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ABSTRACT

Constructing r-th nonresidue over a finite field is a fundamental
computational problem. A related problem is to construct an irre-
ducible polynomial of degree r¢ (where r is a prime) over a given
finite field Fy of characteristic p (equivalently, constructing the
bigger field F 7 )- Both these problems have famous randomized
algorithms but the derandomization is an open question. We give
some new connections between these two problems and their vari-
ants.

In 1897, Stickelberger proved that if a polynomial has an odd
number of even degree factors, then its discriminant is a qua-
dratic nonresidue in the field. We give an extension of Stickel-
berger’s Lemma; we construct r-th nonresidues from a polynomial
f for which there is a d, such that, r|d and r { #(irreducible fac-
tors of f(x) of degree d). Our theorem has the following inter-
esting consequences: (1) we can construct Fgm in deterministic
poly(deg(f), mlog q)-time if m is an r-power and f is known; (2)
we can find r-th roots in Fpm in deterministic poly(m log p)-time if
r is constant and r| gcd(m,p — 1).

We also discuss a conjecture significantly weaker than the Gen-
eralized Riemann hypothesis to get a deterministic poly-time algo-
rithm for r-th root finding.

CCS CONCEPTS

+Theory of computation — Algebraic complexity theory; Pseu-
dorandomness and derandomization; Problems, reductions and
completeness;
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1 INTRODUCTION

The problem of finding r-th roots in a finite field, say Fg,isto solve
x" = a given an r-th residue a € F4*. Note that, without loss of
generality, we can assume r to be prime, otherwise for r = ry - rp,
we can solve the problem iteratively by first solving x"* = g and
then solving y"? = x. Moreover, we can assume r|(q — 1), otherwise

-1

™ mod (¢-1) j5 ap easy solution.

xX=a
It can be shown that x” = a has a solution iff a’= = 1. If
q-1
a’r # 1then we call a an r-th nonresidue. Interestingly, the prob-
lem of finding an r-th nonresidue is equivalent to that of finding
r-th roots in Fy [2, 22, 30]. This gives a randomized poly-time al-
gorithm for finding r-th roots and, thus, solves the problem for
practical applications. Also, assuming Generalized Riemann hy-
pothesis (GRH) there is a deterministic poly-time algorithm for
finding r-th nonresidue in any finite field [3, 5, 8, 13]. For a detailed
survey, see [6, Chap. 7].

The special case of r = 2 is particularly well studied. The problem
now is to find square-roots in Fg, which is equivalent to finding a
quadratic nonresidue in Fq. For this problem, apart from Tonelli-
Shanks algorithm [30], there are other randomized algorithms as
well - Cipolla’s algorithm [10], singular elliptic curves based al-
gorithm [19], etc. There are also deterministic solutions for some
special cases:

e Schoof [21] gave an algorithm using point counting on el-
liptic curves having complex-multiplication to find square-
roots of fixed numbers over prime fields.

o Sze [29] gave an algorithm to take square-roots over Fg,
when g — 1 =r°t and r + t = poly(log p).

However, computing square-roots over finite fields in determin-
istic polynomial time is still an open problem. The best known
deterministic complexity for this problem is exponential, namely,
oY 4‘E); which is also a bound on the least quadratic nonresidue
[9]. The distribution of quadratic nonresidues in a finite field is still
mostly a mystery; it relates to some interesting properties of the
zeta function, see Thm. 6.7.

In 1897, L. Stickelberger [27] proved that if p is a prime, K is an
algebraic number field of degree n of discriminant D, and integer
ring Og where the ideal (p) factorizes as p1p2bs . . . ps into distinct
prime ideals then

D n-s
()=

Stickelberger’s Lemma . (1)
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Equivalently, if the number of even degree irreducible factors of
a squarefree f(x) mod p are odd, then the discriminant of f will
be a quadratic nonresidue in F,. Swan [28] and Dalen [11] gave
alternative proofs of Stickelberger lemma. Stickelberger lemma
is used in factorization of polynomials over finite fields and in
constructing irreducible polynomials of a given degree over finite
fields [12, 28, 32].

We generalize this idea of constructing quadratic nonresidues
from Stickelberger’s lemma to constructing r-th nonresidues from
“special”, possibly reducible, polynomials. Formally, these “special”
polynomials are over Fq and satisfy the following factorization
pattern,

Property 1.1. Let r be a prime and f(x) € F4[x] be a squarefree
polynomial. f satisfies Stickelberger property with respect to r, if
3d, such that, r|d and r )(#(irreducible factors of f(x) of degree d).

Our goal is to show that the construction of such a, possibly
reducible, polynomial solves many of the open problems. It is
somewhat surprising that a reducible polynomial be related so
strongly to non-residuosity and irreducibility.

Our first main result relates Property 1.1 to the construction of
r-th nonresidues in any field above F), (equivalently, finding r-th
roots there). We will denote a primitive r-th root of unity by ¢.

THEOREM 1.2. Given {; € Fq and any polynomial f satisfying
Property 1.1, we can find r-th roots in any finite field Fy of charac-
teristic p, in deterministic poly(deg(f),log qq’)-time.

We get a stronger result in the case when we have Fyr available
and r = O(1). Even r = 2 is an interesting special case.

COROLLARY 1.3. We can find r-th roots in Fpm in deterministic
poly(mlog p)-time if r is constant and r| gcd(m, p — 1).

Remark: In the proof of Corollary 1.3, we will use the fact that
we have an irreducible polynomial of degree m over F, see section
2.

Finding an r-th nonresidue a in Fy suffices to construct an ex-
tension F4r. For example, we have Fq[al/ "] = Fg4r; equivalently,
X" — ais an irreducible polynomial. However, it is not clear how
to find r-th nonresidue given Fgr. Anyways, the question of con-
structing Fgr efficiently is of great interest [1, 24, 25] and still open.

Our second main result relates Property 1.1 to the construction
of an irreducible polynomial of degree m, where m is any r-power.
We are able to remove the dependence on { in this case.

THEOREM 1.4. Given a polynomial satisfying Property 1.1, we
can construct the field Fgm, for any r-power m, in deterministic

poly(deg(f), mlog q)-time.

Note that, if we are given fields Fgm; and Fgm: (for coprime
mi, my), we can combine them to get the field qulmz [23,Lem. 3.4].
Hence, it is sufficient to be able to construct fields whose sizes are
prime powers.

Organization of the paper

In this paper, the main results and ideas are presented in Sec. 3.
Sec. 2 has notation and preliminaries. For concreteness, Sec. 4
sketches our algorithm for finding an r-th nonresidue in any finite
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field, given a polynomial (in Fp[x]) satisfying Property 1.1. We
discuss some special cases of our analysis in Sec. 5.

In Sec. 6, we discuss few conjectures; particularly in Sec. 6.2
we introduce a strictly weaker version of Generalized Riemann
hypothesis to get poly-time algorithms for finding nonresidues
over finite fields.

2 PRELIMINARIES

We are going to work in the finite field Fg, where q = pd for
some prime p. We will assume that Fy is specified by a degree d
irreducible polynomial over Fj. This can be assumed without loss
of generality, see [15, Thm. 1.1].
Given a finite field Fq and its extension F g~ the multiplicative
norm of an element « € Fqk is defined as,
gk-1
N(a) = N]Fqk [Rg(@) = a a7t .

The following properties of finite fields will be useful (for proofs
refer standard texts, eg. [16]).

THEOREM 2.1 (FINITE FIELDS). Given a finite field Fq with char-
acteristic p and algebraic closure Fp s
Foranya € Fp ,a? = aifandonlyifa € Fy.
Foranya,b € Fy, (a+b)P = af +bP.
The multiplicative group Fy is cyclic.
Any polynomial f € Fy[x] of degree k has at most k roots
in Fq. The notation Z(f) will be used to denote the set of
Fq -zeros of polynomial f(x).

We are interested in finding r-th nonresidue in Fq for a prime r.
An element a € Fy is called an r-th nonresidue iff x” = a has no
roots in Fg. This possibility is there only if r[(g — 1). In that case, a

. o 2L . . L
is an r-th nonresidue iff a = # 1 [6]. Using this characterization,
the following lemma constructs an r-th nonresidue in Fq given an
r-th nonresidue in Fqk.

LEMMA 2.2 (PROJECTION). Let r be a prime which divides q —
1. Then, a € Fqk is an r-th nonresidue iff Ng k/}-q((x) is an r-th
q

nonresidue in Fg.

Proor. We know that,

qk*

1
Also, « € F_x is an r-th nonresidue iff a7 # 1.
Hence, the proof follows from the bi-implication,

k k_y, 97! q-1
-1 q 1 7

a r Fle— (0{ q-1 )T = (N]Fqk/]Fq(O()) * 1.

O

q-1
We can define a multiplicative character, y,(a) := a’r , of ]F”;I
Notice that y,(a) # 1iff a is an r-th nonresidue in Fg. Multiplica-
tivity follows from the definition, i.e.,

xr(ab) = xr(a)xr(b).
Since a?7! = 1, y,(a) is an r-th root of unity. We will denote a
primitive r-th root of unity by ;.
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Since F’fl is cyclicand r | g — 1, we have that {; exists in Fq. Note
that {}, i € F}, are the (r — 1) primitive r-th roots of unity in Fg.
Resultant and Discriminant. One of the central algebraic tool
used in our analysis is the resultant of two polynomials. Let f(x) =
amx™ +am-1x™ 1+ +agand g(x) = bpx™ +bp_1x" 1+ -+ by
be two polynomials over a field F.

Definition 2.3 (Resultant). The resultant of two polynomials f, g
in F[x] is is defined as,

R(f.9) = amby []| @-p=apn [] 9@.
aeZ(f) aeZ(f)
BeZ(9)

So, if f is monic,

R(f.9) = |] g(@.
aeZ(f)
We will use the following properties of resultant (for proof see
[16, Chap. 1]).

LEMMA 2.4 (PROPERTIES OF R(:)). Given polynomials f,g,h €
F[x], we have that,

(1) R(f.g) €F.

(2) Resultant is multiplicative, R(fh,g) = R(f,g) - R(h, g).

(3) There is a nearly linear-time, O(m + n, logo(l) p) algorithm
to compute R(f, g). see [6, Pg. 347].

(4) Resultant is the determinant of Sylvester matrix of order
m + n [16, Chap. 1]. In fact, this determinant definition can
be taken as the general definition of resultant, as it makes
the resultant efficient to compute even when the base ring
is not a field. Eg. there are efficient algorithms known for
computing Resultant of bivariate polynomials, see [17].

Another tool, closely related to resultant, is called the discrimi-
nant.

Definition 2.5 (Discriminant). The discriminant of a polynomial
f € F[x] with roots Z(f) = {a1, a2, -, am} is defined by,

Ap) = a? [] (w-ap).
1<i<j<m

Itisknown that A(f) = (—l)m(’"_l)/za,_n1 -R(f, f’) [16, Eqn.1.11],
where f” is the formal derivative of f. Hence, A(f) € F and it can
be computed in poly(m) field operations.

Note that although resultant (resp. discriminant) is defined in
terms of the zeros of the polynomials, it can be computed without
the knowledge of the zeros. This relationship between the zeros
and the coefficients is very useful computationally.

3 MAIN RESULTS

We will prove the main theorems in this section. We are interested
in finding r-th nonresidue in the finite field Fq. So we will assume
that r | g — 1 in Sec. 3.1 and Sec. 3.2 (we will not assume r | ¢ — 1 in
Sec. 3.3). Moreover, for r = 2 and a field of characteristic p = 4k +3,
-1 is a quadratic non-residue, hence we can assume 4|(q — 1).

Our first step will be to construct an r-th nonresidue using an
irreducible polynomial f of degree divisible by r.

Bhargava, Ivanyos, Mittal, Saxena

3.1 From an irreducible polynomial f — Proof
of Cor. 1.3

Given an irreducible polynomial f(x) € Fq[x] of degree d = rk,
define the following polynomial (inspired from Lagrange resolvents):

r—1 o
Le = Zx(qk)lgr’ mod f.
i=0
The following theorem finds an r-th nonresidue in Fq using f. A
different proof of Thm. 3.1 can be found in [31, Sec. 8.5], we present
our proof for completeness.

THEOREM 3.1 (IRREDUCIBILITY TO NONRESIDUOSITY). Let f(x) €
Fy[x] be an irreducible polynomial of degreed = rk and ged(2,7) -1 |

q-1.IfLs, = X2 x4 ¢7 mod f, then

a9 )
(Ler) 7 =5
This implies that Lg, , is an r-th nonresidue in Foa =Fq [x]/<f).
Also, Ng a/Fq (Lf,r) is an r-th nonresidue in Fq.
q

Proor. Weknow that Ly , € Foa and ¢ € Fg. Taking the gF-th
power,

r—1 k

(Lf,r)qk = (Z quiévri)q

i=0
r—1 ki)
(it . 1
=qu ot=4 'Lf,r-
i=0

Using the above equation,

‘Zk*1

=)(5=)

qd*

i (
Lp) T =)

k_
- (Lf’r)(1+qk+q2k~~~+q(””k)~("fl>

-1 -2 N
Z(Lf,r'gr Lf,r'gr Lf,r"'gr Lf,r)

1

k
-
)

=09ﬂ%§5®f

When r is an odd prime, ({r_l)(;) is 1. If r is 2 then we have
4|(q — 1), thus the factor of —1 can be ignored. Simplifying,

R ()
LT = ()
k_ —
=g T =g
By definition of r-th nonresidue, this implies that L¢ . is an r-th
nonresidue in ]qu. Applying Lem. 2.2, we get that N]Fq a/Fg (Ly,r)

is an r-th nonresidue in Fg. ]
Thm. 3.1 gives the Cor. 1.3.

ProoF oF Cor. 1.3. Since Fpm is specified by an irreducible poly-
nomial of degree m (and we know r| ged(m, p — 1)), we get an r-th
nonresidue by Thm. 3.1 if we can find {; in Fp. The latter can be
done using Pila’s algorithm based on arithmetic algebraic-geometry
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[20, Thm. D]. Once we have an r-th nonresidue, we get an r-th root
finding algorithm [22, 30]. ]

Thm. 3.1 also gives us a way to construct r-th nonresidue, in Fpn
for any n, using an irreducible polynomial of degree divisible by r.

COROLLARY 3.2 (ANY FIELD). Suppose we have an irreducible
f € Fqlx] with degree d = rk and {; € Fq, where Fq has char-
acteristic p. Then, we can find r-th nonresidue in any finite field Fy
of characteristic p (assuming r|(q’ — 1)).

ProoF. Let Fpm be the smallest subfield of Fg, with r|(p™ - 1).
Using Thm. 3.1 & Lem. 2.2 on f, we can find an r-th nonresidue in
Fym.

Now consider the given field IF"qr with, say, pmf elements (since
rlg’ — 1, ¢ € N). It has a subfield F’ of size p™, and so by [15,
Thm. 1.2], we also get an r-th nonresidue in I/, say a. We intend to
lift this nonresidue to the bigger field Fy; to do that we consider
two cases.

e Case 1: If r { £ then a is an r-th nonresidue in Fy . Because,

q'-1 pm-1 41 P!
a7 =(a 7 )P = (THPTT £ 1.

qg-1 _ p™mi-1
pm=1 — pm-1

Last inequality holds because is not
divisible by r.

e Case 2: If r | £ then we have an irreducible polynomial that
defines IFsz and on that we can apply Thm. 3.1 to get an

r-th nonresidue in Fg.

O

The following lemma relates Ng /Fq (9) to the resultant R(f, g)
q

when f is irreducible.

LEMMA 3.3 (RESULTANT AS A NORM). [6, Ex. 6.15] If f is an irre-
ducible polynomial of degree d in Fq[x], then

R(f.9) = Ng_, /7 (9)-

Proor. We know that the roots of polynomial f are Z(f) =
R thdi1 }. Using the definition of resultant,

Rf.9) = [] 9@
aeZ(f)

d-1 ;
= Joa®)
i=0

d-1 ,
= [ o
i=0

g

{a’aq,...

=g(a)
= Nqu /R (9) -

O

COROLLARY 3.4 (RESULTANT OF RESOLVENT). In the notation of
Thm. 3.1, R(Ly, ., f) is an r-th nonresidue in Fgq.

In particular, xr(R(L¢,,, f)) = G

ISSAC *17, July 25-28, 2017, Kaiserslautern, Germany

3.2 From a reducible polynomial f - Proof of
Thm. 1.2

We will look at the case of reducible polynomials now. The Thm. 1.2

shows that a reducible polynomial satisfying Property 1.1 will give

us an r-th nonresidue. Note that an irreducible polynomial of a
degree divisible by r will trivially satisfy Property 1.1.

Proor orF THM. 1.2. By distinct degree factorization [6, Thm. 7.5.3],
the polynomial f can be decomposed as f = hihy - - - hy, s.t.,

e For all i, h; has irreducible factors of same degree.
e For all i # j, irreducible factors of h; and h; have different
degree.

We know that f satisfies Property 1.1. So, the distinct degree
factorization guarantees a factor h; = fifa--- f;» of f such that,

e fi’s are irreducible of degree d = rk.

o rtr.
For convenience we shall denote fifz--- f; as f from now on.
Define g(x) to be the Lagrange resolvent inspired polynomial,

r—1
ki :
glx) = Y x1¢E
i=0

We will show that R(f,g mod f) is an r-th nonresidue in Fy.
Here g mod f refers to some representative in F 4 [x]. We will now
show that the resultant is independent of the representative chosen.

Claim 1. Let f, g be two polynomials over any field. Then,
R(f,g mod f) = R(f.g) -

Proor. Let g’ := g mod f be a representative. Using the defini-

tion of resultant,
R(f.g) = [] @
aeZ(f)

[] 9@ [ 9@ =g
aeZ(f)

=R(f.9).

Clm. 1 implies that,

r

R(f.gmod f) = R(f.g) = [ |R(fi-9) = | [ R(fi,g mod fi).
i=1 i=1

Since y, is multiplicative, we have,

xr(R(f,gmod ) = | | xr(R(fi,g mod ) = ()"
i=1

The last step follows from Cor. 3.4 and the fact that f; are ir-
reducible. Since r t r’, we get x,(R(f,g mod f)) # 1 and hence
R(f,g mod f) is an r-th nonresidue in Fg.

The last statement of the theorem (about fields of characteristic
p) follows in the same way as in the proof of Cor. 3.2.

The time complexity is straightforward and further discussed in
Sec. 4.

O
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3.3 Constructing fields — Proof of Thm. 1.4

The result in the previous subsection required the existence and
knowledge of {,. Now we would like to eliminate both these as-
sumptions. In particular, we will not assume that r | ¢ — 1 in this
section. We will show that if we have a reducible polynomial f
satisfying Property 1.1 then we can construct Fgr (equivalently, we
can construct an irreducible polynomial of degree r). The concepts
that we will use are inspired from the proof of [15, Thm. 5.2].

The starting idea is to work with a “virtual” {;, i.e. define the
ring Fy[¢] = Fg[Y]/(p, (V)), where p,(Y) i= Sozizy_1 Y. Let {
be the residue-class of Y mod ¢, (Y) in F4[{]. Let e be the smallest
positive integer such that r|g® —1, in other words, the multiplicative
order of g modulo r. Then ¢, (Y) completely splits over Fye as

or(0) = [ r=nh,
i€F;
where 17 € Fye is a primitive r-th root of unity, but we may not
have access to 17 and in general not even to Fge. So we will do
computations over the ring F4[{] and try to construct the field Fgr.

Clearly, { has order r in the unit group Fg[{]*. For each integer
a € Fy there is a unique ring automorphism p, of F4[{] that fixes
Fq and maps { + (% The set {p, | a € F;} =: A forms a
group (under map composition) that is isomorphic to Fy. If we
consider the elements of the ring fixed under A then we get back
Fg, ie. Fg[{]* = Fq [15, Prop. 4.1].

Like Sec. 3.2, suppose we have an f = fif>--- fir € Fq[x] with
fi’s being irreducibles of degree d = rk and r  r’. When we move
to Fye, fi factors into £ := ged(k, e) = ged(d, e) many irreducibles
each of degree d/¢ = kr/ gcd(k, e) =: k’r. Since r 1 e, we have that
rtd.

Our ring Fy[{] is a semisimple algebra that decomposes as:

Fglgl = X FgelYIRY - 1),
ieFL/{(q)

and the proof given in Sec. 3.2 holds simultaneously over each of
the component fields (= Fge) of Fg[{]. Hence, simply by Chinese
remaindering, we get the equality:

‘-1 !
R(f.gmod f)" = {77, @)
where, as expected, g(x) is the following Lagrange resolvent over

Fql{],
r—1 o
g(x) := Zx‘fk et
i=0

(Also, note that we are now computing mod and resultant over the
base ring F4[{].)

Teichmiiller subgroup. Let r”’ be an integer representative for
(r"€)7! mod r. Let ¢° — 1 = ur? such that r { u and t > 1. Define
8 := R(f,g mod f)“"". Then, by Eqn.2, we have T = L In
particular, § has order r? in [Fq[{T". Define a function w that maps
any integer a to a”"”" mod r’. Note that, by binomial expansion,
(a + r)rH = @ mod r!. In other words, value of w(a) only
depends on a mod r. Now we come to the key definition, inspired

from [15],
c = ( l—[ ot (5‘”(“))).

a€[r-1]
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The following properties can be easily verified:

L] Cr171 = g
e chas order r! in Fg[{]*, and
e forall p, € A, pp(c) = c@(®),

At this point recall the definition of Teichmiiller subgroup w.r.t.
Fq:
q

Tg, = {e € Fq[{]" | € has r-power order, and
Ypq € A, pa(e) = e”(“)} .

By the properties above and invoking [15, Thm. 5.1], we can
deduce that c is a generator of Tg, .

Consider the extension ring F4[{] [c1/r] = Fql{1IX]1/(X" =),
where ¢!/7 is the residue class of X mod X" — ¢ in the ring. By
[15, Prop. 4.3] we have: Yb € F;, p; extends uniquely to a ring
automorphism of Fg[{] [c!/7] such that ¢}/7 +— (c}/7)*®) Thus,
A can now be seen as a group of ring automorphisms of Fg[{] [c!/].

Now we have the following nice way to construct a field exten-
sion.

THEOREM 3.5 (FIELD EXTENSION). The fixed subring Fq [Z][cM/ A
is isomorphic to Fyr. Moreover, given f satisfying property 1.1, Fgr
can be constructed in deterministic poly(deg(f), r log q)-time.

Proor. Itdirectly follows from [15, Thm. 5.1] that Fg[{] [c/T]A =
Fgr.

From the above discussion it can be seen that, given f, we can
compute c. Hence, we have a representation of the ring F4[{] [c!/7]
in terms of a linear basis B over Fy (& their multiplication relations).
Because of the properties of p;({) and pp(c'/") we also have a
description of the action of A on F4[{] [¢!/7] in terms of B. Thus,
we can compute the fixed subring Fg[{] [cl/T]A efficiently. It is
straightforward to get the time complexity estimate. O

Proor oF THM. 1.4. From f, by Thm. 3.5, we can get an irre-
ducible polynomial g over Fy of degree r. Let m be any r-power.
Then, by [15, Thm. 1.1], we can construct Fgm using g efficiently.

o

4 ALGORITHM

For concreteness, we state our algorithm (Algo.1) for constructing
r-th nonresidue in this section. The proof of correctness for this
algorithm follows directly from Thm. 1.2.

The input to this algorithm is a polynomial f (x) € Fp[x] satisfy-
ing Property 1.1, {; € Fp, and the finite field Fj of characteristic p
where we want to construct r-th nonresidue. The algorithm outputs
an r-th nonresidue in Fy.

Note that, since f(x) satisfies Property 1.1, wlog (by the distinct
degree factorization) f = fif2- - fi such that,

e fi’s are irreducible of degree d = rk, and
o rtr.
Time complexity analysis-

One can refer to [26] for basic arithmetic operations. Polynomial
computation in Step 2, takes time O(rnlog plog q’) using repeated
squaring. Similarly, Step 5 can be done in O(r%k log p deg(f)). The
computation in Step 6 can be done in time O(deg(f) logp), using
fast Resultant computation [6, Pg. 347].



Irreducibility and deterministic r-th root finding over finite fields

Algorithm 1 Non-residue computation over finite fields

Input : f(x), {r € Fp, Fy, where ¢’ = p™.

Output : r-th nonresidue in Fg.

1: if (r|n) then

2 Define g(x) = Zlf:_& x¥" ¢ mod h(x) »where v :=pn/"
and h(x) is the minimal polynomial of Fy over Fp .

3 Output g(x).

4: else )

5 Define g(x) = Z:;g xvlgri mod f(x)

6: Output R(g(x), f(x)).

7. end if

> where v := pk.

5 SOME SPECIAL CASE APPLICATIONS

5.1 'The special case of r = 2

Notice that for r = 2, we have {3 = —1 available in any finite field
with odd characteristic. Thus, using Thm. 1.2 and an f (Property
1.1), we can construct a quadratic nonresidue. The same can also
be calculated using Stickelberger lemma directly.

A striking difference, in the case of r = 2, is that using Stick-
elberger lemma (Eqn.1) discriminant is the quadratic nonresidue.
This implies that over even degree finite field extensions, the de-
rivative of the minimal polynomial of the extension is a quadratic
nonresidue. We formally state this property below.

LEMMA 5.1 (DERIVATIVE). Given a finite field qu = Fql[x1/<f)
with even d = deg(f) and 4|(q — 1), f’ is a quadratic nonresidue in

Fqlx1/<f)-

Proor. Using Stickelberger lemma (Eqn.1) we know that the
discriminant is a quadratic nonresidue in Fq. Since,

A(f) = (D)4 R(F, ),

where ag = 1 is the leading coefficient of f(x), we can deduce that
R(f, f’) is a quadratic nonresidue in Fy.
Using Lem. 3.3 we get that Ng /Ry (f’) is a quadratic nonresidue
q

inFy, and using Lem. 2.2 we get that f’(x) is a quadratic nonresidue

in Fy[x]/(f). O

5.2 Cases for which ¢, is known

Since our first main theorem, Thm. 1.2, requires ¢, in this section
we state some known methods to construct the same.

One of the most significant results on this is by Pila [20]. He
generalized Schoof’s [21] elliptic curve point-counting algorithm
to Fermat curves, and as an application gave an algorithm for fac-
toring the r-th cyclotomic polynomial over F;,. The algorithm is
deterministic and runs in time polynomial in log p for a fixed r. If
rlp — 1 then the factorization of the r-th cyclotomic will give us
{r € Fp.

A limitation of Pila’s algorithm is that it can give us {, only
in prime fields. Below we state few results that can give { in
extensions of prime fields.

The following theorem by Bach, von zur Gathen and Lenstra [7]
gives an elegant way to construct {; € [F4 using “special” irreducible
polynomials.
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THEOREM 5.2. [7, Thm. 2] Given two prime numbers p and r, the
h = ord,(p), the explicit data for Fyn; given for each prime £|(r — 1)
but not dividing h, an irreducible polynomial g, of degree { in Fp[X],
there is a deterministic poly(rhlog(p))-time algorithm to construct a
primitive r-th root of unity in th.

We immediately get the following.

CoROLLARY 5.3 (INSPIRED BY BGL [7]). Let prime r|lq — 1. If
for each prime € | (r — 1) we are given an irreducible polynomial
he € Fy[x] of degree divisible by €, then we can construct {; € Fy.

Proor. Using hy we can construct an irreducible polynomial of
degree ¢ [15, Thm. 1.1]. Using Thm. 5.2 on these, we can construct
{r € Fy. O

There are also some other methods for finding {; € Fy that are
based on the factorization pattern of ¢ — 1. We present one such
result and its proof.

THEOREM 5.4 (SzE [29]). We can find{r € Fq ifq—1 = r°t, where
r+t = poly(log q).

Proor. The number of elements whose order is not a multiple
of ris t. So if we take ¢ + 1 elements in Fg, this will give us an
element a that has order a multiple of r. Then, a’ is an element with
an r-power order. Let ord(a’) =: r¥, where s > 1. Finally, alm s
an element of order r in Fg. O

5.3 Necessary condition for the irreducibility
of a polynomial

Our analysis provides a necessary condition for checking irre-
ducibility of a polynomial.

LEMMA 5.5. If f € Fy[x] is irreducible and prime r| deg(f) with
ged(2,r) - r | (g —1), then R(Ly, ., f(x)) is an r-th nonresidue in Fq.

Proor. This follows directly from Thm. 3.1. O

Lem. 5.5 for r = 2 is used by von zur Gathen in his paper to prove
properties about irreducible trinomials [32, Cor. 3]. We hope that
this generalized lemma gives conditions that can help construct
additional polynomial families.

5.4 Efficient construction of nonresidues over
finite field extension, assuming GRH

It is well known that over prime fields F;, one can construct r-th
nonresidue in O(log2 p) time [3]. However, the proof in [3] does
not work for finite field extensions. Huang generalized Ankeny’s
result to prove the following theorem.

THEOREM 5.6 (HUaNG [13]). Let {1, w,w?, ..., w™ 1} be the basis
of Fpym over Fp. Assuming GRH, there exists an r-th nonresidue
a € Fpm such thata = Zﬁal a;w' and |a;| < O(log? pr).

Note that, constructing r-th nonresidue using the previous the-
orem will be exponential in m. We give a construction of an r-th
nonresidue over finite field extensions which runs in time polyno-
mial in m.

COROLLARY 5.7. Assuming GRH, we can construct r-th nonresidue
in any finite field Fpm in time poly(m,r,logp).
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Proor. If r { m, then an r-th nonresidue in ), will also be an
r-th nonresidue in F* (See Case 1, proof of Cor. 3.2). Thus we
will pick the least r-th nonresidue, which is bounded by O(log? p).
On the other hand, if r|m then construction of r-th nonresidue
is similar to that in Case 2, proof of Cor. 3.2. Note that, Cor. 3.2
requires {, € Fpm, the same can be constructed assuming GRH
using [7, Thm. 2] and [1]. o

6 SOME CONJECTURES

6.1 Finding polynomials satisfying Property
1.1

A natural question that arises from our analysis is: How can one
construct a polynomial satisfying Property 1.1? An approach can be
to come up with a polynomial family ¥ such that at least one of the
polynomial in F satisfies Property 1.1. We leave the construction
of such a polynomial family as an open question.

This question for r = 2 will also be very interesting. For r =
2, if we can construct a polynomial satisfying Property 1.1 then
its discriminant will be a quadratic nonresidue by Stickelberger’s
lemma.

A well studied polynomial family for such properties are trino-
mials. Trinomials are univariate polynomials with sparsity three:

Takab) = (x"+ax¥ +b | n>k>0abeZ.

An elegant property of trinomials is the closed form expression for
their discriminant and, thus, it can be computed efficiently. (Even
if the degree of the trinomial is exponential.)

THEOREM 6.1 (SWAN [28]). Letn > k > 0. Letd = ged(n, k) and
n=mnmd, k = kid . Then,

A(x"™ + axk + b) = (—1)”("‘1)/2bk‘1Ed,
where E = n™p™m—F1 (_1)n1+1 (n- k)nl—klkkxanx .

Trinomials are used to construct irreducible polynomials in [28,
32]. Based on our experiments we give the following conjecture.

CONJECTURE 6.2. The following polynomial family has at least
one polynomial that satisfy property 1.1 forr = 2,

F = Toikap | 1 <ikab<log’p).

We leave the proof, or a refutation, of this conjecture as an open
question.

6.2 Weaker Generalized Riemann Hypothesis

In 1952, Ankeny [3] proved that if the Generalized Riemann Hypoth-
esis is true then the least quadratic nonresidue in Fj, is O(log? p).
The Generalized Riemann hypothesis(GRH) says that all the non-
trivial roots p of the Dirichlet L function are on real line z = %, but
what if we consider a weaker form of it? Instead of saying that
all the nontrivial roots lie on Re(p) = % we “merely” conjecture
that all the nontrivial roots lie in a wider strip [% -, % + €], for
a constant €. Can we prove poly(log p) upper bound on the least
quadratic nonresidue in F), assuming this conjecture?
We proved that the answer to this question is affirmative’.

!We thank the reviewer for pointing out that [5, Pg. 293] stated a similar result.
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CoNJECTURE 6.3 (WEAK GRH). Let y be a Dirichlet character,
ie y: F; —> C*. There exists a constant% > € > 0 such that the

Dirichlet L function L(s, x) = Y, X,E?) have all its nontrivial roots in
the interval % — € < Re(s) < % + €.

We will now use some known facts from Analytic number theory,
for detailed proofs of these facts see [18, Chap. 7]. Let A be the
Mangoldt function and {'(s) be the Riemann zeta function.

LEMMA 6.4 (BOUNDS FOR ¥/(x, x)). Let ¥(x, x) = Xi<x A(D) x (i)
and y be a primitive Dirichlet character of F}, , then

Y(x, x) = — Z X + O(log2px) ,
yi<vx ©
where p = o + iy are the nontrivial roots of the Dirichlet L function
L(s, x). Also, Zly\<\/? ﬁ = O(log? px).
LEMMA 6.5 (BOUNDS FOR /(x)). Let (x) = X ;< A(i), then
Y(x) = x— z . 0(Vxlogx),
lyl<vx

where p = o +iy are the nontrivial roots of the Riemann zeta function

{(s). Also, 3y < yx ﬁ = O(log? x).

We will now prove bounds on /(x) and ¢ (x, y) assuming Weak
GRH.

LEMMA 6.6 (NEW BOUNDS). Assuming Weak GRH,
(1) Y(x, x) = O(x2*€ log? px), and
) Yy(x)=x+ O(x%” log? x).

PROOF. (1) Using the notation in Lem. 6.4,

|2 = < maxiarn | 35|
y<vx P
b
oy lpl

O(x%J’e log? px) .

IN

IN

Since, ¥/(x, y) = — Zlyl<\/37 % + O(logsz), we get that
Y(x. ) = 0> " log? px).

(2) Using the notation in Lem. 6.5,

| X 5] < tmamern-| 7]

y<vx p
lie ‘ 2 1 ‘
X2 . —_
lpl
y<vx

= O(x%” log? x) .

IA

IA

Since, (x) = x = X | <yx % +O(ﬁlog2 x), we get that

VU(x) =x+ O(x%JrE log? x).
o

Using this lemma we will bound the least r-th nonresidue in F,.
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THEOREM 6.7. Let n(p,r) denote the least r-th nonresidue in IF;;
Then, assuming the Weak GRH,
n(p.r) = O(logT% p).

—1
Proor. Let y,(a) := a" mod p, and y, be the trivial character
ie., yo(a) = 1,Ya e ]F;; Consider

D @A@ - ) xr(@A@).

1<a<M 1<a<M

S(M) =

Note that, S(M) is zero iff there is no r-th nonresidue in the initial
interval [M].
We have,

S(M)

¢(M, XO) - ¢(M’ )(r)
M + O(M-3*€ log? pM)

[ Using Lem. 6.6 ]

We are interested in finding the maximum My such that S(My) =
0. The above estimate implies that My = O(M8'5+€ log? pMy).

Therefore, n(p, r) = O(logﬁ p) o

This elementary analysis, assuming Weak GRH, has remarkable
consequences. Ankeny’s result has been used in derandomizing
many computational problems under the assumption of GRH. Some
of them are primality testing [6, Chap. 9], r-th root finding [2],
constructing irreducible polynomials over finite fields [1] and cases
of polynomial factoring over finite fields [1, 7]. (Also, see [4, 14] and
the references therein.) Our result implies that, for derandomizing
these problems, proving the Weak GRH suffices.

7 CONCLUSION

We give a significant generalization of Stickelberger Lemma (Eqn.1);
we can construct an r-th nonresidue in Fy given {; € Fg and a
polynomial f satisfying Stickelberger property 1.1. Using this, we
also gave an algorithm to find r-th roots in Fgm if r = O(1) and
rl ged(m,p — 1). An interesting open question here is whether one
can weaken the Stickelberger property (eg. remove the nondivisi-
bility by r condition?).

Our result along with some known results on finding ¢, € Fq
gives us some interesting applications. It seems that finding {; € Fy
is an inherent requirement in our analysis. We leave removing the
requirement of {; from our algorithm as an open question. This we
have been able to achieve, if the goal is only to construct a degree
r irreducible (given f) instead of an r-th nonresidue.

We also leave the concrete conjectures Conj. 6.2 & 6.3 open.
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