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Abstract12

Derandomization of blackbox identity testing reduces to extremely special circuit models. After13

a line of work, it is known that focusing on circuits with constant-depth and constantly many14

variables is enough (Agrawal,Ghosh,Saxena, STOC’18) to get to general hitting-sets and circuit15

lower bounds. This inspires us to study circuits with few variables, eg. logarithmic in the size s.16

We give the first poly(s)-time blackbox identity test for n = O(log s) variate size-s circuits17

that have poly(s)-dimensional partial derivative space; eg. depth-3 diagonal circuits (or Σ∧Σn).18

The former model is well-studied (Nisan,Wigderson, FOCS’95) but no poly(s2n)-time identity19

test was known before us. We introduce the concept of cone-closed basis isolation and prove its20

usefulness in studying log-variate circuits. It subsumes the previous notions of rank-concentration21

studied extensively in the context of ROABP models.22
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1 Introduction31

Polynomial Identity Testing (PIT) problem is to decide whether a multivariate polynomial is32

zero, where the input polynomial is given as an algebraic circuit. Algebraic circuits are the33

algebraic analog of boolean circuits that use ring operations {+,×} and computes polynomials34

(say) over a field. Since a polynomial computed by a circuit can have exponentially many35

monomials wrt the circuit size, one cannot solve PIT in polynomial time by explicitly36

expanding the polynomial. On the other hand, using circuits we can efficiently evaluate37

polynomials at any point. This helps us to get a polynomial time randomized algorithm for38

PIT by evaluating the circuit at a random point, since any non-zero polynomial evaluated39

at a random point outputs a non-zero value with high probability [10, 58, 54]. However,40

finding a deterministic polynomial time algorithm for PIT is a longstanding open question in41
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21:2 Blackbox identity testing of log-variate circuits

algebraic complexity theory. The PIT problem has been studied in two different paradigms:42

1) whitebox– allowed to see the internal structure of the circuit, and 2) blackbox– can only43

use the circuit as an oracle to evaluate at points (from a small field extension). It has44

deep connections with both circuit lower bounds [29, 31, 1, 2] and many other algorithmic45

problems [41, 4, 35, 11, 13]. For more details on PIT, see the surveys [51, 52, 55] or review46

articles [56, 42].47

Despite a lot of effort, little progress has been made on the PIT problem in general.48

However, efficient (deterministic poly-time) PIT algorithms are known for many special49

circuit models. For example, blackbox PIT for depth-2 circuits (or sparse polynomials)50

[8, 34, 39], PIT algorithms for subclasses of depth-3 circuits [33, 50, 53], subclasses of depth-451

circuits [5, 7, 46, 15, 36, 37, 45], read-once algebraic branching programs (ROABP) and52

related models [19, 6, 18, 3, 26, 25], certain types of symbolic determinants [12, 27], as well53

as non-commutative models [38, 22].54

1.1 Our results55

In the first result, we give a polynomial time blackbox PIT algorithm of log-variate depth-356

diagonal circuits Σ ∧ Σ (i.e. number of variables is logarithmic wrt circuit size). Depth-357

diagonal circuits compute a sum of power of linear polynomials. This model was first58

introduced by [51] and has since drawn significant attention of PIT research community.59

Saxena [51] first gave a polynomial time whitebox algorithm and exponential lower bound60

for this model, by introducing a duality trick. In a subsequent work Kayal [32] gave an61

alternate polynomial time whitebox algorithm for depth-3 diagonal circuits based on the62

partial derivative method, which was first introduced by [44] to prove circuit lower bounds; as,63

Σ∧Σ circuits have a low-dimension partial derivative space. However, one limitation of these64

approaches was that they depend on the characteristic of the underlying field. Later, [16]65

gave an alternative proof of duality trick which depends only on the field size (as mentioned66

in [24, Lem.4.7]) and Saptharishi [48, Chap.3] extended Kayal’s idea for large enough field.67

Although this model is very weak (it cannot even compute x1 · · ·xn efficiently), studying68

this model has proved quite fruitful. Duality trick was crucially used in the work by [23],69

where they showed that depth-3 circuits, in some sense, capture the complexity of general70

arithmetic circuits.71

Like whitebox PIT, a series of work has been done on blackbox PIT for depth-3 diagonal72

circuits. Both [6] and [19] gave two independent and different quasi-polynomial time blackbox73

PIT algorithms for this model. Later, [18] gave an sO(log log s)-time (s is the circuit size)74

blackbox PIT algorithm for this model. Mulmuley [43, 40] related depth-3 diagonal blackbox75

PIT to construction of normalization maps for the invariants of the group SLm for constant76

m. We can not give the detailed notation here and would like to refer to [40, Sec.9.3]. Despite77

a lot of effort, no polynomial time blackbox PIT for this model is known. After depth-278

circuits (or sparse polynomials), this can be thought of as the simplest model for which no79

polynomial time blackbox PIT is known. Because of its simplicity, this model is a good test80

case for generating new ideas for the PIT problem.81

Log-variate models: Now we discuss why studying PIT for log-variate models is so82

important. The PIT algorithms in current literature always try to achieve a sub-exponential83

dependence on n, the number of variables. In a recent development, [2] showed that for some84

constant c a poly(s)-time blackbox PIT for size-s degree-s and log◦c s-variate1 circuits is85

1 The function log◦c denotes c times composition of the log function. For e.g. log◦2 s = log log s.
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sufficient to completely solve PIT. Most surprisingly, they also showed that a poly(s)-time86

blackbox PIT for size-s and log? s-variate2 Σ ∧ ΣΠ circuits will ‘partially’ solve PIT (in87

quasi-polynomial time) and prove that “either E 6⊆#P/poly or VP 6=VNP” (a weaker version of88

[2, Thm.21]). For example, even a poly(s)-time blackbox PIT for size-s and (log log s)-variate89

depth-4 circuits would be tremendous progress. A similar result also holds for Σ ∧a ΣΠ(n)90

circuits, where both a and n are ‘arbitrarily small’ unbounded functions (i.e. time-complexity91

may be arbitrary in terms of both a and n), see [2, Thm.21].92

The above discussion motivates us to discover techniques and measures that are specialized93

to this low-variate regime. Many previous works are based on ‘support size of a monomial’94

as a measure for rank-concentration [6, 18, 26]. For a monomial m, its support is the set of95

variables whose exponents are positive. We investigate a ‘larger’ measure: cone-size (see96

Definition 3) which is the number of monomials that divide m (also see [14]). Using cone-size97

as a measure for rank-concentration, we give a blackbox PIT algorithm for circuit models98

with ‘low’ dimensional partial derivative space.99

I Theorem 1. Let F be a field of characteristic 0 or greater than d. Let P be a set of100

n-variate d-degree polynomials, over F, computed by circuits of bitsize s such that: ∀P ∈ P,101

the dimension of the partial derivative space of P is at most k. Then, blackbox PIT for P102

can be solved in (sdk)O(1) · (3n/ log k)O(log k) time.103

Note that for n = O(log k) = O(log sd), the above bound is poly-time and we get a104

polynomial time blackbox PIT algorithm for log-variate circuits (i.e. number of variables105

is logarithmic wrt circuit size) with low-dimensional partial derivative space. This was not106

known before our work. Prior to our work, [18] gave a (sdk)O(log log sdk)-time algorithm for107

P, using support size as the measure in the proof. Unlike our algorithm, in the log-variate108

case their algorithm remains super-polynomial time.109

In particular, diagonal depth-3 circuit is a prominent model with low partial derivative110

space. So, our method gives a polynomial time PIT algorithm for log-variate depth-3111

diagonal circuits. No poly-time blackbox PIT for this model was known before our work;112

again, sO(log log s) was the prior best [18].113

Structure of log-variate polynomials? In the second result, we investigate a struc-114

tural property of polynomials over vector spaces. For a polynomial f(x) with coefficients over115

Fk, let sp(f) be the subspace spanned by its coefficients. Informally, in rank concentration116

we try to concentrate the rank of sp(f) to the coefficients of “few” monomials. It was first117

introduced by [6]. Many works in PIT achieve rank concentration on low-support monomials,118

mainly, in the ROABP model [6, 18, 26, 25]. One way of strengthening low-support concen-119

tration is through low-cone concentration, where rank is concentrated in the low cone-size120

monomials. This concept was not used before in designing PIT algorithms. Our first result121

(Theorem 1) can be seen from this point of view. There, we developed a method to get122

polynomial time blackbox PIT for log-variate models which satisfy ‘low-cone concentration123

property’.124

We introduce the concept of cone-closed basis, a much stronger notion of concentration125

than the previous ones. We say f has a cone-closed basis, if there is a set of monomials B126

whose coefficients form a basis of sp(f) and B is closed under sub-monomials. This definition127

is motivated by a special depth-3 diagonal model, which have this property naturally (see128

Lemma 18). We prove that this notion is a strengthening of both low-support and low-cone129

2 For any positive integer s, log? s = min{i | log◦i s ≤ 1}.

ICALP 2018



21:4 Blackbox identity testing of log-variate circuits

concentration ideas (see Lemma 11). Recently, and independently, this notion of closure has130

also appeared as an ‘abstract simplicial complex’ in [21].131

In the following result, we relate cone-closed basis with ‘basis isolating weight assignment’132

(Defn.12)– another well studied concept in PIT. It was first introduced by [3] and also used133

in many other subsequent works [26, 12, 28]. Here, we show that a general polynomial134

f over Fk, when shifted by a basis isolating weight assignment [3], becomes cone-closed.135

It strengthens some previously proven properties; eg., a polynomial over Fk when shifted136

‘randomly’ becomes low-support concentrated [17, Cor.3.22] (extended version of [18]) or,137

when shifted by a basis isolating weight assignment becomes low-support concentrated [26,138

Lem.5.2].139

Notations. For any n ∈ N, [n] denotes the set of first n positive integers. By x, we denote140

(x1, . . . , xn), a tuple of n-variables. For any e = (e1, . . . , en) ∈ Nn, xe denotes the monomial141 ∏n
i=1 x

ei
i . For a polynomial f and a monomial m, coefm(f) denotes the coefficient of the142

monomialm in f . An weight assignment w on the variables x is an n-tuple (w1, . . . , wn) ∈ Nn,143

where wi is the weight assigned to the variable xi.144

I Theorem 2. Let f(x) ∈ F[x]k be an n-variate d-degree polynomial over Fk and char F = 0145

or > d. Let w = (w1, . . . , wn) ∈ Nn be a basis isolating weight assignment of f(x). Then,146

f(x + tw) := f(x1 + tw1 , . . . , xn + twn) has a cone-closed basis over F(t).147

1.2 Proof ideas148

Proof idea of Theorem 1: The proof of Theorem 1 has two steps. In the first step, we149

show that with respect to any monomial ordering (say lexicographic monomial ordering), the150

dimension k of the partial derivative space of a polynomial is lower bounded by the cone-size151

of its leading monomial. For a polynomial f ∈ F[x], the leading monomial, wrt a monomial152

ordering, is the largest monomial in the set {xe | coefxe(f) 6= 0}. So, for every nonzero P ∈ P153

there is a monomial with nonzero coefficient and cone-size ≤ k. The second step is to check154

whether the coefficients of all the monomials in P , with cone-size ≤ k, are zero. We show155

that the number of such monomials is small (Lemma 5); the number is quasi-polynomial156

in general, but, merely polynomial in the log-variate case. Next, we give a new method157

to efficiently extract a monomial of cone-size≤ k, out of a potentially exponential space of158

monomials (Lemma 4). These facts, combined with the estimates stated in Theorem 1, prove159

Corollary 6; which gives a polynomial time blackbox PIT algorithm for log-variate circuits160

with low dimensional partial derivative space.161

Next, we discuss the idea to get a polynomial time blackbox PIT algorithm for depth-3162

diagonal circuits where rank of the linear polynomials is logarithmic wrt the circuit size (see163

Definition 7 & Theorem 9). Here, the proof has two steps. First, in Lemma 8, we show how164

to efficiently reduce a low-rank depth-3 diagonal circuit to a low-variate depth-3 diagonal165

circuit while preserving nonzeroness. This we do by a Vandermonde based linear map on166

the variables. Since a depth-3 diagonal circuit has low-dimensional partial derivative space167

(i.e. polynomial wrt circuit size), we apply Corollary 6 on the low-variate depth-3 diagonal168

circuits and get Theorem 9.169

Proof idea of Theorem 2: First, wrt the weight assignment w, we define an ordering170

among the set of bases (see Section 3). Then, we show that wrt the basis isolating weight171

assignment w, there exists a unique minimum basis and its weight is strictly less than the172

weight of every other basis (Lemma 13). Let B be the set of monomials whose coefficients173

form the least basis, wrt w, of f .174
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Now, we consider the set of all sub-monomials of those in B and identify a subset A that175

is cone-closed. We define A in an algorithmic way (see Algorithm 1). Besides the cone-closed176

property, A also satisfies an algebraic property (Lemma 17)— In the transfer matrix T , that177

captures the variable-shift transformation (Equation 3), the sub-matrix TA,B is full rank.178

We prove that A is exactly a basis of the shifted f by studying the action of the shift on the179

coefficient vectors. The properties proved above and Cauchy-Binet Formula [57] are crucially180

used in the study of the coefficient vectors after the variable-shift.181

Theorem 2 has an immediate consequence that any polynomial f over Fk, when shifted182

by formal (or random) variables, becomes cone-closed; since the weight induced by the183

formal variables on the monomials is a basis isolating weight assignment. This seems quite a184

nontrivial and an interesting property of general polynomials (over vector spaces).185

2 Low-cone concentration and hitting-sets– Proof of Theorem 1186

In this section we initiate a study of properties that are relevant for low-variate circuits (or187

the log-variate regime).188

Notations. For a circuit C, |C| denotes the size of C. For a monomial m, by coefm(C), we189

denote the coefficient of monomial m in the polynomial computed by C. For a circuit C, we190

also use C to denote the polynomial computed by C.191

I Definition 3 (Cone of a monomial). A monomial xe is called a sub-monomial of xf , if192

e ≤ f (i.e. coordinate-wise). We say that xe is a proper sub-monomial of xf , if e ≤ f and193

e 6= f .194

For a monomial xe, the cone of xe is the set of all sub-monomials of xe. The cardinality of195

this set is called cone-size of xe. It equals
∏

(e + 1) :=
∏
i∈[n](ei+1), where e = (e1, . . . , en).196

A set S of monomials is called cone-closed if for every monomial in S all its sub-monomials197

are also in S.198

I Lemma 4 (Coef. extraction). Let C be a blackbox circuit which computes an n-variate and199

degree-d polynomial over a field of size greater than d. Then for any monomial m =
∏
i∈[n] x

ei
i ,200

we have a poly(|C|d, cs(m))-time algorithm to compute the coefficient of m in C, where cs(m)201

denotes the cone-size of m.202

Proof. Our proof is in two steps. First, we inductively build a circuit computing a polynomial203

which has two parts; one is coefm(C) ·m and the other one is a “junk” polynomial where204

every monomial is a proper super-monomial of m. Second, we construct a circuit which205

extracts the coefficient of m. In both these steps the key is a classic interpolation trick.206

We induct on the variables. For each i ∈ [n], let m[i] denote
∏
j∈[i] x

ej

j . We will construct207

a circuit C(i) which computes a polynomial of the form,208

C(i)(x) = coefm[i](C) ·m[i] + C
(i)
junk (1)209

where, for every monomial m′ in the support of C(i)
junk, m[i] is a proper submonomial of m′[i].210

Base case: Since C =: C(0) computes an n-variate degree-d polynomial, C(x) can be
written as C(x) =

∑d
j=0 cjx

j
1 where, cj ∈ F[x2, . . . , xn]. Let α0, . . . , αe1 be some e1 + 1

distinct elements in F. For every αj , let Cαjx1 denote the circuit C(αjx1, x2, . . . , xn) which
computes c0 + c1αjx1 + . . .+ ce1α

e1
j x

e1
1 + · · ·+ cdα

d
jx
d
1 . Since

M =

1 α0 . . . αe1
0

...
...

...
...

1 αe1 . . . αe1
e1



ICALP 2018



21:6 Blackbox identity testing of log-variate circuits

is an invertible Vandermonde matrix, one can find an a = [a0, . . . , ae1 ] ∈ Fe1+1, a ·M =211

[ 0, 0, . . . , 1] . Using this a, we get the circuit C(1) :=
∑e1
j=0 ajC

(0)
αjx1 . Its least monomial212

wrt x1 has degx1 ≥ e1, which is the property that we wanted.213

Induction step (i→ i+ 1): From induction hypothesis, we have the circuit C(i) with the214

properties mentioned in Eqn.1. The polynomial can also be written as b0 + b1xi+1 + . . .+215

bei+1x
ei+1
i+1 + . . . bdx

d
i+1 , where every bj is in F[x1, . . . , xi, xi+2, . . . , xn]. Like the proof of the216

base case, for ei+1 + 1 distinct elements α0, . . . , αei+1 ∈ F, we get C(i+1) =
∑ei+1
j=0 ajC

(i)
αjxi+1 ,217

for some a = [a0, . . . , aei+1 ] ∈ Fei+1+1 and the structural constraint of C(i+1) is easy to verify,218

completing the induction.219

Now we describe the second step of the proof. After first step, we get

C(n)(x) = coefm(C) ·m + C
(n)
junk ,

where for every monomial m′ in the support of C(n)
junk , m is a proper submonomial of m′.220

Consider the polynomial C(n)(x1t, . . . , xnt) for a fresh variable t. Then, using interpolation221

wrt t we can construct a O(|C(n)| ·d)-size circuit for coefm(C) ·m, by extracting the coefficient222

of tdeg(m), since the degree of every monomial appearing in C(n)
junk is > deg(m). Now evaluating223

at 1, we get coefm(C). The size, or time, constraint of the final circuit clearly depends224

polynomially on |C|, d and cs(m). J225

But, how many low-cone monomials can there be? Fortunately, in the log-variate regime226

they are not too many [47]. Though, in general, they are quasi-polynomially many.227

I Lemma 5 (Counting low-cones). The number of n-variate monomials with cone-size at228

most k is O(rk2), where r := (3n/ log k)log k
.229

Proof. First, we prove that for any fixed support set, the number of cone-size ≤ k monomials230

is less than k2. Next, we multiply by the number of possible support sets to get the estimate.231

Let T (k, `) denote the number of cone-size≤ k monomials m with support set, say, exactly232

{x1, . . . , x`}. Since the exponent of x` in such an m is at least 1 and at most k − 1, we have233

the following by the disjoint-sum rule: T (k, `) ≤
∑k
i=2 T (k/i, `− 1). This recurrence affords234

an easy inductive proof as, T (k, `) <
∑k
i=2(k/i)2 < k2 ·

∑k
i=2

(
1
i−1 −

1
i

)
< k2.235

From the definition of cone, a cone-size ≤ k monomial can have support size at most236

` := blog kc. The number of possible support sets, thus, is
∑`
i=0
(
n
i

)
. Using the binomial237

estimates [30, Chapter 1], we get
∑`
i=0
(
n
i

)
≤ (3n/`)`. J238

The partial derivative space of polynomials was first used by Nisan and Wigderson [44]239

to prove circuit lower bounds. Later, it was used in many other works. For more details see240

the following surveys [9, 49]. Here, using cone-size as a measure, we describe a blackbox PIT241

algorithm for circuits models with low dimensional partial derivative space. This algorithm242

runs in polynomial time when we are in log-variate regime. For a polynomial f(x) ∈ F[x], by243

∂x<∞(f) we denote the space generated all partial derivatives of f .244

Proof of Theorem 1. The proof has two steps. First, we show that with respect to any245

monomial ordering ≺ (say lexicographic monomial ordering), for all nonzero P ∈ P, the246

dimension of the partial derivative space of P is lower bounded by the cone-size of the247

leading monomial in P . Using this, we can get a blackbox PIT algorithm for P by testing248

the coefficients of all the monomials of P of cone-size ≤ k for zeroness. Next, we analyze the249

time complexity to do this.250
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The first part is the same as the proof of [14, Corollary 4.14] (with origins in [20]). Here,251

we give a brief outline. Let LM(·) be the leading monomial operator wrt the monomial252

ordering ≺. It can be shown that for any polynomial f(x), the dimension of its partial253

derivative space ∂x<∞(f) is the same as D := # {LM(g) | g ∈ ∂x<∞(f)} (see [14, Lemma254

8.4.12]). This means that dim ∂x<∞(f) is lower-bounded by the cone-size of LM(f) [14,255

Corollary 8.4.13], which completes the proof of our first part.256

Next, we apply Lemma 4, on the circuit of P and a monomial m of cone-size ≤ k, to get257

the coefficient of m in C in poly(sdk)-time. Finally, Lemma 5 tells that we have to access at258

most k2 · (3n/ log k)log k many monomials m. Multiplying these two expressions gives us the259

time bound. J260

This gives us immediately,261

I Corollary 6. Let F be a field of characteristic 0 or > d. Let P be a set of n-variate d-degree262

polynomials, over F, computable by circuits of bitsize s; with n = O(log sd). Suppose that,263

for all P ∈ P, the dimension of the partial derivative space of P is poly(sd). Then, blackbox264

PIT for P can be solved in poly(sd)-time.265

Now we discuss our result regarding depth-3 diagonal circuits Σ ∧ Σ.266

I Definition 7 (Depth-3 diagonal circuit and its rank). A depth-3 diagonal circuit is of the267

form Σ ∧ Σ (sum-power-sum). It computes a polynomial presented as C(x) =
∑
i∈[k] ci`

di
i ,268

where `i’s are linear polynomials over F and ci’s in F.269

By rk(C) we denote the linear rank of the polynomials {`i}i∈[k].270

The next lemma introduces an efficient nonzeroness preserving variable reduction map271

(n 7→ rk(C)) for depth-3 diagonal circuits. For a set of n-variate circuits C over F, a polynomial272

map Ψ : Fm → Fn is called nonzeroness preserving variable reduction map for C, if m < n273

and for all C ∈ C, C 6= 0 if and only if Ψ(C) 6= 0.274

I Lemma 8 (Variable reduction). Let P (x) be an n-variate d-degree polynomial computed275

by a size-s depth-3 diagonal circuit over some sufficiently large field F. Then, there exists a276

poly(nds)-time computable nonzeroness preserving variable reduction map which converts277

P to another rk(P )-variate degree-d polynomial computed by poly(s)-size depth-3 diagonal278

circuit.279

For proof, see the full version linked on the first page.280

I Theorem 9 (Log-rank Σ ∧ Σ). Let F be a field of characteristic 0 or > d. Let P be the281

set of n-variate d-degree polynomials P , computable by depth-3 diagonal circuits of bitsize s,282

with rk(P ) = O(log sd). Then, blackbox PIT for P can be solved in poly(sd)-time.283

Proof. The above description gives us a non-zeroness preserving variable reduction (n 7→284

rk(P )) method that reduces P to an O(log(sd))-variate and degree-d polynomial P ′ computed285

by poly(s)-size depth-3 diagonal circuit.286

Since the dimension of the partial derivative space of P ′ is poly(sd) [14, Lem.8.4.8],287

Corollary 6 gives us a poly(sd)-time hitting-set for P ′. J288

3 Cone-closed basis after shifting– Proof of Theorem 2289

In this section we will consider polynomials over a vector space, say Fk. This viewpoint290

has been useful in studying algebraic branching programs (ABP), eg. [6, 18, 3, 26]. Let291

D ∈ Fk[x] and let sp(D) be the vector space spanned by its coefficients. Now, we formally292

define various kinds of rank concentrations of D.293

ICALP 2018



21:8 Blackbox identity testing of log-variate circuits

I Definition 10 (Rank Concentration). We say that D has a294

1. cone-closed basis if there is a cone-closed set of monomials B (see Definition 3) whose295

coefficients in D form a basis of sp(D).296

2. `-support concentration, if there is a set of monomials B with support size less than `297

whose coefficients form a basis of sp(D).298

3. `-cone concentration, if there is a set of monomials B with cone size less than ` (see299

Definition 3) whose coefficients form a basis of sp(D).300

In the next lemma, we show that cone-closed basis notion subsumes the other two notions.301

I Lemma 11. Let D(x) be a polynomial in Fk[x]. Suppose that D(x) has a cone-closed302

basis. Then, D(x) has (k + 1)-cone concentration and (lg 2k)-support concentration.303

Proof. Let B be a cone-closed set of monomials forming the basis of sp(D). Clearly, |B| ≤ k.304

Thus, each m ∈ B has cone-size ≤ k. In other words, D is (k + 1)-cone concentrated.305

Moreover, each m ∈ B has support-size ≤ lg k. In other words, D is (lg 2k)-support306

concentrated. J307

Next, we define the notions which will be used in the proof of Theorem 2.308

Basis & weights. Consider a weight assignment w = (w1, . . . , wn) ∈ Nn on the variables309

x = (x1, . . . , xn). It extends to monomials m = xe as w(m) := 〈e,w〉 =
∑n
i=1 eiwi.310

Sometimes, we also use w(e) to denote w(m). Similarly, for a set of monomials B, the weight311

of B is w(B) :=
∑
m∈B w(m).312

Let B = {m1, . . . ,m`} resp. B′ = {m′1, . . . ,m′`} be an ordered set of monomials (non-313

decreasing wrt w) that forms a basis of the span of coefficients of f ∈ Fk[x]. Let w be a314

weight assignment on the variables. We say that B < B′ wrt w, if there exists i ∈ [`] such315

that ∀j < i, w(mj) = w(m′j) but w(mi) < w(m′i).316

We say that B ≤ B′ if either B < B′ or if ∀i ∈ [`], w(mi) ≤ w(m′i). A basis B is called317

a least basis, if for any other basis B′, B ≤ B′. Next, we describe a condition on w such that318

least basis will be unique.319

I Definition 12. (Basis Isolating Weight Assignment [3, Defn.5]). A weight assignment w320

is called a basis isolating weight assignment for a polynomial f(x) ∈ Fk[x] if there exists a321

set of monomials B such that:322

1. the coefficients of the monomials in B form a basis for sp(f),323

2. weights of all monomials in B are distinct, and324

3. the coefficient of every m ∈ supp(f) \ B is in the linear span of {coefm′(f) | m′ ∈ B,325

w(m′) < w(m)}.326

I Lemma 13. If w is a basis isolating weight assignment for f ∈ Fk[x], then f has a unique327

least basis B wrt w. In particular, for any other basis B′ of f , we have w(B) < w(B′).328

For proof, see the full version linked on the first page. Next, we want to study the effect of329

shifting f by a basis isolating weight assignment. To do that we require an elaborate notation.330

As before f(x) is a n-variate and degree-d polynomial over Fk. For a weight assignment331

w, by f(x + tw) we denote the polynomial f(x1 + tw1 , . . . , xn + twn). For a = (a1, . . . , an)332

and b = (b1, . . . , bn) in Nn,
(a

b
)
denotes

∏n
i=1
(
ai

bi

)
, where

(
ai

bi

)
= 1 for bi = 0 and

(
ai

bi

)
= 0333

for ai < bi. Let Mn,d = {a ∈ Nn : |a|1 ≤ d} corresponds to the set of all n-variate d-degree334

monomials. For every a ∈ Mn,d, coefxa(f(x + tw)) can be expanded using the binomial335

expansion, and we get:336 ∑
b∈Mn,d

(
b
a

)
· tw(b)−w(a) · coefxb(f(x)) . (2)337
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We express this data in matrix form as338

F ′ = D−1TD · F, (3)339

where the matrices involved are,340

1. F and F ′: rows are indexed by the elements of Mn,d and columns are indexed by [k]. In341

F resp. F ′ the a-th row is coefxa(f(x)) resp. coefxa(f(x + tw)).342

2. D: is a diagonal matrix with both the rows and columns indexed by Mn,d. For a ∈Mn,d,343

Da,a := tw(xa) .344

3. T : both the rows and columns are indexed by Mn,d. For a,b ∈Mn,d, Ta,b :=
(b

a
)
. It is345

known as transfer matrix.346

We will prove the following combinatorial property of T : For any B ⊆Mn,d, there is a347

cone-closed A ⊆Mn,d such that the submatrix TA,B has full rank. Our proof is an involved348

double-induction, so we describe the construction of A as Algorithm 1.349

Algorithm 1 Finding cone-closed set
Input: A subset B of the n-tuples M .
Output: A cone-closed A ⊆M with full rank TA,B .
function Find-Cone-closed(B, n)

if n = 1 then
s← |B|;

return {0. . . . , s− 1};
else

Let πn be the map which projects the set of monomials B on the first n−1 variables;
Let ` be the maximum number of preimages under πn;
∀i ∈ [`], Fi collects those elements in Img(πn) whose preimage size≥ i;
A0 ← ∅;
for i← 1 to ` do

Si ← Find-Cone-closed(Fi, n− 1);
Ai ← Ai−1

⋃(
Si × {i− 1}

)
;

end for
return A;

end if
end function

I Lemma 14 (Comparison). Let B and B′ be two nonempty subsets of M such that B ⊆ B′.350

Let A = Find-Cone-closed(B,n) and A′ = Find-Cone-closed(B′, n) in Algorithm 1.351

Then A ⊆ A′.352

I Lemma 15 (Closure). Let B be a nonempty subset of M . If A = Find-Cone-closed(B,n)353

in Algorithm 1, then A is cone-closed. Moreover, |A| = |B|.354

For proofs of the above two lemmas, see the full version linked on the first page. Next,355

we recall a fact that has been used for ROABP PIT.356

I Lemma 16. [25, Claim 3.3] Let a1, . . . , an be distinct non-negative integers and char F = 0357

or greater than the maximum of all ais. Let A be an n×n matrix with, i, j ∈ [n], Ai,j :=
(
aj

i−1
)
.358

Then, A is full rank.359
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In the following lemma, we prove that the sub-matrix TA,B has full rank, where B ⊆Mn,d360

and A is the output of Algorithm 1 on input A. It requires char F = 0 or greater than d.361

I Lemma 17 (Full rank). If A = Find-Cone-Closed(B,n), then TA,B has full rank.362

Proof. The proof will be by double-induction– outer induction on n and an inner induction363

on iteration i of the ‘for’ loop (Algorithm 1).364

Base case: For n = 1, the claim is true due to Lemma 16.365

Induction step (n−1→ n): To show TA,B full rank, we prove that for any vector b ∈ F|B|:366

if TA,B · b = 0 then b = 0. For this we show that the following invariant holds at the end of367

each iteration i of the ‘for’ loop (Algorithm 1). Here, we assume the coordinates of b are368

indexed by the elements of B and for all f ∈ B, bf denotes the value of b at coordinate f .369

Invariant (n-variate & i-th iteration): For each f ∈ B such that the preimage size of370

πn(f) is at most i, the product TAi,B · b = 0 implies that bf = 0. Here,371

At the end of iteration i = 1, we have the vector TA1,B · b. Recall that A1 = S1 × {0}372

and F1 = πn(B). So TA1,B · b = TS1,F1 · c, where c ∈ F|F1| and for e ∈ F1, ce :=373 ∑
(e,k) ∈ π−1

n (e)
(
k
0
)
b(e,k). Thus, TA1,B · b = 0 implies TS1,F1 · c = 0. Since S1 = Find-Cone-374

closed(F1, n− 1), using induction hypothesis, we get that c = 0. This means that for e ∈ B375

such that the preimage size of πn(e) is at most 1, we have ce = 0. This proves our invariant376

at the end of the iteration i = 1.377

(i − 1 → i): Suppose that at the end of (i − 1)-th iteration, the invariant holds. We378

show that it also holds at the end of the i-th iteration. For each j ∈ [i], let vj denote the379

projection of TAi,B ·b on the coordinates indexed by Sj ×{j−1}. By focusing on the rows of380

TAj ,B , we can see that vj = TSj ,F1 · cj where the vector cj ∈ F|F1| is defined as, for e ∈ F1,381

cje :=
∑

(e,k) ∈ π−1
n (e)

(
k

j − 1

)
· b(e,k) . (4)382

Suppose that TAi,B · b = 0. Because of the invariant at i − 1th round, for all f ∈ B with383

preimage size of πn(f) is less than i, bf = 0. So all we have to argue is that for every f ∈ B384

such that the preimage size of e := πn(f) is i, the coordinate bf = 0.385

To prove our goal, first we show that each cj is a zero vector. Since TAi,B · b = 0, its386

projection vj = TSj ,F1 · cj is zero too. By induction hypothesis (on i− 1), for each e ∈ F1387

with preimage size < i, the coordinate cje = 0. Thus, the vector TSj ,F1 · cj = TSj ,Fj
· c′j388

where the vector c′j ∈ F|Fj | is defined as, for e ∈ Fj , c′je := cje. Consequently, TSj ,Fj · c′j = 0,389

for j ∈ [i]. By induction hypothesis (on n− 1), we know that TSj ,Fj
is full rank. So c′j = 0,390

which tells us that cj = 0, for j ∈ [i].391

Fix an e ∈ F1, with preimage size = i, and let the preimages be {(e, k1), . . . , (e, ki)}392

where kj ’s are distinct nonnegative integers. From Equation 4, we can write393 
c1e
c2e
...

cie

 =


(
k1
0
) (

k2
0
)

. . .
(
ki

0
)(

k1
1
) (

k2
1
)

. . .
(
ki

1
)

...
... . . .

...(
k1
i−1
) (

k2
i−1
)

. . .
(
ki

i−1
)
 ·


b(e,k1)
b(e,k2)

...
b(e,ki)

 .394

Since for each j ∈ [i], cj is a zero vector, from the above equation we get395 
0
0
...
0

 =


(
k1
0
) (

k2
0
)

. . .
(
ki

0
)(

k1
1
) (

k2
1
)

. . .
(
ki

1
)

...
... . . .

...(
k1
i−1
) (

k2
i−1
)

. . .
(
ki

i−1
)
 ·


b(e,k1)
b(e,k2)

...
b(e,ki)

 .396
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Now invoking Lemma 16, we get b(e,kj) = 0 for all j ∈ [i]. In other words, for any f ∈ B397

such that the preimage size of πn(f) is i, the coordinate bf = 0.398

(i = `): Since A = A`, the output of Find-Cone-closed(B,n), using our invariant at399

the end of `-th iteration we deduce that TA,B · b = 0 implies b = 0. Thus, TA,B has full400

rank. J401

Now we are ready to prove our main theorem using the transfer matrix equation.402

Proof of Theorem 2. As we mentioned in Equation 2, the shifted polynomial f(x + tw)403

yields a matrix equation F ′ = D−1TD ·F . Let k′ be the rank of F . We consider the following404

two cases.405

Case 1 (k′ < k): We reduce this case to the other one where k′ = k. Let S be a406

subset of k′ columns such that FM,S has rank k′. The matrix FM,S denotes the polynomial407

fS(x) ∈ F[x]k′ , where fS(x) is the projection of the ‘vector’ f(x) on the coordinates indexed408

by S. So, any linear dependence relation among the coefficients of f(x) is also valid for fS(x).409

So w is also a basis isolating weight assignment for fS(x). Now from our Case 2, we can claim410

that fS(x + tw) has a cone-closed basis A. Thus, coefficients of the monomials, corresponding411

to A, in f(x) form a basis of sp(f). This implies that f(x + tw) has a cone-closed basis A.412

Case 2 (k′ = k): Let B be the least basis of f(x) wrt w and A = Find-Cone-
closed(B,n). We prove that the coefficients of monomials in A form a basis of the coefficient
space of f(x + tw). To prove this, we show that det(F ′A,[k]) 6= 0. Define T ′ := TDF so that
F ′ = D−1T ′. Using Cauchy-Binet formula [57], we get that

det(F ′A,[k]) =
∑

C∈(M
k )

det(D−1
A,C) · det(T ′C,[k]) .

Since for all C ∈
(
M
k

)
\ {A}, the matrix D−1

A,C is singular, we have det(F ′A,[k]) = det(D−1
A,A) ·

det(T ′A,[k]). Again applying Cauchy-Binet formula for det(T ′A,[k]), we get

det(F ′A,[k]) = det(D−1
A,A) ·

∑
C∈(M

k )
tw(C) det(TA,C) · det(FC,[k]) .

From Lemma 13, we have that for all basis C ∈
(
M
k

)
\ {B}, w(C) > w(B). The matrix413

TA,B is nonsingular by Lemma 17, and the other one FB,[k] is nonsingular since B is a basis.414

Hence, the sum is a nonzero polynomial in t. In particular, det(F ′A,[k]) 6= 0, which ensures415

that the coefficients of the monomials corresponding to A form a basis of spF(t)(f(x + tw)).416

Since Lemma 15 says that A is also cone-closed, we get that f(x + tw) has a cone-closed417

basis. J418

3.1 Models with a cone-closed basis419

We give a simple proof showing that a typical diagonal depth-3 circuit is already cone-closed.420

Consider the polynomial D(x) = (1 + a1x1 + . . .+ anxn)d in Fk[x], where Fk is seen as an421

F-algebra with coordinate-wise multiplication.422

I Lemma 18. D(x) has a cone-closed basis.423

Proof. Consider the n-tuple L := (a1, . . . ,an). Then for every monomial xe, the coefficient424

of xe in D is Le :=
∏n
i=1 aei

i , with some nonzero scalar factor (note: here we seem to425

need char(F) zero or large). We ignore this constant factor, since it does not affect linear426

dependence relations. Consider deg-lex monomial ordering, i.e. first order the monomials by427
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lower to higher total degree, then within each degree arrange them according to a lexicographic428

order. Now we prove that the ‘least basis’ of D(x) with respect to this monomial ordering is429

cone-closed.430

We incrementally devise a monomial set B as follows: Arrange all the monomials in431

ascending order. Starting from least monomial, put a monomial in B if its coefficient432

cannot be written as a linear combination of its previous (thus, smaller) monomials. From433

construction, the coefficients of monomials in B form the least basis for the coefficient space434

of D(x). Now we show that B is cone-closed. We prove it by contradiction.435

Let xf ∈ B and let xe be its submonomial that is not in B. Then we can write

Le =
∑

xb≺xe

cbL
b with cb’s in F .

Multiplying by Lf−e on both sides, we get

Lf =
∑

xb≺xe

cbL
b+f−e =

∑
xb′≺xf

c′b′L
b′ .

Note that xb′ ≺ xf holds true by the way a monomial ordering is defined. This equation436

contradicts the fact that xf ∈ B, and completes the proof. J437

4 Conclusion438

Since it is known that one could focus solely on the PIT of VP circuits that depend only on439

the first o(log s) variables, we initiate a study of properties that are useful in that regime.440

These properties are– low-cone concentration and cone-closed basis. Their usefulness is441

proved in our monomial counting and coefficient extraction results. Using these concepts we442

solve an interesting special case of diagonal depth-3 circuits.443

An open question is to make our approach work for field characteristic smaller than the444

degree. Another interesting problem is to employ the cone-closed basis properties of the445

Σ ∧ Σn model to devise a poly-time blackbox PIT for general n.446

In our second result, we proved that after shifting the variables by a basis isolating447

weight assignment, a polynomial has a cone-closed basis. Basis isolating weight assignment448

is much weaker than the one induced by lexicographic monomial ordering (or the Kronecker449

map). An interesting open question is to efficiently design a weight assignment (or, in450

general, polynomial map) that ensures a cone closed basis. Till now, no known blackbox PIT451

algorithm for ROABPs gives a polynomial time blackbox PIT algorithm for log (or sub-log)452

variate ROABPs. So, achieving cone-closed basis or low-cone concentration property (in453

polynomial time) for log (or sub-log) variate ROABPs is also interesting; then, the counting454

& extraction techniques developed in our first result will give a polynomial time blackbox455

PIT. This will solve some open problems posed in [2, Sec.6].456
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