polynomial it computes, and count level of
a gate from the top—the gates Ti’s are at level 1. Suppose each Ti is a ×� gate and
Ti =

∏d
�=1 P

ei,�
i,� , where Pi,�’s are gates at level 2. Since Ti is also an occur-k formula,

x1, . . . , xr appear in at most kr of the Pi,�’s, say Pi,1, . . . Pi,kr . Hence,

∂xjTi =

(
d∏

�=kr+1

P
ei,�
i,�

)
· ∂xj

(
kr∏
�=1

P
ei,�
i,�

)
for every 1 ≤ i, j ≤ r

=⇒ Jxr(Tr) =

(
r∏

i=1

d∏
�=kr+1

P
ei,�
i,�

)
· Jxr

(
kr∏
�=1

P
e1,�
1,� , . . . ,

kr∏
�=1

P
er,�
r,�

)
.

Now notice that the Jacobian term on the right-hand side of the last equation is a
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polynomial in Pi,� and ∂xjPi,�, for 1 ≤ i, j ≤ r, and 1 ≤ 	 ≤ kr. (Note the irrelevance
of the exponents ei,�’s.) So, if Ψ is faithful for the set P := {Pi,�, ∂xjPi,� : 1 ≤ i, j ≤
r, 1 ≤ 	 ≤ kr} and the singleton sets {Pi,�} for 1 ≤ i ≤ r, kr + 1 ≤ 	 ≤ d, then
Ψ(Jxr(Tr)) �= 0. In other words, the task of constructing a faithful homomorphism is
instead replaced by the task of constructing a map that keeps every factor in the above
product nonzero. To get some more intuition, consider the case of a depth-4 circuit
in which case each of the Pi,j ’s are sparse polynomials. Preserving the nonzeroness of
sparse polynomials can be achieved via ideas from [KS01].

Observe that the polynomials in P and the singleton sets are (zeroth and first
order) derivatives of the gates at level 2, and further these sets involve (the derivatives
of) disjoint groups of level 2 gates. This disjointness feature ensures that the number
of such sets is at most s.

Thus, we have reduced the problem of constructing a faithful map Φ for T (gates
at level 1) to the problem of constructing a map Ψ that is faithful for at most s many
sets each containing derivatives of gates at the second level. Now, the idea is to carry
forward this argument recursively to deeper levels: In the next level of the recursion we
reduce the problem to constructing a map that is faithful for at most s sets containing
(zeroth, first, and second order) derivatives of disjoint groups of gates at level 3, and
so on. Eventually, the recursion reaches the level of the sparse polynomials (the leaf
nodes) where a faithful map can be constructed using ideas from [KS01].

Let us formalize this proof idea. For any multiset of variables S, let ΔSf denote
the partial derivative of f with respect to the variables in S (including repetitions, as
S is a multiset). Let var(S) denote the set of distinct variables in S.

Lemma 4.3 (Gcd trick). Let G be any gate in C and S1, . . . , Sw be multisets
of variables. Then there exists another occur-k formula G′ for which the vector of
polynomials (ΔS1G, . . . ,ΔSwG) = VG · (ΔS1G

′, . . . ,ΔSwG
′) such that

1. if G is a + gate, then G′ is also a + gate whose children consist of at most
k · |∪w

i=1var(Si)| of the children of G, and VG = 1;
2. if G is a ×� gate, then G′ is also a ×� gate whose children consist of at

most k · |∪w
i=1var(Si)| of the children of G, and VG = G/G′.

Further, the gates constituting G′ and VG are disjoint.

Proof.
1. Suppose G = H1+· · ·+Hm. Then at most k ·|∪var(Si)| of its children depend

on the variables present in ∪var(Si); let G
′ be the sum of these children. Then,

ΔSiG = ΔSiG
′ as the other gates are independent of the variables in ∪Si.

2. Suppose G = He1
1 · · ·Hem

m . Since G is a gate in an occur-k formula, at most
k ·|∪var(Si)| of the Hi’s depend on the variables in ∪Si; call these H1, . . . , Ht.
Let G′ := He1

1 · · ·Het
t and VG := G/G′. Then, ΔSiG = VG · ΔSiG

′ as
claimed.

We say that a map is faithful for a collection of sets if it is faithful for every set
in the collection. Going by the “proof idea,” suppose at the 	th level of the recursion
we want to construct a Ψ� that is faithful for a collection of (at most) s sets of
polynomials, each set containing at most r� partial derivatives (of order up to c�) of
the gates at level 	. Moreover, the sets involve derivatives of disjoint groups of gates.
To begin with, 	 = 1 and we wish to construct a Ψ1 that is faithful for just one set T,
so r1 ≤ k and c1 = 0. The next lemma captures the evolution of the recursion and is
essentially a careful analysis of the growth of the sets as we descend levels.

Lemma 4.4 (evolution via factoring). Let U be a set of r� derivatives (of orders
up to c�) of gates GU at level 	, and U ′ be a transcendence basis of U . Any |U ′| × |U ′|
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minor of Jx(U ′) is of the form
∏

i V
ei
i , where Vi’s are polynomials in at most r�+1 :=

(c�+1) ·2c�+1k ·r�2 many derivatives (of order up to c�+1 := c�+1) of disjoint groups
of children of GU .

Proof. Let r′ = |U ′| and M be an arbitrary r′ × r′ submatrix of Jx(U ′). Let
(ΔS1G, . . . ,ΔSr′G) be an arbitrary row of M that corresponds to certain derivatives
of a node G at level 	. Since each of the derivatives is of order at most c�+1, we have
that | ∪r′

i=1 var(Si)| ≤ r′(c�) + r′ ≤ r′(c� + 1). By applying Lemma 4.3 to this row,
we can express this row as VG · (ΔS1G

′, . . . ,ΔSr′G
′). So, det(M) =

∏
G VG · detM ′,

where M ′ is the submatrix obtained after removing the VG’s common from each of
the rows. Thus, the elements present inside M ′ are of the form ΔSiG

′, where G′ has
at most kr′(c� + 1) children.

Since each |Si| ≤ c� + 1 and G is a node in an occur-k formula, at most k(c� + 1)
children of G′ depend on var(Si).

If G′ is a + gate, then ΔSiG
′ is the sum of the derivatives of at most k(c� +1) of

its children (that depend on var(Si)).
If G′ is a ×� gate computing He1

1 · · ·Het
t (where t ≤ kr′(c� + 1)), then ΔSiG

′ is
a polynomial combination of the Hi’s and {ΔTHj}∅�=T⊆Si

for each Hj depending on

var(Si).
Hence in either case, ΔSiG

′ is a polynomial in at most kr′(c� + 1) + k(c� + 1)×
(2c�+1 − 1) many derivatives (of order at most (c� + 1)) of the children of G′. Sum-
ming across the r′ elements in that row, the number of derivatives used are at most
kr′(c� + 1) + k(c� + 1)(2c�+1 − 1)r′ ≤ kr′(c� + 1)2c�+1. Summing over all r′ rows, the
number of derivatives used is at most kr′2(c� + 1)2c�+1. Further, each VG that was
removed as a common factor in a row is just a product of gates in level (	 + 1), and
are disjoint from the gates whose derivatives constitute M ′ (by Lemma 4.3). Thus, if
r� was an upper bound for r′, then we have that the number of derivatives used is at
most

r�+1 = kr2� (c� + 1)2c�+1

as claimed.

Let C� denote the collection of sets for which we want to construct a faithful map
Ψ� at the 	th level of the recursion. To begin with, C1 = {{T1, . . . , Tk}} and the
collection C�+1 is formed from C� in the following fashion: For any S ∈ C�, consider
a maximal nonsingular minor of J (S), and by Lemma 4.4 this minor can be written

as a product of V
(S)
i ’s where each V

(S)
i is a function of at most r�+1 derivatives of

polynomials computed in level 	+1. Denote the set of derivatives that V
(S)
i depends

on as Elem(V
(S)
i ). Then, C�+1 = {Elem(V

(S)
i ) : S ∈ C�}.

It follows from the above lemma that the groups of gates whose derivatives form
the different Elem(Vi)’s are disjoint and therefore |C�+1| ≤ s. Using Lemmas 2.7 and
4.4, we can lift a map Ψ�+1 to construct Ψ�.

Corollary 4.5. If Ψ�+1 is faithful for C�+1, then

Ψ� : xi �→
⎛
⎝ r�∑

j=1

yj,� · (t�)ij
⎞
⎠+Ψ�+1(xi)

is faithful for C�, where {y1,�, . . . , yr�,�, t�} is a fresh set of variables.
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Unfolding the recursion until we reach the level of the sparse polynomials (at level
(D − 2)), if ΨD−2 is a faithful homomorphism for CD−2, then Ψ1 defined by

(4.1) Ψ1(xi) �→
D−3∑
�=1

⎛
⎝ r�∑

j=1

yj,�t
ij
�

⎞
⎠+ΨD−2(xi)

is faithful for {T1, . . . , Tk}. Hence, we are reduced to the task of constructing a faithful
map for the collection CD−2 which consists of at most s sets of derivatives of s-sparse
polynomials (i.e., consisting of at most s monomials), and each set being of size at
most rD−2. Constructing a faithful homomorphism for a collection of sets of sparse
polynomials can be achieved using standard techniques used in sparse-PIT.

Lemma 4.6. Let C = {W1, . . . ,Ws}, where each Ws is a set of r polynomials
that are n-variate, degree d, and s-sparse. For each 1 ≤ p ≤ O((srnd)4), the map
Ψ(p) : F[x] → F[y1, . . . , yr, t, u] is defined by

Ψ(p) : xi �→
⎛
⎝ r∑

j=1

yjt
ij

⎞
⎠+ u(dr+1)i mod p.

Then one of the maps Ψ(p) (as p varies over the specified range) is faithful for the
collection C.

Proof. For each W ∈ C, any maximal nonzero minor of Jx(W ) is a sparse polyno-
mial with sparsity bounded by sr and degree bounded by dr. Using [KS01], the nonze-

roness of this determinant is maintained by one of the maps Φ(p) : xi �→ u(dr+1)i mod p

as p varies from 1 to O((srnd)4). For such a map Φ(p), Lemma 2.7 asserts that
Ψ(p) : xi �→

∑r
j=1 yjt

ij +Φ(p)(xi) is faithful for C.
With the above lemma and (4.1), we can achieve our goal of constructing a faithful

homomorphism for {T1, . . . , Tk}.
Theorem 4.7. Let T1, . . . , Tk be polynomials computed by depth-D occur-k for-

mulas of size at most s each. Then, a homomorphism that is faithful for {T1, . . . , Tk}
can be constructed in time polynomial in sR, where R = (2k)2D·2D (assuming char(F) =
0 or > sR).

Proof. Unfolding the recursion in Corollary 4.5 and (4.1), it suffices to construct
a map Ψ(p) that is faithful for CD−2 (as defined earlier). Recall that CD−2 is a
collection of s sets of at most rD−2 derivatives of s-sparse polynomials of degree at
most d. Hence, we can apply Lemma 4.6 to this collection CD−2 to get that

Ψ(p)(xi) �→
D−2∑
�=1

⎛
⎝ r�∑

j=1

yj,�t
ij
�

⎞
⎠+ u(sr�+1) mod p.

Using the relation between r�+1 and r� from Lemma 4.4, it is easy to show that

rD−2 ≤ R = (2k)2D·2D and
∑D−2

�=1 r� = O(R).

With the above construction for a faithful homomorphism, we can prove both
Theorem 1.3 and Theorem 1.10.

Theorem 1.3 (restated). A hitting set for any depth-D occur-k formula C(x) =

T1+· · ·+Tk of size s can be constructed in time polynomial in sR, where R = (2k)2D·2D

(assuming char(F) = 0 or > sR).
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Proof. Theorem 4.7 gives a homomorphism Ψ(p) that is faithful for {T1, . . . , Tk}
and reduces the number of variables to O(

∑D−2
�=1 r�) = O(R). By Theorem 2.4, we

have that C = T1 + · · · + Tk = 0 iff Ψ(p)(T1) + · · · + Ψ(p)(Tk) = 0. Since C is a
polydegree circuit of size s, Ψ(p)(C) is a polynomial of degree at most poly(s) in the
O(R) variables. Using the Schwartz–Zippel lemma in [Sch80, Zip79, DL78], we can
construct a hitting set for Φ(D) in time polynomial in sR.

Theorem 1.10 (restated). Let T1, . . . , Tr be n-variate degree d polynomials com-
puted by depth-D occur-k formulas of size s and presented as black boxes. There is

an (sdn)R-time algorithm, where R = r · (2k)2D·2D , to test whether {T1, . . . , Tr} are
algebraically independent, assuming char(F) = 0 or > sR.

Proof. Theorem 4.7 gives a homomorphism Ψ(p) that is faithful for {T1, . . . , Tr}.
Hence it suffices to check whether {Ψ(p)(T1), . . . ,Ψ

(p)(Tr)} are algebraically indepen-
dent or not. Since each Ψ(p)(Ti) is an O(R)-variate polynomial of degree poly(sdn),
they have at most poly((sdn)R) monomials. Using the interpolation algorithms from
[KS01, BOT88], each Ψ(p)(Ti) can be explicitly written down as a sum of monomi-
als from poly((sdn)R) evaluations. Hence, the Jacobian J (Ψ(p)(T1), . . . ,Ψ

(p)(Tr))
can be written down explicitly, and an application of the Schwartz–Zippel lemma in
[Sch80, Zip79, DL78] allows us to check if J (Ψ(p)(T1), . . . ,Ψ

(p)(Tr)) has full rank in
deterministic poly((sdn)R) time.

4.1. Restriction to the case of depth-4.

Theorem 1.4 (restated). A hitting set for any depth-4 occur-k formula of size s

can be constructed in time polynomial in sk
2

(assuming char(F) = 0 or > s4k).

Proof. Let C =
∑k

i=1 Ti be a depth-4 occur-k formula, where Ti =
∏d

j=1 P
eij
ij ,

Pij ’s are sparse polynomials. The discussion at the beginning of this section justifies
the assumption that the top fanin is k. Once again, assumingTr to be a transcendence
basis of T, we need to design a Ψ such that Ψ(Jxr(Tr)) �= 0. Let us count the number
of Pij ’s that depend on the variables xr ; the remaining P

eij
ij ’s can be taken out common

from every row of Jxr(Tr) while computing its determinant—this is the first “taking
common” step. Let ci� be the number of Pij ’s present in Ti that depend on x�. The
total number of sparse polynomials depending on xr is therefore

∑
1≤i,�≤r ci�. From

the condition of occur-k,
∑

i ci� ≤ k and hence
∑

i,� ci� ≤ rk ≤ k2. Let ci :=
∑

j cij
be the number of xr-dependent Pij ’s present in Ti. For an xr-dependent Pij , we can

also take P
eij−1
ij common from the ith row of Jxr (Tr)—call this the second taking

common step. The sparsity of every entry of the ith row of the residual matrix M—
after the two taking common steps—is bounded by cis

ci , where s is the size of C.
Thus, det(M) has sparsity at most r! ·∏r

i=1 cis
ci = sO(k2), which implies that Jxr(Tr)

is a product of at most s+ 1 powers of sparse polynomials, each of whose sparsity is
bounded by sO(k2) and degree bounded by sk. As argued before, use [KS01] along

with Lemma 2.7 to construct a hitting set for C in time sO(k2) (assuming char(F) = 0
or > s4k).

5. Lower bounds for the immanant. For the sake of simplicity, we prove the
lower bounds for Detn—determinant of an n× n matrix M = ((xij))—assuming zero
characteristic. All our arguments apply to Immχ(M) for any character χ and this is
elaborated in section 5.5. The following two lemmas are at the heart of our approach
to proving lower bounds. Let x := {xij : 1 ≤ i, j ≤ n} and T := {T1, . . . , Tm}, where
Ti’s are polynomials in F[x]. We shall defer the proofs of these lemmas to the end of
the section.
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Lemma 5.1. Suppose Detn = C(T1, . . . , Tm), where C is any circuit and let Tr =
{T1, . . . , Tr} be a transcendence basis of T with r < n. Then, there exist a set of r+1

variables xr+1 ⊂ x and an equation
∑r+1

i=1 cifi · Mi = 0 such that Mi’s are distinct
first order principal minors of M , fi’s are distinct r× r minors of Jxr+1(Tr), not all
fi’s are zero, and ci ∈ F∗.

Lemma 5.2. If M1, . . . ,Mt are distinct first order principal minors of M and∑t
i=1 fi ·Mi = 0 (not all fi’s are zero), then the total sparsity of the fi’s is at least

2n/2−t.

5.1. Lower bound on depth-4 occur-k formulas.

Proof of Theorem 1.6. Let C be a depth-4 occur-k formula of size s that computes
Detn. Since Detn is irreducible we can assume a top + gate in C. Then C̃ :=
C(x11+1, x12, . . . , xnn)−C(x) is a depth-4 occur-2k formula of size at most s2+s ≤ 2s2

and top fanin bounded by 2k (similar argument as at the beginning of section 4).
Moreover, C̃ computes the minor ofM with respect to x11 which is essentially Detn−1.
By reusing symbols, assume that C is a depth-4 occur-k formula with top fanin
bounded by k, and C computes Detn.

Let C =
∑k

i=1 Ti = Detn, where Ti =
∏d

j=1 P
eij
ij , Pij ’s are sparse polynomials.

Let Tr be a transcendence basis of T = {T1, . . . , Tk}. By Lemma 5.1, we have an

equation
∑r+1

i=1 cifi · Mi = 0 such that fi’s are distinct r × r minors of Jxr+1(Tr)
for some set of r + 1 variables xr+1. Arguing in the same way as in the proof of
Theorem 1.4 (in section 4.1), we can throw away certain common terms from the

minors fi’s and get another equation
∑r+1

i=1 giMi = 0, where the sparsity of each gi is

sO(k2). If we apply Lemma 5.2 on this equation, we get our desired result.

5.2. Lower bound on circuits generated by ΣΠ polynomials.

Proof of Theorem 1.7. In Lemma 5.1, take the Ti’s to be sparse polynomials with
sparsity bounded by s. Then, in the equation

∑r+1
i=1 cifi ·Mi = 0, each fi has sparsity

at most r! · sr ≤ (rs)r . Finally, by applying Lemma 5.2, we get

(r + 1) · (rs)r ≥ 2n/2−r =⇒ s = 2Ω(n/r)

to obtain the desired lower bound.

5.3. Lower bound on circuits generated by ΠΣ polynomials.

Proof of Theorem 1.8. Let T = {T1, . . . , Tm} be products of linear polynomials
such that C(T1, . . . , Tm) = Detn with Tk = {T1, . . . , Tk} being a transcendence basis
(we choose to denote the transcendence degree by k to be consistent with section 3).

By Lemma 5.1, we get
∑k+1

i=1 cifiMi = 0, where the fi’s are k×k minors of Jxk+1
(Tk)

and without loss of generality f1 �= 0.
The coefficient of eachMi in this equation is a k×k minor of J (T1, . . . , Tk). By ex-

panding each such minor using Fact 3.1, we get that the above equation
∑k+1

i=1 cifiMi

= 0 can be expressed as

H0 := T ·
∑
L

αL(Mk+1)

	1 · · · 	k = 0,

where each αL(Mk+1) :=
∑k+1

i=1 αL,iMi is an F-linear combination of the distinct
minors Mk+1 := {M1, . . . ,Mk+1}. Observe that H0 is a sum of products of linear
polynomials, with “coefficients” being F-linear combinations of Mk+1. And since
f1 �= 0, the coefficient of M1 in H0 is a nonzero depth-3 circuit.
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The idea is to apply a similar treatment as in section 3 to evolve H0. The
invariant that shall be maintained is that the coefficient of M1 (modulo some linear
polynomials), which is a depth-3 circuit, would stay nonzero. This would finally
yield a nontrivial linear combination αL(Mk+1) = 0 mod �k (where �k is a set of k
independent linear polynomials), whence we can apply the following lemma (whose
proof shall be deferred to the end of the section as well).

Lemma 5.3. If M1, . . . ,Mt are distinct first order principal minors of M and∑t
i=1 αiMi = 0 mod �k (not all αi = 0) for independent linear polynomials �k, then

t+ k ≥ n.

Formally, define the content of H = T
∑

L αL(Mk+1)/	1 · · · 	k as cont(H) :=
gcdL{T/	1 · · · 	k}, and also define sim(H) := H/cont(H). Therefore,

sim(H0) = F0

∑
L

αL(Mk+1)

	1 · · · 	k = 0,

where F0 is the product of all distinct linear polynomials appearing in the denomina-
tor.

The coefficient of M1 in the above expression is F0

∑
L αL,1/	1 · · · 	k, which by

assumption is a nonzero depth-3 circuit of degree at most |L(H0)| − k. Therefore by
Chinese remaindering, ∃	1 ∈ L(H0) such that this coefficient remains nonzero modulo
	1. Hence, we can define H1 := sim(H0) mod 	1 which has the form

H1 =
F0

	1
·
∑
L
�1

αL(Mr+1)

	2 · · · 	k = 0 mod 	1.

Thus, we may write H1 = F1

∑
L αL(Mk+1 mod 	1)/	2 · · · 	k = 0, and the choice of

	1 maintains the invariant that the coefficient of (M1 mod 	1) is nonzero.
The above argument can be repeated inductively. In general, we have Hi =

sim(Hi−1) mod 	i for a similar choice of 	i via Chinese remaindering, and Hi has the
form

Hi = Fi

∑
L

αL(Mk+1 mod �i)

	i+1 · · · 	k = 0

with the coefficient of M1 mod 	1, . . . , 	i continuing to remain nonzero. Eventually,
we obtain Hk := Fk · αL(Mk+1 mod �k) = 0 while the coefficient of M1 mod �k
is nonzero. This implies that αL(Mk+1) = 0 mod �k is a nontrivial equation, and
Lemma 5.3 asserts that this is not possible unless 2k + 1 ≥ n or k ≥ (n− 1)/2.

5.4. Proofs of the technical lemmas.

Lemma 5.1 (restated). Suppose Detn = C(T1, . . . , Tm), where C is any circuit
and let Tr = {T1, . . . , Tr} be a transcendence basis of T with r < n. Then, there

exist a set of r + 1 variables xr+1 ⊂ x and an equation
∑r+1

i=1 cifi ·Mi = 0 such that
Mi’s are distinct first order principal minors of M , fi’s are distinct r × r minors of
Jxr+1(Tr), not all fi’s are zero, and ci ∈ F∗.

Proof. In a column of a Jacobian matrix Jx(·), all the entries are differentiated
with respect to a variable x, we will say that the column is indexed by x. Let Tr =
{T1, . . . , Tr} be a transcendence basis of T. Amongst the nonzero r × r minors of
Jx(Tr) (they exist by Jacobian criterion), pick one (call the matrix associated with
the minor, N) that maximizes the number of diagonal variables {xii : 1 ≤ i ≤ n}
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indexing the columns of N . Let S denote the set of variables indexing the columns of
N . Since r < n, there exists a diagonal variable xjj /∈ S. Consider the (r+1)×(r+1)
minor of Jx({Detn}∪Tr) corresponding to the columns indexed by S′ := S∪{xjj}—
call the associated (r + 1)× (r + 1) matrix Ñ . Since, Detn = C(T), the polynomials
Detn and T1, . . . , Tr are algebraically dependent and hence det(Ñ) = 0. Expanding
det(Ñ) along the first row of Ñ , which contains signed first order minors (cofactors)

of M , we have an equation
∑r+1

i=1 cifiMi = 0, where Mi’s are distinct minors of M ,
fi’s are distinct r × r minors of JS′(Tr), and ci ∈ F∗. If Mi is the principal minor of
M with respect to the variable xjj , then fi = det(N) �= 0 (by construction).

It suffices to show that if Mi is a nonprincipal minor of M , then fi = 0. Consider
any nonprincipal minor Mi in the above sum, say it is the minor of M with respect
to xk�. The corresponding fi is precisely the r × r minor of JS′(Tr) with respect to
the columns S′ \ {xk�} = (S \ {xk�}) ∪ {xjj}. Hence, by the maximality assumption
on the number of diagonal elements of M in S, fi = 0.

Lemma 5.2 (restated). If M1, . . . ,Mt are distinct first order principal minors
of M and

∑t
i=1 fi ·Mi = 0 (not all fi’s are zero), then the total sparsity of the fi’s is

at least 2n/2−t.

Proof. The proof is by contradiction. The idea is to start with the equation∑t
i=1 fiMi = 0 and apply two steps—sparsity reduction and fanin reduction. We

shall apply these two steps alternately until we arrive at an equation fj · Mj = 0,
where neither fj nor Mj is zero. We shall show that this would always be possible if
the total sparsity of the fi’s is less than 2n/2−t.

With an equation of the form
∑τ

i=1 giNi = 0, we associate four parameters τ, S,
η, and c. These parameters are as follows: τ is called the fanin of the equation, S is
the total sparsity of the gi’s (we always assume that not all the gi’s are zero), every
Ni is a distinct first order principal minor of a symbolic η × η matrix N = (xij), and
c is the maximum number of entries of N that are set as constants. To begin with,
gi = fi and Ni = Mi for all 1 ≤ i ≤ t, so τ = t, S = s (the total sparsity of the fi’s),
η = n, N = M , and c = 0. In the “sparsity reduction” step, we start with an equation∑τ

i=1 giNi = 0, with parameters τ, S, η, c and arrive at an equation
∑τ ′

i=1 g
′
iN

′
i = 0

with parameters τ ′, S′, η′, c′ such that τ ′ ≤ τ , S′ ≤ S/2, η − 1 ≤ η′ ≤ η, and
c′ ≤ c + 1. In the “fanin reduction” step, we start with an equation

∑τ
i=1 giNi = 0,

with parameters τ, S, η, c and arrive at an equation
∑τ ′

i=1 g
′
iN

′
i = 0 with parameters

τ ′, S′, η′, c′ such that one of the two cases happens—Case 1: τ ′ ≤ τ − 1, S′ ≤ S,
η′ = η − 1, and c′ = c; Case 2: τ ′ = 1, S′ ≤ S, η′ = η, and c′ ≤ c+ τ .

Naturally, starting with
∑t

i=1 fiMi = 0, the sparsity reduction step can only be
performed at most log s many times (since the total sparsity of the gi’s reduces by at
least a factor of half every time this step is executed), whereas the fanin reduction step
can be performed at most t−1 times (as the fanin goes down by at least one for every
such step). Finally, when this process of alternating steps ends, we have an equation
of the form gi ·Ni = 0 (Case 2 of the fanin reduction step), where gi �= 0 and Ni is a
principal minor of a symbolic matrixN of dimension at least n−(log s+t−1) such that
at most (log s+t) entries of N are set as constants. Now, if log s+t ≤ n−(log s+t) the
Ni can never be zero (by Fact 5.8) and hence we arrive at a contradiction. Therefore,
s > 2n/2−t. Now, we give the details of the sparsity reduction and the fanin reduction
steps.

Suppose, we have an equation
∑τ

i=1 giNi = 0 as mentioned above. We may
assume that no variable x divides all the gi’s as we can divide the above equation by
x if that were the case. Without loss of generality, assume that the minor Ni is the
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minor of N with respect to the ith diagonal element of N . Call all the variables xij in
N with both i, j > τ as the white variables. These are the variables that are present
in every minor Ni in the sum

∑τ
i=1 giNi. The variables xij , where both i, j ≤ τ are

called the black variables, and the remaining are the gray variables. By assumption,
c of the variables in N are set as constants.

Claim 5.4 (sparsity reduction). Suppose we have an equation
∑τ

i=1 giNi = 0,
where each Ni is a minor of a symbolic η × η matrix with at most c variables set to
constants and the sum of the sparsities of the gi’s is s > 1. If one of the gi’s depends
on a white variable, then we can derive an equation of the form

τ ′∑
i=1

g′iN
′
i = 0,

where τ ′ ≤ τ , each N ′
i is a minor of an η′ × η′ matrix for η− 1 ≤ η′ ≤ η with at most

c′ ≤ c+1 variables set to constants. Furthermore, the sum of the sparsities of the g′is
is at most s/2.

Proof of Claim 5.4. Say x is a white variable that one of the gi’s depends on.
Writing each gi as a polynomial in x. Note that x cannot divide all the gi’s.

Each of the gi’s and Ni’s can be expressed as, gi = gi,0 + x · gi,1 + · · ·+ xh · gi,h
and Ni = Ni,0 + x ·Ni,1, where gi,j ’s and Ni,j ’s are x-free. This is possible as x is a
white variable and it occurs in every Ni.

Looking at the coefficients of x0 and xh+1 in the equation yields
∑τ

i=1 gi,0·Ni,0 = 0
and

∑τ
i=1 gi,h ·Ni,1 = 0. Note that Ni,0’s can be thought of as principal minors of the

η×η matrix N ′ obtained by setting x = 0 in N . And each of the Ni,1’s can be thought
of as minors of the (η − 1) × (η − 1) matrix N ′ which is the matrix associated with
the minor of N with respect to x. Since the monomials in gi,0 and xhgi,h are disjoint,
either the total sparsity of the gi,0’s or the total sparsity of the gi,h’s is ≤ S/2. Thus,
one of the equations

∑τ
i=1 gi,0 ·Ni,0 = 0 or

∑τ
i=1 gi,h ·Ni,1 = 0 yields an equation of

the form
∑τ ′

i=1 g
′
iN

′
i = 0 with parameters τ ′, S′, η′, c′ as claimed before. (In case, we

choose
∑τ

i=1 gi,h ·Ni,1 = 0 as our next equation, we also set the variables in the same
columns and rows of x to constants in such a way that a gi,h stays nonzero. This is
certainly possible over a characteristic zero field [Sch80, Zip79, DL78].)

The sparsity reduction step is performed whenever the starting equation
∑τ

i=1 giNi

= 0 has a white variable among the gi’s. When all the gi’s are free of white variables,
we perform the fanin reduction step.

Claim 5.5 (fanin reduction). Suppose we have an equation
∑τ

i=1 giNi = 0,
where each Ni is a minor of a symbolic η × η matrix with at most c variables set to
constants and the sum of the sparsities of the gi’s is s > 1. If none of the gi’s depend
on a white variable, then we can derive an equation of one of the two forms:

• g′ ·N ′ = 0 for some minor N ′ of an η× η symbolic matrix with at most c+ τ
entries set to constants and g′ �= 0;

• ∑τ ′

i=1 g
′
iN

′
i = 0, where τ ′ ≤ τ − 1, each N ′

i is a minor of an η′ × η′ matrix
for η − 1 ≤ η′ ≤ η with at most c′ ≤ c+ 1 variables set to constants, and the
sum of sparsities of g′is bounded by s.

Proof of Claim 5.5. When we perform this step, all the gi’s consist of black and
gray variables. Pick a row R from N barring the first τ rows. Let y1, . . . , yτ be
the gray variables occurring in R (these are, respectively, the variables in the first τ
columns of R). We shall first do some preprocessing to ensure that some gi is nonzero
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when y2 = y3 = · · · = yτ = 0. This may not always be true, but we shall slightly
modify the equation to enforce this property.

Starting with y2, divide the equation
∑τ

i=1 giNi = 0 by the largest power of y2
common across all monomials in the gi’s, and then set y2 = 0. With some abuse in
notation, let us call the residual equation also

∑τ
i=1 giNi. This process lets us assume

that there exists at least one gi which is not zero at y2 = 0. On the residual equation,
repeat the same process with y3 and then with y4 and so on till yτ . Thus, in the
residual equation (again, abusing notation and using the same symbols),

∑τ
i=1 giNi =

0 there is at least one gi that is not zero when y2, . . . , yτ are set to zero.
Suppose that exactly one gi stays nonzero under the projection y2 = · · · = yτ = 0,

then (giNi)(y2=···=yτ=0) = 0. This is the first form of the derived equation as claimed.
Now, assume that there are at least two gi’s (say g1 and g2) that are nonzero un-

der the projection y2 = · · · = yτ = 0. Set all the remaining variables of row R to zero
except y1—these are the white variables in R. Since the gi’s are free of white variables
(or else, we would have performed the sparsity reduction step), none of the gi’s are
effected by this projection. However, N1 being a minor with respect to the first diag-
onal element of N , vanishes completely after the projection. Any other Ni takes the
form y1 ·N ′

i , where N
′
i is a principal minor of an (η−1)×(η−1) matrix N ′ which is the

matrix associated with the minor of N with respect to y1. Therefore, after the pro-
jection, the equation

∑τ
i=1 giNi = 0 becomes

∑τ
i=2 g̃i · y1N ′

i = 0 ⇒∑τ
i=2 g̃i ·N ′

i = 0,
where g̃i is the image of gi under the above-mentioned projection and further g̃2 �= 0.
The g̃i’s might still contain variables from the first column of N . So, as a final step,
set these variables to values so that a nonzero g̃i remains nonzero after this projection
(the [Sch80, Zip79, DL78] lemma asserts that such values exist in plenty). This gives
us the desired form

∑τ ′

i=1 g
′
iN

′
i = 0 with parameters τ ′, S′, η′, c′ as claimed.

These two claims together complete the proof of the lemma.

Lemma 5.3 (restated). If M1, . . . ,Mt are distinct first order principal minors
of M and

∑t
i=1 αiMi = 0 mod �k (not all αi = 0) for independent linear polynomials

�k, then t+ k ≥ n.

Proof. Assume that t+k < n (with t ≥ 1 it means k ≤ n− 2) and αiMi = 0 mod
�k. Recall that reducing an expression modulo 	 = c1x1 +

∑
i>1 cixi (with c1 �= 0) is

equivalent to replacing x1 by
∑

i>1(−ci/c1)xi. Hence, as 	1, . . . , 	k are independent

linear polynomials, the equation may be rewritten as
∑t

i=1 αiM
′
i = 0, where the

(M ′
i)s are minors of the matrix M ′ obtained by replacing k entries (x1, . . . , xk) of

M by linear polynomials in other variables. We shall call these entries as corrupted
entries. Without loss of generality, we shall assume thatM ′

i is the minor corresponding
to the ith diagonal variable and that all the αi’s are nonzero.

Claim 5.6. Each of the first t rows and columns of M must have a corrupted
entry.

Proof of Claim 5.6. Suppose the first row (without loss of generality) is free of
any corrupted entry. Then, setting the entire row to zero would make all M ′

i = 0 for
i �= 1. But since

∑
αiM

′
i = 0, this forces M ′

1 to become zero under the projection
as well. This leads to a contradiction as M ′

1 is a determinant of an (n− 1)× (n− 1)
symbolic matrix under a projection, and this cannot be zero unless k ≥ n−1 (by Fact
5.8).

Since n− k > t, there must exist a set of t− 1 rows (actually we would have t+1
such rows, but t − 1 would suffice), say {Ri1 , . . . , Rit−1}, of M that are free of any
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corrupted entries. Note that by the claim above, none of these rows are the first t
rows of M .

For each of these rows, set the jth variable of row Rij to 1, and every other
variable in R1, . . . , Rt−1 to zero. That is, among the rows Ri1 , . . . , Rit−1 , the only
nonzero entries are {xi1,1, xi2,2, . . . , xit−1,t−1}. This projections make M ′

i = 0 for all

i �= t (as in these minors an entire row vanishes). And since we had
∑t

i=1 αiM
′
i = 0

to begin with, this forces M ′
t to become zero under this projection as well.

But let us take a moment to see what M ′
t reduces to under this projection. The

minor M ′
t just reduces (up to a sign) to the minor obtained from M ′ by removing

the columns {1, . . . , t} and rows {Ri1 , . . . , Rit−1} ∪ {t}. This is a determinant of an
(n − t) × (n − t) symbolic matrix, containing at most k − t corrupted entries, thus
k − t ≥ n − t (by Fact 5.8). But then k ≥ n, which contradicts our initial assump-
tion.

5.5. Extensions to immanants. All the lower bound proofs use some very
basic properties of Detn. These properties are general enough that they apply to any
immanant. For any map χ : Sn → C×, recall the definition of the immanant of an
n× n matrix M = (xij):

Immχ(M) =
∑
σ∈Sn

χ(σ)

n∏
i=1

xi,σ(i).

From the image of the map χ it is obvious that χ(σ) �= 0 for any σ ∈ Sn.

Definition 5.7. The minor of Immχ(M) with respect to the (i, j)th entry is de-
fined as

(Immχ(M))i,j =
∑
σ∈Sn

σ(i)=j

χ(σ)
∏
k �=i

xk,σ(k).

This may also be rewritten as Immχ′(Mij) for a suitable map χ′ : Sn−1 → C×,
where Mij is the submatrix of M after removing the ith row and jth column. From
the definition, it follows directly that the partial derivative of Immχ(M) with respect
to xij is precisely the minor with respect to (i, j).

The only crucial fact of determinants that is used in all the proofs is that a
symbolic n×n determinant cannot be zero when less than n of its entries are altered.

Fact 5.8. Let M ′ be the matrix obtained by setting c < n entries of M to arbitrary
polynomials in F[x]. Then for any map χ : Sn → C×, we have Immχ(M

′) �= 0.

Proof. We shall say an entry of M ′ is corrupted if it is one of the c entries of M
that has been replaced by a polynomial. We shall prove this by carefully rearranging
the rows and columns so that all the corrupted entries are above the diagonal. Then,
since all entries below the diagonal are free, we may set all of them to zero and the
immanant reduces to a single nonzero monomial.

Since less than n entries ofM ′ have been altered, there exists a column that is free
of any corrupted entries. By relabeling the columns if necessary, let the first column
be free of any corrupted entry. Pick any row R that contains a corruption and relabel
the rows to make this the first row. This ensures that the first column is free of any
corrupted entry, and the (n − 1) × (n − 1) matrix defined by rows and columns, 2
through n, contain less than c − 1 corruptions. By induction, the c − 1 corruptions
may be moved above the diagonal by suitable row/column relabeling. And since the
first column is untouched during the process, we now have all c corruptions above the
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diagonal. Now setting all entries below the diagonal to zeroes reduces the immanant
to a single nonzero monomial.

With this fact, all our lower bound proofs of the determinant can be rewritten
for any immanant.

6. Conditional lower bounds for depth-D occur-k formulas. In this sec-
tion, we present a lower bound for depth-D occur-k formulas similar in spirit to
Theorem 1.6 by assuming the following conjecture about determinant minors.

Conjecture 6.1. Let M = (xij) be an n × n matrix, and let xi denote the ith
diagonal variable xii. Let M

′ be a projection of M by setting c = o(n) of the variables
in M to constants. Suppose the elements x1, . . . , xk, where k is a constant independent
of n, are partitioned into nonempty sets S1, . . . , St. Consider M(St), the set of tth
order principal minors of M ′, each by choosing a t-tuple B ∈ S1 × · · · × St as pivots.
Over all possible choices of B, we get m := |S1| · · · |St| many minors. Then for any
set of diagonal variables ym disjoint from xk, Jym (M(St)) �= 0.

The conjecture roughly states that the different tth order principal minors are al-
gebraically independent. We will need a generalization of Lemma 5.1 for the purposes
of this section.

Lemma 6.2. Let {f1, . . . , fs, g1, . . . , gt} be algebraically dependent polynomials such
that trdeg {gt} = t. Let Γ ⊆ x be a fixed set of variables of size at least s + t. Then
there exists a set of s+ t variables xs+t ⊂ x and an equation of the form

r∑
i=1

ci · Fi ·Gi = 0, where r ≤
(
s+ t

t

)

such that each ci ∈ F∗, each Fi is a distinct s× s minor of Jxs+t∩Γ(fs), each Gi is a
distinct t× t minor of Jxs+t(gt), and not all Gi’s are zero.

Note that we are not asserting the nonzeroness of Fi’s. Also, Lemma 5.1 may be
obtained from the above lemma by taking f1 = Detn, s = 1, and Γ to be the set of
diagonal variables.

Proof. The proof is along the lines of Lemma 5.1. Amongst the nonzero t ×
t minors of Jx(gt), pick one (call the matrix associated with the minor, N) that
maximizes the number of variables in Γ indexing the columns of N . Without loss of
generality, let xt = {x1, . . . , xt} be the set of variables indexing the columns of N .
Since |Γ| ≥ s + t, there exist s other variables in Γ, say {x1+t, . . . , xs+t}. Consider
the (s + t) × (s + t) minor of Jx(fs ∪ gt) corresponding to the columns indexed by
xs+t—call the associated (s+ t)× (s+ t) matrix Ñ .

Since fs,gt are algebraically dependent, det(Ñ) = 0. Expanding det(Ñ) over all
possible s× s minors in the first s rows, we have an equation∑

U⊆xs+t,|U|=s

ci · FU ·GU = 0,

where each FU is an s× s minor of Jxs+t(fs) with respect to the variables in U , and

each GU the t × t minor of Jxs+t(gt) corresponding to U , and ci ∈ F∗. If GU is
the minor with respect to variables xt, then GU = det(N) �= 0 (by construction). It
suffices to show that if FU is a minor indexed by variables outside Γ, then GU = 0.
This follows, just like in Lemma 5.1, by the maximality assumption on choice of xt

which we elaborate on now.
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Consider some set U ⊂ xs+t that contains some xi /∈ Γ. Then, U contains at
least one more element of Γ than xt. Hence, by the choice of xt, we must have that
the Jacobian of gt with respect to U is singular, i.e., GU = 0.

The rest of this section shall be devoted to the proof of the following theorem.

Theorem 6.3. Assuming Conjecture 6.1, any depth-D occur-k formula that com-
putes Detn must have size s = 2Ω(n) over any field of characteristic zero.

Proof idea. The proof proceeds on the same lines as Theorem 1.6. If T1, . . . , Tk

is a transcendence basis of gates at level 2 computing the determinant, then
Jx(Detn, T1, . . . , Tk) is a matrix of rank k. This yields a nontrivial equation of the

form
∑

N
(1)
i ·G(1)

i = 0 where each of the N
(1)
i ’s are principal minors of M = (xij) and

G
(1)
i ’s are k × k minors of Jx(T1, . . . , Tk). Here is where we may use Lemma 4.4 to

remove common factors and obtain an equation of the form
∑

N
(1)
i · G̃i

(1)
= 0, where

G̃i
(1)

is a polynomial of constantly many derivatives of polynomials computed at the
next level. The above equation may be thought of as a polynomial relation amongst

{N (1)
i } ∪ {Elem(G̃i

(1)
)}. Applying Lemma 6.2 (with a suitable choice of S2), we get

an equation of the form
∑

N
(2)
i ·G(2)

i = 0, where each N
(2)
i is a minor of JS2({N (1)

i }),
and the G

(2)
i s are Jacobians minors of

⋃
Elem(G̃i

(1)
). Again after removing common

factors, this equation may be interpreted as a polynomial relation amongst the entries

of N
(2)
i (which are minors of order 2) and Elem(G̃i

(2)
).

Repeating this argument, we finally reach the level of sparse polynomials and

thus obtain a nontrivial equation
∑

N
(D−2)
i · G̃i

(D−2)
= 0, where each N

(D−2)
i is a

Jacobian minor of (D − 3)-order minors, and each G̃i
(D−2)

is a sparse polynomial.
With a slightly more careful choice of the sets Si in Lemma 6.2, each of the minors

N
(D−2)
i would be a minor of JSD−2(M(S1, . . . , SD−3)). Assuming Conjecture 6.1, we

can show that such an equation is not possible unless the sparsity of the fi’s is large,
using a similar argument as in Lemma 5.2.

Lemma 6.4. Suppose Detn is computed by a depth-D occur-k formula of size s.
Then there exist variables x1, . . . , xR, where R = R(k,D), a partition of xR into non-
empty sets S1, . . . , SD′ , (D′ ≤ (D − 2)) polynomials f1, . . . , fm (not all zero), where
m = |M(SD)|O(R) and each fi has sparsity at most sR, such that

m∑
i=1

fi ·Ni = 0,

where each Ni is a minor of Jx(M(SD′)) indexed by diagonal variables.

Proof. To begin with, suppose Detn = C(T1, . . . , Tm), where T1, . . . , Tm are poly-
nomials computed at the first level. So Lemma 5.1 gives a starting equation, though
we do not really have a sparsity bound on the fi’s. The proof shall proceed by trans-
forming this equation into another, involving lower level polynomials, till we get a
sparsity bound.

In a general step, we would have an equation of the form

C�(M(S1, . . . , S�−1), T
(�)
1 , . . . , T (�)

r�
) = 0,

where each T
(�)
i , is a derivative (of order at most 	) of a polynomial computed at

level 	 of the circuit. Without loss of generality, we may assume that {T (�)
1 , . . . , T

(�)
r� }
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are algebraically independent. Let m� := |S1| · · · |S�−1|. Choose a set of diagonal
elements S� of size |M(S1, . . . , S�−1)|+r� that is disjoint from S1, . . . , S�−1. Applying
Lemma 6.2 with Γ = S�, we get an equation of the form∑

i

c
(�)
i N

(�)
i ·G(�)

i = 0,

where N
(�)
i is an m�×m� minor of JS�

(M(S�−1)) indexed by diagonal variables, each

G
(�)
i is an r� × r� minor of JS�

(T
(�)
r� ). Consider the matrix JS�

(T
(�)
r� ) restricted to

the columns appearing in some G
(�)
i . Applying Lemma 4.4 on this matrix, we can

write each G
(�)
i = V� · G̃i

(�)
, where each G̃i

(�)
is a polynomial function of at most

r�+1 := (	 + 1)2�+1 · k(r� +m�)r� many derivatives of polynomials computed at level
	+ 1, and V� is the part that comes out common from the rows of the Jacobian after
applying the gcd trick of Lemma 4.3. Thus,

V� ·
∑
i

c
(�)
i N

(�)
i · G̃i

(�)
= 0.

Note that V� cannot be zero as at least one G
(�)
i was guaranteed to be nonzero by

Lemma 6.2. Therefore,
∑

i c
(�)
i N

(�)
i · G̃i

(�)
= 0. Since each G̃i

(�)
is a polynomial

function of r�+1 derivatives at the next level, we now have

C�+1(M(S1, . . . , S�), T
(�+1)
1 , . . . , T (�+1)

r�+1
) = 0.

Unfolding this recursion, we finally reach the level of sparse polynomials, at which
point we have an equation of the form

∑
i

c
(D−2)
i N

(D−2)
i · G̃i

(D−2)
= 0

and each G̃i
(D−2)

is an rD−2 × rD−2 Jacobian minor of sparse polynomials. Hence,

each G̃i
(D−2)

is itself a polynomial of sparsity bounded by srD−2 as claimed.

We now have to show that an equation of the form
∑

fi ·Ni = 0 is not possible
unless one of the fi’s has exponential sparsity. The above lemma guarantees that at
least one of the fi’s is nonzero in this equation, but it could be the case that some
of the Ni’s are zero. This was not the case in the depth-4 lower bound as each Ni

was just a determinant minor. However, in this case they are Jacobians of minors.
Conjecture 6.1 asserts that the Ni’s are nonzero, even if “few” variables are set to
zero. This assumption is enough to get the required lower bound.

Lemma 6.5. Let |M(S1, . . . , SD)| =: m be a constant and let {Ni}i≤t be distinct
m × m minors of Jx(M(SD)), where the columns of Ni are indexed by a set Ti of

diagonal variables of M disjoint from
⋃D

j=1 Sj. Suppose f1, . . . , ft are polynomials

such that
∑t

i=1 fi ·Ni = 0 (not all fi’s are zero). Then, assuming Conjecture 6.1 is
true, the total sparsity of the fi’s is 2Ω(n).

Proof. The proof is along lines similar to the proof of Lemma 5.2 and shall pro-
ceed by a similar series of sparsity reduction and fanin reduction steps to arrive at a
contradiction. Throughout the proof, Conjecture 6.1 shall assert that the Ni’s stay
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nonzero (even when few variables are set to constants). We briefly describe the spar-
sity reduction and the fanin reduction steps and the rest of the proof would follow in
essentially an identical fashion to the proof of Lemma 5.2.

Without loss of generality, assume that {x1, . . . , xr} is the union of the sets Si’s
and Ti’s. Let N refer to the matrix of indeterminates that the Ni’s are derived from.
In our case, N would be obtained by (possibly) setting a few variables to constants in
M = (xij). We’ll refer to all the variables xij , where both i, j > r as white variables;
these are present in every entry of each Ni. The variables xij where both i, j ≤ r shall
be called black variables, and the rest called gray variables. Here again, the sparsity
reduction step shall be applied whenever one of the fi’s depends on a white variable,
otherwise the fanin reduction steps shall be applied.

Sparsity reduction step. Suppose one of the fi’s depends on a white variable x.
Then each Ni can be written as Ni = Ni,0+ · · ·+xmNi,m, and fi = fi,0+ · · ·+fi,hx

h.
One of the two equations corresponding to the coefficient of x0 and xh+m yields
a similar equation with sparsity reduced by a factor of 1/2. Observe that Ni,0 is
just Ni |x=0, and hence the polynomials {Ni,0} may be thought of as corresponding
Jacobian minors of N ′ obtained by setting x = 0 in N ′. Also, Ni,m is obtained by
replacing every entry of the matrix corresponding to Ni by its minor with respect to x.
And hence, Ni,m can be thought of as a corresponding Jacobian minor of Nx obtained
by taking the minor of N with respect to x. Thus the two equations corresponding
to the coefficient of x0 and xh+m are indeed of the same form as

∑
fiNi = 0. (In

the case of the coefficient of xh+m, we need to set other variables in the row/column
containing x as in the proof of Lemma 5.2.)

Fanin reduction step. Without loss of generality, let x1 ∈ T1 \ T2. Pick a row R
of N barring the first r rows, and let y1, . . . , yr be the gray variables in R (where y1
is in the same column as x1). By a similar process as in the proof of Lemma 5.2, we
can assume that at least one fi is nonzero when y2, . . . , yr are set to zero.

If one of the fi’s becomes zero when y2, . . . , yr = 0, then pick any white variable
y in row R and set every variable in row R to zero besides y. This would ensure
that the fanin of the equation reduces and each Ni is now ym ·N ′

i . Each N ′
i may be

thought of as being obtained from Ny, the minor of N with respect to y. The other
variables in the column of y can be set to values to ensure that the fi’s stay nonzero
to obtain an equation of the form

∑
f ′
iN

′
i = 0 of the reduced fanin.

If none of the fi’s becomes zero when y2, . . . , yr = 0, then set every variable in row
R other than y1 to zero. This ensures an entire column of the matrix corresponding
to N1 becomes zero (as x1 indexes one of the columns of N1), and hence N1 becomes
zero. On the other hand, N2 remains nonzero and each surviving Ni can be written
as ym1 · N ′

i , where N ′
i is the corresponding Jacobian minor of Ny1 . Again, the other

variables in the column of y1 can be set to values to ensure that fi’s stay nonzero and
we obtain an equation

∑
f ′
iN

′
i = 0 of the reduced fanin.

As in the proof of Lemma 5.2, we eventually obtain an equation of the form
f1N1 = 0, where f1 �= 0 thus implying thatN1 = 0. The number of variables that have
been set to constants is bounded by t+logS, where S is the initial total sparsity of the
fi’s, and N1 is a Jacobian minor of a symbolic matrix of dimension n− (log S+ t−1).
Conjecture 6.1 asserts that N1 would be nonzero unless logS+t = Ω(n−(logS+t−1))
or S = 2Ω(n).

That concludes the proof of Theorem 6.3 as well.

7. Conclusion. Spurred by the success of the Jacobian in solving the hitting-set
problem for constant-trdeg depth-3 circuits and constant-occur constant-depth formu-
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las, one is naturally inspired to investigate the strength of this approach against other
“constant parameter” models—the foremost of which is constant top fanin depth-4
circuits (PIT even for fanin 2?).

Another problem, which is closely related to hitting sets and lower bounds, is
reconstruction of arithmetic circuits [SY10, Chapter 5]. There is a quasi-polynomial
time reconstruction algorithm [KS09a], for a polynomial computed by a depth-3 con-
stant top fanin circuit, that outputs a depth-3 circuit with quasi-polynomial top fanin.
Could the Jacobian be used as an effective tool to solve reconstruction problems? If
yes, then it would further reinforce the versatility of this tool.
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