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Abstract—We study the problem of identity testing for depth-
3 circuits of top fanin k and degree d. We give a new
structure theorem for such identities. A direct application of
our theorem improves the known deterministic d

k
O(k)

-time
black-box identity test over rationals (Kayal & Saraf, FOCS
2009) to one that takesd

O(k2)-time. Our structure theorem
essentially says that the number of independent variables in a
real depth-3 identity is very small. This theorem affirmatively
settles the strong rank conjecture posed by Dvir & Shpilka
(STOC 2005).

We devise a powerful algebraic framework and develop tools
to study depth-3 identities. We use these tools to show that
any depth-3 identity contains a much smaller nucleus identity
that contains most of the “complexity” of the main identity.
The special properties of this nucleus allow us to get almost
optimal rank bounds for depth-3 identities.
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I. I NTRODUCTION

Polynomial identity testing (PIT) ranks as one of the most
important open problems in the intersection of algebra and
computer science. We are provided an arithmetic circuit that
computes a polynomialp(x1, x2, · · · , xn) over a fieldF, and
we wish to test ifp is identically zero (in other words, ifp
is the zero polynomial). In the black-box setting, we do not
have access to the circuit. We are only allowed to evaluate
the polynomialp at various domain points. The main goal is
to devise adeterministic(preferably black-box) polynomial
time algorithm for PIT. Heintz & Schnorr [HS80], Kabanets
& Impagliazzo [KI04] and Agrawal [Agr05], [Agr06] have
shown connections between deterministic algorithms for
identity testing and circuit lower bounds, emphasizing the
importance of this problem. For a detailed exposition, see
surveys [Sax09], [AS09].

Even for the special case of depth-3 circuits, this ques-
tion is still open. This may seem quite depressing. It is.
Nonetheless, there exist concrete results that justify both
our ignorance and the acceptance of results on depth-3 PIT
in major publishing venues. Agrawal and Vinay [AV08]
showed that an efficient black-box identity test for depth-
4 essentially leads to subexponential lower bounds.

A depth-3 circuit C over a field F is of the form
C(x1, · · · , xn) =

∑k

i=1 Ti, where Ti (a multiplication
term) is a product of at mostd linear polynomials with
coefficients inF. We are especially interested in the case
F = Q. In this section, we will just assume this unless
explicitly mentioned otherwise. The size of the circuit
C can be expressed in three parameters: the number
of variablesn, the degreed, and the top fanin (or the
number of terms)k. Such a circuit is referred to as a
ΣΠΣ(k, d, n) circuit. PIT algorithms for depth-3 circuits
were first studied by Dvir & Shpilka [DS06]. There
have been many recent results in this area by Kayal &
Saxena [KS07] (in the non-black-box setting), Karnin &
Shpilka [KS08], Saxena & Seshadhri [SS09], and Kayal &
Saraf [KS09b]. Our main result is a better black-box tester
for ΣΠΣ circuits overQ. We get a running time ofndk2

,
an exponential improvement (ink) over the previous best
of ndkk

[KS09b]. Table I details the time complexities of
previous algorithms. These time complexities are actually
bounds on the total number of bit operations. Also, the
running times are technically polynomial in the stated times.

Theorem 1:Consider circuits overQ. There exists a
deterministic black-box algorithm for PIT onΣΠΣ(k, d, n)
circuits, whose time complexity is poly(ndk2

).

Table I: Depth-3 Black-box PIT algorithms overQ

Paper Time complexity

[KS08] nd
(2k

2
logk−2

d)

[SS09] ndk
3 log d

[KS09b] nd
(kk)

This paper ndk
2

This is the first result that gives a time complexity both
polynomial ind and singly-exponential ink for Q. This is
not too far from the bestnon-black-boxalgorithm forΣΠΣ
circuits, which runs in poly(ndk) time [KS07]. This result
closes the gap (almost) between black-box and non-black-
box algorithms.

All these results go viarank bounds for depth-3 identities,



introduced by Dvir & Shpilka [DS06]. This is a very inter-
esting quantity associated with these circuits, and roughly
speaking, bounds the maximum number of “free variables”
that can be present in a depth-3 identity. If a ΣΠΣ(k, d, n)
circuit has rankr, then there exists a linear transformation
that converts this to an equivalentΣΠΣ(k, d, r) circuit.
(This linear transformation is very easy to determine.) The
remarkable insight of [DS06] was that the rank ofevery
ΣΠΣ(k, d, n) identity is very low. AnyΣΠΣ(k, d, r)-circuit
can be completely expanded out in poly(kdr) time. Hence,
low rank bounds for identities imply efficient non-black-box
PIT algorithms.

Karnin & Shpilka [KS08] showed how small rank bounds
for identities imply efficientblack-boxPIT algorithms. This
opened the door for black-box algorithms for depth-3 PIT.
Indeed, all known algorithms for this problem come as a
consequence of their result. Rank bounds have also found
applications in learningΣΠΣ circuits [Shp09], [KS09a].
Hence, the rank and file of researchers studying this problem
are interested in proving small rank bounds. As mentioned
earlier, we focus on the fieldQ. Dvir & Shpilka [DS06]
initiated this line of work by showing that the rank of a
simple, minimal ΣΠΣ(k, d) identity is 2O(k2)(log d)k−2.
There are basic constructions of rankΩ(k) identities over
Q [DS06]. Dvir & Shpilka [DS06] conjectured that the
rank should be bounded by poly(k). This rank bound was
improved to O(k3 log d) by Saxena & Seshadhri [SS09].
Kayal & Saraf [KS09b] achieved a breakthrough by proving
a rank bound independent ofd. Their bound waskO(k). We
finally settle the Dvir-Shpilka conjecture and show a rank
bound ofO(k2).

The advances of Kayal & Saraf were obtained through
the use ofincidence geometry theorems, like the famous
Sylvester-Gallai theorem. This theorem states that for any
set S of points in the Euclidean plane, not all collinear,
there exists a line passing through exactly two points in
S. Generalizations of this to higher dimensions are called
Sylvester-Gallai theorems(see survey [BM90]). This theo-
rem and its generalizations have connections to rank bounds
for depth-3 circuits. The result of [KS09b] gave an intricate
combinatorial construction that converts depth-3 identities to
sets of colored points in Euclidean space. This allowed the
use of Sylvester-Gallai theorems to bound the rank.

Our contribution comes through a newalgebraic frame-
work for studying depth-3 identities. This has many ben-
efits. Firstly, it allows for a much more “efficient” use of
Sylvester-Gallai theorems to bound the rank. This leads
to nearly optimal rank bounds. Secondly, the connection
between Sylvester-Gallai theorems and rank bounds is far
more transparent, at the loss of some color from the the-
orems. Theorem 4 gives a simple formula that relates the
depth-3 rank to Sylvester-Gallai bounds. A nice byproduct
of this connection is the improvement of rank bounds over
arbitrary fields. Thirdly, we get a deep structural theorem

about depth-3 identities over any field. Every such identity
contains anucleus identityexpressed on few variables. This
nucleus, in some sense, captures all the complexity of the
original identity, and has some very special properties. A
better understanding of this nucleus may lead us to the goal
of a truly polynomial time algorithm.

A. Definitions and results

We recall that a depth-3 circuit C over a field F is:
C(x1, . . . , xn) =

∑k

i=1 Ti, where Ti is a product ofdi

linear polynomials̀ i,j overF. For the purposes of studying
identities we can assume, by homogenization, that`i,j ’s are
linear forms (i.e. linear polynomials with a zero constant
coefficient) and∀i, di = d. It will be convenient to state our
results in terms of arbitrary fields.

Definition 2: [DS06]

• Simple Circuit: C is a simple circuit if there is no
nonzero linear form dividing all theTi’s.

• Minimal Circuit: C is a minimal circuit if for every
proper subsetS ⊂ [k],

∑
i∈S Ti is nonzero.

• Rank of a circuit: The coefficients of̀ i,j form an
n-dimensional vector overF. The rank of the circuit,
rk(C), is defined as the rank of the set of all linear
forms `i,j viewed as vectors.

The rank of a circuit can be interpreted as the minimum
number of independent variables required to expressC. The
definition of simple and minimal circuits are used to remove
certain pathological cases. The rank question is: for a simple
and minimalΣΠΣ(k, d, n) identity over fieldF, what is the
maximal possible rank? A trivial upper bound on the rank
(for any ΣΠΣ-circuit) is kd, since that is the total number
of linear forms involved inC. A substantially smaller rank
bound thankd shows that identities do not have as many
“degrees of freedom” as general circuits.

Before we state our results, it will be helpful to explain
Sylvester-Gallai configurations. A set of pointsS with the
property that every line through two points ofS passes
through a third point inS is called a Sylvester-Gallai
configuration. The famous Sylvester-Gallai theorem states
that the only Sylvester-Gallai configuration inR2 is a set
of collinear points. This basic theorem about point-line
incidences was extended to higher dimensions [Han65],
[BE67]. We define the notion ofSylvester-Gallai rank
bounds. This is a clean and convenient way of expressing
these theorems.

Definition 3: Let S be a finite subset of theprojective
spaceFPn. Alternately,S is a set of non-zero vectors in
Fn+1 without multiples: no two vectors inS are scalar
multiples of each other. Suppose, for every setV ⊂ S of k
linearly independent vectors, the linear span ofV contains
at leastk + 1 vectors ofS. Then, the setS is said to be
SGk-closed.



The largest possible rank of an SGk-closed set of at most
m vectors inFn (for any n) is denoted by SGk(F, m).

The Sylvester-Gallai theorem states Higher dimensional
analogues [Han65], [BE67] can be interpreted to say
SGk(R, m) ≤ 2(k − 1). Our main theorem is a simple,
clean expression of how Sylvester-Gallai influences
identities. We state this for general fields.

Theorem 4 (From SGk to Rank): Let |F| > d. The rank
of a simple and minimalΣΠΣ(k, d) identity overF is at
most2k2 + k · SGk(F, d).

A direct application of theSGk(R, m) bound yields an
almost optimal rank bound for real depth-3 identities. For
completeness, we state the exact rank bound obtained. We
have a slightly stronger version (Theorem 18) of the above
theorem that gives better constants.

Theorem 5 (Depth-3 Rank Bounds):Let C be a
ΣΠΣ(k, d) circuit, over field R, that is simple, minimal
and zero. Then, rk(C) < 3k2.

As discussed before, an application of this result to
Lemma 4.10 of [KS08] gives a deterministic black-box
identity test for ΣΠΣ(k, d, n) circuits over Q. Formally,
we get the followinghitting set generatorfor ΣΠΣ circuits
with real coefficients.

Corollary 6 (Black-box PIT overQ): There is a deter-
ministic algorithm that takes as input a triple(k, d, n) of
natural numbers and in time poly(ndk2

), outputs a hitting
setH ⊂ Zn with the following properties:

1) Any ΣΠΣ(k, d, n) circuit C overR computes the zero
polynomial iff ∀a ∈ H, C(a) = 0.

2) H has at most poly(ndk2

) points.
3) The total bit-length of each point inH is

poly(kn log d).

1) Other fields: What about other fields? The rank
bounds of [DS06] and [SS09] hold for arbitrary fields,
whereas the rank bound of [KS09b] holds only forR.
It has been observed that for finite fields, the rank of
an ΣΠΣ identity can be as large asΩ(k log d) [KS07],
[SS09]. Hence, theO(k3 log d) bound proved by [SS09]
is almost optimal. As a small bonus, we give a slight
improvement upon this bound using our approach. This
requires Sylvester-Gallai theorems over arbitrary fields,
an interesting question in itself. It was shown that
SG2(C, m) ≤ 3 [EPS06], and certain lower bounds for
locally decodable codes implied SG2(F, m) = O(log m).
(Concretely, Corollary 2.9 of [DS06] can be used to prove
that SG2(F, m) = O(log m). This is an extension of
theorems in [GKST02] that prove this forF2. ) Other than

this, nothing was previously known. One of our auxiliary
theorems, of independent interest, gives a high-dimensional
Sylvester-Gallai bound for all fields. Applying the stronger
version of Theorem 4, we get our rank bound.

Theorem 7 (SGk for all fields): For any field F and
k, m ∈ N>1, SGk(F, m) ≤ 9k lg m. (There is a construction
that shows that SGk(Fp, m) = Ω(k · logp m).)

Let C be aΣΠΣ(k, d) circuit, over an arbitrary fieldF,
that is simple, minimal and zero. Then, rk(C) < 3k2(lg 2d).

B. History

And now, for a brief history of PIT algorithms. The
first randomized polynomial time PIT algorithm, which
was a black-box algorithm, was given (independently) by
Schwartz [Sch80] and Zippel [Zip79]. Randomized algo-
rithms that use less randomness were given by Chen &
Kao [CK00], Lewin & Vadhan [LV98], and Agrawal &
Biswas [AB03]. Klivans & Spielman [KS01] observed that
even for depth-3 circuits for bounded top fanin, deterministic
identity testing was open. Progress towards this was first
made by the quasi-polynomial time algorithm of Dvir &
Shpilka [DS06]. The problem was resolved by a polynomial
time algorithm given by Kayal and Saxena [KS07], with a
running time exponential in the top fanin. Both these al-
gorithms were non-black-box. As for black-box algorithms,
the authors are quite sure that the reader has heard enough
history. Identity tests are known only for very special depth-4
circuits [AM07], [Sax08], [SV09], [KMSV09]. Agrawal and
Vinay [AV08] showed that an efficient black-box identity
test for depth-4 circuits will actually give a quasi-polynomial
black-box test, and subexponential lower bounds, for circuits
of all depthsthat computelow degreepolynomials. Thus,
understanding depth-3 identities seems to be a natural first
step towards the goal of PIT.

II. PROOF OUTLINE , IDEAS, AND ORGANIZATION

Our proof of the rank bound comprises of several new
ideas, both at the conceptual and the technical levels. In-
stead of giving proofs in this extended abstract, we will
only provide the intuition and the overall argument. We
recommend the interested reader to see the full version
of this paper [SS10]. The full proof of Theorem 4 is
extremely technical, requires many definitions, and involve
many algebraic arguments. Our attempt is to convey with
main ideas without getting into too much formalism or
mathematical details. We describe all the major milestones,
many of which are interesting in their own right. Indeed,
it is the authors’ opinion that the reader has little to gain
from simply reading the detailed proofs without getting the
essence of the ideas.

The intuition portion is divided into three subsections,
each dealing with a separate component of the final proof.



Each portion proves an interesting structural theorem. The
three notions that are crucially used and developed are: ideal
Chinese remaindering, matchings and Sylvester-Gallai rank
bounds. Related notions have appeared (in some form) in
the works of Kayal & Saxena [KS07], Saxena & Seshadhri
[SS09] and Kayal & Saraf [KS09b] respectively, to prove
different kinds of results. The first two steps set up the
algebraic framework and prove theorems that hold for all
fields. The third step is where the Sylvester-Gallai theorems
are brought in.

A. Notation and definitions

We will denote the set{1, . . . , n} by [n]. We fix the
base field to beF, so the circuits compute multivariate
polynomials in thepolynomial ringR := F[x1, . . . , xn]. We
useF∗ to denoteF \ {0}.

A linear form is a linear polynomial inR with zero
constant term. We will denote the set of all linear forms
by L(R) := {

∑n

i=1 aixi | a1, . . . , an ∈ F}. Clearly, L(R)
is a vector (or linear) space overF and that will be quite
useful. Much of what we do shall deal withmulti-sets of
linear forms (sometimes polynomials inR), equivalence
classes inside them, and various maps across them. Alist of
linear forms is a multi-set of forms with an arbitrary order
associated with them. The actual ordering is unimportant:
we will heavily use maps between lists, and the ordering
allows us to define these maps unambiguously. The usual
set operations between lists can be naturally defined.

Definition 8: We collect some important definitions from
[SS09]:

[Multiplication term, L(·) & M(·)] A multiplication
termf is an expression inR given as (the product may have
repeated̀ ’s), f := c ·

∏
`∈S `, wherec ∈ F∗ andS is a list

of nonzero linear forms. Thelist of linear forms inf , L(f),
is just the listS of forms occurring in the product above.
For a listS of linear forms we define themultiplication term
of S, M(S), as

∏
`∈S ` or 1 if S = φ.

[Forms in a Circuit] We will represent aΣΠΣ(k, d)
circuit C as a sum ofk multiplication terms of degreed,
C =

∑k

i=1 Ti. The list of linear forms occurring inC is
L(C) :=

⋃
i∈[k] L(Ti). Note that L(C) is a list of size

exactly kd. The rank of C, rk(C), is just the number of
linearly independent linear forms inL(C). (Remark: for the
purposes of this paperTi’s are given in circuit representation
and thus the listL(Ti) is unambiguously defined fromC)

[Similar forms] For any two polynomialsf, g ∈ R we
call f similar tog if there existsc ∈ F∗ such thatf = cg. We
sayf is similar tog modI, for some idealI of R, if there is
somec ∈ F∗ such thatf ≡ cg(mod I). Note that “similarity
mod I” is an equivalence relation (reflexive, symmetric
and transitive) and partitions any list of polynomials into
equivalence classes.

[Span sp(·)] For anyS ⊆ L(R) we let sp(S) ⊆ L(R)
be thelinear spanof the linear forms inS over the fieldF.

(Conventionally, sp(∅) = {0}.)
[Matchings] Let U, V be lists of linear forms andI be

a subspace ofL(R). An I-matchingπ betweenU, V is a
bijection π between listsU, V such that: for all` ∈ U ,
π(`) ∈ F∗` + I.

When f, g are multiplication terms, anI-matching
between f, g would mean an I-matching between
L(f), L(g).

B. Step 1: Matching the Gates in an Identity

We will show that all the multiplication terms of a
minimal ΣΠΣ identity can be matched by a low rank space
K, spanned by “few” linear forms inL(R).

Theorem 9 (Matching-Nucleus):Let C = T1 + · · · + Tk

be a ΣΠΣ(k, d) circuit that is minimal and zero. Then
there exists a linear subspaceK of L(R) such that:

1) rk(K) < k2.
2) ∀i ∈ [k], there is aK-matchingπi betweenT1, Ti.

The idea of matchings within identities was first introduced
in [SS09], but nothing as powerful as this theorem has
been proven. This theorem gives us a space of small rank,
independent ofd, that contains most of the “complexity”
of C. All forms in C outsideK are just mirrored in the
various terms. This starts connecting the algebra of depth-3
identities to a combinatorial structure. Indeed, the graphical
picture (explained in detail below) that this theorem
provides, really gives an intuitive grasp on these identities.
The proof of this involves some interesting generalizations
of the Chinese Remainder Theorem to some special ideals.

Definition 10 (mat-nucleus):Let C be a minimal
ΣΠΣ(k, d) identity. The linear subspaceK given by
Theorem 9 is calledmat-nucleus ofC.

The notion of mat-nucleus is easier to see in the represen-
tation of the ΣΠΣ(4, d) circuit C =

∑
i∈[4] Ti given in

Figure 1a. The four bubbles refer to the four multiplication
terms of C and the points inside the bubbles refer to the
linear forms in the terms. The proof of Theorem 9 gives
mat-nucleus as the space generated by the linear forms in the
dotted box. The linear forms that are not in mat-nucleus lie
“above” the mat-nucleus and are all (mat-nucleus)-matched,
i.e. ∀` ∈ (L(T1) \mat-nucleus), there is a form similar tò
modulo mat-nucleus in each(L(Ti)\mat-nucleus). Thus the
essence of Theorem 9 is: the mat-nucleus part of the terms
of C has low rankk2, while the part of the terms above
mat-nucleus all look “similar”.

Proof Idea for Theorem 9:The key insight in the con-
struction of mat-nucleus is a reinterpretation of the non-
black-box identity test of Kayal & Saxena [KS07] as a
structural result forΣΠΣ identities. Roughly speaking,



T1 T2 T3 T4

(a) Mat-nucleus
T1 T2 T3 T4

v1

v2 v3

(b) Paths

Figure 1

[KS07] showed thatC = 0 iff for every path (v1, v2, v3)
(where vi ∈ L(Ti)): T4 ≡ 0(mod v1, v2, v3) or in ideal
terms, T4 ∈ 〈v1, v2, v3〉. (This is technicallyfalse, but it
portrays the right idea.) Paths are depicted in Figure 1b.
Thus, it is enough to go through all thed3 paths to certify
the zeroness ofC. This is why the time complexity of the
identity test of [KS07] is dominated bydk. Now if we
are given aΣΠΣ(4, d) identity C which is minimal, then
we know thatT1 + T2 + T3 6= 0. Thus, by applying the
above interpretation of [KS07] toT1 + T2 + T3 we will
get a path(v1, v2) such thatT3 /∈ 〈v1, v2〉. SinceC = 0
this means thatT3 + T4 ≡ 0(mod v1, v2) but T3, T4 6≡
0(mod v1, v2) (if T4 is in 〈v1, v2〉 then so will beT3). Thus,
T3 ≡ −T4(mod v1, v2) is a nontrivial congruence and it
immediately gives us a〈v1, v2〉-matching betweenT3, T4.
By repeating this argument with a different permutation of
the terms we could match different terms (by a different
ideal), and finally we expect to match all the terms (by the
union of the various ideals).

This argument has numerous technical problems, the
most important one being that it does not really work.
But all issues can be taken care of by suitable algebraic
generalizations. A major stumbling block is the presence of
repeatingforms. It could happen that(mod v1), v2 occurs
in many terms, or in the same term with a higher power.
The most important tool developed is an ideal version of
Chinese remaindering that forces us to consider not just
linear formsv1, v2, but multiplication termsv1, v2 dividing
T1, T2 respectively.

C. Step 2: Certificate for Linear Independence of Gates

Theorem 9 gives us a spaceK, of rank < k2, that
matchesT1 to each termTi. In particular, this means
that the list LK(Ti) := L(Ti) ∩ K has the same
cardinality d′ for each i ∈ [k]. In fact, if we look at the
corresponding multiplication termsKi := M(LK(Ti)),
i ∈ [k], then they again form aΣΠΣ(k, d′) identity!
Precisely,C′ =

∑
i∈[k] αiKi for some αi’s in F∗ is an

identity. We would likeC′ to somehow mimic the structure
of C. Of courseC′ is simple but is it again minimal?
Unfortunately, it may not be. As we will see in Step 3, when
C′ somewhat “mirrors” the structure ofC, then bounding
the rank of the forms “outside”K becomes possible. Step
2 involves increasing the spaceK (but not by too much)
that gives us aC′ with the right behavior. Specifically, if
T1, . . . , Tk′ arelinearly independent(i.e. @ β ∈ Fk′

\{0} s.t.∑
i∈[k′] βiTi = 0), then so areK1, . . . , Kk′ . The following

can be seen as an important structural theorem of depth-3
identities.

Theorem 11 (Nucleus):Let C =
∑

i∈[k] Ti be a minimal
ΣΠΣ(k, d) identity and let{Ti|i ∈ I} be a maximal set of
linearly independent terms (1 ≤ k′ := |I| < k). Then there
exists a linear subspaceK of L(R) such that:

1) rk(K) < 2k2.
2) ∀i ∈ [k], there is aK-matchingπi betweenT1, Ti.
3) (Define ∀i ∈ I, Ki := M(LK(Ti)).) The terms

{Ki|i ∈ I} are linearly independent.

Definition 12 (nucleus):Let C be a minimalΣΠΣ(k, d)
identity. The linear subspaceK given by Theorem 11 is
called thenucleus ofC. The subspaceK induces an identity
C′ =

∑
i∈[k] αiKi which we call thenucleus identity.

The notion of the nucleus is easier to grasp whenC
is a ΣΠΣ(k, d) identity that is strongly minimal, i.e.
T1, . . . , Tk−1 are linearly independent. Clearly, such aC is
also minimal For such aC, Theorem 11 gives a nucleus
K such that the corresponding nucleus identity is strongly
minimal. The structure ofC is very strongly represented by
C′. As a bonus, we actually end up greatly simplifying the
polynomial-time PIT algorithm of Kayal & Saxena [KS07]
(although we will not discuss this point in detail in this
paper).

Proof Idea for Theorem 11:The first two properties in
the theorem statement are already satisfied by mat-nucleus
of C. So we incrementally add linear forms to the space
mat-nucleus till it satisfies property (3) and becomes the
nucleus. The addition of linear forms is guided by the ideal
version of Chinese remaindering. For convenience assume
T1, T2, T3 to be linearly independent. Then, by homogeneity
and equal degree, we have an equivalent ideal statement:



T2 /∈ 〈T1〉 and T3 /∈ 〈T1, T2〉. Even in this general setting
the path analogy (used in the last subsection) works and we
essentially get linear formsv1 ∈ L(T1) and v2 ∈ L(T2)
such that:T2 /∈ 〈v1〉 and T3 /∈ 〈v1, v2〉. We now add these
formsv1, v2 to the space mat-nucleus, and call the new space
K. It is expected that the newK1, K2, K3 are now linearly
independent.

Not surprisingly, the above argument has numerous tech-
nical problems. But it can be made to work by careful
applications of the ideal version of Chinese remaindering.

D. Step 3: Invoking Sylvester-Gallai Theorems

As explained in Section I-A, we rephrase the standard
Sylvester-Gallai theorems in terms ofSylvester-Gallai
closureand rank bounds(Definition 3). Using some linear
algebra and combinatorial tricks, we prove the first ever
general Sylvester-Gallai bound for all fields.

Theorem 13 (General Sylvester-Gallai):For any fieldF
andk, m ∈ N>1, SGk(F, m) ≤ 9k lg m.

The following definition is very helpful in applying
Sylvester-Gallai rank bounds to our scenario.

Definition 14 (SG operator):[SGk(·)] Let k, m ∈ N>1.
Suppose a setS ⊆ Fn has rank greater than SGk(F, m)
(where#S ≤ m). Then, by definition,S is not SGk-closed.
In this situation we say thek-dimensional Sylvester-Gallai
operatorSGk(S) (applied onS) returns a set ofk linearly
independent vectorsV in S whose span has no point inS\V .

Let C be a simple and strongly minimalΣΠΣ(k, d) iden-
tity. Theorem 11 gives us a nucleusK, of rank< 2k2, that
matchesT1 to each termTi. As seen in Step 2, if we look at
the corresponding multiplication termsKi := M(LK(Ti)),
i ∈ [k], then they again form aΣΠΣ(k, d′) “nucleus
identity” C′ =

∑
i∈[k] αiKi, for someαi’s in F∗, which is

simple and strongly minimal. Define thenon-nucleus partof
Ti asLc

K(Ti) := L(Ti)\K, for all i ∈ [k] (c in the exponent
annotates “complement”, sinceL(Ti) = LK(Ti)tLc

K(Ti)).
What can we say about the rank ofLc

K(Ti) ?
Define the non-nucleus part ofC as Lc

K(C) :=⋃
i∈[k] L

c
K(Ti). Our goal in Step 3 is to bound

rk(Lc
K(C) mod K) by 2k when the field isR. This will give

us a rank bound of rk(K)+ rk(Lc
K(C)mod K) < (2k2+2k)

for simple and strongly minimalΣΠΣ(k, d) identities over
R. The proof is mainly combinatorial, based on higher
dimensional Sylvester-Gallai theorems and a property of set
partitions, with a sprinkling of algebra.

We apply the SGk operator not directly on the forms in
L(C) but on a suitable truncation of those forms. So we
need another definition.

Definition 15 (Non-K rank): Let K be a linear subspace
of L(R). ThenL(R)/K is again a linear space (thequotient
space). Let S be a list of forms inL(R). The non-K rank
of S is defined to be rk(S mod K) (i.e. the rank ofS when
viewed as a subset ofL(R)/K).

Let C be a ΣΠΣ(k, d) identity with nucleusK. The
non-K rank of the non-nucleus partLc

K(Ti) is called the
non-nucleus rank ofTi. Similarly, the non-K rank of the
non-nucleus partLc

K(C) :=
⋃

i∈[k] L
c
K(Ti) is called the

non-nucleus rank ofC.

We give an example to explain the non-K rank. LetR =
F[z1, · · · , zn, y1, · · · , ym]. SupposeK = sp(z1, · · · , zn)
andS ⊂ L(R). We can take any element` in S and simply
drop all thezi terms, i.e. ‘truncate’ thez-part of `. This
gives a set of linear forms over they variables. The rank of
these is the non-K rank of S.

We are now ready to state the theorem that is proved in
Step 3. It basically shows a neat relationship between the
non-nucleus part and Sylvester-Gallai.

Theorem 16 (Bound for simple, strongly minimal identities):
Let |F| > d. The non-nucleus rank of a simple and strongly
minimal ΣΠΣ(k, d) identity overF is at most SGk−1(F, d).
More specifically, (for nucleusK) the vectors inL(C) \ K
form an SGk−1-closed set.

Observe that this theorem together with Theorem 11 gives
a complete structure theorem for strongly minimal depth-3
identities. One can make suitable claims for identities that
are not strictly minimal. Essentially, we just take a subset
of linearly independent terms, sayT1, . . . , Tk′ , that form
a basis for{Ti|i ∈ [k]}. We can now construct strongly
minimal identities using these terms and apply the above
theorem. Specifically, we get the following.

Definition 17 (Independent-fanin):Let C =
∑

i∈[k] Ti

be a ΣΠΣ(k, d) circuit. The independent-faninof C,
ind-fanin(C), is defined to be the size of the maximal
I ⊆ [k] such that{Ti|i ∈ I} are linearly independent
polynomials.

We now state the following stronger version of the main
theorem.

Theorem 18 (Final bound):Let |F| > d. The rank of a
simple, minimalΣΠΣ(k, d), independent-fanink′, identity
is at most2k2 + (k − k′) · SGk′(F, d).

Remark: In particular, the rank of a simple,
minimal ΣΠΣ(k, d) identity over reals is at most
2k2 + (k − k′) · SGk′(R, d) ≤ 2k2 + (k − k′)2(k′ − 1)
< 3k2, proving the main theorem over reals. Likewise, for
anyF, we get the rank bound of2k2 +(k− k′) ·SGk′ (F, d)



≤ 2k2 + (k − k′)9k′ lg d ≤ 2k2 + 9k2

4 lg d < 3k2 lg 2d,
proving the main theorem.

Proof Idea for Theorem 16:Basically, we apply the
SGk(·) operator on the non-nucleus part of the termT1, i.e.
we treat a linear form

∑
i aixi as the point(1, a2

a1
, . . . , an

a1
) ∈

Fn for the purposes of Sylvester-Gallai and then we con-
sider SGk(Lc

K(T1)) assuming that the non-nucleus rank of
T1 is more than SGk(F, d). This application of Sylvester-
Gallai is much more direct compared to the methods used
in [KS09b]. There, they effectively needed to prove ver-
sions of Sylvester-Gallai that dealt with colored points and
needed ahyperplane decompositionproperty after applying
a SGkO(k) (·) operator onL(C). Since, modulo the nucleus,
all multiplication terms look essentially the same, it suffices
to focus attention on just one of them. Hence, we apply the
SGk-operator on a single multiplication term.

Assume C is a simple, strongly minimalΣΠΣ(k, d)
identity with terms{Ti|i ∈ [k]} and letK be its nucleus
given by Step 2. It will be convenient for us to fix a linear
form y0 ∈ L(R)∗ and a subspaceU of L(R) such that we
have the followingorthogonalvector space decomposition
L(R) = Fy0 ⊕U ⊕K. This means for any form̀ ∈ L(R),
there is a unique way to express` = αy0 + u + v, where
α ∈ F, u ∈ U and v ∈ K. Furthermore, we will assume
wlog that for every form` ∈ Lc

K(T1) the corresponding
α is nonzero, i.e. each form inLc

K(T1) is monic wrt y0.
Technically, we do not need the extra variabley0 and
can work in a projective space. Nonetheless, it makes the
presentation easier.

Definition 19 (trun(·)): Fix a decompositionL(R) =
Fy0 ⊕ U ⊕ K. For any form` ∈ Lc

K(T1), there is a unique
way to express̀ = αy0 + u + v, whereα ∈ F∗, u ∈ U and
v ∈ K.

The truncated form trun(`) is the linear form obtained
by dropping theK part and normalizing, i.e. trun(`) :=
y0 + α−1u.

Given a list of formsS we define trun(S) to be the
correspondingset (thus no repetitions) of truncated forms.

To be precise, we fix a basis{y1, . . . , yrk(U)} of U
so that each form in trun(Lc

K(T1)) has representation
y0 +

∑
i≥1 aiyi (ai’s ∈ F). We view each such form

as thepoint (1, a1, . . . , ark(U)) while applying Sylvester-
Gallai on trun(Lc

K(T1)). Assume, for the sake of contradic-
tion, that the non-nucleus rank ofT1, rk(trun(Lc

K(T1))) >
SGk−1(F, d). Therefore, SGk−1(trun(Lc

K(T1))) gives (k −
1) linearly independent forms̀1, . . . , `k−1 ∈ (y0 + U)
whose span contains noother linear form of trun(Lc

K(T1)).
For simplicity of exposition, let us fixk = 4, K spanned

by z’s, U spanned byy’s and `i = y0 + yi (i ∈ [3]). Note
that (by definition) trun(αy0 +

∑
i αizi +

∑
i βiyi) = y0 +∑

i
βi

α
yi. We want to derive a contradiction using the SG3-

operator output(y0+y1, y0+y2, y0+y3) and the fact thatC
is a simple, strongly minimalΣΠΣ(4, d) identity. Consider
the setting given in Figure 2. Suppose the linear forms in
C that are similar to a form in{y0 + yi + K|i ∈ [3]} are
exactly those depicted in the figure. All forms within a row
areK-matched. We would like to find forms̀′1, `

′
2, `

′
3 with

the following properties: (1) `′i ≡ ci`i(mod K) (for some
constantci). (2) There exists somej such that nò ′

i divides
Tj but for eachTl (l 6= j), some `′i divides Tl. In this
situation, we can choosè′1 = y0+y1+z1, `′2 = y0+y2+z2,
and`′3 = −y0 − y3 + z2. None of these dividesT4. Observe
that the triple(y0 + y1 + z1, y0 + y2 + z2, y0 + y3 + z1) does
not satisfy these conditions, since no appropriateTj can be
found.

Take C modulo the ideal I :=
〈y0 + y1 + z1, y0 + y2 + z2,−y0 − y3 + z2〉. It is easy
to see thatC ≡ T4(mod I), so I “kills” the first three
terms. SinceC is an identity,T4 ∈ I. Thus, there is a
form ` ∈ L(T4) such that̀ ∈ sp(`′1, `

′
2, `

′
3). Since no form

from `′i dividesT4, so ` must be a non-trivial combination
of these forms. By the matching property, there exists
some formˆ̀∈ L(T1) such that trun(`) = trun(ˆ̀). In other
words, trun(`) ∈ trun(Lc

K(T1)). But that contradicts the
fact that (`′1, `

′
2, `

′
3) form an SG3-tuple. This implies that

the non-nucleus rank ofC is at most SG3(F, d).
The approach above worked because we were lucky

enough to find`′1, `
′
2, `

′
3 with the right properties. Can

we always do this? No, because of repeating forms. Sup-
pose, after going modulo form̀, the circuit looks like
x3y + 2x2y2 + xy3 = 0. This is not simple, butit does
not have to be. We are only guaranteed that the original
circuit is simple. Once we go modulò, that property is
lost. Now, the choice ofany form kills all terms. We will
use our more powerful Chinese remaindering tools and the
nucleus properties to deal with this. The minimality of the
nucleus identity plays a crucial role here and helps us deal
with such situations. We have to prove a special theorem
about partitions of[k] and use strong minimality (which we
did not use in the above sketch).

III. C ONCLUSION

In this work we developed the strongest methods, to date,
to study depth-3 identities. The ideal methods hinge on a
classification of zerodivisors of the ideals generated by gates
of a ΣΠΣ circuit. That is useful in proving an ideal ver-
sion of Chinese remaindering tailor-made forΣΠΣ circuits,
which is in turn useful to show a connection between all
the gates involved in an identity. As a byproduct, it shows
the existence of a low ranknucleus identityC′ inside any
given ΣΠΣ(k, d) identity C (when C is not minimal,C′

can still be defined but it might not be homogeneous). The
properties of the nucleus identity are an important part of
an identity and it might be useful for PIT to understand
(or classify) it further. Can the rank bound for the nucleus
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identity be improved toO(k)? More importantly, can the
rank bound for simple minimal realΣΠΣ(k, d) identities
be improved toO(k)? The best constructions known, since
[DS06], have rank4(k − 2). Over other fields, our upper
bound ofO(k2 log d) still leaves some gap in understanding
the exact dependence onk. Of course, the most important
question is whether our techniques can help construct a
truly polynomial time deterministic (even non-black-box)
algorithm for PIT.

We generalize the notion of Sylvester-Gallai configura-
tions toanyfield and define a parameter SGk(F, m) associ-
ated with fieldF. This number seems to be a fundamental
property of a field, and as we show, is very closely related to
ΣΠΣ identities. It would be interesting to obtain bounds for
SGk(F, m) for different F. For example, as also asked by
[KS09b], can we nontrivially bound the number SGk(F, m)
for interesting fields:C, finite fields with large characteristic,
or evenp-adic fields? The only known SGk rank bounds are
those forR, SG2(C, m) ≤ 3, and SG2(F, m) ≤ O(log m).
We shed (a little) light on SG rank bounds by showing
SGk(F, m) = O(k log m). We conjecture: SGk(F, m) is
O(k) for zero characteristic fields, whileO(k + k · logp m)
for fields of characteristicp > 1. The latter would mean
that when the characteristic is large (p > m), SGk(F, m) =
O(k), matching the bounds for zero characteristic fields.
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