
Journal of Symbolic Computation 104 (2021) 805–823
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Efficiently factoring polynomials modulo p4

Ashish Dwivedi, Rajat Mittal, Nitin Saxena

CSE, Indian Institute of Technology, Kanpur, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2019
Received in revised form 22 July 2020
Accepted 6 October 2020
Available online 15 October 2020

Keywords:
Efficient
Randomized
Factor
Local ring
Prime-power
Hensel lift

Polynomial factoring has famous practical algorithms over fields–
finite, rational and p-adic. However, modulo prime powers, fac-
toring gets harder because there is non-unique factorization and a
combinatorial blowup ensues. For example, x2 + p mod p2 is irre-
ducible, but x2 + px mod p2 has exponentially many factors in the
input size (which here is logarithmic in p)! We present the first
randomized poly(deg f , log p) time algorithm to factor a given uni-
variate integral polynomial f modulo pk , for a prime p and k ≤ 4.1

Thus, we solve the open question of factoring modulo p3 posed in
(Sircana, ISSAC’17).
Our method reduces the general problem of factoring f mod pk to
that of root finding of a related polynomial E(y) mod 〈pk, ϕ(x)�〉 for
some irreducible ϕ mod p. We can efficiently solve the latter for
k ≤ 4, by incrementally transforming E . Moreover, we discover an
efficient refinement of Hensel lifting to lift factors of f mod p to
those mod p4 (if possible). This was previously unknown, as the
case of repeated factors of f mod p forbids classical Hensel lifting.

© 2020 Elsevier Ltd. All rights reserved.

E-mail addresses: ashish@cse.iitk.ac.in (A. Dwivedi), rmittal@cse.iitk.ac.in (R. Mittal), nitin@cse.iitk.ac.in (N. Saxena).
URLs: https://www.cse.iitk.ac.in/users/ashish (A. Dwivedi), https://www.cse.iitk.ac.in/users/rmittal (R. Mittal),

https://www.cse.iitk.ac.in/users/nitin (N. Saxena).
1 A preliminary version of the paper was presented at the 44th International Symposium on Symbolic and Algebraic Computa-

tion (ISSAC), 2019 Dwivedi et al. (2019b). The current journal version includes new sections and algorithms for better exposition
with relevant non-trivial examples to explain the algorithms. It also contains a complete proof for factoring f mod p3 which
was left unproven in the conference version.
https://doi.org/10.1016/j.jsc.2020.10.001
0747-7171/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jsc.2020.10.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2020.10.001&domain=pdf
mailto:ashish@cse.iitk.ac.in
mailto:rmittal@cse.iitk.ac.in
mailto:nitin@cse.iitk.ac.in
https://www.cse.iitk.ac.in/users/ashish
https://www.cse.iitk.ac.in/users/rmittal
https://www.cse.iitk.ac.in/users/nitin
https://doi.org/10.1016/j.jsc.2020.10.001

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
1. Introduction

Polynomial factorization is a fundamental question in mathematics and computing. In the last
decades, quite efficient algorithms have been invented for various fields, e.g., over rationals (Lenstra
et al., 1982), number fields (Landau, 1985), finite fields (Berlekamp, 1967; Cantor and Zassenhaus,
1981; Kedlaya and Umans, 2011) and p-adic fields (Chistov, 1987; Cantor and Gordon, 2000; Guàrdia
et al., 2012). Being a problem of fundamental theoretical and practical importance, it has been very
well studied; for more background refer to surveys, e.g., Kaltofen (1992); von zur Gathen and Panario
(2001); Forbes and Shpilka (2015).

The same question over composite characteristic rings is believed to be computationally hard. For
instance it is related to integer factoring (Shamir, 1993; Klivans, 1997). What is less understood is
factorization over a local ring; especially, ones that are the residue class rings of Z or Fq[z]. A natural
variant is as follows.

Problem. Given a univariate integral polynomial f and a prime power pk , with p prime and k ∈ N;
output a nontrivial factor of f mod pk in randomized poly(deg f , k log p) time.

Note that the polynomial ring (Z/〈pk〉)[x] is not a unique factorization domain. So f may have
a number of factorizations exponential in the input size (which in our setting is deg(f) log p). For
example, x2 + px has an irreducible factor x + αp mod p2 for each α ∈ [p] and so x2 + px has ex-
ponentially many (wrt log p) irreducible factors modulo p2. This leads to a total breakdown in the
classical factoring methods.

We give the first randomized polynomial time algorithm to non-trivially factor (or test for irreducibility) a
polynomial f mod pk, for k ≤ 4.

Additionally, when f mod p is a power of an irreducible, we provide (and count) all the lifts mod pk

(k ≤ 4) of any factor of f mod p, in randomized polynomial time.

Usually, one factors f mod p and tries to “lift” this factorization to higher powers of p. If the
former is a coprime factorization then Hensel lifting (Hensel, 1918) helps us in finding a non-trivial
factorization of f mod pk for any k. But, when f mod p is a power of an irreducible then it is not
known how to lift to some factorization of f mod pk . To illustrate the difficulty let us see some
examples (also see von zur Gathen and Hartlieb (1996)).

Example 1 (coprime factor case). Let f = x2 + 10x + 21. Then f ≡ x(x + 1) mod 3 and Hensel lemma
lifts this factorization uniquely mod 32 as f ≡ (x + 1 · 3)(x + 1 + 2 · 3) ≡ (x + 3)(x + 7) mod 9. This
lifting extends to any power of 3.

Example 2 (power of an irreducible case). Let f = x3 + 12x2 + 3x + 36 and we want to factor it mod
33. Clearly, f ≡ x3 mod 3. By brute force one checks that, the factorization f ≡ x · x2 mod 3 lifts to
factorizations mod 32 as: x(x2 + 3x + 3), (x + 6)(x2 + 6x + 3), (x + 3)(x2 + 3). Only the last one lifts to
mod 33 as: (x + 3)(x2 + 9x + 3), (x + 12)(x2 + 3), (x + 21)(x2 + 18x + 3).

So the big issue is: efficiently determine which factorization, out of the exponentially many factor-
izations mod p j , will lift to mod p j+1?

1.1. Previously known results

Using Hensel lemma it is easy to find a non-trivial factor of f mod pk when f mod p has two
coprime factors. So the hard case is when f mod p is power of an irreducible polynomial. The first
resolution in this case was achieved by von zur Gathen and Hartlieb (1998) assuming that k is “large”.
They assumed k to be larger than the maximum power of p dividing the discriminant of the integral
f . Under this assumption (i.e. k is large), they showed that factorization modulo pk is well behaved
and it corresponds to the unique p-adic factorization of f (refer p-adic factoring Chistov (1987, 1994);
Cantor and Gordon (2000); Guàrdia et al. (2012)). To show this, they used an extended version of
806

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Hensel lifting (also discussed in Borevich and Shafarevich (1986)). Using this observation they could
also describe all the factorizations modulo pk , in a compact data structure. The complexity of von zur
Gathen and Hartlieb (1998) was improved by Cheng and Labahn (2001).

The related questions of root finding and root counting of f mod pk are also of classical inter-
est, see Niven et al. (2013); Apostol (2013). Root counting has interesting applications in arithmetic
algebraic-geometry, for instance to compute Igusa’s local zeta function of a univariate integral poly-
nomial (Zuniga-Galindo, 2003; Denef and Hoornaert, 2001; Dwivedi and Saxena, 2020). To the best
of our knowledge, the first randomized polynomial time root-finding algorithm can be deduced from
Panayi’s PhD work Panayi (1995). A root-counting algorithm based on Panayi’s work is described
in (Pauli and Roblot, 2001, Section 8). A recent result of (Berthomieu et al., 2013, Cor.4) explicitly
resolves these problems (all root-finding and counting) in randomized polynomial time. Again, it de-
scribes all the roots modulo pk , in a compact data structure. Neiger et al. (2017) improved the time
complexity of Berthomieu et al. (2013). Very recently, Kopp et al. (2019) also found a randomized
poly-time algorithm which counts all the roots of f mod pk .

Derandomizing root counting problem remained open until very recently. A partial derandomiza-
tion of root counting algorithm has been obtained by Cheng et al. (2018) last year; which runs in
deterministic poly-time when k = O (log log p). Finally, Dwivedi et al. (2019a) gave a deterministic
poly(deg(f), k log p)-time algorithm for the problem, which also generalizes to count all the basic
irreducible factors of f mod pk; taking a step closer towards irreducibility testing of f mod pk .

Going back to factoring f mod pk , von zur Gathen and Hartlieb (1996) discusses the hurdles when
k is small. The factors could be completely unrelated to the corresponding p-adic factorization, since
an irreducible p-adic polynomial could be reducible mod pk when k is small. We give an example
from von zur Gathen and Hartlieb (1996).

Example 3. Polynomial f = x2 + 3k is irreducible over Z/〈3k+1〉 and so over 3-adic field. But, it is
reducible mod 3k as f ≡ x2 mod 3k .

von zur Gathen and Hartlieb also pointed out that the distinct factorizations are completely differ-
ent and not nicely related, unlike the case when k is large. An example taken from von zur Gathen
and Hartlieb (1996) is,

Example 4. f = (x2 + 243)(x2 + 6) is an irreducible factorization over Z/〈36〉. There is another com-
pletely unrelated factorization f = (x + 351)(x + 135)(x2 + 243x + 249) mod 36.

Many researchers tried to solve special cases, especially when k is constant. The only successful
factoring algorithm is by Sălăgean (2005) over Z/〈p2〉; it is actually related to Eisenstein’s criterion for
irreducible polynomials. The next case, to factor modulo p3, is unsolved and was recently highlighted
in Sircana (2017).

1.2. Our results

We saw that even after the attempts of last two decades we do not have an efficient algorithm for
factoring mod p3. Naturally, we would like to first understand the difficulty of the problem when k
is constant. In this direction we make significant progress by devising a unified method which solves
the problem when k = 2, 3 or 4 (and sketch the obstructions we face when k ≥ 5). Our first result is,

Theorem 1. Let p be prime, k ≤ 4 and f ∈ Z[x] be a univariate integral polynomial. Then, f mod pk can be
factored (find a non-trivial factor or report irreducible) in randomized poly(deg f , log p) time.

Remarks. (1) The procedure to factor f mod p4 also factors mod p3 and mod p2 (and tests for irre-
ducibility) in randomized poly(deg f , log p) time. This solves the open question of efficiently factoring
f mod p3 (Sircana, 2017) and generalizes Sălăgean (2005).

(2) Our method can as well be used to factor a ‘univariate’ polynomial f ∈ (
Fp[z]/〈ψk〉) [x], for

k ≤ 4 and irreducible ψ(z) mod p, in randomized poly(deg f , deg ψ, log p) time.
807

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Next, we do more than just factoring f modulo pk for k ≤ 4: Given that f is power of an irre-
ducible mod p (hard case for Hensel lemma), we show that our method works in this case to give all
the lifts g mod pk (possibly exponentially many) of any given factor g̃ of f mod p, for k ≤ 4.

Theorem 2. Let p be prime, k ≤ 4 and f ∈ Z[x] be a univariate integral polynomial such that f mod p is a
power of an irreducible polynomial. Let g̃ be a given factor of f mod p. Then, in randomized poly(deg f , log p)
time, we can compactly describe (and count) all possible factors of f mod pk which are lifts of g̃ (or report
that there are none).

Remark. Theorem 2 can be seen as refinement of Hensel lifting method (Lemma 4) to Z/〈pk〉, k ≤ 4.
To lift a factor f1 of f mod p, Hensel lemma relies on a cofactor f2 which is coprime to f1. Our
method needs no such assumption and it directly lifts a factor g̃ of f mod p to (possibly exponentially
many) factors g mod pk .

1.3. Proof technique– root finding over local rings

Our proof involves two main techniques which may be of general interest.

Technique 1: Known factoring methods mod p work by first reducing the problem to that of root
finding mod p. In this work, we efficiently reduce the problem of factoring f modulo the principal
ideal 〈pk〉 to that of finding roots of some polynomial E(y) ∈ (Z[x])[y] modulo a bi-generated ideal
〈pk, ϕ�〉, where ϕ is an irreducible factor of f mod p. This technique works for all k ≥ 1.

Technique 2: Next, we find a root of the equation E ≡ 0 mod 〈pk, ϕ�〉, assuming k ≤ 4. With the help
of the special structure of E we will efficiently find all the roots y (possibly exponentially many) in
the local ring Z[x]/〈pk, ϕ�〉.

It remains open whether this technique extends to k = 5 and beyond (even to find a single root of
the equation). The possibility of future extensions of our technique is discussed in Section 5.

1.4. Proof overview

Proof idea of Theorem 1. Firstly, assume that the given degree d integral polynomial f satisfies f ≡
ϕe mod p for some ϕ ∈Z[x] which is irreducible mod p. Otherwise, using Hensel lemma (Lemma 4)
we can efficiently factor f mod pk .

Any factor of such an f mod pk must be of the form (ϕa − py) mod pk , for some 1 ≤ a < e and y ∈
(Z/〈pk〉)[x]. In Theorem 11, we first reduce the problem of finding such a factor (ϕa − py) of f mod
pk to finding roots of some E(y) ∈ (Z[x])[y] in the local ring Z[x]/〈pk, ϕak〉. This is inspired by the
p-adic power series expansion of the quotient f /(ϕa − py). On going mod pk we get a polynomial
in y of degree k − 1; which we want to be divisible by ϕak .

The root y of E mod 〈pk, ϕak〉 can be further decomposed into coordinates y0, y1, . . ., yk−1 ∈
Fp[x]/〈ϕak〉 such that y =: y0 + py1 + · · · + pk−1 yk−1 mod 〈pk, ϕak〉. When we take k = 4, it turns
out that the root y only depends on the coordinates y0 and y1 (i.e. y2, y3 can be picked arbitrarily).

Next, we reduce the problem of root finding of E(y0 + py1) in the ring Z[x]/〈p4, ϕ4a〉 to root
finding in characteristic p; of some E ′(y0, y1) in the ring Fp[x]/〈ϕ4a〉 (Lemma 14). We make use of a
subroutine Root-Find given by Panayi (1995); Berthomieu et al. (2013) which can efficiently find all
the roots of a univariate g(y) in the ring Z/〈p j〉. In fact, we need a slightly generalized version of it,
to find all the roots of a given g in the ring Fp[x]/〈ϕ(x) j〉 (Section 2.4).

Note that y0, y1 are in the ring Fp[x]/〈ϕ4a〉 and so they can be decomposed as y0 =: y0,0 +
ϕ y0,1 + · · · + ϕ4a−1 y0,4a−1 and y1 =: y1,0 + ϕ y1,1 + · · · + ϕ4a−1 y1,4a−1, with all yi, j ’s in the field
Fp[x]/〈ϕ〉.

To get E ′(y0, y1) mod 〈p, ϕ4a〉 the idea is: first divide by p2, and then to go modulo the ideal
〈p, ϕ4a〉. Apply Algorithm Root-Find to solve E(y0 + py1)/p2 ≡ 0 mod 〈p, ϕ4a〉. This allows us to fix
some part of y0, say a0 ∈ Fp/〈ϕ4a〉, and we can replace it by a0 + ϕ i0 y0, i0 ≥ 1. Thus, p3|E(a0 +
ϕ i0 y0 + py1) mod 〈p4, ϕ4a〉 and we divide out by this p3 (and change the modulus to 〈p, ϕ4a〉). In
808

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Lemma 14 we show that when we go modulo the ideal 〈p, ϕ4a〉 to find a0, we only need to solve a
univariate polynomial equation in y0 using Root-Find. So we only need to fix some part of y0, that
we called a0, and y1 is irrelevant. Finally, we get E ′(y0, y1) such that E ′(y0, y1) := E(a0 + ϕ i0 y0 +
py1)/p3 mod 〈p, ϕ4a〉. Importantly, the process yields at most two possibilities of E ′ (resp. a0) to deal
with.

Lemma 14 also shows that the bivariate E ′(y0, y1) is a special one of the form E ′(y0, y1) ≡
E1(y0) + E2(y0)y1 mod 〈p, ϕ4a〉, where E1 ∈ (Fp[x]/〈ϕ4a〉)[y0] is a cubic univariate polynomial and
E2 ∈ (Fp[x]/〈ϕ4a〉)[y0] is a linear univariate polynomial. We exploit this special structure to represent
y1 as a rational function of y0, i.e., y1 ≡ −E1(y0)/E2(y0) mod 〈p, ϕ4a〉. The important issue is that
we can calculate y1 only when, on some specialization y0 = a0, the division by E2(a0) is well defined.
So we guess each value of 0 ≤ r ≤ 4a and ensure that the valuation (with respect to the powers of
ϕ) of E1(y0) is at least r but that of E2(y0) is exactly r. Once we find such a y0, we can efficiently
compute y1 as y1 ≡ −(E1(y0)/ϕ

r)/(E2(y0)/ϕ
r) mod 〈p, ϕ4a−r〉.

To find y0, we find common solution of two equations: E1(y0) ≡ E2(y0) ≡ 0 mod 〈p, ϕr〉, for each
guessed value r, using Algorithm Root-Find. Since the polynomial E2(y0) is linear, it is easy for us to
filter all y0’s for which valuation of E2(y0) is exactly r (Lemma 16). Thus, we could efficiently find all
(y0, y1) pairs that satisfy the equation E ′(y0, y1) ≡ 0 mod 〈p, ϕ4a〉.

Proof idea of Theorem 2. If f ≡ ϕe mod p then any lift g of a factor g̃(x) ≡ ϕa mod p of f mod p
will be of the form g ≡ (ϕa − py) mod pk . So basically we want to find all the y’s mod pk−1 that
appear in the proof idea of Theorem 1 above. This can be done easily, because Algorithm Root-Find

(Section 2.4) Panayi (1995); Berthomieu et al. (2013) describes all possible y0’s in a compact data
structure. Moreover, using this, a count of all y’s can be provided as well.

2. Preliminaries

2.1. Factoring and lifting

The following theorem by Cantor-Zassenhaus (Cantor and Zassenhaus, 1981) efficiently finds all
the roots of a given univariate polynomial over a finite field.

Theorem 3 (Cantor-Zassenhaus). Given a univariate degree d polynomial f over a given finite field Fq, we can
find all the irreducible factors of f in Fq[x] in randomized poly(d, log q) time.

Currently, it is a big open question to derandomize the preceding theorem. The known determinis-
tic algorithms are ‘inefficient’ for example, the well known Berlekamp’s algorithm (Berlekamp (1967))
takes time Õ (p · (dn)ω) where q = pn for p prime and ω is matrix-multiplication exponent.

Below we state a lemma, originally due to Hensel (Hensel, 1918), for I-adic lifting of coprime
factorization for a given univariate polynomial. Over the years, it has acquired many forms in different
texts; the version being presented here is due to Zassenhaus (Zassenhaus, 1969).

Lemma 4 (Hensel’s lemma and lift Hensel (1918)). Let R be a commutative ring with unity, and let I ⊆ R
be an ideal. Given a polynomial f ∈ R[x], let g, h, u, v ∈ R[x] be polynomials, such that, f = gh mod I and
gu + hv = 1 mod I .

Then, for any � ∈N , we can efficiently compute g∗, h∗, u∗, v∗ ∈ R[x] such that

f = g∗h∗ mod I� (called lift of the factorization)

where g∗ = g mod I , h∗ = h mod I and g∗u∗ + h∗v∗ = 1 mod I� .
Moreover, g∗ and h∗ are unique upto multiplication by a unit.

2.2. A bit of commutative algebra

In this subsection we present some basic results in commutative algebra which will be helpful in
Section 4.
809

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Zero-Divisors. Let R[x] be the ring of polynomials over R =Z/〈pk〉. The following lemma about zero
divisors in R[x] will be helpful.

Lemma 5. A polynomial f ∈ R[x] is a zero divisor iff f ≡ 0 mod p. Consequently, for any polynomials
f , g1, g2 ∈ R[x] and f �≡ 0 mod p, f g1 = f g2 implies g1 = g2 .

Proof. If f ≡ 0 mod p then f · pk−1 is zero, and f is a zero divisor.
For the other direction, let f �≡ 0 mod p and assume f g = 0 for some non-zero g ∈ R[x]. Let

• i be the biggest integer such that the coefficient of xi in f is non-zero modulo p,
• and j be the biggest integer such that the coefficient of x j in g has minimum valuation with

respect to p.

Then, the coefficient of xi+ j in f · g has same valuation as the coefficient of x j in g , implying that the
coefficient is nonzero. This contradicts the assumption f · g = 0.

The consequence follows because f �≡ 0 mod p implies that f cannot be a zero divisor. �
Quotient ideals. We define the quotient ideal (analogous to division of integers) and look at some of
its properties.

Definition 6 (Quotient ideal). Given two ideals I and J of a commutative ring R , we define the quotient
of I by J as,

I : J := {a ∈ R | a J ⊆ I}.

It can be easily verified that I : J is an ideal. Moreover, we can make the following observations
about quotient ideals.

Claim 7 (Cancellation). Suppose I is an ideal of ring R and a, b, c are three elements in R. By definition of
quotient ideals, ca ≡ cb mod I iff a ≡ b mod I : 〈c〉.

Claim 8. Let p be a prime and ϕ ∈ (Z/〈pk〉)[x] be such that ϕ �≡ 0 mod p. Given an ideal I := 〈p�, ϕm〉 of
Z[x],

1. I : 〈pi〉 = 〈p�−i, ϕm〉, for i ≤ �, and
2. I : 〈ϕ j〉 = 〈p�, ϕm− j〉, for j ≤ m.

Proof. We will only prove part (1), as the proof of part (2) is similar. If c ∈ 〈p�−i, ϕm〉 then there
exists c1, c2 ∈Z[x], such that, c = c1 p�−i + c2ϕ

m . Multiplying by pi ,

pic = c1 p� + c2 piϕm ∈ I ⇒ c ∈ I : 〈pi〉.
To prove the reverse direction, if c ∈ I : 〈pi〉 then there exists c1, c2 ∈ Z[x], such that, pic = c1 p� +
c2ϕ

m . Since i ≤ � and p � | ϕ , we know pi |c2. So, c = c1 p�−i + (c2/pi)ϕm ⇒ c ∈ 〈p�−i, ϕm〉. �
Lemma 9 (Compute quotient). Given a polynomial ϕ ∈Z[x] not divisible by p, define I to be the ideal 〈p�, ϕm〉
of Z[x]. If g(y) ∈ (Z[x])[y] is a polynomial such that g ≡ 0 mod 〈p, ϕm〉, then p|g mod I and g/p mod I :
〈p〉 is efficiently computable.

Proof. The equation g ≡ 0 mod 〈p, ϕm〉 implies g = pc1 +ϕmc2 for some polynomials c1, c2 ∈Z[x][y].
Going modulo I , g ≡ pc1 mod I . Hence, p|g mod I and g/p ≡ c1 mod I : 〈p〉 (Claim 7).

If we write g in the reduced form modulo I , then the polynomial g/p can be obtained by dividing
each coefficient of g mod I by p. �
810

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
2.3. Representatives and representative roots

Let R be a commutative ring with addition + and multiplication · and let S be a non-empty subset
of R . The product of the set S with a scalar a ∈ R is defined as aS := {as | s ∈ S}. Similarly, the sum
of a scalar u ∈ R with the set S is defined as u + S := {u + s | s ∈ S}. Note that the product and the
sum operations used inside the set are borrowed from the underlying ring R . Also note that if S is
the empty set then so are aS and u + S for any a, u ∈ R .

Representatives. The symbol ‘∗’ in a ring R , wherever it appears, denotes any possible choice of an
arbitrary element of R . For example, suppose R = Z/〈pk〉 for a prime p and a positive integer k.
In this ring, we will use the notation y = y0 + py1 + · · · + pi yi + pi+1∗, where i + 1 < k and each
y j ∈ R/〈p〉, to denote a set S y ⊆ R such that

S y = {y0 + · · · + pi yi + pi+1 yi+1 + · · · + pk−1 yk−1 | ∀yi+1, . . . , yk−1 ∈ R/〈p〉}.
Notice that the number of distinct elements in R represented by y is |S y| = pk−i−1.

We will sometimes write the set y = y0 + py1 + · · · + pi yi + pi+1∗ succinctly as y = v + pi+1∗,
where v ∈ R stands for v = y0 + py1 + · · · + pi yi .

In the following sections, we will add and multiply the set {∗} with scalars from the ring R . Let
us define these operations as follows (∗ is treated as an unknown)

• u + {∗} := {u + ∗} and u{∗} := {u∗}, where u ∈ R .
• c + {a + b∗} = {(a + c) + b∗} and c{a + b∗} = {ac + bc∗}, where a, b, c ∈ R .

Another important example of the ∗ notation: Let R0 = Fp[x]/〈ϕ(x)k〉 for a prime p and an irre-
ducible ϕ mod p. In this ring, we use the notation y = y0 +ϕ y1 + · · ·+ϕ i yi +ϕ i+1∗, where i + 1 < k
and each y j ∈ R0/〈ϕ〉, to denote a set S y ⊆ R0 such that

S y = {y0 + · · · + ϕ i yi + ϕ i+1 yi+1 + · · · + ϕk−1 yk−1 | ∀yi+1, . . . , yk−1 ∈ R0/〈ϕ〉}.
Representative roots. Let R0 = Fp[x]/〈ϕ(x)k〉 for a prime p and an irreducible ϕ mod p. Any element
in R0 can be written uniquely as y = y0 +ϕ y1 +· · ·+ϕk−1 yk−1, where each y j is in the field R0/〈ϕ〉.

Let g(y) be a polynomial in R0[y], then a set y = y0 + ϕ y1 + · · · + ϕ i yi + ϕ i+1∗ will be called a
representative root of g iff

• All elements in y = y0 + ϕ y1 + · · · + ϕ i yi + ϕ i+1∗ are roots of g and,
• Not all elements in y′ = y0 + ϕ y1 + · · · + ϕ i−1 yi−1 + ϕ i∗ are roots of g .

We will sometimes represent the set of roots, y = y0 + ϕ y1 + · · · + ϕ i yi + ϕ i+1∗, succinctly as
y = v + ϕ i+1∗, where v ∈ R0 stands for y = y0 + ϕ y1 + · · · + ϕ i yi . Such a pair, (v, i + 1), will be
called a representative pair.

The significance of defining representative roots will be clear in Section 2.4.

2.4. Root finding modulo ϕ(x)i

Let us denote the ring Fp[x]/〈ϕ i〉 by R0 (for an irreducible ϕ(x) mod p). In this section, we give
an algorithm to find all the roots y ∈ R0 of a polynomial g ∈ R0[y]. To the best of our knowledge, the
algorithm to find roots modulo pi first appeared in Panayi’s PhD thesis Panayi (1995). Here, we adapt
the algorithm by (Berthomieu et al., 2013, Cor.4) to find roots in R0 in the form of representative
roots. Recall the notation of ∗ and representative roots from Section 2.3.

Note that R0/〈ϕ j〉 = Fp[x]/〈ϕ j〉, for j ≤ i, and R0/〈ϕ〉 =: Fq is the finite field of cardinality q :=
pdeg(ϕ mod p) . A root y of g in R0 has the following unique structure

y = y0 + ϕ y1 + ϕ2 y2 + · · · + ϕ i−1 yi−1,
811

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
where each y j ∈ Fq for all j ∈ {0, . . . , i − 1}.
The output of this algorithm is simply a set of at most deg g many representative roots of g . This

bound of deg g is a curious by-product of the algorithm (Berthomieu et al., 2013, Cor.4).

Algorithm 1 Root-finding in ring R0.

1: procedure Root-find(g(y), ϕ i)
2: If g(y) ≡ 0 in R0/〈ϕ i〉 return ∗ (every element is a root).

3: Let g(y) ≡ ϕα g̃(y) in R0/〈ϕ i〉, for the unique integer 0 ≤ α < i and the polynomial g̃(y) ∈ R0/〈ϕ i−α〉[y], s.t., g̃(y) �≡ 0
in R0/〈ϕ〉 and deg(g̃) ≤ deg(g).

4: Using Cantor-Zassenhaus algorithm (Theorem 3) find all the roots of g̃(y) in R0/〈ϕ〉.
5: If g̃(y) has no root in R0/〈ϕ〉 then return {}. (Dead-end)
6: Initialize S = {}.
7: for each root a of g̃(y) in R0/〈ϕ〉 do
8: Define ga(y) := g̃(a + ϕ y).

9: S ′ ←Root-find(ga(y), ϕ i−α).
10: S ← S ∪ (a + ϕS ′).
11: end for
12: return S .
13: end procedure

Note that in Step 9 we ensure: ϕ|ga(y). So, in every other recursive call to Root-find the second
argument reduces by at least one. The key reason why |S| ≤ deg g holds: The number of representa-
tive roots of ga are upper bounded by the multiplicity of the root a of g̃ .

The implication of Algorithm 1 is summed up in the following theorem due to Panayi (1995);
Berthomieu et al. (2013).

Theorem 10. (Panayi, 1995; Berthomieu et al., 2013, Cor.4) Given a bivariate g ∈ R0[y] where R0 =
Z[x]/〈p, ϕ i〉, let Z ⊆ R0 be the root set of g(y). Then Z can be expressed as the disjoint union of at most
degy(g) many representative pairs (a0, i0) (a0 ∈ R0 and i0 ∈N).

These representative pairs can be found in randomized poly(degy(g), log p, ak degϕ) time.

Notice that this compact description of the root set Z allows us to calculate the size of Z too.
Let us see how Algorithm 1 can be used to factor the polynomial given in Example 2. We adapt the
Algorithm 1 here in the context R0 =Z/〈pk〉.

Example 5. We have g(x) = x3 + 12x2 + 3x + 36 and pk = 33. So g ≡ x3 + 12x2 + 3x + 9 mod 27.

Using Theorem 3, the only root of g̃(x) := g mod 3 is 0. So we shift g as g(0 + 3x) ≡ 9(x + 4) mod 27.

Dividing by 9 both sides we have, ga(x) ≡ x + 1 mod 3 which has only root 2 modulo 3.

So we get exactly one representative root of g mod 27: x = 0 + 3(2) + 32∗.

Putting 0, 1 and 2 in place of ∗ we get the roots −21, −15 and −3 modulo 27. These correspond to
degree one factors (x + 21), (x + 12) and (x + 3) of g mod 27 as we saw in Example 2.

2.5. Input preprocessing and proof organization

We give some assumptions here, on the given input polynomial f ∈ Z[x], which will be followed
in further sections unless explicitly stated otherwise.

Preprocessing: Our task is to non-trivially factor a univariate integral polynomial f ∈Z[x] of degree
d modulo a prime power pk . Without loss of generality, we can assume that f �≡ 0 mod p. Otherwise,
we can efficiently divide f by the highest power of p possible, say p� , such that f (x) ≡ p� f̃ (x) mod pk

and f̃ (x) �≡ 0 mod p. In this case, it is equivalent to factor f̃ instead of f .
To simplify the input further, write f mod p (uniquely) as a product of powers of coprime ir-

reducible polynomials (Theorem 3). If there are two coprime factors of f , using Hensel lemma
812

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
(Lemma 4), we get a non-trivial factorization of f mod pk . So we can assume that f is a power
of a monic irreducible polynomial ϕ ∈Z[x] modulo p. In other words, we can efficiently write

f ≡ ϕe + p� mod pk

for a polynomial � in (Z/〈pk〉)[x]. We have e · degϕ ≤ deg f , for the integral polynomials f and ϕ .

Organization of paper: Factoring a univariate modulo p goes through root finding in an extension
field of Fp . Our factoring method passes through a similar stage. In Section 3, we reduce factoring
f mod pk to root finding of E ∈ (Z[x])[y] modulo the bi-generated ideal 〈pk, ϕak〉 for some a < e.

Section 4 proves our main Theorems- 1 and 2. We show in Section 4.1 how to find (and count)
roots of E in simpler case of k = 3. In rest of Section 4 we generalize the idea used for k = 3 to
find (and count) roots of E for k = 4. In Section 5 we discuss the barriers for k = 5 and beyond in
extending the idea for k = 4. Finally, we conclude in Section 6.

3. Factoring to root-finding

In this section we give a general framework to work on the problem of factoring f mod pk– we
reduce factoring f mod pk to root finding in a more general ring. The reduction seems quite natural
and we hope that factoring f mod pk , for arbitrary k can be done efficiently within this framework.

Following the preprocessing in Section 2.5, it is enough to factor f ∈Z[x] such that

f ≡ ϕe + p� mod pk,

where ϕ ∈Z[x] is an irreducible polynomial modulo p. Up to multiplication by units, any non-trivial
factor h of f has the form h ≡ ϕa − py, as h mod p is a factor of f ≡ ϕe mod p, where a < e and y
is a polynomial in (Z/〈pk〉)[x].

Let us denote the ring Z[x]/〈pk, ϕak〉 by R . Also, denote the ring Z[x]/〈p, ϕak〉 by R0. We define
an auxiliary polynomial E ∈ R[y] via

E := f · (ϕa(k−1) + ϕa(k−2)(py) + · · · + ϕa(py)k−2 + (py)k−1).

Theorem 11 reduces the problem of factoring f mod pk to the problem of finding roots of the uni-
variate polynomial E in ring R . Thus, we convert the problem of finding factors of f ∈Z[x] modulo a
principal ideal 〈pk〉 to root finding of a polynomial E ∈ (Z[x])[y] modulo a bi-generated ideal 〈pk, ϕak〉.

Theorem 11 (Reduction theorem). Given a prime power pk; let f , h ∈Z[x] satisfy f ≡ ϕe + p� mod pk and
h ≡ ϕa − py mod pk, with �, y ∈ (Z/〈pk〉)[x] and a ≤ e. Then, h divides f modulo pk if and only if

E = f · (ϕa(k−1) + ϕa(k−2)(py) + · · · + ϕa(py)k−2 + (py)k−1) ≡ 0 mod 〈pk,ϕak〉.

Proof. Let Q denote the ring of fractions of the ring (Z/〈pk〉)[x]. Since ϕ is not a zero divisor,
(E(y)/ϕak) ∈ Q .

We first prove the reverse direction. If E ≡ 0 mod 〈pk, ϕak〉, then (E/ϕak) is a polynomial over
(Z/〈pk〉)[x]. Multiplying h with (E/ϕak) mod pk , we write,

(ϕa − py)((f /ϕak)�k−1
i=0 ϕa(k−1−i)(py)i) ≡ (f /ϕak)(ϕak − (py)k) ≡ f ·ϕak/ϕak ≡ f mod pk.

The first equality comes via geometric series. Hence, h divides f modulo pk .

For the forward direction, assume that there exists some g ∈ (Z/〈pk〉)[x], such that, f (x) ≡
h(x)g(x) mod pk . We get two factorizations of f in Q ,

f = h · g and f = h · (E/ϕak).

Subtracting the first equation from the second one,

h ·
(

g − (E/ϕak)
)

= 0.
813

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Notice that h is not a zero divisor in (Z/〈pk〉)[x] (by Lemma 5) and is thus invertible in Q . So,
E/ϕak = g in Q . Since g is in (Z/〈pk〉)[x], we deduce the equivalent divisibility statement: E(y) ≡
0 mod 〈pk, ϕak〉. �

Following the reduction in this section, we move on to find roots of E(y), when k ≤ 4, in the next
section (Sec. 4).

4. Main results: the Proof of Theorems 1 and 2

In this section we will prove Theorems 1 and 2. We want to find (and count) all the factors
h ∈ (Z/〈pk〉)[x] of the given degree d polynomial f ∈ Z[x] modulo pk for k ≤ 4, where f ≡ ϕe +
p� mod pk and h = ϕa − py (Sec. 2.5).

We also recall the definitions from Section 3. We have R :=Z[x]/〈pk, ϕak〉 and R0 =Z[x]/〈p, ϕak〉.
For a factor h of f , define E ∈ R[y] as

E := f · (ϕa(k−1) + ϕa(k−2)(py) + · · · + ϕa(py)k−2 + (py)k−1).

The following two observations simplify our task of finding roots y of polynomial E(y).
(1) First, due to symmetry, it is enough to find factors h ≡ ϕa mod p with a ≤ e/2. The assertion

follows because f ≡ hg mod pk implies, at least one of the factor (say h) must be of the form ϕa mod
p for a ≤ e/2. By Lemma 5, for a fixed h ≡ ϕa − py mod pk , there is a unique g ≡ ϕe−a − py′ mod pk

such that f ≡ hg mod pk . So, to find g , it is enough to find h.
(2) Second, observe that any root y ∈ R (of E ∈ R[y]) can be seen as y = y0 + py1 + p2 y2 + · · · +

pk−1 yk−1, where each yi ∈ R0 for all i in {0, . . . , k − 1}. The following lemma decreases the required
precision of a root y.

Lemma 12. Let y = y0 + py1 + p2 y2 + · · · + pk−1 yk−1 be a root of E, where k ≥ 2 and a ≤ e/2. Then, all
elements of the set y = y0 + py1 + p2 y2 + · · · + pk−3 yk−3 + pk−2∗ are also roots of E.

Proof. Notice that the variable y is multiplied with p in E(y), implying yk−1 is irrelevant. A similar
argument is applicable for the coefficient yk−2 in any term involving (py)i for i ≥ 2. The only surviv-
ing term containing yk−2 is f ϕa(k−2)(py). The coefficient of yk−2 in this term is ϕa(k−2) f pk−1, it also
vanishes because

ϕa(k−2) f ≡ ϕa(k−2)ϕe ≡ ϕakϕe−2a ≡ 0 mod 〈p, ϕak〉. �
Root-finding modulo a principal ideal. In next few sections we will see that finding roots of E in R
goes through finding roots of intermediate polynomials in R0 = Fp[x]/〈ϕak〉 (i.e., modulo a principal
ideal). Such an algorithm is described in Section 2.4, which is a slightly modified version of the
theorem from (Berthomieu et al., 2013, Cor.4). It shows that all the roots of a polynomial g ∈ R0[y]
can be efficiently described.

4.1. Finding all the factors modulo pk when k < 4

In this section we partially prove Theorems 1 and 2, i.e., we efficiently find all the factors of
f mod p2 and f mod p3. Although the case of k = 2 is already solved Sălăgean (2005), the case of
k = 3 was left open in Sircana (2017). The ideas in this section (for k ≤ 3) will be generalized to solve
the case k = 4.

Factoring f mod p2. The reduction theorem (Theorem 11) and Lemma 12 make factoring mod p2

easy: They imply that any root of E is independent of coordinates y0 and y1. So, either h = ϕa − py
can not be a factor of f mod p2 or it is a factor for every value of y ∈ R0. Substituting y = 0, we
get that h ≡ ϕa − py mod p2 is a factor of f if and only if ϕa| f modulo p2. In fact, we get a simple
irreducibility criteria— f mod p2 factors if and only if ϕ| f mod p2 (first discovered by Sălăgean (2005)).

Factoring f mod p3. Theorem 13 below solves the factoring problem modulo p3.
814

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Theorem 13. Given f ∈Z[x], a univariate polynomial of degree d and a prime p ∈N , we give (and count) all
the distinct factors of f mod p3 of degree at most d in randomized poly(d, log p) time.

Note: We will assume that the leading coefficient of f is 1. Also, we will not distinguish two factors
if they are same up to multiplication by a unit.

Proof of Theorem 13. By Theorem 3, a general f can be written as:

f (x) ≡
n∏

i=1

f i(x) ≡
n∏

i=1

(ϕ
ei
i + phi) mod p3, (1)

where f i(x) ≡ (ϕ
ei
i + phi) mod p3 with ϕi mod p3 being monic and irreducible mod p, ei ∈ N , and

hi(x) mod p3 of degree < ei deg(ϕi), for all i ∈ [n].
Using Lemma 4, it is sufficient to consider the case f ≡ ϕe + ph.
By Reduction theorem (Theorem 11) finding factors of the form ϕa − py mod p3 of f ≡ ϕe +

ph mod p3, for a ≤ e/2, is equivalent to finding all roots of the equation

E ≡ f · (ϕ2a + ϕa(py) + (py)2) ≡ 0 mod 〈p3,ϕ3a〉.
Consider R :=Z[x]/〈p3, ϕ3a〉 and R0 :=Z[x]/〈p, ϕ3a〉 (analogous to Section 2).
Using Lemma 12, we know that all solutions of the equation E ≡ 0 mod 〈p3, ϕ3a〉 will be of the

form y = y0 + p∗ ∈ R , for a y0 ∈ R0. Substituting, we get

E ≡ phϕ2a + (p2hϕa)y0 + (p2ϕe)y2
0 ≡ 0 mod 〈p3,ϕ3a〉.

Looking at this equation mod 〈p2, ϕ3a〉, we get that h ≡ 0 mod 〈p, ϕa〉 is a necessary condition for
a root y0 to exist. Define h := ϕa g1 + pg2 for unique g1, g2 ∈ Fp[x], the equation becomes

E ≡ p2 g2ϕ
2a + (p2 g1ϕ

2a)y0 + (p2ϕe)y2
0 ≡ 0 mod 〈p3,ϕ3a〉.

This equation is already divisible by p2 as well as ϕ2a . Using Claim 8, finding factors of the form
ϕa − py mod p3 is equivalent to finding all roots of the equation

g2 + g1 y0 + ϕe−2a y2
0 ≡ 0 mod 〈p,ϕa〉 .

These roots can be obtained using one call to Root-find in randomized poly(d, log p) time. Note
that any root y0 given by Root-find is an element of Fp[x]/〈ϕa〉, implying its degree in x is <

a deg(ϕ). This yields monic factors of f mod p3 (with 0 ≤ a ≤ e/2).
For e ≥ a > e/2, we can replace a by b := e − a in the above steps. Once we get a factor ϕb −

py mod p3, we output the cofactor f /(ϕb − py) = (f /ϕak)(ϕ2a + ϕa(py) + (py)2) (which remains
monic).

Since Theorem 10 gives the numbers of roots from Root-find, we also get a count on total number
of factors in poly-time.

For a general f (Equation (1)), if Ni is the number of factors of f i mod p3, then
∏n

i=1 Ni is the
count on the number of distinct monic factors of f mod p3. �

Let us illustrate the steps in the proof of Theorem 13 by an example.

Example 6. Let f = x4 + 18x3 + 33x2 + 54x + 9 be an integral polynomial and pick p = 3, k = 3.

We need to find factors of f ≡ x4 + 18x3 + 6x2 + 9 mod 27; since f ≡ x4 mod 3, fix ϕ := x ∈Z[x].
Say, we want to find quadratic factors of f mod 27, so fix a = 2.

Recall the reduction theorem (Theorem 11), (ϕa − py) is a factor of f mod p3 iff

E := f · (ϕ2a + ϕa(py) + (py)2) ≡ 0 mod 〈p3,ϕ3a〉.

815

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
⇔ (x4 + 18x3 + 6x2 + 9)[x4 + x2(3y0) + 9y2
0] ≡ 0 mod 〈27, x6〉. (y = y0 [Lemma 12])

⇔ 9x4 y2
0 + 18x4 y0 + 9x4 ≡ 0 mod 〈27, x6〉.

⇔ y2
0 + 2y0 + 1 ≡ 0 mod 〈3, x2〉.

⇔ (y0 + 1)2 ≡ 0 mod 〈3, x2〉.

Applying Panayi (1995); Berthomieu et al. (2013) (Theorem 10) on last equation, we get exactly
one representative root y0 = 2 + x∗.

Choosing y1 = 0 and y0 = 2 +0, we have a corresponding factor (x2 −3(2 +0)) ≡ (x2 +21) mod 27.
The co-factor of this is (x2 + 18x + 12), giving

f ≡ x4 + 18x3 + 6x2 + 9 ≡ (x2 + 21)(x2 + 18x + 12) mod 27.

Remark. Observe that the core idea for p3 was to first reduce root finding of E mod 〈p3, ϕ3a〉 to root
finding modulo a principal ideal 〈p, ϕa〉. It was then solved by just one application of Theorem 10.
For p3, we only needed to deal with a univariate polynomial in y0.

The approach for k = 4 is similar, though it requires several applications of Theorem 10 to go to
principal ideal 〈p, ϕ4a〉 (Sec. 4.2). Even after that, we are required to solve a bivariate equation modulo
the principal ideal (as opposed to a univariate in the case k = 3).

We will fix k = 4 for the rest of Section 4. The barriers for k > 4 will be discussed in Section 5.

4.2. Reduction to root-finding modulo a principal ideal of Fp[x]

In this subsection, the task to find roots of E modulo the bi-generated ideal 〈p4, ϕ4a〉 of Z[x] will
be reduced to finding roots modulo the principal ideal 〈ϕ4a〉 (of Fp[x]).

Let us consider the equation E ≡ 0 mod 〈p4, ϕ4a〉. We have,

f (ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3) ≡ 0 mod 〈p4,ϕ4a〉 . (2)

Using Lemma 12, we can assume y = y0 + py1,

f (ϕ3a + ϕ2a p(y0 + py1) + ϕa p2(y2
0 + 2py0 y1) + (py0)

3) ≡ 0 mod 〈p4,ϕ4a〉 . (3)

The idea is to first solve this equation modulo 〈p3, ϕ4a〉. Since f ≡ ϕe mod p, e ≥ 2a, variable y1
is redundant while solving this equation modulo p3. The following lemma finds all representative
pairs (a0, i0) for y0, such that, E(a0 + ϕ i0 y0 + py1) ≡ 0 mod 〈p3, ϕ4a〉 for all y0, y1 ∈ R . Alternatively,
we can state this in the polynomial ring R[y0, y1]. Dividing by p3, we will be left with an equation
modulo the principal ideal 〈ϕ4a〉 (of Fp[x]).

Lemma 14 (Reduction to characteristic p). We efficiently compute a unique set S0 of all representative pairs
(a0, i0), where a0 ∈ R0 and i0 ∈N , such that,

E((a0 + ϕ i0 y0) + py1) = p3 E ′(y0, y1) mod 〈p4,ϕ4a〉
for a polynomial E ′(y0, y1) ∈ R0[y0, y1] (depending on (a0, i0)). Moreover,

1. |S0| ≤ 2 and, if our algorithm fails to find E ′, then Eqn. (3) has no solution.
2. E ′(y0, y1) =: E1(y0) + E2(y0)y1 , where E1 ∈ R0[y0] is cubic in y0 and E2 ∈ R0[y0] is linear in y0.
3. For every root y ∈ R of E there exists (a0, i0) ∈ S0 and (a1, a2) ∈ R × R, such that y = (a0 +ϕ i0a1) + pa2

and E ′(a1, a2) ≡ 0 mod 〈p, ϕ4a〉.
816

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
We think of E ′ as the quotient E((a0 + ϕ i0 y0) + py1)/p3 in the polynomial ring R0[y0, y1]; and
would work with it instead of E in the root-finding algorithm.

Proof. Looking at Eqn. (3) modulo p2,

f ϕ2a(ϕa + py0) ≡ 0 mod 〈p2,ϕ4a〉.
Substituting f = ϕe + ph1, we get (ϕe + ph1)(ϕ

3a +ϕ2a py0) ≡ 0 mod 〈p2, ϕ4a〉. Implying, ph1ϕ
3a ≡

0 mod 〈p2, ϕ4a〉. Using Claim 8 the above equation implies that,

h1 ≡ 0 mod 〈p,ϕa〉 , (4)

is a necessary condition for y0 to exist.
We again look at Eqn. (3), but modulo p3 now: f (ϕ3a + ϕ2a py0 + ϕa p2 y2

0) ≡ 0 mod 〈p3, ϕ4a〉.
Notice that y1 is not present because of its coefficient: p2 f ϕ2a ≡ 0 mod 〈p3, ϕ4a〉. Substituting

f = ϕe + ph1, we get,

(ϕe + ph1)(ϕ
3a + ϕ2a py0 + ϕa p2 y2

o) ≡ 0 mod 〈p3,ϕ4a〉.
Removing the coefficients of y0 which vanish modulo 〈p3, ϕ4a〉,

ϕe+a p2 y2
0 + ϕ3a ph1 + ϕ2a p2h1 y0 ≡ 0 mod 〈p3,ϕ4a〉.

From Eqn. (4), h1 can be written as ph1,1 + ϕah1,2, so

p2
(
ϕe+a y2

0 + ϕ3ah1,2 y0 + ϕ3ah1,1

)
≡ 0 mod 〈p3,ϕ4a〉.

We can divide by p2ϕ3a using Claim 8 to get an equation modulo ϕa in the ring Fp[x]. This
is a quadratic equation in y0. Using Theorem 10, we find the solution set S0 with at most two
representative pairs: for (a0, i0) ∈ S0, every y ∈ a0 + ϕ i0 ∗ +p∗ satisfies,

E ≡ 0 mod 〈p3,ϕ4a〉 .

In other words, upon substituting y = a0 + ϕ i0 y0 + py1 in E(y), we get

E(a0 + ϕ i0 y0 + py1) ≡ p3 E ′(y0, y1) mod 〈p4,ϕ4a〉,
for a “bivariate” polynomial E ′(y0, y1) ∈ R0[y0, y1]. This sets up the correspondence between the
roots of E and E ′ .

Substituting (a0 + ϕ i0 y0 + py1) in Eqn. (3), we notice that E ′(y0, y1) has the form E1(y0) +
E2(y0)y1 for a linear E2 and a cubic E1.

Finally, this reduction is constructive, because of Lemma 9 and Theorem 10, giving a randomized
poly-time algorithm. �
4.3. Finding roots of a special bi-variate E ′(y0, y1) modulo 〈p, ϕ4a〉

The final obstacle is to find roots of E ′(y0, y1) modulo 〈ϕ4a〉 in Fp[x]. The polynomial E ′(y0, y1) =
E1(y0) + E2(y0)y1 is special because E2 ∈ R0[y0] is linear in y0.

For a polynomial u ∈ Fp[x][y] we define valuation valϕ(u) to be the largest r such that ϕr |u. Our
strategy is to go over all possible valuations 0 ≤ r ≤ 4a and find y0, such that,

• E1(y0) has valuation at least r.
• E2(y0) has valuation exactly r.

From these y0’s, y1 can be obtained by ‘dividing’ E1(y0) by E2(y0). The lemma below shows that
this strategy captures all the solutions.
817

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Lemma 15 (Bivariate solution). A pair (u0, u1) ∈ R0 × R0 satisfies an equation of the form E1(y0) +
E2(y0)y1 ≡ 0 mod 〈p, ϕ4a〉 if and only if valϕ(E1(u0)) ≥ valϕ(E2(u0)).

Proof. Let r be valϕ(E2(u0)), where r is in the set {0, 1, . . . , 4a}. If valϕ(E1(u0)) ≥ valϕ(E2(u0)) then
set u1 ≡ −(E1(u0)/ϕ

r)/(E2(u0)/ϕ
r) mod 〈p, ϕ4a−r〉. The pair (u0, u1) satisfies the required equation.

(Note: If r = 4a then we take u1 = ∗.)
Conversely, if r′ := valϕ(E1(u0)) < valϕ(E2(u0)) ≤ 4a then, for every u1,
valϕ(E1(u0) + E2(u0)u1) = r′ ⇒ E1(u0) + E2(u0)u1 �≡ 0 mod 〈p, ϕ4a〉. �
We can efficiently find all representative pairs for y0, at most three, such that E1(y0) has valuation

at least r (using Theorem 10). The next lemma shows that we can efficiently filter all y0’s, from these
representative pairs, that give valuation exactly r for E2(y0).

Lemma 16 (Reduce to a unit E2). Given a linear polynomial E2(y0) ∈ R0[y0] and an r ∈ [4a − 1], let (b, i)
be a representative pair modulo 〈p, ϕr〉, i.e., E2(b + ϕ i∗) ≡ 0 mod 〈p, ϕr〉. Consider the quotient E ′

2(y0) :=
E2(b + ϕ i y0)/ϕ

r .
If E ′

2(y0) does not vanish identically modulo 〈p, ϕ〉, then there exists at most one θ ∈ R0/〈ϕ〉 such that
E ′

2(θ) ≡ 0 mod 〈p, ϕ〉, and this θ can be efficiently computed.

Proof. Suppose E2(b + ϕ i y0) ≡ u + v y0 ≡ 0 mod 〈p, ϕr〉. Since y0 is formal, we get valϕ(u) ≥ r and
valϕ(v) ≥ r. We consider the three cases (with respect to these valuations),

1. valϕ(u) ≥ r and valϕ(v) = r: E ′
2(θ) �≡ 0 mod 〈p, ϕ〉, for all θ ∈ R0/〈ϕ〉 except θ = (−u/ϕr)/(v/ϕr)

mod 〈p, ϕ〉.
2. valϕ(u) = r and valϕ(v) > r: E ′

2(θ) �≡ 0 mod 〈p, ϕ〉, for all θ ∈ R0/〈ϕ〉.
3. valϕ(u) > r and valϕ(v) > r: E ′

2(y0) vanishes identically modulo 〈p, ϕ〉, so this case is ruled out
by the hypothesis.

There is an efficient algorithm to find θ , if it exists; because the above proof only requires calculating
valuations which entails division operations in the ring. �

Before the algorithm let us illustrate the process on Example 6.

Example 7. Consider the polynomial f from Example 6. We want to find factors of f ≡ x4 + 18x3 +
33x2 + 54x + 9 mod 81. Fix ϕ := x ∈Z[x] and a = 2.

Let us apply the reduction theorem (Theorem 11): (ϕa − py) is a factor of f mod p4 iff

E := f · (ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3) ≡ 0 mod 〈p4,ϕ4a〉.
Putting the values ϕ = x, p = 3, a = 2 and substituting y = y0 + 3y1 [Lemma 12] we have,

(x4 +18x3 +33x2 +54x +9)[x6 +x43(y0 +3y1) +x29(y0 +3y1)
2 +27(y0 +3y1)

3] ≡ 0 mod 〈81, x8〉.

⇔ 9x4[(6x2 y0 + 6x2)y1 + (3y3
0 + y2

0(x2 + 6) + y0(6x3 + 2x2 + 3) + 6x3 + x2)] ≡ 0 mod 〈81, x8〉.

Using Claim 8,

⇔ (6x2 y0 + 6x2)y1 + 3y3
0 + y2

0(x2 + 6) + y0(6x3 + 2x2 + 3) + 6x3 + x2 ≡ 0 mod 〈9, x4〉. (5)

Reducing the last equation mod 〈3, x4〉 we have,

x2 y2
0 + (2x2)y0 + x2 ≡ 0 mod 〈3, x4〉.
818

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
⇔ y2
0 + 2y0 + 1 ≡ 0 mod 〈3, x2〉.

Notice that this is the same equation as for the case of k = 3 in Example 6.

Applying Panayi (1995); Berthomieu et al. (2013) (Theorem 10) on last equation, we get exactly
one representative root y0 = 2 + x∗.

We substitute y0 → 2 + xy0 in Equation (5) and simplify to get,

(2xy0)y1 + xy3
0 + 2y2

0 + (2x)y0 ≡ 0 mod 〈3, x2〉. (6)

Equation (6) gives us E1(y0) = xy3
0 + 2y2

0 + (2x)y0 mod 〈3, x2〉 and E2(y0) = 2xy0 mod 〈3, x2〉.

We want the values of y0’s, such that, valx(E1(y0)) is at least valx(E2(y0)). Since valx(E2(y0)) is
1, we are forced to have y0 = 0 mod 〈3, x〉. In that case, Equation (6) is identically zero, so y1 is free
to take any value mod 〈3, x2〉.

Taking y1 = 0 and y0 = 2 +0 we have the corresponding factor (x2 −3(2 +0)) ≡ (x2 +75) mod 81.
The co-factor of this is (x2 + 18x + 39), giving

f ≡ x4 + 18x3 + 33x2 + 54x + 9 ≡ (x2 + 75)(x2 + 18x + 39) mod 81.

4.4. Algorithm to find roots of E(y)

We have all the ingredients to give the algorithm for finding roots of E(y) modulo ideal 〈p4, ϕ4a〉
of Z[x].
Input: A polynomial E ∈ R[y] defined as E := f · (ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3).
Output: A set Z ⊆ R0 and a bad set Z ′ ⊆ R0, such that, for each y0 ∈ Z − Z ′ , there are (efficiently
computable) y1 ∈ R0 (Theorem 17) satisfying E(y0 + py1) ≡ 0 mod 〈p4, ϕ4a〉. These are exactly the
roots of E .

Also, both sets Z and Z ′ can be described by O (a) many representatives (Theorem 17). (Recall that
a ≤ d.) Hence, a y0 ∈ Z − Z ′ can be picked efficiently.

We prove the correctness of Algorithm 2 in the following theorem.

Theorem 17. The output of Algorithm 2 (the set Z − Z ′) contains exactly those y0 ∈ R0 for which there exist
some y1 ∈ R0 , such that, y = y0 + py1 is a root of E in R. We can compute the set of y1 corresponding to a
given y0 ∈ Z − Z ′ in poly(deg f , log p) time.

Thus, we efficiently describe (and exactly count) the roots y = y0 + py1 + p2 y2 in R of E, where y0, y1 ∈
R0 are as above and y2 can assume any value from R.

Proof. The algorithm intends to output roots y of equation E ≡ f · (ϕ3a + ϕ2a(py) + ϕa(py)2 +
(py)3) ≡ 0 mod 〈p4, ϕ4a〉, where y = y0 + py1 + p2 y2 with y0, y1 ∈ R0 and y2 ∈ R . From Lemma 12,
any value of y2 in Fp makes y a root, and we encode this by substituting the symbol ∗ for y2.

Using Lemma 14, Algorithm 2 partially fixes y0 from the set S0 and reduces the problem to finding
roots of an E ′(y0, y1) mod 〈p, ϕ4a〉. In other words, if we can find all roots (y0, y1) of E ′(y0, y1) mod
〈p, ϕ4a〉, then we can find (and count) all roots of E(y) mod 〈p4, ϕ4a〉. This is accomplished by Step
1. From Lemma 14, |S0| ≤ 2, so loop at Step 3 runs only for a constant number of times.

Using Lemma 14, E ′(y0, y1) ≡ E1(y0) + E2(y0)y1 mod 〈p, ϕ4a〉 for a cubic polynomial E1 ∈ R0[y0]
and a linear polynomial E2 ∈ R0[y0].

We find all solutions of E ′(y0, y1) by going over all possible valuations of E2(y0) with respect
to ϕ . The case of valuation 0 is handled in Step 5 and valuation 4a is handled in Step 12. For the
remaining valuations r ∈ [4a − 1], Lemma 15 shows that it is enough to find (z0, z1) ∈ R0 × R0 such
that ϕr |E1(z0) and ϕr ||E2(z0).
819

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Algorithm 2 Finding all roots of E(y) in R .
1: Given E(y0 + py1), using Lemma 14, get the set S0 of all representative pairs (a0, i0), where a0 ∈ R0 and i0 ∈ N , such

that p3|E((a0 + ϕ i0 y0) + py1) mod 〈p4, ϕ4a〉.
2: Initialize sets Z = {} and Z ′ = {}; seen as subsets of R0.
3: for each (a0, i0) ∈ S0 do
4: Substitute y0 �→ a0 + ϕ i0 y0, let E ′(y0, y1) = E1(y0) + E2(y0)y1 mod 〈p, ϕ4a〉 be the polynomial obtained from

Lemma 14.
5: If E2(y0) �≡ 0 mod 〈p, ϕ〉 then find (at most one) θ ∈ R0/〈ϕ〉 such that E2(θ) ≡ 0 mod 〈p, ϕ〉. Update Z ← Z ∪ (a0 +

ϕ i0 ∗) and Z ′ ← Z ′ ∪ (a0 + ϕ i0 (θ + ϕ∗)).
6: for each possible valuation r ∈ [4a] do
7: Initialize sets Zr = {} and Z ′

r = {}.
8: Call Root-Find(E1, ϕr) to get a set S1 of representative pairs (a1, i1) where a1 ∈ R0 and i1 ∈N such that E1(a1 +

ϕ i1 y0) ≡ 0 mod 〈p, ϕr〉.
9: for each (a1, i1) ∈ S1 do

10: Analogously consider E ′
2(y0) := E2(a1 + ϕ i1 y0) mod 〈p, ϕ4a〉.

11: Call Root-Find(E ′
2, ϕr) to get a representative pair (a2, i2) (∵ E ′

2 is linear), where a2 ∈ R0 and i2 ∈N such that
E ′

2(a2 + ϕ i2 y0) ≡ 0 mod 〈p, ϕr〉.
12: if r = 4a then
13: Update Zr ← Zr ∪ (a1 + ϕ i1 (a2 + ϕ i2 ∗)) and Z ′

r ← Z ′
r ∪ {}.

14: else if E ′
2(a2 + ϕ i2 y0) �≡ 0 mod 〈p, ϕr+1〉 then

15: Get a θ ∈ R0/〈ϕ〉 (Lemma 16), if it exists, such that E ′
2(a2 + ϕ i2 (θ + ϕ y0)) ≡ 0 mod 〈p, ϕr+1〉. Update Z ′

r ←
Z ′

r ∪ (a1 + ϕ i1 (a2 + ϕ i2 (θ + ϕ∗))).

16: Update Zr ← Zr ∪ (a1 + ϕ i1 (a2 + ϕ i2 ∗)).
17: end if
18: end for
19: Update Z ← Z ∪ (a0 + ϕ i0 Zr) and Z ′ ← Z ′ ∪ (a0 + ϕ i0 Z ′

r).
20: end for
21: end for
22: Return Z and Z ′ .

Notice that the number of valuations is bounded by 4a = O (deg f). At Step 6, the algorithm runs
through the possible values of the valuation r of E2(y0) ∈ R0[y0] and subsequent computation finds
all representative roots b + ϕ i∗ efficiently (using Theorem 10), such that,

E1(b + ϕ i y0) ≡ E2(b + ϕ i y0) ≡ 0 mod 〈p,ϕr〉 .

The representative root b + ϕ i∗ is denoted by a1 + ϕ i1(a2 + ϕ i2∗) in Steps 13 and 16 of Algorithm 2.
Finally, we need to filter out those y0’s for which E2(b + ϕ i y0) ≡ 0 mod 〈p, ϕr+1〉. This can be

done efficiently using Lemma 16, where we get a unique θ ∈ R0/〈ϕ〉 for which,

E2(b + ϕ i(θ + ϕ y0)) ≡ 0 mod 〈p,ϕr+1〉.
We store partial roots in two sets Zr and Z ′

r , where Z ′
r contains the bad values filtered out by

Lemma 16 as b + ϕ i(θ + ϕ∗) and Zr contains all possible roots b + ϕ i∗. So, the set Zr − Z ′
r contains

exactly those elements z0 for which there exists z1 ∈ R0, such that, the pair (z0, z1) is a root of
E ′(y0, y1) mod 〈p, ϕ4a〉.

Note that size of each set S1 obtained at Step 9 is bounded by three using Theorem 10 (E1 is at
most a cubic in y0). Again using Theorem 10, we get at most one pair (a2, i2) at Step 11 for some
a2 ∈ R0 and i2 ∈N (E ′

2 is linear in y0).
Now, for a fixed z0 ∈ Zr − Z ′

r we can calculate all z1’s by the equation

z1 ≡ z̃1 := −(C(y0)/L(y0)) mod 〈p,ϕ4a−r〉.
Here C(y0) := E1(z0)/ϕ

r mod 〈p, ϕ4a−r〉 and L(y0) := E2(z0)/ϕ
r mod 〈p, ϕ4a−r〉. So, z1 ∈ R0 comes

from the set z1 ∈ z̃1 + ϕ4a−r∗. This can be done in poly(deg f , log p) time.
Finally, the sets Z = a0 + ϕ i0 Zr and Z ′ = a0 + ϕ i0 Z ′

r , for (a0, i0) ∈ S0 and corresponding valid r ∈
{0, . . . , 4a − 1}, returned by Algorithm 2, describe the y0 for the roots of E(y0 + py1) mod 〈p4, ϕ4a〉.
The number of representatives in each of these sets is O (a), since |S0| ≤ 2 and sizes of Zr and Z ′

r are
only constant.
820

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Since we can efficiently describe these y0’s and corresponding y1’s, and we know their precision,
we can count all roots y = y0 + py1 + p2∗ ⊆ R of E(y) mod 〈p4, ϕ4a〉. �
4.5. Wrapping up Theorems 1 and 2

Proof of Theorem 1. We prove that given an arbitrary univariate f ∈Z[x] and a prime p, a non-trivial
factor of f modulo p4 can be obtained in randomized poly(deg f , log p) time (or the irreducibility of
f mod p4 gets certified).

If f ≡ f1 f2 mod p, where f1, f2 are two polynomials coprime in F p[x], then we can efficiently lift
this factorization to the ring (Z/〈p4〉)[x], using Hensel lemma (Lemma 4), to get non-trivial factors of
f mod p4.

For the remaining case, f ≡ ϕe mod p for an irreducible polynomial ϕ(x) modulo p. The question
of factoring f mod p4 then reduces to root finding of a polynomial E(y) mod 〈p4, ϕ4a〉 by Reduc-
tion theorem (Theorem 11). Using Theorem 17, we get all such roots and hence a non-trivial factor
of f mod p4 is found. If there are no roots y ∈ R of E , for all a ≤ e/2, then the polynomial f is
irreducible (by symmetry, if there is a factor for a > e/2 then there is a factor for a ≤ e/2). �
Proof of Theorem 2. We are given a univariate f ∈ Z[x] of degree d and a prime p, such that,
f mod p is a power of an irreducible polynomial ϕ(x). So, f is of the form ϕ(x)e + ph(x) mod p4,
for an integer e ∈ N and a polynomial h ∈ (Z/〈p4〉)[x] of degree ≤ d (also, degϕe ≤ d). By unique
factorization over the ring Fp[x], if g̃ is a factor of f mod p then, g̃ ≡ ṽϕa mod p for a unit ṽ ∈ Fp .

First, we show that it is enough to find all the lifts of g̃ , such that, g̃ ≡ ϕa mod p for an a ≤ e. If
g̃ ≡ ṽϕa mod p, then any lift has the form g(x) ≡ v(x)(ϕa − py) mod p4 for a unit v(x) ∈ (ṽ + p∗) ⊆
(Z/〈p4〉)[x]. Any such g(x) maps uniquely to a g1(x) := ṽ−1 g(x) mod p4, which is a lift of ϕa mod p.
So, it is enough to find all the lifts of ϕa mod p.

We know that any lift g ∈ (Z/〈p4〉)[x] of g̃(x), which is a factor of f , must be of the form
ϕa − py mod p4 for a polynomial y ∈ (Z/〈p4〉)[x]. By Reduction theorem (Theorem 11), we know
that finding such a factor is equivalent to solving for y in the equation E(y) ≡ 0 mod 〈p4, ϕ4a〉. By
Theorem 17, we can find all such roots y in randomized poly(d, log p) time, for a ≤ e/2.

If a > e/2 then we replace a by b := e − a, as b ≤ e/2, and solve the equation E(y) ≡ 0 mod
〈p4, ϕ4b〉 using Theorem 17. This time the factor corresponding to y will be, g ≡ f /(ϕb − py) ≡
E(y)/ϕ4b mod p4, using Reduction theorem (Theorem 11).

The number of lifts of g̃(x) which divide f mod p4 is the count of y’s that appear above. This is
efficiently computable via Algorithm 2. �
5. Barriers to extension modulo higher powers pk

The reader may wonder about polynomial factoring when k is greater than 4. In this section we
will discuss the issues in applying our techniques to factor f (x) mod p5.

Given f ≡ ϕe mod p, finding one of its factor ϕa − py mod p5, for a ≤ e/2 and y ∈ (Z/〈p5〉)[x], is
reduced to solving the equation

E := f · (ϕ4a + ϕ3a(py) + ϕ2a(py)2 + ϕa(py)3 + (py)4) ≡ 0 mod 〈p5,ϕ5a〉 (7)

By Lemma 12, the roots of E mod 〈p5, ϕ5a〉 are of the form y = y0 + py1 + p2 y2 + p3∗ in R , where
y0, y1, y2 ∈ R0 need to be found.

First issue. The first hurdle comes when we try to reduce root-finding modulo the bi-generated
ideal 〈p5, ϕ5a〉 ⊆ Z[x] to root-finding modulo the principal ideal 〈ϕ5a〉 ⊆ Fp[x]. In the case k = 4,
Lemma 14 guarantees that we need to solve at most two related equations of the form E ′(y0, y1) ≡
0 mod 〈p, ϕ4a〉 to find exactly the roots of E mod 〈p4, ϕ4a〉. Below, for k = 5, we show that we have
exponentially many candidates for E ′(y0, y1, y2) ∈ R0[y0, y1, y2] and it is not clear if there is any
compact efficient representation for them.

Putting y = y0 + py1 + p2 y2 in Eqn. (7) we get,

E(y) =: E1(y0) + E2(y0)y1 + E3(y0)y2 + (f ϕ2a p4)y2
1 ≡ 0 mod 〈p5,ϕ5a〉, (8)
821

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
where E1(y0) := f ϕ4a + f ϕ3a py0 + f ϕ2a p2 y2
0 + f ϕa p3 y3

0 + f p4 y4
0 is a quartic in R[y0], E2(y0) :=

f ϕ3a p2 + f ϕ2a2p3 y0 + f ϕa3p4 y2
0 is a quadratic in R[y0] and E3(y0) := f ϕ3a p3 + f ϕ2a2p4 y0 is linear

in R[y0].
To divide Eqn. (8) by p3, we go mod 〈p3, ϕ5a〉 obtaining

E(y) ≡ E1(y0) ≡ f ϕ4a + f ϕ3a py0 + f ϕ2a p2 y2
0 ≡ 0 mod 〈p3,ϕ5a〉,

a univariate quadratic equation which requires the whole machinery used in the case k = 3. We
get this simplified equation since E3(y0) ≡ 0 mod 〈p3, ϕ5a〉 and E2(y0) ≡ f ϕ3a p2 ≡ ϕe−2aϕ2a+3a p2 ≡
0 mod 〈p3, ϕ5a〉.

But, to really reduce Eqn. (8) to a system modulo the principal ideal 〈ϕ5a〉 ⊆ Fp[x], we need to
divide it by p4. So, we go mod 〈p4, ϕ5a〉:

E(y) ≡ E ′
1(y0) + E ′

2(y0)y1 ≡ 0 mod 〈p4,ϕ5a〉
where E ′

1(y0) ≡ E1(y0) mod 〈p4, ϕ5a〉 is a cubic in R[y0] and E ′
2(y0) ≡ E2(y0) mod 〈p4, ϕ5a〉 is linear

in R[y0]. This requires us to solve a special bivariate equation which requires the machinery used in
the case k = 4.

Now, the problem reduces to computing a solution pair (y0, y1) ∈ (R0)
2 of this bivariate equation.

We can apply the idea used in Algorithm 2 to get all valid y0 efficiently, but since y1 is a function of
y0, we need to compute exponentially many y1’s. So, there seem to be exponentially many candidates
for E ′(y0, y1, y2), that behaves like E(y)/p4 and lives in (Fp[x]/〈ϕ5a〉)[y0, y1, y2]. At this point, we
are forced to compute all these E ′s, as we do not know which one will lead us to a solution of
Eqn. (8).

Second issue. Even if we resolve the first issue and get a valid E ′ , we are left with a trivariate
equation to be solved mod 〈p, ϕ5a〉 (Eqn. (8) after shifting y0 and y1 then dividing by p4). We could
do this when k was 4, because we could easily write y1 as a function of y0. Though, it is unclear
how to solve this trivariate equation now as it is nonlinear in both y0 and y1.

For k > 5 the difficulty will only increase because of the recursive nature of Eqn. (7) with more
and more unknowns (with higher degrees).

6. Conclusion

The study of von zur Gathen and Hartlieb (1998, 1996) sheds some light on the behavior of the
factoring problem for integral polynomials modulo prime powers. It shows that for “large” k the
problem is similar to the factorization over p-adic fields (already solved efficiently by Cantor and
Gordon (2000)). But, for “small” k the problem seems hard to solve in polynomial time. We do not
even know a practical algorithm.

This motivated us to study the case of constant k, with the hope that this will help us invent new
tools. In this direction, we made significant progress by giving a unified method to factor f mod pk

for k ≤ 4. We also refined Hensel lifting for k ≤ 4, by giving all possible lifts of a factor of f mod p,
in the classically hard case of f mod p being a power of an irreducible.

We gave a general framework (for any k) to work on, by reducing factoring in a big ring to root-
finding in a smaller ring. We leave it open whether we can factor f mod p5, and beyond, within this
framework.

We also leave it open, to efficiently get all the solutions of a bivariate equation, in Z/〈pk〉 or
Fp[x]/〈ϕk〉, in a compact representation. Surprisingly, we know how to achieve this for univariate
polynomials (Panayi, 1995; Berthomieu et al., 2013). This, combined with our work, will probably
give factoring mod pk , for any k.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.
822

A. Dwivedi, R. Mittal and N. Saxena Journal of Symbolic Computation 104 (2021) 805–823
Acknowledgements

We thank anonymous reviewers for helpful comments, valuable suggestions and for providing use-
ful references (in particular Panayi (1995)). We thank Vishwas Bhargava for introducing us to the open
problem of factoring f mod p3. N.S. thanks the funding support from DST (DST/SJF/MSA-01/2013-14).
R.M. would like to thank support from DST through grant DST/INSPIRE/04/2014/001799.

References

Apostol, T.M., 2013. Introduction to Analytic Number Theory. Springer Science & Business Media.
Berlekamp, E.R., 1967. Factoring polynomials over finite fields. Bell Syst. Tech. J. 46 (8), 1853–1859.
Berthomieu, J., Lecerf, G., Quintin, G., 2013. Polynomial root finding over local rings and application to error correcting codes.

Appl. Algebra Eng. Commun. Comput. 24 (6), 413–443. https://link.springer.com /article /10 .1007 /s00200 -013 -0200 -5.
Borevich, Z.I., Shafarevich, I.R., 1986. Number Theory, vol. 20. Academic Press.
Cantor, D.G., Gordon, D.M., 2000. Factoring polynomials over p-adic fields. In: International Algorithmic Number Theory Sympo-

sium. Springer, pp. 185–208.
Cantor, D.G., Zassenhaus, H., 1981. A new algorithm for factoring polynomials over finite fields. Math. Comput., 587–592.
Cheng, H., Labahn, G., 2001. Computing all factorizations in ZN [x]. In: Proceedings of the International Symposium on Symbolic

and Algebraic Computation. ISSAC’01, pp. 64–71.
Cheng, Q., Gao, S., Rojas, J.M., Wan, D., 2018. Counting roots of polynomials over prime power rings. In: Thirteenth Algorithmic

Number Theory Symposium, ANTS-XIII. Mathematical Sciences Publishers. arXiv:1711.01355.
Chistov, A.L., 1987. Efficient factorization of polynomials over local fields. Dokl. Akad. Nauk SSSR 293 (5), 1073–1077.
Chistov, A.L., 1994. Algorithm of polynomial complexity for factoring polynomials over local fields. J. Math. Sci. 70 (4),

1912–1933.
Denef, J., Hoornaert, K., 2001. Newton polyhedra and Igusa’s local zeta function. J. Number Theory 89 (1), 31–64.
Dwivedi, A., Mittal, R., Saxena, N., 2019a. Counting basic-irreducible factors mod pk in deterministic poly-time and p-adic

applications. In: Shpilka, A. (Ed.), 34th Computational Complexity Conference. CCC 2019. In: Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 137. Schloss Dagstuhl–Leibniz-Zentrum Fuer Informatik, Dagstuhl, Germany, 15. http://
drops .dagstuhl .de /opus /volltexte /2019 /10837.

Dwivedi, A., Mittal, R., Saxena, N., 2019b. Efficiently factoring polynomials modulo p4. In: Proceedings of the 2019 on In-
ternational Symposium on Symbolic and Algebraic Computation. ISSAC’19. ACM, New York, NY, USA, pp. 139–146. http://
doi .acm .org /10 .1145 /3326229 .3326233.

Dwivedi, A., Saxena, N., 2020. Computing Igusa’s local zeta function of univariates in deterministic polynomial-time. In: Proceed-
ings of Algorithmic Number Theory Symposium, ANTS XIV. University of Auckland, New Zealand, in press. Mathematical
Sciences Publishers, arXiv:2006 .08926.

Forbes, M.A., Shpilka, A., 2015. Complexity theory column 88: challenges in polynomial factorization. ACM SIGACT News 46 (4),
32–49.

Guàrdia, J., Nart, E., Pauli, S., 2012. Single-factor lifting and factorization of polynomials over local fields. J. Symb. Comput. 47
(11), 1318–1346. https://doi .org /10 .1016 /j .jsc .2012 .03 .001.

Hensel, K., 1918. Eine neue Theorie der algebraischen Zahlen. Math. Z. 2 (3), 433–452.
Kaltofen, E., 1992. Polynomial factorization 1987–1991. In: Latin American Symposium on Theoretical Informatics. Springer,

pp. 294–313.
Kedlaya, K.S., Umans, C., 2011. Fast polynomial factorization and modular composition. SIAM J. Comput. 40 (6), 1767–1802.
Klivans, A., 1997. Factoring polynomials modulo composites. Tech. Rep. Carnegie-Mellon Univ, Pittsburgh PA, Dept of CS.
Kopp, L., Randall, N., Rojas, J., Zhu, Y., 2019. Randomized polynomial-time root counting in prime power rings. Math. Comput. 1.
Landau, S., 1985. Factoring polynomials over algebraic number fields. SIAM J. Comput. 14 (1), 184–195.
Lenstra, A.K., Lenstra, H.W., Lovász, L., 1982. Factoring polynomials with rational coefficients. Math. Ann. 261 (4), 515–534.
Neiger, V., Rosenkilde, J., Schost, É., 2017. Fast computation of the roots of polynomials over the ring of power series. In:

Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation. ACM, pp. 349–356.
Niven, I., Zuckerman, H.S., Montgomery, H.L., 2013. An Introduction to the Theory of Numbers. John Wiley & Sons.
Panayi, P.N., 1995. Computation of Leopoldt’s P-adic regulator. Ph.D. thesis. University of East Anglia.
Pauli, S., Roblot, X.-F., 2001. On the computation of all extensions of a p-adic field of a given degree. Math. Comput. 70 (236),

1641–1659.
Sălăgean, A., 2005. Factoring polynomials over Z4 and over certain Galois rings. Finite Fields Appl. 11 (1), 56–70.
Shamir, A., 1993. On the generation of multivariate polynomials which are hard to factor. In: Proceedings of the Twenty-Fifth

Annual ACM Symposium on Theory of Computing. ACM, pp. 796–804.
Sircana, C., 2017. Factorization of polynomials over Z/(pn). In: Proceedings of the 2017 ACM on International Symposium on

Symbolic and Algebraic Computation. ACM, pp. 405–412.
von zur Gathen, J., Hartlieb, S., 1996. Factorization of polynomials modulo small prime powers. Tech. Rep. Paderborn Univ.
von zur Gathen, J., Hartlieb, S., 1998. Factoring modular polynomials. J. Symb. Comput. 26 (5), 583–606.
von zur Gathen, J., Panario, D., 2001. Factoring polynomials over finite fields: a survey. J. Symb. Comput. 31 (1–2), 3–17.
Zassenhaus, H., 1969. On Hensel factorization, I. J. Number Theory 1 (3), 291–311.
Zuniga-Galindo, W., 2003. Computing Igusa’s local zeta functions of univariate polynomials, and linear feedback shift registers.

J. Integer Seq. 6 (2), 3.
823

http://refhub.elsevier.com/S0747-7171(20)30111-5/bibE8944B3030BF16538626351BD579A1CFs1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib16A77A43043CBE6C410AD6B418197645s1
https://link.springer.com/article/10.1007/s00200-013-0200-5
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib55393BEC64EB1D2D2F2ED0104DD9231Bs1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib5871F93431798AF1CDFEE9FD1A1D5639s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib5871F93431798AF1CDFEE9FD1A1D5639s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib79C85B6050568950C6AF38923CF45CD9s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibD1E79E1FD7A27C5338B11944CF066524s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibD1E79E1FD7A27C5338B11944CF066524s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib5F17676BF318DD0411F61155F84A8645s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib5F17676BF318DD0411F61155F84A8645s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib862426221D5D6EE1A05557B2143B0B05s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib8B38CD7953D7023C425F2778F9CEB493s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib8B38CD7953D7023C425F2778F9CEB493s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibD0CDE267E66C17DD30B38D849994FAECs1
http://drops.dagstuhl.de/opus/volltexte/2019/10837
http://drops.dagstuhl.de/opus/volltexte/2019/10837
http://doi.acm.org/10.1145/3326229.3326233
http://doi.acm.org/10.1145/3326229.3326233
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib166E8D10532BAAD0CCF732E490BE4258s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib166E8D10532BAAD0CCF732E490BE4258s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib166E8D10532BAAD0CCF732E490BE4258s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibA8BD64005C66E36D8FEEC1F3AACD96FEs1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibA8BD64005C66E36D8FEEC1F3AACD96FEs1
https://doi.org/10.1016/j.jsc.2012.03.001
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibEFFE04CEAD87549F330C28EC1472BA90s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib25AB6DCF0F5A27738D3A9AB95E5D088As1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib25AB6DCF0F5A27738D3A9AB95E5D088As1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibCAAB9D6198FD72F51162AEB0409C9230s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib3A7D18C3EA8F8DCE2251C8AD04788BC7s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib7FFA3E1BE6ABB64BF0A50FC302E7C07Ds1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib4F2ADE3773C0A3ABDFDE6A5542285A1As1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib2B8B25CE740DAF2913F0A8AD89CF32E4s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibA842005F483C7358A3A5B5EC33157E92s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibA842005F483C7358A3A5B5EC33157E92s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib1119491F037A67DF1AD6ED98E4C33939s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib53F10798039B393F832F67D8E2E9E707s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib92DC72FD2345AD153AE740EDA4F6A410s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib92DC72FD2345AD153AE740EDA4F6A410s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib1EFAC780A94C2622DC21D30B60302C85s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib49182DB9FBE00D062DC3EF902C35E89Es1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib49182DB9FBE00D062DC3EF902C35E89Es1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib2BECA6CF493EE60A2520E7C51E627DE5s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib2BECA6CF493EE60A2520E7C51E627DE5s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib04228E7B9ABE4DF5CD9AF348F9DFC800s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibD84F0C60BFE310B1C7699F4DAA640B1Bs1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibC9A9D07FAF3A758B65BF87057FB5896Cs1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bibAAA7FA280899767BBD0280EDEE748125s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib31B7F14568BC458297C608E6A150BB27s1
http://refhub.elsevier.com/S0747-7171(20)30111-5/bib31B7F14568BC458297C608E6A150BB27s1

	Efficiently factoring polynomials modulo p4
	1 Introduction
	1.1 Previously known results
	1.2 Our results
	1.3 Proof technique-- root finding over local rings
	1.4 Proof overview

	2 Preliminaries
	2.1 Factoring and lifting
	2.2 A bit of commutative algebra
	2.3 Representatives and representative roots
	2.4 Root finding modulo φ(x)i
	2.5 Input preprocessing and proof organization

	3 Factoring to root-finding
	4 Main results: the Proof of Theorems 1 and 2
	4.1 Finding all the factors modulo pk when k<4
	4.2 Reduction to root-finding modulo a principal ideal of Fp[x]
	4.3 Finding roots of a special bi-variate E′(y0,y1) modulo 〈p,φ4a〉
	4.4 Algorithm to find roots of E(y)
	4.5 Wrapping up Theorems 1 and 2

	5 Barriers to extension modulo higher powers pk
	6 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

