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Abstract We consider the problem of recovering (that is, interpolating) and identity
testing of a “hidden” monic polynomial f , given an oracle access to f (x)e for x ∈ Fq ,
where Fq is finite field of q elements (extension fields access is not permitted). The
naive interpolation algorithm needs O(e deg f ) queries and thus requires e deg f <

q. We design algorithms that are asymptotically better in certain cases; requiring
only eo(1) queries to the oracle. In the randomized (and quantum) setting, we give a
substantially better interpolation algorithm, that requires only O(deg f log q) queries.
Such results have been known before only for the special case of a linear f , called
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the hidden shifted power problem. We use techniques from algebra, such as effective
versions of Hilbert’s Nullstellensatz, and analytic number theory, such as results on
the distribution of rational functions in subgroups and character sum estimates.

Keywords Hidden polynomial power · Black-box interpolation · Nullstellensatz ·
Rational function · Deterministic algorithm · Randomised algorithm · Quantum
algorithm

Mathematics Subject Classification 11T06 · 11Y16 · 68Q12 · 68Q25

1 Introduction

1.1 Background and Previous Results

LetFq be thefinitefield ofq elements.Hereweconsider several problemsof recovering
and identity testing of a “hidden” monic polynomial f ∈ Fq [X ], givenOe, f an oracle
that on every input x ∈ Fq outputs Oe, f (x) = f (x)e for some large positive integer
e | q − 1.

More precisely, we consider the following problem Interpolation from Powers:

given an oracleOe, f for some unknown monic polynomial f ∈ Fq [X ], recover
f .

We also consider the following two versions of the Identity Testing from Powers:

given an oracle Oe, f for some unknown monic polynomial f ∈ Fq [X ] and
another known polynomial g ∈ Fq [X ], decide whether f = g,

and

given two oracles Oe, f and Oe,g for some unknown monic polynomials f, g ∈
Fq [X ], decide whether f = g.

In particular, for a linear polynomial f (X) = X + s, with a ‘hidden’ s ∈ Fq , we
denote Oe, f = Oe,s . We remark that in this case there are two naive algorithms that
work for linear polynomials:

• One can query Oe,s at e + 1 arbitrary points and then using a fast interpolation
algorithm, see [25], get a deterministic algorithm of complexity e(log q)O(1) (as
in [25], wemeasure the complexity of an algorithm by the number of bit operations
in the standard RAM model).

• For probabilistic testingone canqueryOe,s (andOe,t ) at randomly chosen elements
x ∈ Fq until the desired level of confidence is achieved (note that the equation
(x + s)e = (x + t)e has at most e solutions x ∈ Fq ).

These naive algorithms have been improved by Bourgain, Garaev, Konyagin and
Shparlinski [5] in several cases (with respect to both the time complexity and the
number of queries).

For non-linear monic polynomials f ∈ Fp[X ] and a prime p, some classical and
quantum algorithms for polynomial interpolation, given an oracle oracles Oe, f , with
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e = (p − 1)/2, have been presented by Russell and Shparlinski [16]. We remark that
querring O(p−1)/2, f , is equivalent to asking for the quadratic character of f (x). In
particular, by [16, Theorem 6], for a fixed d and a sufficiently large prime p, given
such an oracle, one can reconstruct a monic polynomial f of degree d in time pd + o(1).
Note that the search space is of size O(pd + o(1)) and a naive application of the Weil
bound leads to an algorithm that runs in time pd + 1/2+ o(1), see the discussion in [16,
Section 1]. It is also shown in [16, Theorem 6] that the quantum query complexity is at
most cd for an absolute constant c, however no nontrivial quantum complexity bounds
are known for non-linear polynomials. On the other hand, for linear polynomials X+s,
Dam, Hallgren and Ip [24] provide a quantum polynomial time algorithm to find s,
see also [23].

The above questions appear naturally in understanding the pseudorandomness of

the Legendre symbol
(

f (x)
p

)
. In particular, this has applications in the cryptanalysis

of certain homomorphic cryptosystems. See [2,3,9,15] for further details.

1.2 New Results

Here we concentrate on the case of small and medium values of e (in particular,
this is different from the scenario of [16]) and consider both classical and quantum
algorithms. In particular, we extend the results of [5, Section 3.3] to arbitrary monic
polynomials f ∈ Fp[X ] for a prime p. These deterministic algorithms are very simple
are based on a straightforward search. The proofs of correctness are however more
difficult. They are based on quite involved estimates on the size of the product sets and
subgroups generated by samples of values of rational functions on several consecutive
integers.

In Sect. 4 we also indicate how one can obtain similar results in the case finite fields
of small characteristic. However the case of arbitrary finite fields remains open.

We also observe that the above naive interpolation and random sampling algorithms
both fail if e deg f > q. Indeed, note that queries from an extension field are not
permitted, and Fq may not have enough elements to make these algorithms correct.

Further, we also consider quantum and randomised algorithms. We emphasise that
in the case of quantum algorithms, our setting is quite different from those of [16,
23,24] as we do not assume that the values of f are given by a quantum oracle,
rather the algorithm works with the classical oracleOe, f . These algorithms are based
on that initially we query the oracle for a sufficiently large set of points and then
combine a quantum or classical search over all the eth roots of the returned values
with interpolation. We also discuss the possibility of derandomisation in Sect. 3.5.

Note that the above questions are closely related to the general problem of oracle
(also sometimes called “black-box”) polynomial interpolation and identity testing for
arbitrary polynomials (though forbidding the use of extensions of the ground field
makes the problems harder), see [17,18,22] and the references therein.

1.3 Notation

Throughout the paper, any implied constants in the symbols O , � and � may
occasionally, where obvious, depend on the degree d of the polynomial f (and, occa-
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sionally, on an integer parameter ν which appears in our arguments), and are absolute
otherwise. We recall that the notations U = O(V ), U � V and V � U are all
equivalent to the statement that the inequality |U | ≤ cV holds with some constant
c > 0.

2 Identity Testing on Classical Computers

2.1 Main Results

Here we consider the identity testing case of two unknown monic polynomials f, g ∈
Fq [X ] of degree d given the oracles Oe, f and Oe,g . We remark that if f/g is an
(q − 1)/e-th power of a nonconstant rational function over Fq then it is impossible
to distinguish between f and g from the oracles Oe, f and Oe,g . We write f ∼e g in
this case, and f �e g otherwise.

We note that it is shown in the proof of [16, Theorem 6] that the Weil bound of
multiplicative character sums (see [13, Theorem 11.23]) implies that given two oracles
Oe, f andOe,g for some unknown monic polynomials f, g ∈ Fq [X ] with f �e g one
can decide whether f = g in time q1/2+o(1). Note that the result of [16] is stated
only for prime fields Fp but it can be extended to arbitrary fields at the cost of only
typographical changes. The same holds for the results of Sect. 3 but the results of
Sect. 2 hold only for prime fields.

For “small” values of e, over prime fields Fp, we have a stronger result.

Theorem 1 (Small e) For a prime p and a positive integer e | p − 1, with e ≤ pδ

for some fixed δ > 0, given two oracles Oe, f and Oe,g for some unknown monic
polynomials f, g ∈ Fp[X ] of degree d with f �e g, there is a deterministic algorithm

to decide whether f = g in at most ec0δ
1/(2d)

queries to the oracles Oe, f and Oe,g,
where c0 is an absolute constant.

We note that taking d = 1 in Theorem 1 we obtain a stronger version of [5,
Theorem 51] with δ1/2 instead of δ1/3. This is due to the use of a stronger version of
Hilbert’s Nullstellensatz given by D’Andrea et al. [10], see Lemma 3 below.

For intermediate values of e, the following result complements both Theorem 1
and the result of [16]. We, however, have to assume that the polynomials f and g are
irreducible.

Theorem 2 (Medium e) For a prime p and a positive integer e | p−1, with e ≤ pη−δ

for some fixed δ > 0, given two oracles Oe, f and Oe,g for some unknown monic
irreducible polynomials f, g ∈ Fp[X ] of degree d ≥ 1 with f �e g, there is a
deterministic algorithm to decide whether f = g in at most eκ + δ queries to the
oracles Oe, f and Oe,g, where

η = 4d − 1

4d2(d + 1)2
and κ = 2d

4d − 1
.

The proofs of Theorems 1 and 2 are given below in Sects. 2.5 and 2.6, respectively.
The underlying algorithms are quite simple and based on querring the oracles Oe, f
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and Oe,g on a short sequences of consecutive elements x = 1, . . . , h and comparing
the outputs.

In particular, we see from Theorem 1 that for a fixed d and e → ∞ if e = po(1)

then we can test whether f = g in time eo(1)(log p)O(1) in eo(1) oracle calls.

2.2 Background from Arithmetic Algebraic Geometry

Our argument makes use of a slight modification of [5, Lemma 23]. It is based on
a quantitative version of effective Hilbert’s Nullstellensatz given by D’Andrea et al.
[10], which improved the previous estimates due to Krick, Pardo and Sombra [14].

As usual, we define the logarithmic height of a nonzero polynomial P ∈
Z[Z1, . . . , Zn] as the maximum natural logarithm of the largest (by absolute value)
coefficient of P .

The next statement is a simplified form of [10, Theorem 2].

Lemma 3 Let P1, . . . , PN ∈ Z[Z1, . . . , Zn] be N ≥ 2 polynomials in n variables of
degree at most D ≥ 3 and of logarithmic height at most H and let R ∈ Z[Z1, . . . , Zn]
be a polynomial in n variables of degree at most d ≥ 3 and of logarithmic height at
most h such that R vanishes on the variety

P1(Z1, . . . , Zn) = . . . = PN (Z1, . . . , Zn) = 0.

There are polynomials Q1, . . . , QN ∈ Z[Z1, . . . , Zn] and positive integers A and r
with

log A ≤ 2(n + 1)dDnH + 3Dn + 1h + C(d, D, n, N ),

such that

P1Q1 + . . . + PN QN = ARr ,

where C(d, D, n, N ) depends only on d, D, n and N.

We now define the logarithmic height of an algebraic number α 
= 0 as the loga-
rithmic height of its minimal polynomial.

We need a slightly more general form of a result of Chang [6]. In fact, this is
exactly the statement that is established in the proof of [6, Lemma 2.14], see [6,
Equation (2.15)].

Lemma 4 Let P1, . . . , PN , R ∈ Z[Z1, . . . , Zn] be N + 1 ≥ 2 polynomials in n
variables of degree at most D and of logarithmic height at most H ≥ 1. If the zero-set

P1(Z1, . . . , Zn) = . . . = PN (Z1, . . . , Zn) = 0 and R(Z1, . . . , Zn) 
= 0

is not empty then it has a point (β1, . . . , βn) in an extensionK ofQ of degree [K : Q] ≤
C1(D, n) such that its logarithmic height is at most C2(D, n, N )H, where C1(D, n)

depends only on D, n and C2(D, n, N ) depends only on D, n and N.
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2.3 Product Sets in Number Fields

For a set A in an arbitrary semi-group, we use A(ν) to denote the ν-fold product set,
that is

A(ν) = {a1 . . . aν : a1, . . . , aν ∈ A}.

We recall the following result given in [5, Lemma 29] (see also [4, Corollary 3] for
the case of field of rational numbers).

Lemma 5 Let K be a finite extension of Q of degree D = [K : Q]. Let C ⊆ K be a
finite set with elements of logarithmic height at most H ≥ 2. Then we have

#C(ν) > exp

(
−c(D, ν)

H√
log H

)
(#C)ν,

where c(D, ν) depends only on D and ν.

2.4 Product Sets of Consecutive Values of Rational Functions in Prime Fields

We now show that for a nontrivial rational function f/g ∈ Fp(X) and an integer
h ≥ 1, the set formed by h consecutive values of f/g cannot be all inside a small
multiplicative subgroup G ⊆ F

∗
p. For the linear fractional function (X + s)/(X + t)

this has been obtained in [5, Lemma 35] (see also [21, Theorem 6]).

Lemma 6 There is a absolute constant c > 0 such that if for some fixed integer such
that if for some fixed integer ν ≥ 1, sufficiently large positive integer h and prime p
we have

h < p(c/ν)2d+1
,

then the following holds. For any two distinct monic polynomials f, g ∈ Fp[X ] of
degree d for the set

A =
{
f (x)

g(x)
: 1 ≤ x ≤ h

}
⊆ Fp.

we have

#A(ν) > exp

(
−c(d, ν)

log h√
log log h

)
hν,

where c(d, ν) depends only on ν and d.
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Proof We closely follow the proof of [5, Lemma 35]. Let

f (X) = Xd +
d − 1∑
k = 0

ad−k x
k and g(X) = Xd +

d − 1∑
� = 0

bd − �X
�.

The idea is to move from the finite field to a number field, where we are in a position
to apply Lemma 5.

We consider the collection P ⊆ Z[U, V], where
U = (U1, . . . ,Ud) and V = (V1, . . . , Vd),

of polynomials

Px,y(U, V) =
ν∏

i=1

(
xdi +

d−1∑
k=0

Ud−k x
k
i

) (
ydi +

d−1∑
�=0

Vd−�y
�
i

)

−
ν∏

i=1

(
xdi +

d−1∑
�=0

Vd−�x
�
i

)(
ydi +

d−1∑
k=0

Ud−k y
k
i

)
,

where x = (x1, . . . , xν) and y = (y1, . . . , yν) are integral vectors with entries in
I = [1, h] and such that

Px,y(a1, . . . , ad , b1, . . . , bd) ≡ 0 (mod p).

Note that

Px,y(a1, . . . , ad , b1, . . . , bd) ≡
ν∏

i=1

f (xi )g(yi ) −
ν∏

i=1

f (yi )g(xi ) (mod p).

Clearly if the polynomial Px,y(U, V) is identical to zero modulo p then, by the
uniqueness of polynomial factorisation in the ring Fp[U, V], we see that for every
i = 1, . . . , ν, for the linear form

Lxi (U) = xdi +Ud−1x
d−1
i + · · ·U1xi +U0

there should be an equal (over Fp) linear form

Ly j (U) = ydj +Ud−1y
d−1
j + · · ·U1y j +U0

with some j = 1, . . . , ν. Hence, if Px,y(U, V) vanishes then x and y can be obtained
from each other by a permutation of their components. Therefore, if P contains no
non-zero polynomials then each value λ ∈ Fp, given by the product

λ ≡
ν∏

i=1

f (xi )/g(xi ) (mod p),
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appears no more than ν! times. In turn this impleis that

#A(ν) ≥ 1

ν! (#A)ν � hν .

Thus, we now assume that P contains non-zero polynomials.
Clearly, every polynomial P(U, V) ∈ P is of degree at most 2ν and of logarithmic

height at most c1ν log h.
We take a family P0 containing the largest possible number

N ≤ (d + 1)2ν − 1

of linearly independent polynomials P1, . . . , PN ∈ P , and consider the variety

V : {(U, V) ∈ C
2d : P1(U, V) = . . . = PN (U, V) = 0}.

Clearly V 
= ∅ as it contains the diagonal U = V.
We claim that V contains a point outside of the diagonal, that is, there is a point

(β, γ ) with β, γ ∈ C
d and β 
= γ .

Assume that V does not contain a point outside of the diagonal. Then for every
k = 1, . . . , d, the polynomial

Rk(U1, . . . ,Ud , V1, . . . , Vd) = Uk − Vk

vanishes on V .
Then by Lemma 3 we see that there are polynomials Qk,1, . . . , Qk,N ∈ Z[U, V]

and positive integers Ak and rk with

log Ak ≤ c2d(2ν)2d+1 log h (1)

for some absolute constant c2 (provided that h is large enough) and such that

P1Qk,1 + · · · + PN Qk,N = Ak(Uk − Vk)
rk . (2)

Since f 
= g, there is k ∈ {1, . . . , d} for which ak 
≡ bk (mod p). For this k we
substitute

(U, V) = (a1, . . . , ad , b1, . . . , bd)

in (2). Recalling the definition of the setP we now derive that p | Ak and thus Ak ≥ p.
Taking

c = max
d≥1

(
1

c2d22d+1 + 1

)1/(2d+1)

in the condition of the lemma, we see from (1) that this is impossible.
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Hence the set

U = V ∩ [U − V 
= 0]

is nonempty. Applying Lemma 4 we see that it has a point (β, γ ) with components
of logarithmic height O(log h) in an extension K of Q of degree [K : Q] ≤ 
(d, ν),
where 
(d, ν) depends only on d and ν.

Consider the maps � : Iν → Fp given by

� : x = (x1, . . . , xν) �→
ν∏
j=1

f (x j )

g(x j )

and � : Iν → K given by

� : x = (x1, . . . , xν) �→
ν∏
j=1

Fβ(x j )

Gγ (x j )
,

where

Fβ(X) = Xd +
d−1∑
k = 0

βd−k x
k and Gγ (X) = Xd +

d−1∑
� = 0

γd−�X
�.

By construction of (β, γ ) we have that �(x) = �(y) if �(x) = �(y). Hence

#A(ν) ≥ Im� = #C(ν),

where Im� is the image set of the map � and

C =
{
Fβ(x)

Gγ (x)
: 1 ≤ x ≤ h

}
⊆ K.

Using Lemma 5, we derive the result. ��
Given a rational function

ψ(X) = f (X)

g(X)
∈ Fp(X)

where f, g ∈ Fp[X ] are relatively prime polynomials, and a set S ⊆ Fp, we consider
the value set

ψ(S) = {ψ(x) : x ∈ S, g(x) 
= 0}.

We also recall the following bound on the size of the interesection of an image of
an interval under a rational map and a subgroup, which is given by [11, Theorem 7]
(we also recall the definition of the symbol ‘� ’ given in Sect. 1.3).
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Lemma 7 Let ψ(X) = f (X)/g(X) where f, g ∈ Fp[X ] relatively prime polynomi-
als of degree d and e respectively with d + e ≥ 1. We define

� = min{d, e}, m = max{d, e}

and set

k = (� + 1)
(
�m − �2 + m2 + m

)
and s = 2m� + 2m − �2.

Assume that ψ is not a perfect power of another rational function over the algebraic
closure of Fp. Then for any interval I of h consecutive integers and a subgroup G of
F

∗
p of order T , we have

# (ψ(I) ∩ G) � (1 + hρ p−ϑ)hτ + o(1)T 1/2,

where

ϑ = 1

2s
, ρ = k

2s
, τ = 1

2(� + m)
,

and the implied constant depends on d and e.

Note that for quadratic polynomialsψ(X) (that is, d = 2 and e = 0) a bound which
is better than that of Lemma 7 is given by [21, Theorem 7].

We now derive:

Lemma 8 Suppose for two relatively prime monic polynomials f, g ∈ Fp[X ] of
degree d ≥ 1, an interval I with positive integer h and a multiplicative subgroup
G ⊆ F

∗
p we have

ψ(I) ⊆ G,

where ψ(X) = f (X)/g(X). Then

#G � min{h2(1−τ)+o(1), h2(1−ρ−τ)+o(1) p2ϑ },

where

ϑ = 1

2d(d + 2)
, ρ = (d + 1)2

2(d + 2)
, τ = 1

4d
,

and the implied constant depends on d.

Proof Since the result improves when d decreases, we can assume that ψ(X) is not a
perfect power of another rational function over the algebraic closure of Fp.
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By Lemma 7 applied with d = e (and thus with k = d(d + 1)2, s = d2 + 2d and
hence the above values of ϑ , ρ and τ ), we have

h − d ≤ #ψ(I) = # (ψ(I) ∩ G) ≤ (
1 + hρ p−ϑ

)
hτ + o(1)T 1/2

where T = #G and the result follows. ��

2.5 Proof of Theorem 1

We set

ν =
⌊
c1+1/(2d)

(2δ)1/(2d)

⌋
and h =

⌊
e2/ν

⌋
,

where c is the constant of Lemma 6. We note that

2δ

ν
≤

( c
ν

)2d+1

so we have
h ≤ e2/ν ≤ p2δ/ν ≤ p(c/ν)2d+1

. (3)

We now query the oracles Oe, f and Oe,g for x = 1, . . . , h.
If the oracles return two distinct values then clearly f 
= g. Now assume

f (x)e = g(x)e, x = 1, . . . , h.

Therefore, the values f (x)/g(x), x = 1, . . . , h belong to the subgroup Ge of F
∗
p of

order e. Hence for the set

A =
{
f (x)

g(x)
: 1 ≤ x ≤ h

}
⊆ Fp (4)

for any integer ν ≥ 1 we have

A(ν) = {a1 . . . aν : a1, . . . , aν ∈ A} ⊆ Ge. (5)

We see from (3) that Lemma6 applies and yields e ≥ hν + o(1), which contradicts (5)
since we have hν > e2+ o(1) as e → ∞ for the above choice of the parameters. We
also also note that with the above choice of ν we have h ≤ ec0δ

1/(2d)
for an absolute

constant c0. This concludes the proof.

2.6 Proof of Theorem 2

We define ϑ , ρ and τ as in Lemma 8.
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We fix some ε > 0 and set

h =
⌈
e(1+ε)/(2−2τ)

⌉
.

We also note that for the above choice of h and for

e1+ε ≤ e(1−ρ−τ)(1+ε)/(1−τ) pϑ (6)

we have

min{h2(1−τ), h2(1−ρ−τ) p2ϑ } ≥ e1+ε.

Therefore, under the condition (6), we derive from Lemma 8 that for the set A given
by (4) we have A � Ge. Proceeding as in the proof of Theorem 1, we obtain an
algorithm that requires h queries.

Clearly, for the above choice of h, the condition (6) is satisfied if

e(1+ε)ρ/(1−τ) ≤ pϑ . (7)

Taking

η = ϑ(1 − τ)

ρ
and κ = 1

2 − 2τ

we see that the condition (7) is equivalent to e ≤ pη/(1+ε), under which we get an
algorithm which requires h = O

(
e(1+ε)κ

)
queries. Since ε > 0 is arbitrary, the result

now follows.

3 Quantum and Randomized Interpolation

3.1 Main Results

Here we present a quantum algorithm for the interpolation problem of finding an
unknownmonic polynomial f ∈ Fq [X ] of degree d given the oracleOe, f . We empha-
sise the difference between our settings where the oracle is classical and only the
algorithm is quantum and the settings of [23,24] which employ the quantum analogue
of the oracle Oe, f .

We recall that the oracleOe, f does not accept queries from field extensions of Fq ,
and therefore, if de > q, we cannot interpolate f e from queries to Oe, f .

Theorem 9 Given an oracleOe, f for some unknownmonic polynomial f of degree at
most d, for any ε > 0 there is a quantum algorithm to findwith probability 1−ε a poly-
nomial g such that g ∼e f in time ed/2 (d log q log(1/ε))O(1) and O (d log q log(1/ε))
calls to Oe, f .
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Replacing quantum parts of the algorithm above with classical (randomized) meth-
ods, we obtain the following.

Theorem 10 Given an oracleOe, f for some unknown monic polynomial f of degree
at most d, for any ε > 0 there is a randomized algorithm to find with probabil-
ity 1 − ε a polynomial g such that g ∼e f in time ed (d log q log(1/ε))O(1) and
O (d log q log(1/ε)) calls to Oe, f .

The proofs of Theorems 9 and 10 are given below in Sects. 3.3 and 3.4, respectively.

3.2 Coincidences Among eth Powers of Polynomials

The following result is immediate from the Weil bound on multiplicative character
sums, see [13, Theorem 11.23].

Lemma 11 Let g1, g2 ∈ Fq [X ] be two monic polynomials of degree at most d with
g1 �e g2. Then

#{x ∈ Fq : g1(x)
e = g2(x)

e} = q

e
+ O(dq1/2).

We now immediately conclude.

Corollary 12 Let g1, g2 ∈ Fq [X ] be two monic polynomials of degree o(q1/2) with
g1 �e g2. Then for any e ≤ (q − 1)/2 and a sufficiently large q

#{x ∈ Fq : g1(x)
e 
= g2(x)

e} ≥ 1

3
q.

3.3 Proof of Theorem 9

Let S stand for the monic polynomials of degree at most d. By Corollary 12, a ran-
dom choice of elements x ∈ Fq gives with probability at least 0.99 a set T of size
O(log |S|) = O(d log q) such that for every pair f, g ∈ S we have f (a)e = g(a)e

for every a ∈ T if and only if f ∼e g.
We continuewith picking d different elements a1, . . . , ad and use the oracleOe, f to

obtain the values b j = f (a j )
e, j = 1, . . . , d, as well as to get the values b(a) = f (a)e

for every a ∈ T .
Using Shor’s order finding and discrete logarithm algorithms [19] we can also

compute a generator ζe for the multiplicative subgroup {u ∈ Fq : ue = 1} and for
every j an element z j ∈ Fq such that zej = b j .

The cost of the steps performed so far is polynomial in log q and d. Let E =
{0, . . . , e−1}. For a tuple α = (α1, . . . , αd) from Ed , let fα be the monic polynomial
of degree at most d such that fα(a j ) = z jζ

α j
e , j = 1, . . . , d. For any specific tuple

α, the polynomial fα can be computed by simple interpolation in time polynomial in
d log q.
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We use Grover’s search [12] over Ed to find a tuple α with probablity at least 0.99
such that f eα (a) = b(a) for every a ∈ T . The cost of this part is bounded by O(ed/2)

times a polynomial in log q and d. Repeating the whole procedure O(log(1/ε)) times
we achieve the desired probability level, which concludes the proof.

3.4 Proof of Theorem 10

Observe that a generator for the group {u ∈ Fq : ue = 1} as well as elements z j
with zej = b j can be found by simple classical algorithms of complexity bounded

by e1/2(log q)O(1), that is, even within the complexity bound of Theorem 9. Indeed,
assume that for every prime r diving e we have an element gr ∈ Fq which is not an
r th power of an Fq element. Such elements can be found in time (log q)O(1) using
random choices. The product of appropriate powers of the elements gr is a generator
for the group of the eth roots of unity.

For computing an eth roots of b j it is sufficient to be able to take r th root of an
arbitrary field element y for every prime divisor r of e. This task can be accomplished
in time

√
r(log q)O(1) as in the algorithm of Adleman, Manders and Miller [1] instead

of the brute force one that uses Shanks’ baby step-giant step method for computing
discrete logarithms in groups of order r , see [8, Section 5.3].

Therefore, if we replace Grover’s search [12] over Ed with a classical search we
obtain a classical randomised algorithm of complexity ed(d log q log(1/ε))O(1).

3.5 Further Remarks

Under Generalised Riemann Hypothesis we can derandomize the proof of Theorem
10. If q = p is a prime then a generator for the group of eth roots of unity can be found
in deterministic polynomial time. If, furthermore, e ≤ pδ or e ≤ pη−δ for some fixed
δ > 0, then we could use the test of Theorem 1 or Theorem 2 to obtain a determin-
istic algorithm of complexity ed + c0δ1/(2d)

(d log p)O(1) or ed + κ + o(1)(d log p)O(1),
respectively.

4 Comments and Open Problems

It is very plausible that one can obtain analogues of Theorems 1 and 2 in the settings
of high degree extensions of finite fields. More precisely, if q = pn for a fixed p
and growing n, we write Fq ∼= Fp[X ]/ 〈ψ(X)〉 for a fixed irreducible polynomial
ψ ∈ Fp[X ] of degree n. Then one can attempt to transfer the technique used in the
proofs of Theorems 1 and 2 to this case where a role of a short interval of length h
is now played by the set of polynomials of degree at most h. This approach has been
used in [7,20] for several related problems. We also note that a version of effective
Hilbert’s Nullstellensatz for function fields, which is needed for this approach, has
recently been given by D’Andrea et al. [10]. However working out concrete technical
details may require some nontrivial efforts.
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We remark that we do not know how to take any advantage of actually knowing
g, and get stronger version of Theorems 1 and 2 in this case, like, for example, in [5,
Section 3.2].
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