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Abstract

Deciding whether a given system of polynomial equations is satisfiable (known as the Hilbert’s null-
stellensatz problem (HN)) is a central question in mathematics and computer science, with applications
in several other fields of science. By the celebrated degree bounds for the nullstellensatz (Brownawell
1987, Kollar 1988, Jelonek 2005), algebraic algorithms that decide satisfiability of polynomial equations are
known to be in PSPACE. On the other hand, the only hardness result for the HN problem is that it is
NP-hard. Koiran’s seminal work (Koiran, 1996) showed that, under the Generalized Riemann Hypothe-
sis (GRH), this problem can be brought down to AM, significantly reducing the gap between complexity
lower bounds and complexity upper bounds.

The above question can be thought of, in algebraic terms, as follows: given generators for an ideal
I := (f1, . . . , fm) ⊂ C[x1, . . . , xn], decide whether 1 ∈ I. Another central question in mathematics and
computer science is the question of determining whether a given ideal I is prime, which geometrically
corresponds to the zero set of I, denoted Z(I), being irreducible. The case of principal ideals (i.e., m = 1)
corresponds to the more familiar absolute irreducibility testing of polynomials, where the seminal work of
(Kaltofen 1995) yields a randomized, polynomial time algorithm for this problem. However, whenm > 1,
the complexity of the primality testing problem seems much harder. The current best algorithms for this
problem are only known to be in EXPSPACE.

Such drastic state of affairs has prompted research on the primality testing problem (and its more gen-
eral variants, the primary decomposition problem, and the problem of counting the number of irreducible
components) for natural classes of ideals. Notable classes of ideals are the class of radical ideals, com-
plete intersections (and more generally Cohen-Macaulay ideals). For radical ideals, the current best upper
bounds are given by (Bürgisser & Scheiblechner, 2009), putting the problem in PSPACE. For complete in-
tersections, the primary decomposition algorithm of (Eisenbud, Huneke, Vasconcelos 1992) coupled with
the degree bounds of (DFGS 1991), puts the ideal primality testing problem in EXP. In these situations, the
only known complexity-theoretic lower bound for the ideal primality testing problem is that it is coNP-
hard for the classes of radical ideals, and equidimensional Cohen-Macaulay ideals.

In this work, we significantly reduce the complexity-theoretic gap for the ideal primality testing prob-
lem for the important families of ideals I (namely, radical ideals and equidimensional Cohen-Macaulay ideals).
For these classes of ideals, assuming the Generalized Riemann Hypothesis, we show that primality testing
lies in Σp

3 ∩ Πp
3 . This significantly improves the upper bound for these classes, approaching their lower

bound, as the primality testing problem is coNP-hard for these classes of ideals.
Another consequence of our results is that for equidimensional Cohen-Macaulay ideals, we get the first

PSPACE algorithm for primality testing, exponentially improving the space and time complexity of prior
known algorithms.

*University of Waterloo, Cheriton School of Computer Science. Email: {a65garg, rafael}@uwaterloo.ca
†IIT Kanpur, Department of CSE. Email: nitin@cse.iitk.ac.in

1

https://orcid.org/0000-0001-8917-8689
https://orcid.org/0000-0001-6931-898X
mailto:\{a65garg, rafael\}@uwaterloo.ca
mailto:nitin@cse.iitk.ac.in


Contents

1 Introduction 3
1.1 Proof overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 10
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Results from complexity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Algebraic circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Results from linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Results from algebraic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Results from number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Degree bounds for polynomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 An Effective Bertini Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Height bounds 17
3.1 Height bounds for elementary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Height bounds for primitive elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Height bounds for membership in ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Absolutely irreducible factors of bivariate polynomials . . . . . . . . . . . . . . . . . . . . . . 23

4 Geometric Irreducibility and base change 24
4.1 Dimension zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Dimension one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Interactive proofs of primality testing 29
5.1 Interactive proof for radical ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Equidimensional Cohen-Macaulay ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Proof of main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion & open problems 32

Bibliography 32

2



1 Introduction

Given a set of polynomials f1, . . . , fm ∈ C[x1, . . . , xn], a fundamental algorithmic task in computer algebra
and algebraic geometry is the “factorization” of the ideal I := (f1, . . . , fm) into “irreducible” components,
generalizing the task of factoring a given polynomial into its irreducible factors. Given the more complex
structure of ideals in polynomial rings, the right generalization of the polynomial factoring problem is a pri-
mary decomposition of the ideal I, where one decomposes I into “primary ideals,” which can be thought
of, in the geometric sense, as the “irreducible components” of the zero set defined by the ideal I, accounted
with their “multiplicities.” This task was first undertaken in the pioneering works of Lasker and Her-
mann [Las05, Her26], and due to its paramount importance in computer algebra and algebraic geometry,
it has been the subject of extensive research by algebraic geometers, computer algebraists and complexity
theorists ever since, as can be seen in [Sei74, Sei78, GTZ88, EHV92, BM93] and references therein.

The above task naturally leads to the basic problem of deciding whether a given ideal is prime, which
also has been extensively studied in theoretical computer science and algebraic geometry, as can be seen in
[HS81, Kal95, BC04, BS07, Eis13] and references therein. In the Turing model, which is the model that we
will focus on in this work, the ideal primality testing problem can be formally defined in the following way.

Problem 1.1 (Ideal primality testing). Given an algebraic circuit of size s computing polynomials with integer
coefficients f1, . . . , fm ∈ Z[x1, . . . , xn], is the ideal (f1, . . . , fm) · C[x1, . . . , xn] prime?

The ideal primality testing problem is the direct generalization of the problem of testing whether a
single polynomial is (absolutely) irreducible. More precisely, the absolute irreducibility testing problem for
polynomials corresponds to Problem 1.1 with m = 1. A geometric version of the ideal primality testing
problem was posed in [BC04, Problem 8.5]: what is the complexity to check whether a given algebraic
set is irreducible over C? Algebraically, the latter problem can be cast as: given polynomials f1, . . . , fm ∈
Z[x1, . . . , xn], is rad (f1, . . . , fm) prime?

The m = 1 case of Problem 1.1, that is, the absolute irreducibility test of polynomials, can be done in
randomized polynomial time, and by several different methods, due to the works [Kal85, BCGW93, Kal95,
Gao03] (and references therein). However, whenm ⩾ 2, Problem 1.1 seems to be notoriously more difficult,
even for natural classes of ideals. Currently, the only algorithms to test whether a (general) ideal is prime
are algorithms which compute a primary decomposition of the input ideal [Sei78, GTZ88, EHV92] (and
references therein). Since these algorithms require the computation of Gröbner bases as a subroutine, the
best complexity class which upper bounds the ideal primality testing problem is EXPSPACE, by applying
the algorithm in [GTZ88] with the degree bounds for Gröbner basis obtained in [Dub90].

Due to the challenges posed by the general version of Problem 1.1 (and more generally for the primary
decomposition problem), special cases of the problem(s) have been considered. In particular, natural classes
of ideals have been studied, such as the cases where the ideal is a complete intersection1, or when the given
ideal is radical, or ideals with either constant dimension or constant codimension. When the input to Prob-
lem 1.1 is a complete intersection, the primary decomposition algorithm of [EHV92], combined with the
Gröbner basis degree bounds of [DFGS91] yields an exponential time algorithm. When the input polyno-
mials form a radical ideal, the works of [Chi86, Gri86] give an exponential time algorithm for computing the
minimal primes of the given radical ideal, and [BS07, Theorem 4.1] gives a PSPACE-algorithm for counting
the number of minimal primes of a given radical ideal. Thus, for the class of radical ideals, Problem 1.1 is in
PSPACE.2 For the case of radicals of ideals generated by constantly many polynomials, [BS10, Theorem 1.1]
gives an algorithm in FRNC for computing the number of minimal primes, therefore solving the primality
testing problem in RNC. Lastly, the dimension-dependent Gröbner basis degree bounds of [MT17], when
combined with the primary decomposition algorithm of [GTZ88], yields a PSPACE-algorithm for primary
decomposition of ideals of constant dimension, thereby also providing a PSPACE-algorithm for the ideal
primality testing problem in this case. Apart from the above described algorithms, an important approach

1An ideal I := (f1, . . . , fm) is a complete intersection when the codimension of I equals the number of generators (in this case m).
That is, each polynomial fi “cuts” the dimension of the algebraic set by one, just as linearly independent linear forms would cut the
dimension of the space by one. This is the algebraic generalization of the fact that a set of m linearly independent forms defines a
space of dimension n−m.

2The works [Chi86, Gri86, BS07] work on the geometric setting of the question, as stated in [BC04, Problem 8.5]. When the input
ideal is already promised to be radical, then the geometric setting and Problem 1.1 become the same problem.
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to Problem 1.1 is to provide sufficient conditions/criteria on certain classes of ideals that will ensure pri-
mality. One prominent sufficient condition is given by the combination of Serre’s criterion ([Eis13, Theorem
11.5], [Sta24, Tag 031O]) with the Jacobian criterion [Eis13, Theorem 16.19], which works for the important
class of connected Cohen-Macaulay ideals3 (see [Eis13, Theorem 18.15]).

Given the seemingly weak upper bounds for the ideal primality testing problem even for the natural
classes of ideals above, one can ask if there are any complexity-theoretic lower bounds for the ideal primal-
ity testing problem. An easy argument shows that even for the natural class of zero-dimensional radical
ideals, Problem 1.1 is coNP-hard. We prove this result in Proposition 2.7.

In this work, assuming the Generalized Riemann Hypothesis (GRH), we substantially improve the
complexity-theoretic gap between the upper and lower bounds for Problem 1.1 for two important classes
of ideals: radical ideals and equidimensional Cohen-Macaulay ideals. Our main theorem is the following.

Theorem 1.2 (Interactive protocols for primality). Let C be an algebraic circuit of size s with integer constants
that computes f1, . . . , fm ∈ Z [x1, . . . , xn]. If I := (f1, . . . , fm) is either radical or equidimensional Cohen-Macaulay,
and if the dimension of I is given, then the complexity of testing if I is prime lies in coAM, assuming GRH.

Combining the above theorem with [Koi97, Theorem 4.1], we obtain that Problem 1.1 for radical ideals
and for equidimensional Cohen-Macaulay ideals are in the third level of the Polynomial Hierarchy (PH).

Theorem 1.3 (Primality testing in PH). Let C be an algebraic circuit of size s with integer constants that computes
f1, . . . , fm ∈ Z [x1, . . . , xn]. If the ideal I := (f1, . . . , fm) is either radical or equidimensional Cohen-Macaulay then
the complexity of testing if I is prime lies in Σp

3 ∩ Πp
3 , assuming GRH.

In the case when the given ideal is radical, Theorem 1.3 makes substantial progress on [BC04, Problem
8.5], and improves on the previous best upper bound of [BS07] from PSPACE to Σp

3 ∩ Πp
3 . Note that the

coNP lower bound from Proposition 2.7 also applies to radical ideals. Thus, our upper bound gets substan-
tially close to the known lower bound for the problem. Two important distinctions must be made here: our
protocols only work when the input ideal is radical, and we need to assume the GRH; whereas the algo-
rithm from [BS07] computes the number of irreducible components for the radical of the ideal generated by
f1, . . . , fm, and their work is unconditional on the GRH.

In the case of equidimensional Cohen-Macaulay ideals, which contains as special cases the important
classes of zero dimensional ideals and of complete intersection ideals, Theorem 1.3 yields a nearly tight
gap on the complexity of Problem 1.1, since the coNP lower bound of Proposition 2.7 also applies to zero-
dimensional radical ideals. Note that our result for zero-dimensional ideals improves upon the previous
upper bound of PSPACE. If our input is a complete intersection, then the dimension is implicitly given
to us, since the codimension of the ideal in this case is simply given by the number of input polynomials.
Thus, in this case Theorem 1.2 tells us that Problem 1.1 is in coAM. This improves upon the previous best
upper bound of exponential time.

The above results show that the most computationally expensive step in our protocols is to determine
the dimension of the input ideal. Thus, any improved protocol to compute exactly the dimension of a given
ideal would lead to improvements to our primality testing protocols.

As mentioned above, previous works solved the primality testing problem by either computing a pri-
mary decomposition of the input ideal, or by using de Rham cohomology to count the number of irreducible
components of the associated algebraic set (for the case of radical ideals). Our approach to solve Problem 1.1
is different from the previous approaches. Our strategy is inspired by Koiran’s approach [Koi96] to decide
whether a system of polynomial equations has a solution, which we now describe.

Koiran, in his seminal work [Koi96], proposed a fundamentally different approach to the problem of
deciding whether a system of polynomial equations with integer coefficients has a solution over C (known
as the Hilbert’s nullstellensatz problem). His approach to this problem was based on the following idea:
let F := {f1 = 0, . . . , fm = 0}, where fi ∈ Z[x1, . . . , xn] with deg fi ⩽ d, be our system of polynomial
equations. By Hilbert’s nullstellensatz, F is unsatisfiable if, and only if, 1 ∈ (f1, . . . , fm). In other words, F
is unsatisfiable iff there are polynomials g1, . . . ,gm ∈ C[x1, . . . , xn] such that 1 = f1g1 + · · · + fmgm. Note
that this last equation is simply a linear system of equations with integer entries, where the variables are

3The definition of Cohen-Macaulay ideals is somewhat technical, as can be seen in [Eis13, Chapter 18.2] and in [Sta24, Tag 00N7].
However, as discussed in [Eis13, Chapter 18.5], Cohen-Macaulay ideals form a rich class of ideals, and are central objects in commu-
tative algebra. In particular, zero dimensional ideals and complete intersections are Cohen-Macaulay.
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the coefficients of the gi’s. Thus if there is a solution for this system over C, there must be a solution over
Q. Hence, by clearing denominators, there are polynomials h1, . . . ,hm ∈ Z[x1, . . . , xn] and a ∈ Z>0 such
that a = f1h1 + · · · + fmhm. In particular, if F is unsatisfiable, given any prime p ∈ N which does not
divide a, we have 1 ≡ a−1 · (f1 ·h1 + · · ·+ fmhm) mod p, which implies that F, when seen as a system over
Fp[x1, . . . , xn], does not have any solutions over the field Fp. In particular, F has no solutions over Fn

p . The
main conceptual insight in [Koi96] is to ask (and answer) the question: if F is satisfiable, would we be able
to find ”simple” solutions (that is, solutions in Fn

p , as opposed to solutions in Fn

p ) for enough primes p?4 His
main theorem [Koi96, Theorem 1] proves (assuming the GRH) a quantitative version of the following fact: if
F is unsatisfiable, then there are ”very few” primes p such that F has a solution over Fn

p ; if F is satisfiable,
then there are ”enough” (small enough) primes p such that F has a solution over Fn

p . Equipped with the
above theorem, Koiran can now distinguish between the two cases by using a set lower bound protocol,
hence putting the Hilbert’s nullstellensatz problem in coAM.

It is important to emphasize that the main technical challenge with the above approach, as pointed out
by Koiran (see [Koi96, Page 275]), is to prove such quantitative bounds on the number of ”good primes,”
when one changes the base ring from Z to Fp (or geometrically, from C to Fp). The principle of changing the
base field where an object of interest lives (in our case our algebraic set over Cn) to extract some information
of our geometric object based on properties of its image is called a base change theorem. Such results are
well studied in algebraic geometry and number theory, as can be seen in [GD65] and [Poo08, Appendix
C].5 Often times, such base change theorems are non-constructive, which suffices for their mathematical
purposes. However, for such a base change theorem to be useful for computation, as is the case in [Koi96],
one needs to prove effective versions of such base change theorems. As usual in mathematics and computer
science, making such theorems effective often requires a considerable amount of work.

In this work, we use the same high-level strategy developed by Koiran to give an AM protocol for
proving that a given input ideal (from one of our classes of ideals) is not prime, assuming that we are
given the dimension of our input ideal. We begin by noticing that in the classes of ideals that we study,
there are 3 ways in which our ideal cannot be prime: the ideal can have two minimal primes of different
dimensions, the ideal can have two distinct minimal primes of maximum dimension, or the ideal can have a
single minimal prime with ”multiplicity.” For radical ideals, only the first and the second cases can happen,
whereas for equidimensional Cohen-Macaulay ideals only the second and third cases can happen.

In the case where we have two minimal primes with different dimensions (which can only happen in
the radical case) we can identify that the given ideal is not prime via the Jacobian. This allows us to reduce
this case to an instance of the Hilbert’s nullstellensatz problem, which can be handled by the protocol of
[Koi96]. This is done in Section 5.1.

In the case where we have a single minimal prime with multiplicity, (which can only happen in the
equidimensional Cohen-Macaulay case), we can use Serre’s criterion, combined with the Jacobian criterion
(as done in [Eis13, Theorem 18.15]) to identify the multiplicity via the codimension of the Jacobian ideal
inside our ideal. Thus, in this case we can use the protocol to compute dimension lower bounds given by
[Koi97]. This is done in Section 5.2.

Now, the only case we have left is when our ideal is equidimensional, but has more than one irreducible
component (this can happen for both the radical and the equidimensional Cohen-Macaulay cases). This
turns out to be the most challenging case for us. The base change theorems of [GD65] tell us that if our
ideal is prime over C[x1, . . . , xn], then, for many choices of primes p, our ideal over Fp[x1, . . . , xn] will
remain prime over Fp[x1, . . . , xn]. Combining this fact with [Sei74], one also obtains that for many choices
of primes p, if our ideal is equidimensional and not prime, then our ideal over Fp[x1, . . . , xn] will remain
equidimensional and not prime over Fp[x1, . . . , xn]. Since we are only interested in distinguishing whether
our ideal has more than one component of top dimension, by an effective version of Bertini’s theorem
(Corollary 2.26), we can assume that we are working with ideals of dimension 1. Thus, we have reduced our
main problem to the task of distinguishing whether an algebraic curve (of potentially exponential degree)
is absolutely irreducible or not.

While the above gives us hope to be able to distinguish this case by going modulo p (for a ”good prime”

4We would like to emphasize that the part which takes a lot of work in this claim is the part that says that satisfiable systems will
be satisfiable in Fn

p . Checking that a system remains satisfiable over Fn
p is also easy, as it can be solved by a similar argument as the

one given for the unsatisfiability case.
5Sometimes base change theorems are also called spreading out theorems, as is done in the references given here.
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p), there are two problems that we need to address: can we make this base change theorem effective? And in
case we can make it effective, how can we witness the distinction between an absolutely irreducible curve
(i.e. a prime ideal) and a reducible curve (i.e., non-prime ideal) in a ”simple way”? Could we do the latter
simply by looking at points in Fn

p , as is done by Koiran? As it turns out, the answer to the last question is
affirmative, due to effective versions of the celebrated Lang-Weil theorem (Theorem 2.18).

We have thus far reduced our primality testing problem to the problem of proving an effective base
change theorem which preserves equidimensional components of given algebraic sets. However, some
care needs to be taken here: the Lang-Weil theorem only guarantees enough solutions over Fn

p of algebraic
varieties which are defined over Fp (that is, the polynomials defining the variety must have coefficients in
Fp). Thus, if we are to use the Lang-Weil theorem, we must ensure that for an equidimensional non-prime
ideal, at least two of its minimal primes will be Fp-definable for enough ”good primes.” At this point, one
may ask:6 why not just preserve every minimal prime? As discussed in [BM93, Pages 47 and 48], this is a
very bad idea, since to do so would cause us to have to work over polynomials defined over extremely large
extension fields, and therefore kill any attempt to get an effective base change theorem, since the coefficients
become ”too complex.”

With the above in mind, we have now finally arrived at the precise effective base change theorem that
we need to prove: given an equidimensional ideal I := (f1, . . . , fm) with fi ∈ Z[x1, . . . , xn] and dim I = 1,
we need to ensure that there are enough ”good primes” such that at least two of its irreducible components
are defined over Fp. To prove such an effective base change theorem, we combine Kaltofen’s factoring
algorithm over the algebraic closure [Kal95] with results from algebraic number theory and elimination
theory. As we have mentioned before, this is the crucial technical result that we need, and it is carried out
in Sections 3 and 4, which culminate in our main technical theorems, Theorems 4.5 and 4.6.

We now present a summary of the above high-level discussion of our results, and in the following
subsection we present a more complete overview of our proof, where we discuss in a more precise form all
the issues that need to be overcome to prove correctness of our interactive protocols.

Summary of contributions.

1. In this work, we give AM protocols for non-primality for natural classes of ideals, assuming the
Generalized Riemann Hypothesis. This significantly tightens the complexity gap of these problems.
More precisely, we have:

• For the class of radical ideals, we prove that Problem 1.1 can be solved in coAM, whereas Propo-
sition 2.7 shows that Problem 1.1 is coNP-hard for this class of problems.

• For the class of equidimensional Cohen-Macaulay ideals (which includes the class of dimension
zero ideals, and the class of complete intersection ideals), we prove that Problem 1.1 can be
solved in coAM, whereas Proposition 2.7 shows that Problem 1.1 is also coNP-hard for this class
of ideals.

2. On the technical side, our main contribution is to prove effective base change theorems for geometric
irreducibility (and reducibility) of algebraic sets with equations defined over the integers. This is the
content of Theorems 4.5 and 4.6.

• One important remark is that our base change theorems, together with the effective Chebotarev
density theorem (Theorem 2.19), yields nearly optimal density bounds for the good primes pre-
serving (ir)reducibility, as discussed in Remark 5.3. This result is interesting on its own right.

• The proof of our base change theorem involves the combination of (effective) techniques from
algebraic geometry, elimination theory, efficient algorithms for factorization over the algebraic
closure of a field (and its corresponding absolute irreducibility test), as well as techniques from
algebraic number theory (to control the bit complexity of the algebraic numbers involved in the
operations that we need to consider).

6As mentioned in [BM93, pages 47 and 48], ”one who has never done any calculations.”

6



1.1 Proof overview
We now give a more detailed overview of the proof of our main technical theorem. Recall that we are
given polynomials f1, . . . , fm ∈ Z[x1, . . . , xn], defining the ideal I := (f1, . . . , fm) over C[x1, . . . , xn]. Let
V := Z(I) ⊆ Cn be the zero set of the ideal I, and r := dimV be the dimension of the ideal. Since we
will be interested in the bit-complexity of the polynomials and (algebraic) integers involved, we denote the
logarithmic height of an integer a ∈ Z by ht (a) := ⌈log(|a| + 1)⌉ (i.e., its bit complexity) and extend this
definition to denote the logarithmic height of a polynomial by the maximum logarithmic height of any of
its coefficients.

As stated earlier, for the types of ideals we consider, there are only a few ways in which the ideal I can
fail to be prime. If I is radical, then it can fail to be prime because V consists of at least two components,
either both of dimension r, or one of dimension r and one of dimension less than r. If I is equidimensional
CM, it can fail to be prime either because V consists of two components of dimension r, or because V
consists of a single component of dimension r, but this component occurs with ”multiplicity.”

Handling the case where V has a component of dimension less than r (which can happen only in the
radical case), or the case where V has a single component of dimension r but with multiplicity (which can
happen only in the CM case) is straightforward, as we have discussed in the previous section. Thus, we
focus on the case when I is equidimensional, where deciding primality reduces to deciding if V has only
one component of dimension r. Also, as mentioned before, by an effective version of Bertini’s theorem, we
can further assume that r = 1.

As discussed above, our approach involves studying how the ideal I and the zeroset V behave when the
coefficients are changed from Z to Fp for some prime p. Let Ip be the ideal generated by f1 (mod p), · · · , fm
(mod p), and Vp := Z(Ip) ⊆ Fn

p . We need to show that three properties are preserved. The first is that for
all but a small number of primes, dimV = dimVp. The second is that if V is irreducible, then for all but
a small number of primes, Vp is irreducible. The last is that if V is reducible, then for sufficiently many
primes, Vp is also reducible, and crucially, Vp has at least two distinct components that are Fp-definable.

Before we sketch our proof techniques for the above facts, we show that we cannot hope to get much
stronger statements than the ones we claim. While the examples we will give here may appear simple, it is
easy to generalize their main idea to produce examples with more complex behavior.

For the first property: dimension. Consider for example I = (x1, x1 + ax2) for some a ∈ N. We have
dimV = n− 2. However, for any prime p | a, we have Ip = (x1) therefore dimVp = n− 1. Thus, we cannot
hope that dimVp remains unchanged for every base change from Z to Fp.

For the second property: irreducibility. In this case, let I = (x1(x1 − 1) − ax2). Here, we have that V is
irreducible, but for any prime p|a, the zeroset Vp is reducible.

And now for the third property: reducibility. Let’s assumen = 2. Let g ∈ Z [x1] be a monic polynomial of
degree d, with Galois group Sd (the full symmetric group on d elements). Note that a random polynomial
satisfies this property. Let f be the polynomial obtained by homogenizing g with respect to x2, and let
I = (f). Then dimV = 1, and V has d irreducible factors. The smallest extension of Q that contains all the
factors of f is exactly the splitting field of g, which has degree d!, which is exponential in d. However, there
are extensions of degree just d2 that contain two irreducible factors, namely extensions generated by any
pair of roots of g.

Now that we are aware of the pitfalls along the way, we can give a more precise idea of the quantitative
bounds that we obtain. As is evident by the examples, the size of the set of bad primes for each of the state-
ments will depend on the logarithmic height of the given polynomials. We will show that the size of the set
of bad primes for the first two properties is polynomial in the degrees and logarithmic heights of f1, . . . , fm,
and exponential in the number of variables. As the logarithmic heights are themselves exponential in s (the
size of the circuit), the bounds we obtain are exponential in the input size.

With the above in mind, in order for the set size lower bound protocols to work, when V is reducible,
the number of good primes (that is, the number of primes p for which there are at least two Fp definable
components) has to also be exponential, within a bound A of primes up to which we can check roots. In
Remark 5.3 we show that the best one could hope to do in terms of the density of good primes is inverse
exponential. Our main theorem will show that we can indeed achieve this inverse exponential density. This
will show that there are sufficiently many good primes.

There are three main ideas/tools we use to prove the above properties. The first is the fact that ideal
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membership can be written as a linear system, if bounds are known for the degrees of the witnesses. Here,
by a witness to the membership of g ∈ I we mean polynomials h1, . . . ,hm such that g =

∑
fihi. In

general these bounds can be doubly exponential on the input size [Her26]. However in the special cases of
radical ideals and ideals of constant dimension, single exponential bounds are known ([Jel05], [MR13]). This
allows us to show that certain memberships (and non-memberships) in ideals continue to hold when going
modulo p, for all but a small number of primes. The second tool is an effective Bertini-Noether theorem
[Kal95]. The Bertini-Noether theorem states that if a polynomial f ∈ Z [x1, . . . , xn] is absolutely irreducible,
then for all but finitely many primes p it remains absolutely irreducible in Fp. The effective version of this
theorem states gives an upper bound on the number of bad primes for f that depends on the logarithmic
height of f. The third main tool we use is the factoring algorithm of [Kal95]. This algorithm gives a bound
on the logarithmic heights of the coefficients of factors of polynomials. In this work, we combine the above
ideals with a number of standard tools from commutative algebra and algebraic number theory, which can
be found in Sections 2 and 3.

We now return to the three statements we want to prove.

Dimension of Vp. We want to show that dimVp = 1 for all but a small number of primes p (recall that
we are assuming dimV = 1). Since dimV = 1, we have I ∩ Z [xi, xj] ̸= (0) for all pairs i ̸= j. This is because
I ∩ Z [xi, xj] corresponds to projection to coordinates i, j, and such projections also have dimension at least
1. Further, if dimV = 1, then I ∩ Z [xi] = (0) for some i, say i = 1. This is because projection to every
coordinate cannot be finite, since V is not finite. These two properties characterise the fact that dimV = 1.

By the effective Nullstellensatz, if I∩Z [xi, xj] ̸= (0), then it contains a polynomial gij with deggij ⩽ dn,
and such that gij =

∑
fkhijk with hijk ∈ Q[x1, . . . , xn] having deghijk ⩽ dn. Moreover, by the effective

nullstellensatz, a similar linear-algebraic condition can be derived (with the same degree bounds) which
established that there is no non-zero polynomial g1 ∈ I ∩ Z [x1]. Since the degrees of the potential hijk are
bounded, we can write the condition for existence of gij,g1 as a linear system, where the unknowns are
the coefficients of hijk. Using standard height bounds, we can deduce that for all but exponentially many
primes, the existence and non-existence of solutions is preserved mod p, since these facts only depend on
the vanishing and non vanishing of certain minors of the matrix of this linear system. Therefore, for all but
exponentially many primes we have dimVp = 1. This result is formally stated and proved in Lemma 4.1.

Irreducibility of Vp. We want to show that if V is irreducible, then Vp is irreducible for all but a small
number of primes p. Suppose n = 2, and dimV = 1. Then V is irreducible if and only if g ∈ rad (I) for
some absolutely irreducible polynomial g. Further, any such gmust divide every generator of I. This easily
allows us to get a bound on the coefficients of g, and by the effective Nullstellensatz, we can deduce that
ge =

∑
fihi with degge, deghi ⩽ dn. By Cramer’s rule, we can upper bound the common denominator

of the polynomials hi. For any prime p that does not divide the common denominator, we have ge ∈
Ip. Further, the effective Bertini-Noether theorem, for all but a few primes p, the polynomial g (mod p)
remains absolutely irreducible. Finally, for all but a few primes, dimVp = dimV . If p is any prime that
passes all the above conditions, then Vp is irreducible.

The general case, where n is arbitrary, is slightly more involved. It is no longer true that V is irreducible
if and only if g ∈ rad (I) for some absolutely irreducible polynomial g. For example, V could consist of
two curves that both lie on the same irreducible hypersurface. To overcome this, we project to a random
two dimensional linear subspace, call this projection π. Since V is irreducible, π(V) is irreducible, and
π(V) = Z(g) for an absolutely irreducible polynomial g. A technical (and somewhat involved) argument
gives us bounds on the coefficients of g in this more general setting (Lemma 3.14). Proceeding as above, we
can show that for all but a few primes p, we have dimVp = 1 and π(Vp) is irreducible.

However, the above is not enough to conclude that Vp is irreducible, since Vp could have been reducible,
and all of its components could have been mapped to π(Vp) under π. To fix this, instead of just considering
a single random projection π, we consider a large number of random projections π1, . . . ,πk, and repeat the
above argument. If Vp has two components, πi(Vp) can only be irreducible for a small fraction of these
projections, and we can use this to bound all primes p such that Vp is not irreducible. This result is formally
stated and proved in Theorem 4.5.
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Reducibility ofVp and Fp-definability of some of its components. We want to show that ifV is reducible,
then Vp is reducible, and has at least two Fp-definable components for sufficiently many primes p. Again,
let us start by assuming n = 2. If V has k irreducible components, then V = Z(g) for a polynomial g ∈
rad (I) with exactly k absolutely irreducible factors. As before, g must divide the generators of I, which
allows us to get a bound on the coefficients of g. By the effective Nullstellensatz, we can deduce that
ge =

∑
fihi with degge, deghi ⩽ dn, and we can deduce that for all but a few primes p, we have ge ∈ Ip.

However, this does not imply that Vp is reducible: it might be the case that Vp = Z(g ′) for some g ′ that is
an absolutely irreducible factor of g (mod p). Therefore, the strategy we used to show that irreducibility is
preserved does not work here.

To prove that the above cannot happen (that is, that Vp = Z(g ′)), we try and find defining equations for
some components of V . In the case when n = 2, these are exactly the factors of g. Suppose g =

∏k
i=1 gi.

Each gi has coefficients in some algebraic extension of Q. The smallest extension of Q that contains every
gi might be of prohibitively high degree, but from the factoring algorithm of Kaltofen (Lemma 3.15) we
can deduce that there is a small enough extension of Q that contains g1,g2. Now we consider the ideals
I1 := I1 + g1 and I2 := I + g2. These are ideals of dimension 1 that are irreducible. Therefore, we can use
our base change and irreducibility arguments to deduce that I1,p and I2,p are irreducible curves, which will
be components of Ip. Of course we have to be careful here: g1 and g2 have coefficients in Q (α) for some
algebraic number α, therefore it is not even clear at first what it means to go modulo p. Here, we need
to invoke some standard results from algebraic number theory. If G is the monic equation of α, then for
any p such that G (mod p) has a root, the operation of going mod p is well defined on Z [α] [x1, . . . , xn].
This allows us to not only make sense of the mod p operation and invoke our previous result, but it also
guarantees that the components of Vp that we find this way are Fp definable. It is important to note here
that there are a number of technical challenges in extending our earlier statements to this general algebraic
number theoretic setting. These challenges are dealt with in Section 3.

Now suppose n is arbitrary. We again find equations that define the components of V . As before we do
this by random projection to a two dimensional affine subspace, and then we apply (some of) our arguments
from the case of n = 2. It turns out that a single extra polynomial g1 is not enough to define a component of
V . However, we show any component of V can be defined by adding at most two equations to I. As before,
we give bounds on the coefficients of these equations, and then invoke our earlier arguments to deduce
that Vp is reducible, and for sufficiently many primes it has at least two components that are Fp definable.
This result is formally stated and proved in Theorem 4.6.

1.1.1 Putting it all together

We now show how all the results mentioned above are put together to obtain our main protocol. For
brevity, we only consider the case when I is radical and dimV = 1, as the other cases are very similar. We
now sketch an AM protocol that shows that I is not prime.

In the radical case, I can fail to be prime for 2 reasons: V may have a component of strictly smaller
dimension (hence in this case V will have at least one isolated point as a solution), or V is equidimensional
with at least two components.

Case 1: V has an isolated point as a solution. Consider the Jacobian matrix J, whose entries are Jij = ∂ifj.
If α is an isolated point of V , then the rank of J(α) is n. Merlin first sends Arthur the index of n columns
of J that are linearly independent. If this submatrix is J ′, then Arthur simply has to check if the system
f1 = 0, . . . , fm = 0, det J ′ ̸= 0 is satisfiable. This can be rewritten as f1 = 0, . . . , fm = 0,ydet J ′− 1 = 0 where
y is a new variable. Now, the satisfiability protocol of [Koi96] can be used to decide I is not prime, as in
this case the protocol of [Koi96] will return that the system that we constructed will have a solution (which
must correspond to an isolated point).

On the other hand, if V only has components of dimension 1, then at every point on V , the rank of J is at
most n− 1. Therefore, no matter what choice of columns Merlin picks, the above protocol will fail to accept
with high probability.

Case 2: V has two components of dimension 1. For every prime p such that Vp has at least two irreducible
components, the Lang-Weil theorem says that the number of Fp points in Vp is at least 2p (up to an error
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term). If V has two components, then we have shown that there are enough primes with this property. On
the other hand, if V is irreducible, for all except a finite number of primes, Vp is irreducible, and therefore
the Lang-Weil theorem says that the number of Fp points in Vp is at most p (up to an error term). Therefore,
Merlin can prove to Arthur that V is reducible, by performing the set lower bound protocol on the set of
primes for which the number of Fp points in Vp is at least 2p. Merlin also has to convince Arthur that there
are in fact 2p points in Vp, since the primes p are too large for Arthur to check this himself. For this, the set
lower bound protocol is used again, on the set of Fp points of Vp.
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2 Preliminaries

In this section we establish the notation that will be used throughout the paper, along with the background
results that we will need in the later sections.

2.1 Notation

Let R := Z [x1, . . . , xn] denote then-variate polynomial ring with integer coefficients, and let S := Q [x1, . . . , xn]
denote the extension of scalars to the algebraic closure of Q. All the ideals we discuss are ideals of S, un-
less stated otherwise. The same holds for any property of the ideals we discuss, for example the property
of an ideal being prime, or Cohen-Macaulay, among others. We use An to denote the affine space in n-
dimensions, with underlying field Q. We use Z(I) to denote the zeroset of an ideal I.

In the course of our proofs, we will have to deal with polynomials with coefficients in finite extensions
of Q. Given a monic irreducible polynomial q ∈ Z [z], and a root α ∈ Q of q, we use A to denote the
ring Z [α] [x1, . . . , xn]. Note that Z [α] is not necessarily the ring of integers of Q (α). Elements of A will be
represented as polynomials in R [z], with z-degree less than degq. This representation of elements of A is
unique. The ring A depends on q, however q will always be clear from context, and therefore we suppress
it from notation. In this setting, by deg fwe mean the degree of f in the x-variables, unless stated otherwise.

The logarithmic height of an integer c, denoted by ht (c), is the bit-complexity of c. This notion of
logarithmic heights extends naturally to polynomials. Given a polynomial f ∈ R, the logarithmic height of
f, also denoted by ht (f), is the maximum logarithmic height of the coefficients of f. If f ∈ A, then ht (f) is
defined to be the logarithmic height of f treated when written as a polynomial in R [z] with z-degree less
than degq.

Given polynomials f1, . . . , fm,g with deg fi, degg ⩽ d, the condition g ∈ (f1, . . . , fm) is equivalent to
the existence of polynomials h1, . . . ,hm such that g =

∑
fihi. If a bound on the degrees of hi is known

a priori (which is usually the case), then the above condition can be written as a linear system where the
coefficients of h1, . . . ,hm are the unknowns. If this bound on the degrees of hi is D, we use MD(f1, . . . , fm)
to denote the matrix corresponding to this linear system. The entries of this matrix are coefficients of
f1, . . . , fm. When f1, . . . , fm are clear from context we denote this matrix by just MD. Observe that the total
number of columns of MD, that is, the number of unknowns in the system is at most m ·

(
D+n
n

)
. The total

number of equations is at most
(
D+d+n

n

)
. Both these estimates easily follow from counting the number of

monomials of given degrees. When reasoning using this linear system, we will slightly overload notation,
and use the same symbols to refer to both polynomials and their coefficient vectors. For example, we write
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the condition g ∈ (f1, . . . , fm) as g =MDv where v is a vector of unknowns. We further say that h1, . . . ,hm
are a solution to the system.

2.2 Results from complexity theory
We begin by describing an AM protocol that lower bounds the size of sets that have an efficient membership
test. The protocol is due to [GS86], and the following statement is from [AB09, Section 8.4.1].

Lemma 2.1. Suppose S ⊂ {0, 1}n is a set such that the problem of membership in S is in NP. Suppose further that a
number K is known, and S is guaranteed to either satisfy |S| ⩾ 2K or |S| < K. Then the problem of deciding if |S| ⩾ 2K
is in AM.

We sketch the protocol here, since it will make it easier to explain the generalisation we require. How-
ever, we omit proofs. We also assume for convenience that K is a power of 2.

Algorithm 1: Goldwasser-Sipser set lower bound protocol
Input : Boolean formula ϕS(x,y) such that x ∈ S if and only if there exists y satisfying ϕS(x,y),

and an integer K.
Arthur : Let k := log2(2K), and pick a random hash function h : {0, 1}n → {0, 1}k+1 from a pairwise

independent hash function collection, and pick u ∈ {0, 1}k+1 uniformly at random. Send
h,u to Merlin.

Merlin : Find x,y such that h(x) = u and ϕS(x,y) is true. Send x,y to Arthur.
Arthur : Accept if and only if h(x) = u and ϕS(x,y) is true.

We now state a slight generalisation of this protocol, to the case when membership in S itself can be
verified by an AM protocol.

Corollary 2.2. Suppose for each x ∈ {0, 1}n there exists a subset Sx ⊂ {0, 1}m(x), and an integer K(x), such that
m(x),K(x) are polynomially bounded functions of x. Suppose further that there is a uniform algorithm that runs in
polynomial time that given input x, returns the number K(x) and also returns a boolean formula ϕx, such that z ∈ Sx
if and only if there exists y such that ϕx(z,y) is true. Suppose further than an integer K is known.

If S ⊂ {0, 1}n is the set of elements x such that |Sx| ⩾ 2K(x), and if S is promised to either satisfy |S| ⩾ 2K or
|S| ⩽ K, then the problem of deciding if |S| ⩾ 2K is in AM.

We give a four round protocol that decides |S| ⩾ 2K. The result then follows from the fact that AM =
AM[c] for all constants c ⩾ 2. The proof of correctness of the protocol is the exact same as the proof of
correctness of Lemma 2.1, therefore we omit the proof.

Algorithm 2: Goldwasser-Sipser set lower bound protocol with membership in AM
Input : An integer K, and an algorithm that on input x outputs the integers K(x) and the circuit ϕx

described in Corollary 2.2
Arthur : Let k := log2(2K), and pick a random hash function h : {0, 1}n → {0, 1}k+1 from a pairwise

independent hash function collection, and pick u ∈ {0, 1}k+1 uniformly at random. Send
h,u to Merlin.

Merlin : Find x such that h(x) = u and |Sx| ⩾ 2K(x). Send x to Arthur.
Arthur : Reject if h(x) ̸= u. If h(x) = u, let kx := log2(2K(x)), and pick a random hash function

hx : {0, 1}m(x) → {0, 1}kx+1 from a pairwise independent hash function collection, and pick
ux ∈ {0, 1}kx+1 uniformly at random. Send hx,ux to Merlin.

Merlin : Find y, z such that hx(z) = ux and such that ϕx(z,y) is true. Send z,y to Arthur.
Arthur : Accept if and only if hx(z) = ux and ϕx(z,y) is true.

Remark 2.3. The choice of the constant 2 in the above protocol is arbitrary, and 2 can be replaced by a slightly
smaller constant, say 1.9.
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We now state the main theorems of Koiran, giving interactive protocols for the problem of deciding
whether a system of polynomial equations has a solution, and for the problem of estimating the dimension
of an algebraic set. We first state the main theorem of [Koi96], on the Hilbert nullstellensatz problem.

Theorem 2.4. Assume GRH. Given f1, . . . , fm ∈ R, there is an AM protocol that decides if Z(f1, . . . , fm) ̸= ∅.

The above theorem was further generalised by Koiran in [Koi97, Theorem 4.1], where now one wants to
decide a lower bound on the dimension of the given algebraic set.

Theorem 2.5. Assume GRH. Given f1, . . . , fm ∈ R, and an integer r, there is an AM protocol that decides if
dimZ(f1, . . . , fm) ⩾ r.

Remark 2.6. We make two remarks on the proofs of Theorem 2.4 and Theorem 2.5 that will be crucial to the
way we invoke these results. The first of these is regarding the representation of input polynomials. The
AM protocols for the above problems involve evaluating the polynomials f1, . . . , fm (mod p) at points in
Fp, where p is a prime of bit complexity polynomial in the input. Therefore, the polynomials f1, . . . , fm are
allowed to be given either as white box circuits of polynomial size (here the size includes the bit complexity
of the constants in the circuit), or more generally as black-boxes that allow mod p queries.

The second remark is regarding the parameters. Suppose deg fi ⩽ d and ht (fi) ⩽ h. The length of
the messages and the computation done by Arthur in the protocols in Theorem 2.4 and Theorem 2.5 is

polynomial in log
(
h · 2(n logσ)c

)
, for a universal constant c, where σ := dm + 2. Therefore, if we create a

system of polynomials g1, . . . ,gm with deggi ⩽ dn and ht
(
h · 2(n logσ)c

)
, then the protocols in Theorem 2.4

and Theorem 2.5 applied to g1, . . . ,gm still run in time poly (n,m,d,h) as long as we ensure that g1, . . . ,gm
have circuits of size poly (n,m,d,h). This will be crucial in our proofs.

Lastly, we show that the ideal primality testing problem is coNP-hard, even for the special case of
equidimensional Cohen-Macaulay ideals.

Proposition 2.7 (coNP-hardness of ideal primality testing). Given a 3CNF Φ on n variables, there exists a
polynomial time algorithm whose output is a circuit CΦ computing polynomials f1, . . . , fm ∈ R, along with their
partial derivatives ∂ifj, such that the ideal I := (f1, . . . , fm)S ⊂ S has the following properties:

• I is a radical, equidimensional Cohen-Macaulay ideal

• I is prime if and only ifΦ is unsatisfiable.

Proof. Let x2
1 − x1, x2

2 − x2, . . . , x2
n − xn,g1, . . . ,gr be the arithmetization ofΦ. The instanceΦ is satisfiable if

and only if the arithmetized system has a solution.
The reduction algorithm proceeds as follows. First check if (0, . . . , 0) is a solution to the above system.

If it is, then the algorithm returns the system f1 = x1 (x1 − 1), clearly there is a constant-sized circuit that
computes f1,∂if1.

Suppose (0, . . . , 0) is not a solution to the above system. Consider the set of polynomials
{
x2
i − xi

}
i∈[n]

∪
{xjgi}i∈[r],j∈[n]. Since each gi has a small circuit, there is a small circuit that computes all the above polyno-
mials and all their derivatives. Further, the set of zeroes of the above system is exactly those points on the
boolean hypercube that correspond to a satisfying assignment of ϕ, and also the point (0, . . . , 0).

In each of the above cases, by [Sei74, Lemma 92], the ideal constructed is radical. In the first case the
ideal is a complete intersection therefore CM. In the second case the ideal is zero dimensional, therefore CM.
If Φ is satisfiable, then in either case the system created has at least two components and is therefore not
prime. IfΦ is not satisfiable, the system created has unique solution (0, . . . , 0), thus the ideal is prime.

2.3 Algebraic circuits
The inputs to our algorithms are given as algebraic circuits. Algebraic circuits are natural models for com-
puting polynomials. They consist of a directed acyclic graph, with nodes marked with + and ×. The source
nodes are marked either with variables xi or with the constant 1. Each internal node computes the natural
polynomial: nodes marked with + compute the sums of their inputs, and nodes marked with × compute
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the product. The edges are marked with constants, if (u, v) is an edge with constant α, then the input to v
corresponding to u is αfu, where fu is the polynomial computed at the node u. We refer the reader to the
excellent survey [SY10] for more background on algebraic circuits.

Circuits are studied both as uniform and as non-uniform models of computation. Further, they are
studied both in the setting where all constants are considered to have size 1, and also in the setting where
the logarithmic height of the constants is part of the size of the circuit. Since we are using circuits as inputs
to a problem in the Turing machine model of computation, we are naturally in the setting where the size of
circuit includes the logarithmic heights of the constants of the circuit. We assume that the constants in the
circuit are all integers.

Size of a circuit: The size of an algebraic circuit is the sum of the logarithmic heights of the constants on
the edges of circuits. We assume that every edge has a constant (potentially 1), therefore the size of a circuit
is a lower bound on the number of edges of the circuit.

Evaluating a circuit modulo p: Given a circuit C, a prime p, and a point α ∈ Fn
p , there is a polynomial

time algorithm that computes the evaluations at α of all the mod p reductions of all polynomials computed
by C. The algorithm recursively computes the evaluation (mod p) of the inputs to a given node in the
circuit, and then performs arithmetic in Fp to compute the evaluation of the gate itself.

Structural results: We need the following technical result [Bür13, Lemma 4.16] that bounds the loga-
rithmic heights and degrees of polynomials computed by circuits of size s. The result follows by induction
on the circuit, and using the fact that every coefficient in the circuit has logarithmic height at most s.

Lemma 2.8. If C is a circuit of size s computing polynomials f1, . . . , fm ∈ R then ht (fi) ⩽ 22s and deg fi ⩽ 2s.

We also need the following result from [BS83] that proves that given a circuit C, there is a circuit C ′ of
similar size that also computes the partial derivatives of the polynomials computed by C.

Lemma 2.9. If C is a circuit of size s computing polynomials f1, . . . , fm ∈ R there is a circuit C ′ of size 5sm that
computes f1, . . . , fm and all the partial derivatives ∂ifj.

2.4 Results from linear algebra
Cramer’s rule is a well known explicit formula for the solution of a linear system of the form Ax = b, when
A is a n × n matrix with det(A) ̸= 0. Under these conditions, the unique solution to the above system is
given by xi = detAi

detA , where Ai is the matrix obtained by replacing the ith column of A with the vector b.
The following easy consequence shows that a similar formula exists for under and overdetermined systems,
provided a solution is promised to exist. Note that the lemma applies for matrices with coefficients in any
domain.

Lemma 2.10. SupposeA is an n×mmatrix, and suppose the linear systemAx = b is guaranteed to have a solution.
Then there exists a solution where each xi is either 0 or of the form detMi

detN , where detMi, detN are minors of the
augmented matrix A|b.

Proof. Let r := rankA, so r ⩽ m,n. The fact that Ax = b has a solution is equivalent to the fact that the
augmented matrix [A|b] also has rank r. After rearranging the columns, we can assume that the first r
columns of A are linearly independent. Since b lies in the column span of A, it also lies in the column span
of the first r columns of A. Equivalently, if we set the variables xm−r+1, . . . , xm to 0, the resulting system
still has a solution. It suffices to show the result for the resulting system, therefore we can assume that A
has full column rank, so r = m.

After further rearranging rows, we can assume that the first r rows of A are linearly independent, and
the remaining rows are linear combinations of the first r rows. The augmented matrix [A|b] also has rank
r, therefore the last n − r rows of [A|b] are linear combinations of the first r rows. If we write A ′x = b ′ for
the linear system consisting of the first r rows of Ax = b, then any solution to A ′x = b ′ is also a solution to
Ax = b. Applying Cramer’s rule to A ′x = b ′ gives us the desired result.

2.5 Results from algebraic geometry
In this subsection, we collect some useful basic results from algebraic geometry which we will need in the
later sections. We begin by stating a characterisation of the dimension of an algebraic set.
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Lemma 2.11. Suppose I ⊂ S is an ideal, and V is the zeroset of I. Then V has dimension r if and only if the following
two conditions hold.

• There is some subset U ⊂ [n] of size r such that the elimination ideal IU is empty.

• For every subset U ′ ⊂ [n] of size r+ 1, the elimination ideal IU′ is nonempty.

We now state some standard facts about tangent spaces, which can be found in [SR94, Chapter 2].
Let I be a radical ideal generated by f1, . . . , fm. Let J be the Jacobian of I, which is defined to be the matrix

with Jij = ∂fi/∂xj. At any point x ∈ V , the tangent space Tx(V) is isomorphic to the kernel of J(x), where
J(x) is the Jacobian entrywise evaluated at the point x [SR94, Chapter 2, Section 1, Theorem 2.1]. At every
nonsingular point x, the dimension of the tangent space is exactly equal to dimension of the component of
V passing through x [SR94, Chapter 2, Section 1, Theorem 2.3]. At every singular point x, the dimension
of the tangent space is greater than the dimension of the components of V passing through x. The singular
locus of V is a proper algebraic subset of V , and does not contain any irreducible component of V .

We deduce that there is a point x0 ∈ V such that dim Tx0(V) < r if and only if V has an irreducible
component of dimension less than r. Equivalently, there is a point x0 ∈ V such that rank J(x0) > n − r if
and only if V has an irreducible component of dimension less than r.

The next two statements can be found in [Hei83, Theorems 1 and 2], and are referred to as Bézout’s
inequality.

Theorem 2.12 (Bézout’s inequality). Let K be an algebraically closed field and X, Y ⊆ An
K be constructible sets.

Then, we have
deg(X ∩ Y) ⩽ degX · deg Y.

Theorem 2.13 (Degree bounds for constructible sets). Let K be an algebraically closed field and f1, . . . , fm ∈
K[x1, . . . , xn] be polynomials of degree at most d. Then, we have

degV(f1, . . . , fm) ⩽ dmin{m,n}.

The following lemma gives effective bounds on hyperplane sections that reduce the dimension of pro-
jective varieties, a proof can be found in [GSS19, Lemma 19]

Lemma 2.14. Suppose V ⊂ Pn is a projective zeroset of dimension r and degree D. If ℓ is a linear form where each
coefficient is chosen uniformly and independently from a set B ⊂ N, then dimV ∩ Z(ℓ) = r − 1 with probability at
least 1−D/ |B|. If ℓ1, . . . , ℓr+1 are linear forms chosen the same way then V ∩Z(ℓ1, . . . , ℓr+1) = ∅ with probability at
least 1 − (r+ 1)D/ |B|.

Suppose W ⊂ An is an affine zeroset of dimension r and degree D. If ℓ is a linear polynomial where each
coefficient is chosen uniformly and independently from a set B ⊂ N, then dimW ∩ Z(ℓ) = r − 1 with probability
at least 1 − 2D/ |B|. If ℓ1, . . . , ℓr+1 are linear polynomials chosen the same way then W ∩ Z(ℓ1, . . . , ℓr+1) = ∅ with
probability at least 1 − 2(r+ 1)D/ |B|.

The following is a sufficient condition for a linear map to be a Noether normalising map. This statement,
and its proof can be found in [SR94, Chapter 1, Section 5, Theorem 1.15].

Lemma 2.15. Suppose V ⊂ Pn is a projective variety disjointed from a k-dimensional linear subspace E ⊂ Pn. Then
the projection π : X→ Pn−k−1 with center E defines a finite map X→ π(X).

Combining the two lemmas above gives us the following effective Noether Normalisation theorem.

Lemma 2.16 (Effective Noether Normalisation). Suppose V ⊂ Pn is a projective zeroset of dimension r and
degree D. If ℓ1, . . . , ℓr+1 are linear forms where each coefficient is chosen uniformly and independently from a set
B ⊂ N, then the map π : V → Pr with coordinate functions ℓi is a well defined finite map with probability at least
1 − (r+ 1)D/ |B|.

Suppose W ⊂ An is an affine zeroset of dimension r and degree D. If ℓ1, . . . , ℓr are linear polynomials where
each coefficient is chosen uniformly and independently from a set B ⊂ N, then the map π : W → Ar with coordinate
functions ℓi is a well defined finite map with probability at least 1 − 2(r+ 1)D/ |B|.

Proof. For the projective case, by Lemma 2.14, the zeroset Z(ℓ1, . . . , ℓr+1) is a linear space disjointed from V
with probability at least 1−(r+1)D/ |B|. If this holds, then π is a finite and well defined map by Lemma 2.15.
The affine case follows by applying the projective case to the closure ofWp, and picking ℓr+1 = x0.

14



2.6 Results from number theory
We state some algebraic number theory facts that we will need. We do not provide any proofs since these
facts are standard, [Mil20, Chapter 2, 3] is an excellent exposition of all of these results.

Let q ∈ Z [z] be a monic irreducible polynomial with degq = e, and let α be a root of q. Let F := Q (α) be
the algebraic extension of Q generated by α, we have F ∼= Q [z] / (q). LetOF be the ring of integers of F, that
is, the set of elements β ∈ F such that β satisfies a monic equation with coefficients in Z. We have Z ⊂ OF,
and OF is integrally closed in F. The discriminant of q, denoted discz (q) is defined to be resz (q,∂q).

Usually the ring of integers OF is different from Z [α]. We have Z [α] ⊂ OF, but this inequality might be
strict. However, it holds that OF ⊂ (1/discz (q))Z [α]. Therefore we can represent any algebraic integer as
an element of Q [z], where the coefficients have common denominator discz (q).

The ring OF is a Dedekind domain, and every nonzero prime ideal of OF is maximal. For any prime
p ⊂ OF, there is a unique prime p ∈ N such that p ∩ Z = (p). If this happens, then we say p lies above p.
While OF is not factorial in general, it admits unique factorisation of ideals. Every ideal I ⊂ OF can be the
written uniquely as a product of primes, I =

∏
pei

i . In particular, the ideal (p) for a prime p ∈ N itself can
be factored as (p) =

∏
pei

i . The set of primes ideals of OF occurring in this factorisation of (p) are exactly
the prime ideals of OF that lie above p. When p ̸ |discz (q), ei = 1 for all i, if this holds we say that p is
unramified.

For any unramified p, and p lying above p, the quotient map OF → OF/p is well structured. Since p is
maximal, and since p ∈ p, the quotient OF/p is a field of characteristic p, and is in fact a finite extension of
Fp. The prime p corresponds to an irreducible factor q1 of q (mod p), andOF/p ∼= Fp [z] /q1(z). Composing
with the inclusion map Z [α] → OF gives us a map Z [α] → Fp [z] /q1(z). We usually apply this to the case
when q1 is a linear polynomial, and therefore Fp [z] /q1(z) = Fp. This map therefore extends the usual map
Z → Fp.

We now state a corollary of Gauss’s lemma. The following formulation is from [WR76, Lemma 7.1], we
continue to refer to it as Gauss’s lemma.

Lemma 2.17 (Gauss’s lemma). Suppose δ ∈ OF and f ∈ (1/δ)OF is a monic polynomial with factorisation f = gh
in F. If g,h are monic then g,h ∈ (1/δ)OF.

We will need three more technical results from number theory. The first of these is an effective Lang-
Weil bound. The Lang-Weil bounds are upper and lower bounds on the number of Fp points on irreducible
varieties that are Fp definable. Classically these bounds have error terms, and effective versions of such
bounds give bounds on the coefficients of the error terms. The following is a version of such a bound from
[CM06, Theorem 7.1].

Theorem 2.18 (Effective Lang-Weil bound). Let V ⊂ Fn
p be an absolutely irreducible affine variety defined over

Fp of dimension r and degree D. Suppose also that p > 2(r+ 1)D2. Then

|V(Fp) − p
r| < (D− 1)(D− 2)pr−1/2 + 5D13/3pr−1.

The second number theoretic statement we need is a lower bound on the number of primes p for which
q (mod p) has a root in Fp. Observe that the Chebotarev density theorem states that this fraction of primes
is the same as the fraction of the Galois group of q that has at least one fixed point, and this fraction is
at least 1/e. We require an effective version of this statement. The following statement is from [Koi96,
Corollary 1]. The proof itself is based on a bound by [AO83] which in turn is based on an effective version
of the Chebotarev density theorem [LO77]. We note that this last result is conditional, and assumes the
GRH, and this is also what makes our result conditional.

Theorem 2.19. Assuming the GRH holds, there exists an absolute constant c such that

πq(x) ⩾
1
e

(
π(x) − log discz (q) − cx1/2 log (discz (q) xe)

)
,

where π(x) is the prime counting function and πq(x) is the number of primes p ⩽ x such that q (mod p) has a root
in Fp.

Finally, we need an unconditional lower bound on the prime counting function π(x). One such estimate
is provided in [Dus10, Theorem 6.9].

Theorem 2.20. For x ⩾ 600 we have π(x) > x/ ln x.
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2.7 Degree bounds for polynomial ideals
We now recollect some important complexity results for polynomial ideals. We begin with Jelonek’s effec-
tive Nullstellensatz, from [Jel05, Theorem 1.1].

Theorem 2.21 (Effective Nullstellensatz). Let K be an algebraically closed field, and X ⊂ Km be an affine n-
dimensional variety of degree D. Let f1, . . . , fm ∈ K[X] be non-constant polynomials without common zeros, where
di := deg fi, and d1 ⩾ · · · ⩾ dm. Lastly, let

N(d1, . . . ,dm;n) :=


∏m

i=1 di if n > 1 and n ⩾ m

dm ·
∏n−1

i=1 di ifm > n > 1
d1 if n = 1

There exist polynomials gi ∈ K[X] with

deg(figi) ⩽

{
D ·N(d1, . . . ,dm;n), ifm ⩽ n

2D ·N(d1, . . . ,dm,n) − 1, ifm > n

such that 1 =
∑m

i=1 figi.

We now state some useful bounds on the complexity of representation of the reduced Gröbner basis of
any ideal. The bounds that we state below are dependent on the Krull dimension of the given ideal, and
this will be crucial in our applications in the later sections. These bounds are from [MR13, Theorem 4].

Theorem 2.22 (Gröbner basis complexity). Let K be an infinite field and I = (f1, . . . , fm) ⊆ K[x1, . . . , xn] be an
ideal of dimension r, where dj := deg(fj) and d1 ⩾ · · · ⩾ dm. Let

B := 2 ·
(

1
2

(
(d1 · · ·dn−r)

2(n−r) + d1

))2r

.

Given any admissible monomial ordering, if G = {g1, . . . ,gt} is the reduced Gröbner basis of I, then we have:

deg(gi) ⩽ B ∀i ∈ [t].

Moreover, for each i ∈ [t], there are polynomials hi1, . . . ,him ∈ K[x1, . . . , xn] satisfying deg(fj · hij) ⩽ B such that

gi =

m∑
j=1

fjhij.

The above bounds, when combined with the division algorithm, allow us to derive the following upper
bound on the dimension of the linear system (over the base field) needed to check membership in polyno-
mial ideals.

Corollary 2.23 (Representation degree). Let K be an infinite field and I = (f1, . . . , fm) ⊆ K[x1, . . . , xn] be an
ideal of dimension r, where dj := deg(fj) and d1 ⩾ · · · ⩾ dm. Let

B := 2 ·
(

1
2

(
(d1 · · ·dn−r)

2(n−r) + d1

))2r

.

Given any polynomial f ∈ K[x1, . . . , xn] with deg(f) = D, we have that f ∈ I if, and only if, there exist g1, . . . ,gm ∈

K [x1, . . . , xn] such that deg(fjgj) ⩽ max (B,D) and f =
m∑
j=1

fjgj.

16



2.8 An Effective Bertini Theorem
Bertini’s second theorem states that the intersection of an irreducible variety of dimension r ⩾ 2 with a
random hyperplane of dimension n − r + 1 is an irreducible curve. This statement allows us to reduce
the problem of irreducibility testing of arbitrary high dimensional varieties to that of curves and points.
The theorem plays an important role in many routines in computer algebra, a comprehensive survey of its
applications can be found in [Dic05, Section 9.1.3]. The effective versions of the theorem are usually stated
for hypersurfaces, reduction from the general case to hypersurfaces follows from a projection argument.

In order to apply the theorem to arbitrary varieties, a preprocessing projection step is applied. The
following two results are from [CM06], where the effective Bertini theorem is used to obtain improved
Lang-Weil bounds. While the results in [CM06] are stated for varieties over Fq, the following two results
also hold for varieties over any perfect field, with the same proofs.

Lemma 2.24 ([CM06, Proposition 6.1, Proposition 6.3]). Let V be an equidimensional affine variety of dimension
r and degreeD. Let Λ be a (r+ 1)× n matrix of variables, and let Γ be a r+ 1 dimensional vector of variables. There
exists a nonzero polynomial G ∈ Q [Λ, Γ ] of degree at mot 2(r + 1)D2 such that for any values λ,γ of the variables
Λ, Γ satisfying G(λ,γ) ̸= 0, the projection π defined by ℓi =

∑
λijxj + γj is a birational map between V and its

image π(V). Further, there is a polynomial g of degree D such that π(V) \ Z(g) and V \ π−1(Z(g)) are isomorphic.

Lemma 2.25 ([CM06, Corollary 3.4]). Suppose f ∈ Z [x1, . . . , xn] is an absolutely irreducible polynomial of degree
D. For a point (v,w, z) ∈ Qn ×Qn−1 ×Qn−1, let fv,w,z(x,y) := f(x+ v1,w2x+ z2y+ v2, . . . ,wnx+ zny+ vn).
There exists a polynomialH of degree at most 10D5 such that for any v,w, z satisfyingH(v,w, z) ̸= 0, the polynomial
fv,w,z remains absolutely irreducible.

Corollary 2.26 (Effective Bertini Theorem). Suppose V is an equidimensional affine variety of dimension r and
degree D. There is a randomised algorithm that returns linear equations ℓ1, . . . , ℓr−1 with ht (ℓi) ⩽ (nD)c such
that the following holds with high probability: V ∩ Z(ℓ1, . . . , ℓr−1) is an equidimensional affine curve, with the same
number of irreducible components as V .

Proof. We focus on each irreducible component of V and apply a union bound at the end, therefore assume
without loss of generality that V is irreducible. Fix set B :=

[
10D7

]
, a subset of N. Pick linear polynomials

h1, . . . ,hr+1 with coefficients from B, and let π be the projection map with coordinate functions hi. By
Lemma 2.24, π(V) is birational with its image with probability at least 1 − 2(r + 1)D2/ |B|. The image is
an irreducible hypersurface of degree D, say Z(f). Now pick a point (v,w, z) from Bn × Bn−1 × Bn−1. By
Lemma 2.25, fv,w,z is absolutely irreducible with probability at least 1 − 10D5/ |B|. Pick a linear subspace
L ⊂ Ar+1 such that fv,w,z is isomorphic to f|L, this can be performed by elementary linear algebra. By
construction, L∩π(V) is an irreducible curve. Since L is a random linear subspace, (π(V)∩Z(g))∩Z(L) is a
finite set, where g is the polynomial guaranteed by Lemma 2.25 7. Now we show that π−1(L) is the required
subspace.

First observe that π−1(L) has defining equations of logarithmic height poly (D,n), this is because the
equations are obtained by inverting matrices with entries of logarithmic height poly (D,n). Now we know
that π(V)∩Z(L) is an irreducible curve. Ifψ is the inverse of the birational map π, then π−1(L)∩V is exactly
ψ(π(V) ∩ Z(L)), which is irreducible and dimension 1.

3 Height bounds

In this section we recall some height bounds for certain operations over polynomial rings over the integers,
as well as of certain operations over polynomial rings over certain algebraic numbers. Then, we proceed to
prove some height bounds for membership problems in given ideals, which is done in Section 3.3. We then
conclude the section with some lemmas on absolutely irreducible factors of bivariate polynomials, where
we discuss the work of Kaltofen and its implications to our setting.

7Note that Lemma 2.14 does not apply since the distribution of L is different, but the same proof works
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3.1 Height bounds for elementary operations
The following are some elementary height bounds on the results of basic arithmetic operations performed
on polynomials. The next two statements are from [KPS01, Lemma 1.2].

Lemma 3.1. Let f1, . . . , fm ∈ R be polynomials with deg fi ⩽ d and ht (fi) ⩽ h. Then

1. ht (
∑
fi) ⩽ h+ log (m).

2. ht (
∏
fi) ⩽ hm+md log (n+ 1).

3. If g ∈ Z [y1, . . . ,ym] then ht (g(f1, . . . , fm)) ⩽ ht (g) + degg (h+ log (m+ 1) + d log (n+ 1)).

The above lemma allows us to get height bounds for the determinant of a matrix with ring elements.

Corollary 3.2. LetM be am×mmatrix withMij ∈ R such that deg(Mij) ⩽ d and ht (Mij) ⩽ h for all i, j. Then
ht (detM) ⩽ m (h+ log (m) + d log (n+ 1)).

Once we have the above height bounds, the next corollary yields height bounds on the resultant and on
the cofactors of the resultant identity.

Corollary 3.3. Let f,g ∈ Z [y] be coprime polynomials with deg f, degg ⩽ d and ht (f) , ht (g) ⩽ h. Then there
exists a,b ∈ Z [y] with dega < degg and degb < deg f such that resy (f,g) = af+ bg, where

ht (a) , ht (b) , ht (resy (f,g)) ⩽ 2d (h+ log (2d+ 1)) .

In particular, if ∆ is the discriminant of f then ht (∆) ⩽ 2d (h+ log (d) + log (2d+ 1)) .

Proof. In Q [y] we have the Bézout identity sf+ tg = 1, with deg s < degg and deg t < deg f. We can write
this as a linear system of at most 2d equations in at most 2d variables. The solution to this system is given
by Cramer’s rule: each coefficient of s, t has numerator given by the determinant of a matrix of size 2d× 2d
with entries the coefficients of f,g. The denominator is common among all the coefficients, and is similarly
given by such a determinant. In fact this denominator is exactly resy (f,g). Clearing common denominators
from the equation gives us the claimed identity with the claimed bounds. The last statement follows from
the fact that the discriminant is exactly resy (f, f ′), and ht (f ′) ⩽ h+ logd.

We also need to bound the logarithmic height of any rational root of an integral polynomial.

Lemma 3.4. Let f ∈ Z [y] be a degree d polynomial and suppose a/b is a rational root of f in minimal form. Then
ht (a) , ht (b) ⩽ ht (f)d+ 1.

Proof. Suppose f =
∑
fiy

i, where fi ∈ Z. Multiplying throughout by fd−1
d , and replacing fdy with a

variable x gives us a monic integer polynomial g = xd +
∑d−1

i=1 gix
i with degg = d and ht (g) ⩽ ht (f)d.

Since a/b is a root of f, we have tht c := fda/b is a root of g. Further, c ∈ Z since g is a monic integer
polynomial. By [Mig83, Theorem 2] we have ht (c) ⩽ 1+ht (g) ⩽ ht (f)d+ 1. We can obtain a/b by putting
c/fd in minimal form, therefore ht (a) , ht (b) ⩽ ht (c) , ht (fd) ⩽ ht (f)d+ 1.

We can also bound the heights of the quotient and the remainder upon division by a monic polynomial,
as the following proposition shows.

Proposition 3.5. Let f,g ∈ Z[y] be polynomials where d := deg f ⩾ degg =: e, ht (f) , ht (g) ⩽ h, and g is a monic
polynomial. If f = g·q+r, where g, r ∈ Z[y] with deg r < e, then we have ht (g) , ht (r) ⩽ (d+1)·(h+2 log (d+ 1)).

Proof. Note that g, r are the unique solution to the following system of linear equations: N ·
(
g
r

)
=

(
f
)
,

where N is a (d + 1) × (d + 1) matrix of the form N =
(
Mq P

)
and P =

(
0
Ie

)
. Since q is monic, we

know that N is a unipotent lower triangular matrix. Thus, det(N) = 1, and by Cramer’s rule we have that
each coefficient of g and r is given by the determinant of a matrix in Z(d+1)×(d+1) with height ⩽ h. By
Corollary 3.2 we have the desired bound.
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As discussed earlier, we will often have to work with polynomials with coefficients lying in some fi-
nite extension generated by an algebraic integer α. If α has monic minimal polynomial q(z) ∈ Z [z] with
degq(z) ⩽ e then we will represent elements of A = Z [α] [x1, . . . , xn] ≃ R[z]/(q) as polynomials in R[z] of
degree less than e in z. Thus, elements of A inherit the logarithmic height function from R[z].

After some algebraic operations, for example taking products of such polynomials, the resulting poly-
nomial will no longer have degree less than e in the variable z, and we must perform a step of going modulo
q(z). The following lemma bounds the change in logarithmic height by this operation. A sharper version
of this lemma can be found in [Kal95, Lemma 1].

Lemma 3.6. Let q(z) ∈ Z [z] be a monic polynomial with degq = e. Suppose f ∈ R [z] is a polynomial with
degz f = d ⩾ e. Lastly, suppose ht (f) , ht (q) ⩽ h. Then ht (f mod q) ⩽ (d+ 1) (h+ 2 log (d+ 1)).

Proof. Let Mf be the set of exponent vectors of f, when viewed as a polynomial in Z[z][x1, . . . , xn]. Hence,
we have f =

∑
a∈Mf

fa(z) · xa. Therefore, f mod q =
∑

a∈Mf

(fa(z) mod q) · xa and thus

ht (f mod q) = max
a∈Mf

ht (fa(z) mod q) ⩽ (d+ 1) · (h+ 2 log (d+ 1)).

Where the last inequality follows from Proposition 3.5.

Combining Corollary 3.2 with Lemma 3.6 we are able to obtain the following height bounds for deter-
minants with entries in rings of the form Z[α], where α is an algebraic integer.

Corollary 3.7. Let q(z) ∈ Z[z] be monic with degq = e, ht (q) ⩽ h and let α ∈ Q be a root of q. IfM ∈ Z[α]m×m

is such that ht (Mij) ⩽ h for all i, j ∈ [m], we have that ht (detM) ⩽ e ·m · (m · (e+ h+ logm) + 2 log(em)).

Proof. By regardingM ∈ Z[z]m×m, with degMij < e and ht (Mij) ⩽ h for all i, j ∈ [m] Corollary 3.2 implies
that deg detM ⩽ (e−1) ·m and ht (detM) ⩽ m · (h+ log(m)+(e−1)). Now, applying Lemma 3.6 to detM
with quotient q(z), we have that

ht ((detM) mod q) ⩽ ((e− 1) ·m+ 1) · (m · (h+ log(m) + (e− 1)) + 2 log((e− 1)m+ 1))
⩽ e ·m · (m · (e+ h+ log(m)) + 2 log(em)) .

The following corollary obtains height bounds for basic operations over the ring A.

Corollary 3.8. Let q(z) ∈ Z[z] be monic with degq = e, ht (q) ⩽ h and let α ∈ Q be a root of q. Let A :=
Z[α][x1, . . . , xn]. Let f1, . . . , fm ∈ A be polynomials with deg fi ⩽ d and ht (fi) ⩽ h. Then

1. ht (
∑m

i=1 fi) ⩽ h+ log (m).

2. ht (
∏m

i=1 fi) ⩽ em · (hm+ dm log(n+ 2) + 2 log(em)).

3. If g ∈ Z[α] [y1, . . . ,ym] with dg := deg(g) then

ht (g(f1, . . . , fm)) ⩽ 2edg · [ht (g) + dg · (h+ log(m+ 1) + max {e,d} · log(n+ 2)) + 2 log(2edg)]

Proof. For item 1, note that the coefficients of
∑m

i=1 fi are still given by polynomials in Z[z] with degree less
than e, since addition does not increase the degree. Thus, the bounds follow from Lemma 3.1 item 1.

For item 2, let p =
∏m

i=1 fi. In this case, we have that p = p̂ mod q, where p̂ ∈ R[z] is the product of
the polynomials fi when seen as elements of R[z]. By Lemma 3.1 item 2, ht (p̂) ⩽ h ·m +md log(n + 2). If
degz(p̂) < e, we have ht (p) = ht (p̂) and we are done. Else, by Lemma 3.6 and the bound degz(p̂) ⩽ em−1,
we have

ht (p) = ht (p̂ mod q) ⩽ h · em2 + dem2 log(n+ 2) + 2em log(em).

For item 3, consider the representation ĝ ∈ Z[y1, . . . ,ym][z] and the representation of f̂i ∈ R [z]. Let
p := ĝ(f̂1, . . . , f̂m) ∈ R[z]. Thus, degz(p) ⩽ (e− 1) · (dg + 1) and by Lemma 3.1 item 3,

ht (p) ⩽ ht (g) + dg · (h+ log(m+ 1) + max {e− 1,d} · log(n+ 2))

Since g(f1, . . . , fm) = p mod q, by Lemma 3.6 we have

ht (g(f1, . . . , fm)) ⩽ 2edg · [ht (g) + dg · (h+ log(m+ 1) + max {e,d} · log(n+ 2)) + 2 log(2edg)] .
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3.2 Height bounds for primitive elements
In this section we gather height bounds for representations of primitive elements. The following theorem
is stated in [Koi96, Theorem 4].

Theorem 3.9 (Complexity of primitive element). There is a universal constant c ⩾ 1 such that the following
holds. Let α1,α2, . . . ,αm be m algebraic numbers which are roots of polynomials Pi ∈ Z [z] with deg(Pi) ⩽ d and
ht (Pi) ⩽ h. There is a primitive element γ for α1, . . . ,αm which is a root of an irreducible polynomial q ∈ Z [z]
with deg(q) ⩽ dm and ht (q) ⩽ h · dmc . Moreover, there are non-zero integers ai and polynomialsQi ∈ Z [z] with
ht (ai) ⩽ h · dmc , deg(Qi) < deg(q) and ht (Qi) ⩽ h · dmc such that αi = Qi(γ)/ai for every i ∈ [m].

We now state [Koi96, Theorem 7].

Theorem 3.10. There is an absolute constant c > 0 such that if the system f1, . . . , fm ∈ R has a solution over
Q, then there is a solution α = (α1, . . . ,αn) such that each αi is a root of a polynomial Pi ∈ Z[z] satisfying
deg(Pi) ⩽ 2(n logσ)c and ht (Pi) ⩽ h · 2(n logσ)c , where σ := 2 +

∑m
i=1 deg(fi).

3.3 Height bounds for membership in ideals
We now state some height bounds on the polynomials occurring in the Nullstellensatz over Z and Z [α],
where α is an algebraic integer. Results of this nature are known as effective arithmetic Nullstellensatz,
and the current best known bounds can be found in [KPS01]. While the optimal bounds for polynomials
with integer coefficients are easy to state, the optimal bounds for the more general case of polynomials
with algebraic integers are significantly more technical. Their statements involve extending the notion of
logarithmic height to algebraic number fields, which is fairly intricate. We choose to forego these optimal
bounds in the interest of simplicity, as the more elementary (and weaker) bounds suffice for our purposes.

Subsection setup. For the rest of this subsection, we let q ∈ Z [z] be a monic irreducible polynomial with
degq = e and ht (q) ⩽ h, and let α ∈ Q be a root of q. Let A := Z [α] [x1, . . . , xn]. By our convention, we
represent polynomials in A as elements of R [z] with z-degree less than e. In the statements that follow, we
will consider a degree parameter d ⩾ 3, and polynomials f1, . . . , fm ∈ A with deg fi ⩽ d and ht (fi) ⩽ h.
We will denote by I := (f1, . . . , fm) ⊆ S the ideal generated by f1, . . . , fm and by V := Z(I) ⊆ Qn

.

Lemma 3.11. If V(I) = ∅, then there exists a ∈ Z [α] \ {0} and g1, . . . ,gm ∈ A satisfying

a = f1g1 + · · ·+ fmgm, (1)

with deggi ⩽ 2dn and ht (gi) , ht (a) ⩽ h · e5 · d5n2 .

Proof. Since V(f1, . . . , fm) = ∅, the effective Nullstellensatz Theorem 2.21 shows that there are polynomials
h1, . . . ,hm ∈ Swith with deghi ⩽ 2dn such that

1 =
∑

fihi. (2)

Let M :=MD(f1, . . . , fm) be the matrix of the linear system Eq. (2) (as defined in Section 2) with D := 2dn.
Note that the entries of M are elements of Z[α] (hence given by elements of Z [z] of degree less than e).
Theorem 2.21 implies that the linear system 1 =Mv has a solution with coefficients in Q, and since the co-
efficients ofM lie in Q [α], this implies the existence of a solution with coefficients in Q [α]. By Lemma 2.10,
there exists a solution where each unknown vj is either 0, or of the form detNj

detN , where detNj, detN are
minors of [M|1]. Note that the denominator is common among all the unknowns. We will take our polyno-
mials g1, . . . ,gm to be the polynomials in A corresponding to the vector detN · v (note that this is a vector
with entries in A). By the above, this choice gives us a solution to Eq. (1) with gi ∈ A and deggi ⩽ 2dn. We
now need to bound ht (gi).

Since ht (gi) ⩽ maxj{ht (detNj)}, it is enough to bound ht (detN) and ht (detNj). Each square submatrix
N,Nj has entries in Z[α] and dimension upper bounded by D ′ :=

(
D+d+n

n

)
⩽ dn

2+n, which is the number
of rows ofM. As ht (Mij) ⩽ h for all i, j, Corollary 3.7 yields

ht (detN) , ht (detNj) ⩽ eD
′ (D ′ (e+ h+ logD ′) + 2 log (eD ′))

⩽ edn
2+n

(
dn

2+n
(
e+ h+ (n2 + n) · logd

)
+ 2 log

(
edn

2+n
))

⩽ h · e5 · d5n2
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The following easy corollary extends this result to arbitrary membership in radical ideals.

Corollary 3.12. Let f ∈ A be such that deg f ⩽ d and ht (f) ⩽ h. If f ∈ rad (I) then there exist t ∈ N,
a ∈ Z [α] \ {0}, and g1, . . . ,gm ∈ A satisfying

aft = f1g1 + · · ·+ fmgm,

with t ⩽ 2(d+ 1)n+1, deggi ⩽ 2(d+ 1)n+2, and ht (gi) , ht (a) ⩽ 12 · h · e5 · (d+ 1)6(n+1)2 .

Proof. Let y be a new variable, and consider the polynomials f1, . . . , fm, 1−yf ∈ A[y]. As f ∈ rad (f1, . . . , fm),
we have Z(f1, . . . , fm, 1 − yf) = ∅, and thus Lemma 3.11 implies that there exist a ∈ Z [α] \ {0} and
h,h1, . . . ,hm ∈ A such that a =

∑
fihi + h(1 − yf). Moreover, Lemma 3.11 implies that deg(hi), deg(h) ⩽

D := 2(d + 1)n+1. Substituting y = 1/f in the above equation and multiplying by ft to clear denom-
inators, where t ⩽ D (due to the degree bounds), we obtain equation aft =

∑
figi, where we have

gi = f
t · hi(x1, . . . , xn, 1/f).

We now show the bounds on the heights and degrees. Let h ′
i(x1, . . . , xn,y) := ydegy(hi)·hi(x1, . . . , xn, 1/y).

Since hi and h ′
i have the same coefficient set, we have ht (h ′

i) = ht (hi). Moreover, degh ′
i = deg(hi).

By Lemma 3.11 we also have that ht (hi) , ht (a) ⩽ h · e5 · (d + 1)5(n+1)2
, and also deghi ⩽ D. Since

gi = ft−degy(hi) · h ′
i(x1, . . . , xn, f), we have that deg(gi) ⩽ t · deg(f) + deg(hi) ⩽ D · (d + 1). Moreover,

Corollary 3.8 items 2 and 3 imply the desired height bounds.

We will use the above lemmas to show bounds on the defining equations for the image of Z (f1, . . . , fm)
under certain projections. This is an arithmetic version of Lemma 2.11, albeit with stronger assumptions.

Lemma 3.13. Suppose I is radical and dim I = 1. Define π : An → A2 to be projection to the first two coordinates.
If dimπ(V) = 1 and π(V) is equidimensional, then π(V) = Z(g) for some g ∈ Z [α] [x1, x2]. Further, there exists
a ∈ Z [α] \ {0}, and h1, . . . ,hm ∈ A satisfying

ag =
∑

fihi,

with deghi ⩽ d4n2 and ht (g) , ht (hi) ⩽ h · e2 · (d)12n3 .

Proof. The ideal of π(V) is exactly the elimination ideal I∩Q [x1, x2]. By the assumption that π(V) is equidi-
mensional with dimπ(V) = 1, this ideal is principal. Let G be the reduced Gröbner basis of I with respect
to the lexicographic order induced by the variable order xn ≻ xn−1 ≻ · · · ≻ x1. Since I is generated inA, we
haveG ⊂ Q [α] [x1, . . . , xn]. Thus, I∩Q [x1, x2] is generated by the elements ofG∩Q [x1, x2]. Since I∩Q [x1, x2]
is principal, we must have G ∩ Q [x1, x2] = {ĝ}. Since ĝ ∈ G we have ĝ ∈ Q(α)[x1, x2] and LT (ĝ) = 1. Let
b ∈ Z be the common denominator of ĝ and g := b · ĝ ∈ Z[α][x1, x2]. By the above, π(V) = Z(g).

By Bézout’s theorem (Theorem 2.12) we have degg ⩽ dn. By the above paragraph, g is the unique (up
to scalar multiplication) lowest degree polynomial in I ∩ Q [x1, x2]. Let B := d4n2

. Since dim(I) = 1 and
B is larger than degg and also larger than the representation bound from Corollary 2.23, there are forms
hi ∈ Q [α] [x1, . . . , xn] with deg (fihi) ⩽ B such that g =

∑
fihi.

Let M := MB(f1, . . . , fm) be the matrix corresponding to the linear system as described in Section 2.
Let M ′ be the matrix obtained by dropping the rows of M that correspond to monomials in x1, x2 that are
smaller than LM (g) in the monomial order. Any solution ĥ1, . . . , ĥm of the linear system M ′v = LM (g) is

such that
∑
fiĥi ∈ I ∩ Q [x1, x2], and LM

(∑
fiĥi

)
= LM (g). Therefore, for any such solution ĥ1, . . . , ĥm

we have
∑
fiĥi =

1
LT(g) · g = b−1 · g.

By Cramer’s rule (Lemma 2.10), there is a solution h̃i whose coefficients are of the form detMj/detN,
where Mj,N are submatrices of the augmented matrix [M ′|LM (g)]. Let B ′ :=

(
B+n
n

)
, that is, B ′ is the

number of monomials in the variables x1, . . . , xn of degree at most B. By our upper bound on B, we have
B ′ ⩽ (4d)4n3

. Note that B ′ is an upper bound on the number of rows of the matrix [M ′|LM (g)]. Thus, by
Corollary 3.7, we have ht (detMj) , ht (detN) ⩽ e2 · h · (4d)9n3

.
Multiplying the equation

∑
fih̃i =

1
b
· g throughout by detN, we get that detN

b
· g = (detN) ·

∑
fih̃i ∈

Z[α][x1, x2] \ {0}. Let hi := det(N) · h̃i. As the coefficients of hi are given by the minors det(Mj), we
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have ht (hi) ⩽ maxj ht (det(Mj)) ⩽ e2 · h · (4d)9n3
. Since detN

b
· g ∈ Z[α][x1, x2], and by the definition

of g, we must have a := detN
b

∈ Z[α] \ {0}. In particular, this implies b | detN and therefore we have
ht (a) , ht (b) ⩽ ht (detN) ⩽ e2 · h · (4d)9n3

. As ht
(
b−1 · g

)
⩽ e2 · h · (4d)9n3

and b ∈ Z, we have that
ht (g) ⩽ 2 · e2 · h · (4d)9n3

.

We will need the following extension of the above lemma, where we drop the assumption that I is
radical.

Lemma 3.14. Suppose dim I = 1. Define π : An → A2 to be projection to the first two coordinates. If dimπ(V) = 1
and π(V) is equidimensional, then π(V) = Z(g) for some g ∈ Z [α] [x1, x2]. Moreover, there exist an absolute
constant c > 0, t ∈ N, a ∈ Z [α], and h1, . . . ,hm ∈ A such that agt =

∑
fihi, with t ⩽ 4d2n, deg (fihi) ⩽ 5d3n,

and ht (a) , ht (hi) ⩽ h · ec · dcnc .

Proof. Since π(V) is equidimensional and dimπ(V) = 1, we have that I(π(V)) = (ĝ) for some ĝ ∈ Q[x1, x2].
Let G be the reduced Gröbner basis of I with respect to the lexicographic order induced by the variable
order xn ≻ xn−1 ≻ · · · ≻ x1. Since I is generated inA, we haveG ⊂ Q [α] [x1, . . . , xn]. Thus, J := I∩Q [x1, x2]
is generated by the elements of G ∩ Q [x1, x2]. Since rad (J) = rad (I) ∩ Q[x1, x2], by the closure theorem
[CLO97, Chapter 3.2, Theorem 3] we have that rad (J) = (ĝ).

Now, let J ′ := J ∩ Q[α] [x1, x2] and let rad (J ′) be the radical ideal of J ′ in Q[α] [x1, x2]. Since dim J ′ = 1,
we have that rad (J ′) = (g ′), for some g ′ ∈ Q[α] [x1, x2]. Since Q is a perfect field, by [Sta24, Tag 030U], we
know that rad (J) = rad (J ′)⊗Q. Thus, we have that rad (J) = (g ′)Q [x1, x2]. Letting g ∈ Z [α] [x1, x2] be the
polynomial obtained by clearing the common denominator of g ′, we have rad (J) = (g) as we wanted.

By Bézout’s theorem (Theorem 2.12) we have degg ⩽ dn. Further, by the effective nullstellensatz
(Theorem 2.21) and the Rabinowitsch trick, there exists t ∈ N and h ′

i ∈ Q [α] [x1, . . . , xm] such that gt =∑
fih

′
i. Moreover, we have t ⩽ 4d2n and deg (fih

′
i) ⩽ 5d3n. We assume that t is the smallest power for

which we can write gt with these degree bounds.
Consider the linear system M := MD(f1, . . . , fm) with D = 5d3n. Let M ′ be the system obtained

by dropping those rows of M corresponding to monomials that are smaller than LM (g)t = LM (gt).
Any solution to M ′v = LM (g)t is a monic polynomial in Q [α] [x1, x2] with leading coefficient 1, and
leading monomial LM (g)t. Let h ′

1, . . . ,h ′
m be a solution to this system obtained by applying Cramer’s

rule (Lemma 2.10). Thus, there is a submatrix N of
[
M ′ | LM (g)t

]
such that detN is the common de-

nominator of every coefficient of h ′
i for i ∈ [m]. Moreover, there are submatrices Mj of

[
M ′ | LM (g)t

]
such that each coefficient detN · h ′

i is given by some detMj. In particular, Corollary 3.7 implies that
ht (detN · h ′

i) ⩽ e ·D · (2ehD+D logD+ 2 log(eD)) ⩽ 4e2hD3 ⩽ h · e2 · d10n.
Let g1 :=

∑
fi · (detN · h ′

i). Hence, we have g1 ∈ A, and Corollary 3.8 implies ht (g1) ⩽ h · e4 · d14n.
Let γ ∈ Z [α] be the leading coefficient of g1. Treating γ as an element of Z [z] of degree at most e, we see
that γ and q are relatively prime. By Corollary 3.3, we can find an element δ ∈ Z [z] with deg(δ) < e, and
b := resz (γ,q) ∈ N∗ such that γδ ≡ b mod q. Moreover, Corollary 3.3 implies ht (δ) , ht (b) ⩽ h · e4 · d18n.
Replacing g1 by δg1, we can assume that the leading coefficient of g1 is b, and ht (g1) ⩽ h · e6 · d22n.

Since g1 ∈ I ⊂ rad (I) = (g), we have g | g1 in Q [α] [x1, x2]. Let us write g1 = gg2. We use this to
deduce a bound on ht (g). LetOL be the ring of integers of Q [α]. Thus, we have Z [α] ⊂ OL ⊂ Z [α]∆, where
∆ := discz (q). In the ring (OL)b [x1, x2], the polynomial g1 is monic. By Gauss’s lemma Lemma 2.17 we can
assume that g,g2 ∈ (OL)b [x1, x2]. Further, after rescaling, we can assume that g ′,g ′

2 are the monic forms of
g,g2 in (OL)b [x1, x2]. By [Len84, pp. 64-67], there is a universal constant c1 > 0 such that every coefficient
of g ′, when written as a monic element of Z [α]Db, uses rational numbers of absolute value ⩽ 2h·ec1 ·dc1n

c1
.

Multiplying by ∆b shows that there is a universal constant c2 > 0 such that ht (g) ⩽ h · ec2 · dc2n
c2 .

Now that we have control on ht (g), by Cramer’s rule applied to Mv = gt, there are a ∈ Z [α] and
h1, . . . ,hm ∈ A such that agt =

∑
fihi, with deg fihi ⩽ D, and ht (a) , ht (hi) ⩽ h · ec · dcnc

for some
universal constant c > 0. This height bound comes from noticing that, by Cramer’s rule, a and every
coefficient of hi is a minor of the matrix [M | gt], and we have upper bounds on ht (M) and ht (gt).
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3.4 Absolutely irreducible factors of bivariate polynomials
In [Kal95], Kaltofen gives an algorithm to factor bivariate polynomials with coefficients in a field F over
the algebraic closure F. The algorithm uses the usual template of factoring algorithms: given f(x,y), the
algorithm begins by picking a root α ∈ F of f(x, 0) in F, which is the same as the linear factor x − α. This
factorisation is then lifted, using Newton iteration, modulo yt for increasing powers of t. After some steps
of lifting, a reconstruction step is performed and a factor f1 of f, over F, is obtained.

A key observation made in [Kal95] is that the lifting and reconstruction steps only use arithmetic in
the field F, even though the factor (x − α) that the Newton iteration begins with has coefficients in F. In
particular this implies that the factor f1 has coefficients in F (α). Since the minimal polynomial of α is a
factor of f(x, 0), the result can be interpreted as the fact that factors of f can be found in low complexity
extensions of F. Further, every irreducible factor of f can be obtained this way, therefore every irreducible
factor of f lies in some low complexity extension of F. While each factor lies in a low complexity extension of
F, since the number of factors of f can be large, the compositum of all these extensions might be very large.
This is a common phenomenon in computational algebraic geometry, see [BM93, Section 4]. Following
the principle, we will only factor as much as is required, in order to ensure that we can work with low
complexity extensions.

The next lemmas are from [Kal95], and they formalise the discussion in the previous two paragraphs.

Lemma 3.15. Given polynomial f ∈ F [x,y] that monic in x, such that deg f = d, and such that the resultant
resx (f(x, 0),∂f(x, 0)/∂x) ̸= 0, there exists an algorithm that returns a list of absolutely irreducible factors f1, . . . , fr
of f, with each fi ∈ F(αi) [x,y], where αi is a root of f(x, 0).

While the result gives an actual algorithm that computes the factors, we are just interested in the fact
that every factor of f is of this form. The list of factors returned by the algorithm is not necessarily distinct,
and computing the set of distinct factors is a non-trivial task depending on the model used to represent the
extensions F(αi). We now state bounds on the logarithmic heights of the factors. The following is [Kal95,
Corollary 1, Theorem 3], although we state a simplified statement specialised to our setting.

Lemma 3.16. Suppose f ∈ Z [x,y] is a squarefree polynomial with deg(f) = d and ht (f) = h that is monic in x,
and such that f(x, 0) is squarefree. Suppose f1 is an absolutely irreducible factor of f.

There exists g(x) an irreducible (in Z [x]) factor of f(x, 0), and polynomials f̃1, f2,h ∈ Z [x,y, z] and integers
∆1,∆2 with ht (∆1) , ht (∆2) , ht

(
f̃1

)
= O(hdc) such that ∆1∆2f = f̃1f2 + g(z)h. Further, there exists a root α of g

such that f1(x,y) = f̃1(x,y,α).

Proof. The algorithm of Lemma 3.15 shows the existence of g,α, and also monic polynomials f̂1, f̂2 ∈
Q [x,y, z] such that f = f̂1f̂2 + g(z)h for some h ∈ Q [x,y, z]. By [Kal95, Corollary 1], the coefficients of
f̂1 are the solutions of a certain linear system, and by [Kal95, Theorem 3] the minors of this system have
logarithmic height O (h · dc1). Using Corollary 3.2 to invert the denominators, we can write the coefficients
of f̂1 as elements of (1/∆1)Z [z], where ht (∆1) = O (h · dc2). Further, the coefficients themselves also have
logarithmic height O (h · dc2).

No similar bounds are provided on the logarithmic height of f̂2, however since f, f̂1, f̂2 are monic we can
use the fact that the coefficients of f̂2 are algebraic integers, in particular they are contained in (1/∆2)Z [z]

where ∆2 = discg (z). Writing f̂2 in this form and clearing denominators from the equation f = f̂1f̂2 + g(z)h
gives us the required equation.

Recall the notation of the number theory preliminaries. As a corollary of the factoring algorithm, [Kal95,
Theorem 8] obtains a bound on primes p for which an absolutely irreducible polynomial remains absolutely
irreducible after applying the map Z → OF/p for some prime p above p.

Theorem 3.17. LetA = Z [α] [x1, . . . , xm] for an algebraic integer α with minimal polynomial q satisfying degq =
e and ht (q) ⩽ h. Suppose f ∈ A is absolutely irreducible with ht (f) ⩽ h and deg f ⩽ d. There exists an integer
∆ with ht (∆) ⩽ c

(
ed6 log (h) + ed6n log (d)

)
for a universal constant c, such that for any prime p ̸ |∆ and any

prime p above p, the image of f under the map A→ OF/p remains absolutely irreducible.
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4 Geometric Irreducibility and base change

In this section, we prove our technical base change results. We first show that certain mod p reductions pre-
serve dimensions of zerosets Lemma 4.1. We then show that irreducibility of dimension 0 and dimension 1
varieties is also preserved under such base changes. Finally, we show that reducible zerosets of dimension 0
and 1 remain reducible under base changes, and further, for sufficiently many primes, there are irreducible
components of the zeroset after base change that are definable over Fp itself. This last fact will be crucial
when we apply the Lang-Weil bounds Theorem 2.18 in a subsequent section. We split the study of irre-
ducibility and reducibility into two parts, based on the dimension. The dimension 0 case (Corollary 4.3 and
Lemma 4.4) is relatively straightforward, and uses ideas from [Koi96] The dimension 1 case (Theorem 4.5
and Theorem 4.6) is significantly more involved.

We show Corollary 4.3, Lemma 4.4, and Theorem 4.6 for zerosets that are defined over Z. Our proof
of Theorem 4.6 invokes Lemma 4.1 and Theorem 4.5 for zerosets that are defined not just over Z, but also
over small algebraic extensions of Q. Therefore, we prove Lemma 4.1 and Theorem 4.5 in this more general
setting.

With all of the above in mind, we now set up the notation for this section. We recall the preliminaries
discussed in Section 2, especially the number theory preliminaries in Section 2.6. Let q ∈ Z [z] be a monic
irreducible polynomial with degq = e and ht (q) ⩽ h, and let α be a root of q. Let F := Q [α], and let OF
be the ring of integers of F, we have Z [α] ⊂ OF. Recall that for each prime p above p with p ̸ |discz (q), we
have a quotient map Z [α] → OF/p ∼= Fp [z] /q1, where q1 is an irreducible factor of q (mod p).

We define A := Z [α] [x1, . . . , xn]. Suppose f1, . . . , fm ∈ A are polynomials with deg fi ⩽ d with d ⩾ 3
and ht (fi) ⩽ h. Let I := (f1, . . . , fm) and V := Z(I). For a prime p ∈ N such that p ̸ |discz (q), and
for any prime p ⊂ OF that lies above p corresponding to a factor q1 of q (mod p), let Ip be the ideal of
(Fp [z] /q1) [x1, . . . , xn] generated by the images of f1, . . . , fm under the map Z [α] → Fp [z] /q1 described
above. Let Vp denote the algebraic subset of Ip in Fp [x1, . . . , xn]. Define σ := dm+ 2.

Lemma 4.1. There exists a universal constant c and an integer ∆ with ht (∆) ⩽ h · ec · 2(n logσ)c such that for any
prime p ̸ |∆ and for every p above p we have dim(V) = dim(Vp).

Proof. Let r be the dimension of V . We first control the primes p for which dimVp < r, and then control the
primes p for which dimVp > r.

By Lemma 2.11, there is a subset of r variables such that I does not contain any polynomial supported
on these r variables. Without loss of generality, suppose these variables are x1, . . . , xr. Set D := 4d3n,
and Dr := rD. Set Db := Dr + 5d3n. Let g := xD1 x

D
2 · · · xDr , so degg = Dr. Let M := MDb

(f1, . . . , fm)
be the linear system corresponding to membership in I as defined in Section 2. Let M ′ be the system
obtained by dropping all the rows of M corresponding to monomials in x1, . . . , xr that are smaller than g
in the graded lexicographic order. If h1, . . . ,hm is a solution to M ′v = g, then

∑
fihi ∈ Q [x1, . . . , xr], with

LM (
∑
fihi) = g.

The system M ′v = g is unsatisfiable since I does not contain any polynomial supported on these
r variables. Therefore rankM ′ < rank [M ′|g]. Let δ0 ∈ Z [α] be any nonzero minor of [M ′|g] of size
rank [M ′|g], the size of the submatrix corresponding to δ0 is at most 1 +

(
Db+Dr+n

n

)
. By Corollary 3.2

and Lemma 3.6 we can deduce that ht (δ0) ⩽ h · ec1 · 2(n logσ)c1 . Observe that δ0 and q are coprime as
elements of Z [z], since q is irreducible. By Corollary 3.3 we can deduce that ∆0 := discz (q) · resz (q, δ0)

satisfies ht (∆0) ⩽ h · ec2 · 2(n logσ)c2 .
We show that for every p ̸ |∆0, and for every p above p we have dimVp ⩾ r. Let Jp := IpFp [x1, . . . , xn].

Suppose towards contradiction that Vp has dimension less than r. By Lemma 2.11, the ideal of Vp, that
is rad (Jp), contains a polynomial supported on x1, . . . , xr. By Theorem 2.12, the degree of Vp is bounded
by dn, therefore the degree the projection of Vp to the coordinates x1, . . . , xr is bounded by dn. By [Sch07,
Corollary 1.9], the ideal rad (Jp) contains a polynomial f in the variables x1, . . . , xr of degree at most dn.
By Theorem 2.21 and the Rabinowitsch trick, there exist e ⩽ 4d2n and gi with deggi ⩽ 5d3n such that
fe =

∑
figi. The degree of fe is at most D = 4d3n. By potentially multiplying the equation throughout

by a monomial, we can assume that there is a polynomial f ′ with leading monomial xD1 x
D
2 · xDr such that

f ′ =
∑
fig

′
i, where each g ′

i has degree at most 5d3n + rD, which is exactly Db.
Observe that the matrix of the linear system corresponding to membership in Ip is exactly the matrix

M, where we apply the map Z [α] → Fp [z] /q1 to each coefficient. Denote this by matrix by Mp. If we
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similarly drop the rows ofMp corresponding to monomials in x1, . . . , xr that are larger than g in the graded
lexicographic order, the matrix obtained is exactly the reduction of M ′ under the same map, denote this
matrix byM ′

p. We have rankM ′
p ⩽ rankM ′, since any zero minor ofM ′ remains zero after reduction. Since

p ̸ |∆0, in particular p ̸ | resz (q, δ0). Therefore, the polynomials δ0 and q remain relatively prime in Fp [z]. In
particular, the minor δ0 remains nonzero under the map Z [α] → Fp [z] /q1. The augmented matrix

[
M ′

p|g
]

satisfies rank
[
M ′

p|g
]
= rank [Mp|g] = rankM ′ + 1. In particular this implies that M ′

pv = g is unsolvable,
which is in contradiction to the existence of f ′. This completes the first part of the proof, that is controlling
the primes p for which dimVp < r.

We now move on to the second part of the proof, that is, controlling the primes p for which dimVp > r.
Similar to the proof above, since V has dimension r, for every subset of r + 1 variables, say for example
x1, . . . , xr+1, the ideal I contains a polynomial f ′ in x1, . . . , xr+1 with leading monomial g := xD1 x

D
2 · · · xDr+1.

Further, we can write f ′ =
∑
figi with deggi ⩽ 5d3n + (r + 1)D. Set Db := 5d3n + (r + 1)D. If we

consider the linear system MDb
, and drop the rows corresponding to monomials in x1, . . . , xr+1 that are

smaller than xD1 x
D
2 · · · xDr+1 and call this new matrix M ′, then M ′v = g is now satisfiable. In other words,

rankM ′ = rank [M ′|g]. By Lemma 2.10, there is a solution to this system, where the entries of v have
common denominator a minor of [M ′|g]. Call this minor δ[r+1], by Corollary 3.2 and Lemma 3.6 we can
deduce that ht

(
δ[r+1]

)
⩽ h · ec3 · 2(n logσ)c3 . Set ∆[r+1] := resz

(
q, δ[r+1]

)
, for any p ̸ |∆[r+1] and p ̸ |discq (z),

the image of this denominator is nonzero in Fp [z] /q1, and the ideal Ip contains a polynomial in x1, . . . , xr+1.
Similarly, we can construct δU,∆U for every U ⊂ [n] with |U| = r + 1. If we let ∆1 := discq (z)

∏
∆U,

then for every prime p ̸ |∆1 we must have dimVp ⩽ r. We have ht (∆1) ⩽ h · ec4 · 2(n logσ)c4 . This controls
all primes for which dimVp > r. Defining ∆ := ∆1 · ∆2 completes the proof.

4.1 Dimension zero
Note that when dim I = 0, we have that V is a finite set of points. In this subsection, we assume that
f1, . . . , fm ∈ R.

We first show that if V consists of a single point, then the logarithmic height of this point is not too large.

Lemma 4.2. Suppose V = {(α1, . . . ,αn)}. Then αi ∈ Q and there is a universal constant c > 0 such that ht (αi) ⩽
h · 2(n logσ)c for all i ∈ [n].

Proof. Let K be the smallest Galois extension of Q that contains α1, . . . ,αn. Suppose K ̸= Q, and without
loss of generality assume α1 ̸∈ Q. Then, there exists some element τ of the Galois group of K/Q that is not
identity on α1. Since τ fixes fi, for i ∈ [m], as fi ∈ R, we must have (τ(α1), · · · , τ(αn)) ∈ V , contradicting
the fact that V = {(α1, . . . ,αn)}.

We now obtain the bound on ht (αi). By Theorem 3.10, there is a universal constant c1 > 0 and a
polynomial Pi with deg(Pi) ⩽ 2(n logσ)c1 , and ht (Pi) ⩽ h · 2(n logσ)c1 such that αi is a root of Pi. By
Lemma 3.4, there is a universal constant c > 0 such that ht (αi) ⩽ h · 2(n logσ)c .

With the above lemma at hand, we now prove that if |V | = 1, then for all but finitely many primes p, we
must have that Vp consists of exactly one point, and this point lies in Fn

p .

Corollary 4.3. Suppose V = {(α1, . . . ,αn)}. There is a universal constant c and ∆ ∈ Z with ht (∆) ⩽ h · 2(n logσ)c ,
such that for any prime p with ∆ ̸∈ (p), Vp ⊂ Fn

p and |Vp| = 1.

Proof. By Lemma 4.2, there is a universal constant c1 such that ht (αi) ⩽ h · 2(n logσ)c1 , for all i ∈ [n]. Let
αi = βi/γi with βi,γi ∈ Z in reduced form, and let gi := γixi − βi. By the Nullstellensatz gi ∈ I for all
i ∈ [n].

By Corollary 3.12, there are: a universal constant c2 > 0, positive integers ai, ei and polynomials hij ∈ R
such that aigei

i =
∑

j fjhij, where ei ⩽ 4(n + 1)(d + 1)n+1, deg(hij) ⩽ 8(n + 1)(d + 1)n+2 and lastly we
have ht (ai) , ht (hij) ⩽ h · 2(n logσ)c1

(d+ 1)n (nd logm)c2 .
Define ∆ :=

∏
i aiγi. For any prime p such that ∆ ̸∈ (p), the equation aigei

i =
∑

j fjhij reduced mod
p implies that gi ∈ rad (Ip) over Fp[x1, . . . , xn]. Therefore, Vp = {

(
β1γ

−1
1 , . . . ,βnγ

−1
n

)
}. From the bounds
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on ht (ai) , ht (γi) we have ht (∆) ⩽ (n + 1) · h · 2(n logσ)c1
(d+ 1)n (nd logm)c2 , which can be bounded by

h · 2(n logσ)c for an appropriate universal constant c > c2.

We now show that if |V | ⩾ 2, then the density of primes p such that the set Vp has at least two points in
Fn
p is large enough. Our argument is an extension of the main argument of [Koi96].

Lemma 4.4. Suppose |V | ⩾ 2. There exist: a universal constant c, a polynomialG ∈ Z [z] with deg(G) ⩽ 2(n logσ)c

and ht (G) ⩽ h · 2(n logσ)c , and ∆ ∈ Z with ht (∆) ⩽ h · 2(n logσ)c , such that for any prime p satisfying ∆ ̸∈ (p)
and G mod p has a root in Fp, we have |Vp ∩ Fn

p | ⩾ 2.

Proof. Let (α1, . . . ,αn) and (β1, . . . ,βn) be two points in V . By [Koi96, Lemma 2], there are a universal
constant c1 > 0 and polynomials Pij ∈ Z[x1, . . . , xn], where i ∈ [2], j ∈ [n], with deg(Pij) ⩽ 2(n logσ)c1 and
ht (Pij) ⩽ h · 2(n logσ)c1 such that αj is a root of P1j and βj is a root of P2j. 8

Let c2 ⩾ 1 be the universal constant from Theorem 3.9. Applying Theorem 3.9 to the 2n elements
α1, . . . ,αn,β1, . . . ,βn with the polynomials Pij gives us a primitive element γ, with minimal polynomial G,
where deg(G) ⩽ 2(n logσ)c2 and ht (G) ⩽ h · 2(n logσ)c2 . Further, we also obtain Qij ∈ Z [z] with deg(Qij) <

deg(G) and ht (Qij) ⩽ h · 2(n logσ)c2 , and aij ∈ Z∗ with log(|aij|) ⩽ h · 2(n logσ)c2 such that αj = Q1j(γ)/a1j
and βj = Q2j(γ)/a2j.

Let p be a prime such that G mod p has a root x0 in Fp and that
∏

i,j aij ̸∈ (p). Then, the points
((Q11(x0) /a11, . . . ,Q1n(x0)/a1n) and ((Q21(x0) /a21, . . . ,Q2n(x0)/a2n) are in Vp. To complete the proof, it
suffices to ensure that these two points differ on at least one coordinate, so we can claim that Vp has at least
two distinct points with coefficients in Fp. To this end, assume without loss of generality that α1 ̸= β1,
and therefore Q11/a11 ̸= Q21/a21. Consider the resultant resz (a21Q11 − a11Q21,G). Since G is irreducible
and deg(a21Q11 − a11Q21) ⩽ max(deg(Q11), deg(Q21)) < deg(G), we can deduce resz (Q11 −Q21,G) ∈ Z∗.
Further, ht (G) , ht (a21Q11 − a11Q21) ⩽ h · 2(n logσ)c2 . Since resz (Q11 −Q21,G) ∈ Z is the determinant of a
matrix in the coefficients of G,Q11 −Q21, it has logarithmic height at most h · 2(n logσ)c3 .

Define ∆ := a ·resz (Q11 −Q21,G), so ∆ has logarithmic height at most h ·2(n logσ)c . Suppose p is a prime
such that p ̸ |∆ and such that G has a root in Fp. Since p ̸ | resz (Q11 −Q21,G), the polynomials Q11 − Q21
and G remain relatively prime in Fp [z]. Therefore, for any root x0 of G, we must have Q11(x0) ̸= Q21(x0).
Combined with the arguments above, this shows that for any such p, the algebraic set Vp has at least two
distinct points with coefficients in Fp.

4.2 Dimension one
In the following theorem, we assume once again the more general setting where f1,dots, fm ∈ A.

Theorem 4.5. Suppose V is an irreducible curve. There exists an integer ∆ with ht (∆) ⩽ h · ec · 2(n logσ)c such
that for any prime p ̸ |∆ and for every p above p the zeroset Vp is irreducible.

Proof. Let D := dn so deg(V) ⩽ D by Theorem 2.12. Define B := D2. Let Φ be the set of all linear maps
An → A, where each coefficient is picked from the set [B]. The total number of such linear maps is Bn+1.
For maps ϕi,ϕj ∈ Φ, define ϕij : An → A2 to be the map with coordinate functions ϕi,ϕj.

LetV be the projective closure ofV , and letVP := V∩{x0 = 0} be the intersection ofV with the hyperplane
at infinity. Since deg(V) ⩽ D, and since V is defined by polynomials in R, the zeroset VP is finite and consists
of at most D points. By [SR94, Theorem 1.15], for any ϕi such that the projective closure of the hyperplane
ϕi = 0 does not contain a point in Vp, the map ϕi : V → A1 is a finite map. Define Φ ′ ⊂ Φ to be the set of
maps that are finite, the above argument shows that |Φ ′| ⩾ (1 −D/B) |Φ| = (1 − 1/D) |Φ|.

Consider the pairs i, j such that ϕi ∈ Φ ′,ϕj ∈ Φ ′. Since ϕi is a finite map, in particular it is surjective.
Since ϕi is a projection of ϕij, we can deduce that ϕij(V) has dimension 1. Further, ϕij(V) is irreducible
since V is irreducible. For all such ϕij, define gij to be the generator of I(ϕij(V)). Each gij is a form of
degree at most D, and is absolutely irreducible. The ideal I is prime, and satisfies dim I = 1. For every
i, j we can pick an invertible linear map An → An such that ϕij is projection to the first two coordinates
after applying the linear map. Therefore, we can apply Lemma 3.14 to deduce that gij ∈ A, and we obtain

8Note than while Theorem 7 in [Koi96] is stated in terms of a single root, Lemma 2 of [Koi96] holds for every root.
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hijk ∈ A, and tij ∈ N, and aij ∈ Z [α] such that aijg
tij
ij =

∑
k fkhijk. Further, deghi, t ⩽ 8dn

2
, and

ht (a) , ht (hi) , ht (gij) ⩽ h · logm · ec1 · dc1n
c1 . By Theorem 3.17, for each such ij there exists an integer ∆ij

with ht (∆ij) ⩽ h · ec2 · dcnc2 such that for any p ̸ |∆ij and p ̸ |discq (z), and for any p above p, the image of
polynomial gij under the map Z [α] → Fp [z] /q1 remains absolutely irreducible.

Define ∆ ′ :=
∏

i,j resz (aij,q) · ∆ij, where the product is over i, j such that ϕi,ϕj ∈ Ψ ′. Finally, define
∆ := ∆ ′ · ∆ ′′ · (B + 1)!, where ∆ ′′ is the integer obtained by applying Lemma 4.1 to V . We have ht (∆ ′) ⩽
h · ec2 · dcnc2 · D(2n+2) ⩽ h · ec3 · 2(n logσ)c3 . Further ht (∆ ′′) ⩽ h · ec4 · 2(n logσ)c4 , and ht ((B+ 1)!) ⩽ dn

3
.

Therefore, ht (∆) ⩽ h · ec · 2(n logσ)c .
Pick a prime p ̸ |∆ and p above p, we will show that Vp is irreducible, which will complete the proof.

Since p ̸ |∆ ′′, Vp has dimension 1. Further, since p ̸ |(S + 1)!, we have p > S + 1. This ensures that the set of
maps inΦ are distinct, even when considered as maps from Fn

p → F2
p.

Fix any i, j such that ϕi ∈ Φ ′,ϕj ∈ Φ ′. The equation aijg
tij
ij =

∑
k fkhijk holds in Fp [z] /q1, and

aij ̸= 0, therefore gtijij ∈ Ip for every such p. Further, since p ̸ |∆ij, the polynomial gij remains absolutely
irreducible. These facts together imply that ϕij(Vp) is either empty or irreducible, here we treat ϕij as a
map from Fn

p → F2
p. The total number of such maps is (1 − 1/D)2 |Φ|

2.
Assume towards a contradiction that Vp is reducible. Let C1,C2 be two components of Vp, we have

deg(C1), deg(C2) ⩽ D. Define Φp ⊂ Φ such that ϕi ∈ Φp if ϕi : C1 → F1
p and ϕi : C2 → F1

p are both finite
maps. Similar to the argument for Φ ′, we can deduce that |Φp| ⩾ (1 − 2/D) |Φ| and we can deduce that for
any i, j with ϕi ∈ Φp we have dimϕij(C1) = 1 and dimϕij(C2) = 1. We bound the number of maps ϕij

such thatϕij(C1) = ϕij(C2). Fix i, and pick a point α ∈ C1\C2. Sinceϕi : C2 → F1
p is finite, in particular it is

surjective and therefore the curve C2 is not contained in the hyperplane defined by ϕi = ϕi(α). Therefore,
C2 ∩ {ϕi = ϕi(α)} is a finite set consisting of at mostD points, call these points β1, . . . ,βD. The set of points
α − β1, . . . ,α − βD is a finite set of nonzero points, therefore at most (D/S) |Φ| many ϕj are such that ϕj is
zero at one of these points. For every remaining ϕj, the intersection of C2 with the hyperplanes ϕi = ϕi(α)
and ϕj = ϕj(α) is empty, whence ϕij(C1) ̸= ϕij(C2). Since the maps ϕij are finite on C1,C2, this implies
ϕij(C1) ̸= ϕij(C2). Therefore, the total number of pairs i, j such that ϕi,ϕj ∈ Φp and ϕij(C1) ̸= ϕij(C2) is
at least (1 − 2/D)(1 − 3/D) |Φ|

2. Recall however that for at least (1 − 1/D)2 |Φ|
2 maps, ϕij(Vp) was either

irreducible or empty, in particular ϕij(C1) = ϕij(C2). This is a contradiction to our assumption that Vp is
reducible, and completes the proof.

The following result again assumes f1, . . . , fm ∈ R. The proof will invoke Lemma 4.1 and Theorem 4.5 in
the general setting on a new system of polynomials that extends f1, . . . , fm. We note that this is a limitation
of our proof, and we expect the result to also hold if f1, . . . , fm ∈ A.

Theorem 4.6. Suppose f1, . . . , fm ∈ R. Suppose dim I = 1, that V is equidimensional, and that V has at least two
irreducible components. There exists an integer ∆ with ht (∆) ⩽ h · 2(n logσ)c and a polynomial G ∈ Z [z] with
degG ⩽ D4 and ht (G) ⩽ h · 2(n logσ)c such that for any prime p ̸ |∆ and such that G (mod p) has a root in Fp,
the zeroset Vp has at least two irreducible components that are Fp-definable.

Proof. Let k be the number of irreducible components of V , and suppose V = V1 ∪ · · ·Vk is the irreducible
decomposition of B. By Bézout’s theorem (Theorem 2.12) we have k ⩽ D := dn. As a first step, we will find
find defining equations for two components of V . The components of V might not be Q-definable, therefore
the defining equations we find will potentially lie in some algebraic extension of Q.

Pick a linear map ϕ : An → A2, where the coefficients of each coordinate map are picked from the set[
D6

]
, such that π|V : V → ϕ(V) is finite, and such that each of the k components of V have distinct images

under ϕ. A random linear map has these properties, and therefore such a map exists. Since dim I = 1 we
have dimϕ(V) = 1. Further, since I is equidimensional, π(V) has exactly k components that are each of
codimension 1, therefore ϕ(V) = Z(g1) for some g1. We can apply Lemma 3.14 to deduce that g1 ∈ R, and
the existence of polynomials h1k ∈ R, and a1, t1 ∈ Z such that a1g

t1
1 =

∑
k fkh1k. Further ht (g1) , ht (h1k) ⩽

h · dc1n
c1 .

Now g1 has exactly k absolutely irreducible factors, g1 = g11 · g12 · · · · · g1k. Each of these factors are
coprime, and occur with multiplicity 1. Further, each factor g1i corresponds to the irreducible component
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Vi. Consider I1 := I + g11 and I2 := I + g12. We have V1 ⊂ Z(I1), and V2 ⊂ Z(I2). None of the components
V2, . . . ,Vk vanish on g11. Therefore (V2 ∪ · · · ∪ Vk) ∩ Z(g11) has dimension 0. By Bézout’s inequality, and
the fact that degg11 ⩽ degg1 ⩽ dn, we deduce that (V2 ∪ · · · ∪ Vk) ∩ Z(g11) consists of at most d2n points.
Similarly, (V1 ∪ V3 ∪ · · · ∪ Vk) ∩ Z(g12) consists of at most d2n points.

In order to define V1 (respectively V2), we need to add equations to I1 (respectively I2) that vanish on
V1 (respectively V2) but not on the above points. Towards this, pick a second linear map ψ : An → A2

where the coefficients of each coordinate map are picked from the set
[
D6

]
, such that ψ|V : V → ψ(V) is

finite, and such that each of the k components of V have distinct images under ψ. We further require that
none of the d2n points of (V2 ∪ · · · ∪ Vk) ∩ Z(g11) are mapped to ψ(V1), and that none of the d2n points of
(V1 ∪ V3 ∪ · · · ∪ Vk) ∩ Z(g12) are mapped to ψ(V2). Such a map exists, since a random map satisfies these
properties. As before, we have g2 such that ψ(V) = Z(g2), and by Lemma 3.14 we have g2 ∈ R, and the
existence of polynomials h2k ∈ R, and a1, t1 ∈ Z such that a2g

t2
2 =

∑
k fkh2k. Further ht (g2) , ht (h2k) ⩽

h · dc1n
c1 . We can also factor g2 as g2 = g21 · g22 · · · · · g2k with g2i corresponding to Vi.

We now set J1 := I1 + g21 = I + g11 + g21 and J2 := I2 + g22 = I + g12 + g22. By construction, Z(J1) = V1
and Z(J2) = V2.

The next step is to control the heights of g11,g12,g21,g22, in a number field that contains all these ele-
ments. To this end, we treat g1,g2 as polynomials in two variables each, say y1,y2. We can assume that
the leading coefficients of g1,g2 in y1 belong to Z: if not then this can be achieved by a random linear
transformation, and we could have applied this transformation to the linear maps defining g1,g2 them-
selves. If a is the leading coefficient of g1, then we write g̃1 := adegg1−1g(y1/a,y2 + b), for a random bwith
ht (b) ⩽ ·2(n logσ)c2 . After this transformation, the polynomial g̃1 is monic in y1, and g̃1(y1, 0) is squarefree.
Further, factors of g1, in particular g11,g12 are in bijection with factors of g̃1.

We now focus on g̃11, the factor corresponding to g11 under this bijection. By Lemma 3.16, there is an
irreducible factor q11(z) of g̃1(z, 0), integers ∆11,∆ ′

11, and polynomials u11, v11,w11 ∈ Z [y1,y2, z] such that

∆11∆
′
11g̃1(y1,y2) = u11(y1,y2, z)v11(y1,y2, z) +w11(y1,y2, z)q11(z).

Further, degz(u11), degz(v11) < e. Finally, there is a root α11 of q11 such that g11 = u11(x,y,α11), potentially
after scaling. By Gelfond’s inequality [HS13, B.7.3] we have ht (q11) ⩽ h · 2(n logσ)c3 , and we also have
degq11 ⩽ degg1 = D. We also have ht (∆11) , ht (∆ ′

11) , ht (u11) ⩽ h · 2(n logσ)c3 by Lemma 3.16.
We similarly construct qij,αij,uij, vij,wij,∆ij,∆ ′

ij. We now construct an extension of Q that contains
every αij. To this end, we construct a primitive element of α11,α12,α21,α22. Using Theorem 3.9 we can
deduce the existence of a polynomialGwith degG ⩽ D4 and ht (G) ⩽ h ·2(n logσ)c4 , and a root γ of q, along
with Qij, r such that αij = Qij(γ)/r. We also have ht (Qij, r) ⩽ h · 2(n logσ)c4 . In equation

∆11∆
′
11g̃1(y1,y2) = u11(y1,y2, z)v11(y1,y2, z) +w11(y1,y2, z)q11(z)

we substitute z = Q11/r, multiply throughout by rD
2
, and reduce the coefficients mod G to obtain

∆11∆
′
11r

D2
g̃1(y1,y2) = ũ11(y1,y2, z)ṽ11(y1,y2, z) + w̃11(y1,y2, z)G(z).

We now have ũ(y1,y2,γ) = g̃11, potentially after scaling. Up to scaling by a, the polynomial g11 is exactly
ũ(ay1,y2 + b,γ). This shows that ht (g11) ⩽ h · 2(n logσ)c5 . Therefore, we have obtained the height bounds
on g11 that we were looking for, and the same bound holds for gij.

Recall that J1, J2 correspond to different irreducible components of I, and that J1 + J2 has dimension 0.
Pick any prime p ̸ |discz (G) such that G (mod p) has a linear factor. Let p be a prime of the ring of integers
of Q [z] /G(z) that corresponds to the linear factor. The quotient map Z [γ] → Z [γ] /p has image in Fp. We
now apply Lemma 4.1 and Theorem 4.5 to the ideals J1, J2, and J1 + J2. We deduce that there is an integer ∆0
such that for any prime p ̸ |∆0, the images of J1, J2 remain irreducible, and the dimensions of I, J1, J2, J1 + J2
are one, one, one, zero respectively. We also have Z((J1)p) ⊂ Z(Ip). Therefore, Z((J1)p) is an Fp-definable
irreducible component of Z(Ip). The same holds for Z((J2)p). Since dim(J1+J2)p = 0, these two components
are different from each other.
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5 Interactive proofs of primality testing

In this section, we prove our main theorem: interactive protocols for testing non-primality of natural classes
of ideals. As we have discussed in Section 1, we first give some protocols for certain special cases, as the
protocol in the main theorem will invoke these special cases as subroutines.

The setting of this section is that of our main theorem: we assume that we have an algebraic circuit
C ′ of size 5sm with integer coefficients that computes polynomials f1, . . . , fm ∈ Z [x1, . . . , xm], and the
partial derivatives ∂ifj. The existence of C ′ is guaranteed by Lemma 2.9 applied to the input circuit C. By
Lemma 2.8 also applied to the input circuitC, we have ht (fi) ⩽ 22s and deg fi ⩽ 2s. Define d := max deg fi.
Define σ := dm+ 2.

Let I := (f1, . . . , fm), and let V := Z(I) denote the algebraic set corresponding to I. For any prime p,
define Ip to be the ideal in Fp [x1, . . . , xn] generated by the images of f1, . . . , fm under the quotient map
R→ Fp [x1, . . . , xn], and let Vp denote the algebraic set of Ip in Fp [x1, . . . , xn].

We begin with a protocol to decide if a zero dimensional ideal has at least two points in its zeroset.

Lemma 5.1. Assume GRH. If I is promised to be zero dimensional, then there is an AM protocol that verifies |V | ⩾ 2.

Proof. The proof uses Corollary 4.3, Lemma 4.4 and the Goldwasser-Sipser protocol (Lemma 2.1). Let h :=
maxi ht (fi), by Lemma 2.8 we have h ⩽ 22s.

Define πred(x) to be the set of primes p ⩽ x such that Vp has at least two points in Fp. By Corollary 4.3,
if |V | = 1 then πred(x) ⩽ h · 2(n logσ)c1 for all x. Suppose |V | ⩾ 2. Let G be the polynomial guaranteed by
Lemma 4.4. By the effective Chebotarev density theorem (Theorem 2.19) we have

πG(x) ⩾
1

degG

(
π(x) − log∆G − c2x

1/2 log
(
∆Gx

deg(G)
))

,

where ∆G is the discriminant of G, and πG(x) is the set of primes p ⩽ x such that G has a root in Fp. By
Lemma 4.4 degG ⩽ 2(n logσ)c3 , and ht (G) ⩽ h · 2(n logσ)c4 . Bounding the discriminant using Corollary 3.3,
we have

πG(x) ⩾
π(x)

2(n logσ)c3 − c5hx
1/22(n logσ)c6

− c7x
1/2 log x.

By Theorem 2.20 we have πred(x) ⩾ πG(x) − h · 2(n logσ)c8 . Finally, by [Dus10, Theorem 6.9] we have
π(x) > x

loge x
for all x larger than 600. For x0 = hc9 · 2(n logσ)c10 for a large enough constants c9, c10, we see

that πred(x0) ⩾ 2h · 2(n logσ)c1 . Note that ht (x0) is polynomial in the input.
We can now invoke the Goldwasser-Sipser protocol (Lemma 2.1) on the set πred(x0), with K = h ·

2(n logσ)c1 . Membership in this set is in NP: the certificate for membership are two distinct roots, which has
polynomial bit complexity, and we can evaluate the input polynomials on these roots to verify them. As
shown above, |V | ⩾ 2 if and only if |πred(x0)| ⩾ 2K and |V | = 1 if and only if |πred(x0)| ⩽ K. Therefore, the
protocol correctly verifies |V | ⩾ 2.

The second special case is a protocol that decides if a zeroset has at least two components of highest
dimension.

Lemma 5.2. Assume GRH. If I is promised to be equidimensional and have dimension r, then there is an AM protocol
that verifies that V has at least two irreducible components of dimension r.

Proof. LetD := dn. Apply the algorithm of Corollary 2.26 in order to obtain a linear subspace H. The space
H is defined by linear equations h1, . . . ,hr−1, with ht (hi) ⩽ (nD)c1 . Let J := I + (h1, . . . ,hr−1), and let
W := Z(J). By Corollary 2.26, with high probability we have dim(W) = 1, and the number of irreducible
components of dimension 1 of W is the same as the number of irreducible components of dimension r in
V . For the rest of the proof, we assume that this event occurs, this will only change the soundness and
completeness of our protocol by a small constant, which does not change the complexity class AM. Let
Jp,Wp be defined the same way as Ip,Vp.

Let h := max (maxj ht (hj) , maxi ht (fi)), we have h ⩽ (nD)c1 + 22s. Let πred(x) be the set of primes
(150)2D8 < p < x such that

∣∣Wp ∩ Fn
p

∣∣ ⩾ 2p − 10D4p1/2. By an effective Lang-Weil bound Theorem 2.18,
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p ∈ πred(x) if and only if (150)2D8 < p < x and Wp has at least two irreducible components of dimension
1 defined over Fp.

Suppose W has only one irreducible component of dimension 1 (this component is then automatically
defined over Fp). By Theorem 4.5, for all x we have πred(x) ⩽ h · 2(n logσ)c , since for all but h · 2(n logσ)c

primes Wp has at most one irreducible component defined over Fp. On the other hand, suppose W has at
least two irreducible components of dimension 1. Let G be the polynomial guaranteed by Theorem 4.6. By
the effective Chebotarv density theorem Theorem 2.19 we have

πG(x) ⩾
π(x)

2(n logσ)c2 − c3hx
1/22(n logσ)c4

− c5x
1/2 log x.

By Theorem 4.6, for all but h · 2(n logσ)c6 primes in πG(x), the zeroset Wp has at least two components,
therefore every such prime larger than (150)2D8 is in πred(x). For x0 = hc7 · 2(n logσ)c8 for a large enough
constants c7, c8, we see that πred(x0) ⩾ 2h · 2(n logσ)c .

We can now invoke the extension of the Goldwasser-Sipser protocol (Corollary 2.2) on the set πred(x0),
with K = h · 2(n logσ)c . Membership in this set is itself in AM: note that

∣∣Wp ∩ Fn
p

∣∣ is either at most p +

5D4p1/2 +D or at least 2p − 10D4p1/2 −D. Since p > (150)2D8 the ratio of these sizes is at least 1.9. If the
protocol accepts, then with high probability W, and therefore V has at least two irreducible components of
top dimension. If not, then with high probability V has only one component of top dimension.

Remark 5.3. We give an example that shows that Theorem 4.6 is tight in some sense. The theorem, combined
with the effective Chebotarev density theorem Theorem 2.19 shows that the density of primes for which Fp

has two Fp definable components is inverse exponential. We give an example to show that this inverse
exponential behaviour is unavoidable.

Consider I =
(
x2

1 − 2, x2
2 − 3, . . . , x2

n−1 − pn−1
)
, where pj is the jth prime. The zeroset V consists of 2n−1

components, each of dimension 1. Similarly, for any prime p > pn−1, the zeroset Vp also consists of 2n−1

components, each of dimension 1. However, these components might not be defined over Fp itself. For
any prime p, the components will be defined over the smallest extension of Fp that contains square roots
of 2, 3, · · · ,pn−1. The only primes p for which there exist Fp definable components of Vp are those where
2, 3, . . . ,pn−1 are all quadratic residues. By quadratic reciprocity and Dirichlet’s theorem, the density of
such primes within all primes is 2−n+1.

5.1 Interactive proof for radical ideals
We now give an AM protocol for deciding non primality of radical ideals, using the above two protocols as
subroutines.

Algorithm 3: AM protocol for non-primality of radical ideals
Input : A circuit C ′ that computes polynomials f1, . . . , fm ∈ R along with the derivatives ∂ifj, with

deg fi ⩽ d such that I := (f1, . . . , fm) is a radical ideal, and the dimension r of I.
Arthur : If r = 0, then perform the protocol in Lemma 5.1, and accept if and only if the protocol

accepts. If r > 0, then send the empty string to Merlin.
Merlin : Compute the Jacobian matrix Jij = ∂fi/∂xj. Check if there is a minorM of J of size at least

n− r+ 1 such thatM ̸= 0, f1 = 0, . . . , fm = 0 is a satisfiable system. If such a minor exists,
send the rows and columns that correspond toM to Arthur. If not, then send the empty
string to Arthur.

Arthur : If Merlin sends the empty string then perform the protocol in Lemma 5.2, and accept if
and only if the protocol accepts. If not, then construct an algebraic circuit for 1 − yM,
whereM is the minor of J corresponding to the rows and columns received from Merlin.
Perform the protocol in Theorem 2.4 on the inputs f1, . . . , fm, 1 − yM. Accept if and only if
this protocol accepts.

Theorem 5.4. Assume GRH. If I is a radical ideal of dimension r then Algorithm 3 is a valid AM protocol for deciding
I is not prime.
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Proof. Suppose I is not prime. Since I is radical, it has at least two irreducible components. If dim I = 0, then
|V | ⩾ 2, and the protocol in Lemma 5.1 correctly accepts with high probability, and therefore Algorithm 3
correctly accepts with high probability in the first step. If r > 0, then either V has at least one component
of dimension at most r − 1, or V is equidimensional and has at least two components of dimension r. If
V has a component of dimension less than r, then at any point x ∈ V that lies in this component, we have
rank J(x) > n − r, therefore Merlin can always find a minor of J of size greater than n − r that makes the
polynomial system created by Arthur in round 3 satisfiable. Observe that the system has degree at most
nd + 1, and logarithmic height at most h · (dn)c, where h := maxi ht (fi). Further, given the circuit C ′ that
computes f1, . . . , fm and ∂jfi, Arthur can easily produce a circuitC ′′ that also computes 1−yM. In this case,
the protocol in Theorem 2.4 correctly accepts with high probability. If V has two components of dimension
r, then the protocol in Lemma 5.2 correctly accepts with high probability.

Suppose I is a prime ideal. If r = 0, then |V | = 1, and the protocol in Lemma 5.1 correctly rejects with
high probability, and therefore Algorithm 3 correctly fails to accept with high probability in the first step.
If r ⩾ 0, then V has only one irreducible component. The Jacobian J has rank at most n − r at every point
in V , therefore no matter what choice of rows and columns Merlin picks in round 2, the system created
by Arthur in round 3 is unsatisfiable, and therefore the protocol in Theorem 2.4 fails to accept with high
probability. If Merlin sends the empty string, then the protocol in Lemma 5.2 fails to accept with high
probability. Therefore, when I is a prime ideal, the protocol in Algorithm 3 correctly fails to accept with
high probability.

The above protocol is in AM[4], the theorem now follows from the fact that AM[4] = AM.

5.2 Equidimensional Cohen-Macaulay ideals
We now give an AM protocol for deciding non primality of equidimensional Cohen-Macaulay ideals.

Algorithm 4: AM protocol for non-primality of equidimensional CM ideals
Input : A circuit C ′ that computes polynomials f1, . . . , fm ∈ R along with the derivatives ∂ifj, with

deg fi ⩽ d such that I := (f1, . . . , fm) is an equidimensional Cohen-Macaulay ideal, and the
dimension r of I.

Arthur : If r = 0, then perform the protocol in Lemma 5.1, and accept if the protocol accepts.
If r > 0, then perform the protocol in Lemma 5.2, and accept if the protocol accepts.
If the above protocols fail to accept, let Y,Z be (n− r)×m and n× (n− r) symbolic

matrices (in new variables), and perform the protocol in Theorem 2.5 on the system
f1, . . . , fm, det (YJZ), with parameter (n− r)(m+ n) + r. Accept if and only if this protocol accepts.

Theorem 5.5. Assume GRH. If I is a equidimensinal Cohen-Macaulay ideal of dimension r then Algorithm 4 is a
valid AM protocol for deciding I is not prime.

Proof. Suppose I is not prime. Then either I has at least two components of dimension r, or I has exactly
one irreducible component but is not radical. If I has at least two irreducible components of dimension
r, then depending on r either the protocol in Lemma 5.1 or the protocol in Lemma 5.2 correctly accepts
with high probability. Suppose now that I has a unique minimal prime, call this prime p. Since S is an
affine domain of dimension n, by [Eis13, Cor 13.4] we have codim (I) = codim (p) = n − r. Let J be the
ideal generated by the (n − r) × (n − r) minors of J. Since S/I is Cohen-Macaulay and I is not radical,
by [Eis13, Thm 18.15] we deduce that J has codimension 0 in S/I, equivalently every generator of J lies
in p. The polynomial det (YJZ) lies in the ideal J ⊗ Q [Y,Z], therefore det (YJZ) ∈ p ⊗ Q [Y,Z]. The ideal
p ⊗ Q [Y,Z] has dimension r + (n − r)(m + n), and is the unique minimal prime of I ⊗ Q [Y,Z], therefore
dim det (YJZ) + I ⊗ Q [Y,Z] = r + (n − r)(m + n). Therefore the protocol in Theorem 2.5 correctly accepts
with high probability.

Now suppose I is prime. Since I has only one irreducible component, depending on r either the protocol
in Lemma 5.1 or the protocol in Lemma 5.2 fails to accept with high probability. Further we have I+ J ⊊ p,
equivalently there is at least one generator of J that fails to lie in p. Therefore, det (YJZ) ̸∈ p⊗Q [Y,Z], and
dim det (YJZ) + I⊗Q [Y,Z] = r + (n − r)(m + n) − 1. The protocol in Theorem 2.5 correctly fails to accept
with high probability.
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5.3 Proof of main theorems
We now use the above protocols to prove our main theorems, which we restate here for convenience.

Theorem 1.2 (Interactive protocols for primality). Let C be an algebraic circuit of size s with integer constants
that computes f1, . . . , fm ∈ Z [x1, . . . , xn]. If I := (f1, . . . , fm) is either radical or equidimensional Cohen-Macaulay,
and if the dimension of I is given, then the complexity of testing if I is prime lies in coAM, assuming GRH.

Proof. Since we know the dimension of I, by Theorem 5.4 and Theorem 5.5 (depending on whether I is rad-
ical or equidimensional Cohen-Macaulay), the complexity of deciding if I is not prime lies in AM, therefore
the complexity of deciding if I is prime lies in coAM.

Theorem 1.3 (Primality testing in PH). Let C be an algebraic circuit of size s with integer constants that computes
f1, . . . , fm ∈ Z [x1, . . . , xn]. If the ideal I := (f1, . . . , fm) is either radical or equidimensional Cohen-Macaulay then
the complexity of testing if I is prime lies in Σp

3 ∩ Πp
3 , assuming GRH.

Proof. We first compute the dimension of I. By Theorem 2.5, there exists an AM protocol for checking if
dim I ⩾ r for any r, and since AM ⊂ ΠP

2 , the complexity of computing the dimension of I exactly lies in
PΠ

p
2 ⊂ Σp

3 ∩ Πp
3 . With the dimension at hand, we can apply Theorem 1.2 and decide whether I is prime in

PΠ
p
2 . Thus, the complexity of deciding if I is prime is in Σp

3 ∩ Πp
3 .

6 Conclusion & open problems

In this work, we proved that the ideal primality testing problem is in the third level of the polynomial
hierarchy for the natural classes of ideals comprised of radical ideals and equidimensional Cohen-Macaulay
ideals. This significantly tightens the complexity-theoretic gap for the primality testing problem for these
classes of ideals, given that the primality testing problem is already coNP-hard for such classes. Prior to
our work, the best upper bounds for testing whether a radical ideal or a zero-dimensional ideal is prime
was PSPACE, whereas for complete intersections the best upper bound was EXP.

• A common nice feature of the two classes of ideals that we studied is that any associated prime must
be a minimal prime, and therefore we avoid the issue of having to detect embedded primes. The issue
of embedded primes, which causes non-reduced behavior in ”very small” parts of our algebraic set, is
in general a very hard problem to identify (and therefore to handle). We leave it as an open question,
to detect embedded primes either ”via zeros” or algorithmically better than EXPSPACE.

• We studied the problems over the field of C (or Q). This allows us to go modulo several primes p,
leading to the application of arithmetic-geometry results over finite fields (e.g. Lang-Weil points count
and Chebotarev primes count). The ideal primality testing problem over an input field Fq, for prime
q, rules out the idea of going modulo other primes p ̸= q. This makes it an open question to extend
Koiran’s result [Koi96] to input field Fq. Similarly, our paper leaves it as an open question, to improve
ideal primality testing beyond EXPSPACE, for natural classes of ideals over an algebraically closed
field of positive characteristic. (E.g. what about the dimension ⩽ 1 case here?)
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