
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Discovering the roots: Uniform closure results for algebraic classes under
factoring ∗

PRANJAL DUTTA, Chennai Mathematical Institute (& IIT Kanpur)

NITIN SAXENA, Indian Institute of Technology, Kanpur

AMIT SINHABABU, Aalen University, Germany

Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We

generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better

circuit complexity in the case when the number of roots 𝑟 is small but, the multiplicities are exponentially large. Our method sets up a

linear system in 𝑟 unknowns and iteratively builds the roots as formal power series. For an algebraic circuit 𝑓 (𝑥1, . . . , 𝑥𝑛) of size 𝑠 , we
prove that each factor has size at most a polynomial in: 𝑠 and the degree of the squarefree part of 𝑓 . Consequently, if 𝑓1 is a 2

Ω (𝑛)
-hard

polynomial then any nonzero multiple

∏
𝑖 𝑓

𝑒𝑖
𝑖

is equally hard for arbitrary positive 𝑒𝑖 ’s, assuming that

∑
𝑖 deg(𝑓𝑖) is at most 2

𝑂 (𝑛)
.

It is an old open question whether the class of poly(𝑛)-sized formulas (respectively algebraic branching programs) is closed under

factoring. We show that given a polynomial 𝑓 of degree 𝑛𝑂 (1)
and formula (respectively ABP) size 𝑛𝑂 (log𝑛)

we can find a similar size

formula (respectively ABP) factor in randomized poly(𝑛log𝑛
)-time. Consequently, if determinant requires 𝑛Ω (log𝑛)

size formula, then

the same can be said about any of its nonzero multiples.

In all our proofs, we exploit the following property of multivariate polynomial factorization. Under a random linear transformation

𝜏 , the polynomial 𝑓 (𝜏𝑥) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis.

This with allRootsNI are the techniques that help us make progress towards the old open problems; supplementing the vast body of

classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969; Kaltofen, STOC 1985-7 & Bürgisser, FOCS

2001).

CCS Concepts: •Mathematics of computing → Combinatoric problems; • Theory of computation → Problems, reductions
and completeness; Algebraic complexity theory; • Computing methodologies → Algebraic algorithms;Hybrid symbolic-
numeric methods.

Additional Key Words and Phrases: circuit factoring, formula, ABP, randomized, hard, VF, VBP, VP, VNP, quasipoly

ACM Reference Format:
Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. 2022. Discovering the roots: Uniform closure results for algebraic classes under

factoring . 1, 1 (January 2022), 37 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗
"A preliminary version was presented in STOC 2018.

Authors’ addresses: Pranjal Dutta, pranjal@cmi.ac.in, Chennai Mathematical Institute (& IIT Kanpur); Nitin Saxena, nitin@cse.iitk.ac.in, Indian Institute

of Technology, Kanpur; Amit Sinhababu, amitks@cse.iitk.ac.in, Aalen University, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

1 INTRODUCTION

Algebraic circuits provide a way, alternate to Turing machines, to study computation. Here, the complexity classes

contain (multivariate) polynomial families instead of languages. It is a natural question whether an algebraic complexity

class is closed under factors. This is also a useful, and hence, a very well-studied problem both from the point of view of

practice and theory. We study the following two questions related to multivariate polynomial factorization:

(1) Closure properties: Let {𝑓𝑛 (𝑥1, . . . , 𝑥𝑛)}𝑛 be a polynomial family in an algebraic complexity class C (egs. VP, VF,

VBP, VNP or VP etc.). Let 𝑔𝑛 be an arbitrary factor of 𝑓𝑛 . Can we say that {𝑔𝑛}𝑛 ∈ C? Equivalently, is the class C
closed under factoring?

(2) Uniformity: Can we design an efficient, i.e. randomized poly(𝑛)-time, algorithm to output the factor 𝑔𝑛 with a

representation in C?

Different classes give rise to new challenges for the closure questions. Before discussing further, we give a brief

overview of the algebraic complexity classes relevant for our paper. For more details, see [Mah14, SY10, BCS13].

Algebraic circuits are a natural model to represent polynomials compactly. An algebraic circuit has the structure of a

directed acyclic graph. It has leaf nodes labelled as input variables 𝑥1, . . . , 𝑥𝑛 and constants from the underlying field F.

All the other nodes are labelled as addition and multiplication gates. It has a root node that outputs the polynomial

computed by the circuit. Some of the complexity parameters of a circuit are size (number of edges and nodes), depth

(the length of the longest path in the circuit), formal degree (the maximum degree polynomial computed by any node),

fan-in (maximum number of inputs to a node) and fan-out. An algebraic formula is a circuit whose underlying graph is a

directed tree. In a formula, the fan-out of the nodes is at most one, i.e. ‘reuse’ of intermediate computation is not allowed.

The class VP (respectively VF) contains the families of 𝑛-variate polynomials of degree 𝑛𝑂 (1)
over F, computed

by 𝑛𝑂 (1)
-sized circuits (respectively formulas). The class VF is sometimes denoted as VP𝑒 , for it collects ‘expressions’

which is another name for formulas. Similarly, one can define VQP (respectively VQF) which contains the families of

𝑛-variate polynomials of degree 𝑛𝑂 (1)
over F, computed by 2

poly(log𝑛)
-sized circuits (respectively formulas). If we relax

the condition on the degree in the definition of VP, by allowing the degree to be possibly exponential, then we define

the class VP𝑛𝑏 .

Algebraic branching program (ABP) is another model for computing polynomials, which we define in Section 2.1.

The class VBP contains the families of polynomials computed by 𝑛𝑂 (1)
-sized ABPs. We have the easy containments: VF

⊆ VBP ⊆ VP ⊆ VQP = VQF; for details we refer [BOC92, VSBR83].

Finally, we give an overview of the class VNP, which can be seen as a non-deterministic analog of the class VP. A

family of polynomials {𝑓𝑛}𝑛 over F is in VNP if there exist polynomials 𝑡 (𝑛), 𝑠 (𝑛) and a family {𝑔𝑛}𝑛 in VP such that

for every 𝑛, 𝑓𝑛 (𝑥) =
∑

𝑤∈{0,1}𝑡 (𝑛) 𝑔𝑛 (𝑥,𝑤1, . . . ,𝑤𝑡 (𝑛)). Here, the witness size is 𝑡 (𝑛) and the verifier circuit 𝑔𝑛 has size

𝑠 (𝑛). VP is contained in VNP and it is believed that this containment is strict (Valiant’s Hypothesis [Val79]).

Now, we briefly discuss the state of the art on the closure questions for various algebraic complexity classes. To cover

more depth and breadth, see [Kal90, Kal92, FS15].

1.1 Previously known closure results

Famously, Kaltofen [Kal85a, Kal86, Kal87, Kal89] showed that VP is uniformly closed under factoring, i.e. for a given

𝑑 degree 𝑛 variate polynomial 𝑓 of circuit size 𝑠 , there exists a randomized poly(𝑠𝑛𝑑)-time algorithm that outputs

its factor as a circuit whose size is bounded by poly(𝑠𝑛𝑑). This fundamental result has several applications such as

‘hardness versus randomness’ in algebraic complexity [KI03, AV08, DSY09, AGS19, CKS19b, KST19, DST21, Dut21],

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Discovering the roots: Uniform closure results for algebraic classes under factoring 3

derandomization of Noether Normalization Lemma [Mul17], in the problem of circuit reconstruction [KS09, Sin16], and

polynomial equivalence testing [Kay11]. In general, multivariate polynomial factoring has several applications, including

decoding of Reed-Solomon, Reed-Muller codes [GS98, Sud97], integer factoring [LLMP90], primary decomposition of

polynomial ideals [GTZ88] and algebra isomorphism [KS06, IKRS12]. Typically algorithms for multivariate polynomial

factorization use univariate factorization as a subroutine. For factoring univariate polynomials over rationals, Lenstra,

Lenstra and Lovasz [LLL82] gave a deterministic polynomial time algorithm. For factoring univariate polynomials

over finite fields, there are randomized polynomial time algorithms due to Berlekamp [Ber70], Cantor and Zassenhaus

[CZ81]. Even over other fields (complex, p-adics, algebraic number fields) and rings (Galois rings etc), several results on

univariate factoring are known [Sch82, Chi94, CG00, Lan85, Len83, vZGH96, DMS19].

It is natural to ask whether Kaltofen’s VP factoring result can be extended to VP𝑛𝑏 which allows the degree of the

polynomials to be exponentially high
1
. It is known that not every factor of a high degree polynomial has a small sized

circuit. For example, the polynomial 𝑥2
𝑠 − 1 can be computed in size 𝑠 , but it has factors (of high degree) over C that

require circuit size Ω
(
2
𝑠/2/

√
𝑠

)
[LS78, Sch77]. It is conjectured [Bür13, Conj.8.3] that low degree factors of high degree

small-sized circuits have small circuits. Formally, any factor 𝑔 of a polynomial 𝑓 computed by an arithmetic circuit of

size 𝑠 , can be computed by an arithmetic circuit of size poly(𝑠, 𝑑𝑔), where 𝑑𝑔 is the degree of factor 𝑔. Kaltofen asked

this as an open question [Kal86, Kal87] and Bürgisser posed this as “Factor Conjecture" [Bür04]. The Factor Conjecture

has several interesting consequences in algebraic complexity. For more exposure, see [Bür04], [Bür13, Remark 8.15]

and the recent survey [Gro20].

Partial results towards the Factor Conjecture are known. Kaltofen [Kal87] showed the following result. If a polynomial

𝑓 , given by a circuit of size 𝑠 factors as 𝑔𝑒ℎ, where 𝑔 and ℎ are coprime, then 𝑔 can be computed by a circuit of size

poly(𝑒, deg(𝑔), 𝑠). The question left open is to remove the dependency on 𝑒 . In the special case where 𝑓 = 𝑔𝑒 , it was

proved in [Kal87] that 𝑔 has circuit size poly(deg(𝑔), size(𝑓)). Kaltofen also observed that if 𝑓 = 𝑔𝑒ℎ and degree of ℎ is

poly(𝑠), then 𝑔 can be computed by a small circuit.

In the high degree regime, we do not expect uniform closure results, as several algorithmic problems related to

factoring are NP-hard there, eg. computing the degree of the squarefree part, gcd, or lcm. Even in the special case of

supersparse (or lacunary) univariate polynomials (represented as a list of nonzero coefficients and the binary encoding

of exponents of corresponding terms), the above mentioned problems are NP-hard [Pla77]. Nevertheless, efficient

algorithms are known for computing bounded degree factors of supersparse polynomials ([Gre16] and references

therein).

Now, we discuss the closure results for classes more restrictive than VP (such as VF, VBP, etc.). Unfortunately,

Kaltofen’s technique [Kal89] for VF will give a superpolynomial-sized factor formula; as it heavily reuses intermediate

computations in the steps of Hensel lifting, linear system solving, and gcd computation. The same holds for the class VBP.

In contrast, extending the idea of [DSY09], Oliveira [Oli16] showed that an 𝑛-variate polynomial with bounded individual

degree and computed by a formula of size 𝑠 , has factors of formula size poly(𝑛, 𝑠). Furthermore, it was established

[Oli16] that for a given 𝑛-variate individual-degree-𝑟 polynomial, computed by a circuit (respectively formula) of size 𝑠

and depth Δ, there exists a poly(𝑛𝑟 , 𝑠)-time randomized algorithm that outputs any factor of 𝑓 computed by a circuit

(respectively formula) of depth Δ + 5 and size poly(𝑛𝑟 , 𝑠). A special case of factoring algebraic branching programs was

1
Throughout the article, we will refer to high degree circuit which basically means that the degree of the polynomial computed by the circuit is exponential

wrt. size.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

considered in [KK08]—it dealt with the elimination of a single division gate from skew circuits (also see Section 2.1 &

Lemma 5), and another special case was solved in [Jan11].
2

Going beyond VP we can ask about the closure of VNP. Bürgisser conjectured [Bür13, Conj.2.1] that VNP is closed

under factoring. Kaltofen’s technique [Kal89] for factoring VP circuits does not yield the closure of VNP.
3

Looking at the Border. Recently, approximative algebraic complexity classes like VP [GMQ16] have become objects

of interest, especially in the context of the geometric complexity program [Mul12a, Mul12b, Gro15]. A polynomial

𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛] has approximative (or border) complexity ≤ 𝑠 if there is an infinite sequence of circuits (using arbitrary
elements from the field F(𝜖) as scalars) of size ≤ 𝑠 computing 𝑓𝑛 ∈ F(𝜖) [𝑥1, . . . , 𝑥𝑛], where 𝜖 is a new variable such that

lim

𝜖→0

𝑓𝑛 = 𝑓 . For example, if a polynomial 𝑓 (𝑥, 𝜖) = 𝜖𝑑𝑔(𝑥) + 𝜖𝑑+1ℎ(𝑥, 𝜖) can be computed by an arithmetic circuit of size

𝑠 over F(𝜖), then 𝑔 has an approximative circuit of size 𝑠 . Thus, approximative complexity (size) of 𝑔 must be ≤ 𝑠 .
The class VP (the closure of VP) contains families of polynomials of degree poly(𝑛) that can be approximated

(infinitesimally closely) by poly(𝑛)-sized circuits. Bürgisser [Bür04, Bür01] discusses approximative complexity of

factors, proving that low degree factors of high degree circuits have small approximative complexity. Thus, the Factor

Conjecture is true in the setting of approximative complexity. Also, VP is closed under factoring [Bür04, Theorem 4.1].

For the standard algebraic complexity classes, we can ask whether their approximative closure is closed under factors.

We conclude by stating a few reasons why closure results under factoring are interesting and non-trivial. First, some

classes are not closed under factors. For example, the family of sparse polynomials (the number of monomials with

nonzero coefficients in 𝑓𝑛 is bounded by 𝑛𝑂 (1)
); this is because a factor’s sparsity may blowup super-polynomially

[vzGK85]. However, the recent breakthrough work of Bhargava, Saraf and Volkovich [BSV20] gave 𝑠poly(𝑑) ·log𝑛
sparsity

upper bound for factors of 𝑛-variate polynomials of individual degree 𝑑 and sparsity 𝑠 . In particular, for constant

individual degree sparse polynomials, the factors can have at most quasipolynomial blowup in sparsity.

Closure under factoring indicates the robustness of an algebraic complexity class, as it proves that all nonzero

multiples of a hard polynomial remain hard. For this reason, closure results are useful for proving lower bounds on the

power of some algebraic proof systems [FSTW16].

Finally, factoring of arithmetic circuits is crucially used in many hardness versus randomness results in algebraic

complexity. Kabanets and Impagliazzo showed that the famous problem of black-box derandomization of polynomial

identity testing (PIT) for the class VP can be solved if we can prove strong enough arithmetic circuit lower bounds (get

an explicit hard polynomial family); for details see [KI03, Theorem 4.1].

Suppose a polynomial 𝑓 (𝑦) is such that for a nonzero size-𝑠 circuit 𝐶 , 𝐶 (𝑦, 𝑓 (𝑦)) = 0. Using factoring results for low

degree𝐶 , one deduces that 𝑓 also has circuit size poly(𝑠). This gives us the connection: If we picked a “hard” polynomial

family {𝑓𝑛}𝑛 then (𝑦, 𝑓𝑛 (𝑦)) would be a hitting-set generator (hsg) for the circuit family {𝐶𝑛}𝑛 [KI03, Theorem 7.7].

1.2 Our results

Before stating the results, we describe some of the assumptions and notations used throughout the paper. Set [𝑛] refers
to {1, 2, . . . , 𝑛} while [𝑎, 𝑏] for 𝑎 < 𝑏 and 𝑎, 𝑏 ∈ N means for all integers 𝑎 ≤ 𝑖 ≤ 𝑏. Logarithms are wrt base 2. For a

polynomial 𝑓 , size(𝑓) refers to the smallest size of circuits computing 𝑓 ; it is the algebraic circuit complexity of 𝑓 .

Field. We denote the underlying field as F and assume that it is of characteristic 0 and algebraically closed. For

eg. complex C, algebraic numbers Q or algebraic 𝑝-adics Q𝑝 . All the results partially hold for other fields (such as

2
Recently, in [ST20] Sinhababu and Thierauf proved that VBP is closed under factors.

3
Recently, in [CKS19b] Chou,Kumar and Solomon confirmed that VNP is indeed closed under factors.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Discovering the roots: Uniform closure results for algebraic classes under factoring 5

R,Q,Q𝑝 or finite fields of characteristic > degree of the input polynomial). For a brief discussion on this issue, see

Section 6.

Ideal. We denote the variables (𝑥1, . . . , 𝑥𝑛) as 𝑥 . The ideal 𝐼 := ⟨𝑥⟩ of the polynomial ring will be of special interest,

and its power ideal 𝐼𝑑 , whose generators are all degree 𝑑 monomials in 𝑛 variables. Often we will reduce the polynomial

ring modulo 𝐼𝑑 (inspired from Taylor series of an analytic function around 0 [Tay15]).

Radical. For a polynomial 𝑓 =
∏

𝑖 𝑓
𝑒𝑖
𝑖
, with 𝑓𝑖 ’s being coprime irreducible nonconstant factors of multiplicity 𝑒𝑖 > 0,

the squarefree part

∏
𝑖 𝑓𝑖 is called as the radical of 𝑓 , denoted as rad(𝑓). The radical of a polynomial is unique (up to

scalar).

What can we say about the size of the radical of 𝑓 , if 𝑓 has a circuit of size 𝑠? We prove that the size of the radical is

poly(𝑠, 𝑑𝑟), where 𝑑𝑟 is the degree of the radical. As a direct corollary, we get that every factor of a given circuit 𝐶 has

size bounded by a polynomial in size(𝐶) and the degree of the radical of 𝐶 . Thus, our main result gives a good circuit

size bound for factors when rad(𝑓) has small degree.

A more general formulation is:

Theorem 1. If 𝑓 = 𝑢0𝑢1 is a nonzero product in the polynomial ring F[𝑥], with size(𝑓) + size(𝑢0) ≤ 𝑠 , then every

factor of 𝑢1 has a circuit of size poly(𝑠 + deg(rad(𝑢1))).

Note that Kaltofen’s proof technique in [Kal89] does not extend to the exponential degree regime (even when the

degree of rad(𝑓) is small) because it requires solving equations with deg𝑥𝑖 (𝑓) many unknowns for some 𝑥𝑖 , where

deg𝑥𝑖 (𝑓) denotes individual degree of 𝑥𝑖 in 𝑓 , which can be very high. We do not know how to extend the proof

technique in Kaltofen’s single factor Hensel lifting paper [Kal87, Theorem 2] that works for the perfect-power case

of 𝑓 = 𝑔𝑒 . It can be seen that rad(𝑓) equals 𝑓 /gcd(𝑓 , 𝜕𝑥𝑖 (𝑓)), but the gcd itself can be of exponential-degree and so

one cannot hope to use [Kal87, Theorem 4] to compute the gcd either. It is an open question whether the gcd of two

polynomials (computed by small circuits of high degree) can be computed by a small circuit [Kal87].

Remarks. (1) Interestingly, our result when combined with [Kal87, Theorem 3] implies that every factor 𝑔 of 𝑓 has

a circuit of size polynomial in: size(𝑓), deg(𝑔) and min{deg(rad(𝑓)), size(rad(𝑓))}. We leave it as an open question

whether the latter expression is polynomially related to size(𝑓).
(2) Theorem 1 shows an interesting way to create hard polynomials. In the theorem statement let the size concluded

be (𝑠 + deg(rad(𝑢1)))𝑒 , for some constant 𝑒 . If one has a polynomial 𝑓1 (𝑥1, . . . , 𝑥𝑛) that is 2
𝑐𝑛
-hard, then any nonzero

𝑓 :=
∏

𝑖 𝑓
𝑒𝑖
𝑖

is also 2
Ω (𝑛)

-hard for arbitrary positive 𝑒𝑖 ’s, as long as

∑
𝑖 deg(𝑓𝑖) ≤ 2

𝑐𝑛
𝑒
−1
.

1.2.1 A detour into numerical analysis (via arithmetic circuits). Root approximation of univariate polynomials has been

an interesting problem in mathematics & engineering. Interestingly, it has also found applications in various other

problems such as computing the largest eigenvalue, and checking whether a matrix is approximately PSD (positive

semi-definite) [LV16].

We can quantify the same question about ‘approximating roots’ of a univariate polynomial and analyze the bit-

complexity of the root; where the measure is the bitsize of the best circuit. For an 𝑓 (𝑥) ∈ R[𝑥] we define bitsize(𝑓) = 𝑠
if we can compute 𝑓 (𝑥) by a circuit using {+,−,×,÷} gates and of overall bitsize 𝑠 . Bit-size of a constant 𝑐 is the number

of bits (binary) required to represent 𝑐 (which is log
2
(𝑐)). Note that, this is in contrast with the usual VP notion where

constants are free. Here, the degree of 𝑓 can be exponential (eg. 2
𝑠
) and the coefficients may have exponential bit-length

(eg. 2
𝑠
bits, or values 2

−2
𝑠
to 2

2
𝑠
).

For this complexity notion, we can show a surprising fact for the roots.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Claim 1. For each root𝑎 ∈ (0, 1) of 𝑓 (𝑥), there is some 2
𝑚
-bit approximation𝑎′ such that bitsize(𝑎′) ≤ 𝑂 ((𝑠+𝑚)·log(1

𝜖)),
where bitsize(𝑓) =: 𝑠 , and 𝜖 ∈ (0, 1) lower bounds the gap between 𝑎 and the other roots of 𝑓 (𝑥).

A proof is sketched in the appendix (Section A).

Note that the estimate is nontrivial, as it is essentially expressing 2
𝑚

bits of the root using ‘only’ bitsize𝑚; so, roots

of small circuits are rather special, in contrast to generic strings that are incompressible [VL97]. It is relevant here to

recall Shub-Smale’s tau conjecture that states that ‘small’ circuits have ‘few’ integral roots! A proof of tau conjecture

would imply P≠NP over C [BCSS98]. This motivates well the study of the roots of circuits.

Our Theorem 1 is an algebraic analog of the above; there𝑚 log(1

𝜖) gets replaced by the degree of the radical (or, the

number of roots). Also, the algebraic result is better (than Theorem 1) in the sense that we do not need ÷ gates.

1.2.2 Back to multivariate algebraic models. In general, for a high degree circuit 𝑓 , rad(𝑓) can be of high degree

(exponential in the size of the circuit). Ideally, we would like to show that every degree 𝑑 factor of 𝑓 has poly(size(𝑓), 𝑑)-
size circuit. The next theorem reduces the above question to a special kind of modular division, where the denominator

polynomial may not be invertible but the quotient is well-defined (eg. 𝑥2/𝑥 mod 𝑥). All that remains is to eliminate

somehow this kind of non-unit division operator (which we leave as an open question). Consider random 4
elements

𝛼𝑖 , 𝛽𝑖 ∈𝑟 F and the corresponding random linear map 𝜏 : 𝑥𝑖 ↦→ 𝛼𝑖𝑦 + 𝑥𝑖 + 𝛽𝑖 , 𝑖 ∈ [𝑛], where 𝑦 is a new variable apart

from 𝑥1, . . . , 𝑥𝑛 . In the following theorem, the notation 𝐴/𝐵 mod ⟨𝑥⟩𝑑+1
means we are truncating the power series

𝐶 = 𝐴/𝐵 upto total degree 𝑑 (the lower part).

Theorem 2. If nonzero 𝑓 ∈ F[𝑥] can be computed by a circuit of size 𝑠 , then any degree 𝑑 factor of 𝑓 (𝜏𝑥) is of the form
𝐴/𝐵 mod ⟨𝑥⟩𝑑+1 where polynomials 𝐴, 𝐵 have circuits of size poly(𝑠𝑑).

Note that in Theorem 2, 𝐵 may be non-invertible in F[𝑥]/⟨𝑥⟩𝑑+1
and may have a high degree (eg. 2

𝑠
). So, we cannot

use the famous trick of Strassen to do division elimination here [Str73].

We prove uniform closure results, under factoring, for the algebraic complexity classes defined below. Let 𝑠 : N→ N
be a function. Define the class VF(𝑠) to contain families {𝑓𝑛}𝑛 such that 𝑛-variate 𝑓𝑛 can be computed by an algebraic

formula of size poly(𝑠 (𝑛)) and has degree poly(𝑛). Similarly, VBP(𝑠) contains families {𝑓𝑛}𝑛 such that 𝑓𝑛 can be

computed by an ABP of size poly(𝑠 (𝑛)) and has degree poly(𝑛). Finally, VNP(𝑠) denotes the class of families {𝑓𝑛}𝑛
such that 𝑓𝑛 has witness size poly(𝑠 (𝑛)), verifier circuit size poly(𝑠 (𝑛)), and has degree poly(𝑛).

Theorem 3. The classes VF(𝑛log𝑛),VBP(𝑛log𝑛),VNP(𝑛log𝑛) are all closed under factoring.
Moreover, there exists a randomized poly(𝑛log𝑛)-time algorithm that: for a given 𝑛𝑂 (log𝑛) sized formula (respectively

ABP) 𝑓 of poly(𝑛)-degree, outputs 𝑛𝑂 (log𝑛) sized formula (respectively ABP) of a nontrivial factor of 𝑓 (if one exists).

Remark. The “time-complexity” in the algorithmic part makes sense only in certain cases. For example, when F ∈
{Q,Q𝑝 , F𝑞}, or when one allows computation in the BSS-model [BSS89]. In the former case, our algorithm takes

poly(𝑛log𝑛) bit operations (assuming that the characteristic is zero or larger than the degree; see Theorem 26 in Section

6.2).

It is important to note that Theorem 3 does not follow by invoking Kaltofen’s circuit factoring [Kal89] and VSBR

transformation [VSBR83] from circuit to log-depth formula. Formally, if we are given a formula (respectively ABP) of

4
By a random choice 𝛼 ∈𝑟 F we will mean that choose randomly from a fixed finite set 𝑆 ⊆ F of appropriate size. This will be in the spirit of the

Polynomial Identity Lemma (Lemma 8).

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Discovering the roots: Uniform closure results for algebraic classes under factoring 7

size 𝑛𝑂 (log𝑛)
and degree poly(𝑛), then it has factors which can be computed by a circuit of size 𝑛𝑂 (log𝑛)

and depth

𝑂 (log𝑛). If one converts the factor circuit to a formula (respectively ABP), one will get the size upper bound of the

factor formula to be a much larger (𝑛𝑂 (log𝑛))log𝑛 = 𝑛𝑂 (log
2 𝑛)

. Moreover, Kaltofen’s methods crucially rely on the

circuit representation to do linear algebra, division with remainder, and Euclid gcd efficiently; an excellent overview of

the implementation level details to keep in mind is [KSS15, Section 3].

Our proof methods extend to the approximative versions C(𝑛log𝑛) for C ∈ {VF,VBP,VNP} as well (Theorem 25).

As before, Theorem 3 has an interesting lower bound consequence: If 𝑓 has VF (respectively VBP respectively VNP)

complexity 𝑛𝜔 (log𝑛)
, then any nonzero 𝑓 𝑔 has similar hardness (for deg(𝑔) ≤ poly(𝑛)). In fact, the method of Theorem 3

yields a formula factor of size 𝑠𝑒𝑑2 log𝑑
for a given degree-𝑑 size-𝑠 formula (𝑒 is a constant). This means— If determinant

det𝑛 requires 𝑛𝑎 log𝑛
size formula, for 𝑎 > 2, then any nonzero degree-𝑂 (𝑛) multiple of det𝑛 requires 𝑛Ω (log𝑛)

size

formula.

1.3 Polynomial factoring and power series roots

All our results use a reduction of polynomial factoring to approximating the power series roots of a polynomial. Here,

first, we try to sketch why approximating the power series roots suffice to compute the factors. Subsequently, we sketch

a new method called allRootsNI which approximates the roots simultaneously.

Power series complete split:We are interested in the complete factorization pattern of a polynomial 𝑓 (𝑥1, . . . , 𝑥𝑛).
We can view 𝑓 as a univariate polynomial in one variable, say 𝑥𝑛 , with coefficients coming from F[𝑥1, . . . , 𝑥𝑛−1]. It is
easy to connect linear factors with the roots: 𝑥𝑛 − 𝑔 is a factor of 𝑓 iff 𝑓 (𝑥1, . . . , 𝑥𝑛−1, 𝑔(𝑥1, . . . , 𝑥𝑛−1)) = 0.

Of course, one should not expect that a polynomial always has a linear factor in one variable. But, if one works with

an algebraically closed field, then a univariate polynomial completely splits into linear factors (also see the fundamental

theorem of algebra [CRS96, §2.5.4]). So, if we go to the algebraic closure of F(𝑥1, . . . , 𝑥𝑛−1), any multivariate polynomial

which is monic in 𝑥𝑛 will split into factors all linear in 𝑥𝑛 . A representation of the elements of F(𝑥1, . . . , 𝑥𝑛−1) as a finite
circuit is impossible (eg.

√
𝑥1). On the other hand, all the roots (wrt a new variable 𝑦) are actually elements from the

power series ring F[[𝑥1, . . . , 𝑥𝑛]], after a random linear transformation on the variables, 𝜏 : 𝑥 ↦→ 𝑥 + 𝛼𝑦 + 𝛽 , is applied
(Theorem 17). This is a direct consequence of the classical idea of Newton iteration in the formal power series setting

[BCS13, Theorem 2.31].

We try to explain the above idea using the following example. Consider 𝑓 = (𝑦2 − 𝑥3) ∈ F[𝑥,𝑦]. Does it have a factor
of the form 𝑦 − 𝑔 where 𝑔 ∈ F[[𝑥]] ? The answer is clearly ‘no’ as 𝑥3/2

does not have any power series representation

in F[[𝑥]]. But, what if we shift 𝑥 randomly? For example, if we use the shift 𝑦 ↦→ 𝑦, 𝑥 ↦→ 𝑥 + 1. Then, by Taylor series

around 1, we see that (𝑥 + 1)3/2
has a power series expansion, namely 1 + 3

2
𝑥 + 3/2×1/2

2!
𝑥2 +

Formally, Theorem 17 shows that under a random 𝜏 : 𝑥 ↦→ 𝑥 +𝛼𝑦 + 𝛽 where 𝛼, 𝛽 ∈𝑟 F𝑛 , polynomial 𝑓 can be factored

as 𝑓 (𝜏𝑥) =
∏𝑑0

𝑖=1
(𝑦 − 𝑔𝑖)𝛾𝑖 , where 𝑔𝑖 ∈ F[[𝑥]] with the constant terms 𝑔𝑖 (0) being distinct, 𝑑0 := deg(rad(𝑓)) and

𝛾𝑖 > 0.

Computing factors of a polynomial can be reduced to approximating power series roots. Theorem 17 implies that any

factor 𝑔 of degree 𝑑 can be completely split as

∏𝑑
𝑖=1

(𝑦 − 𝑔𝑖), where 𝑔𝑖 is a power series (which are also roots of 𝑓). If we

know the approximations of 𝑔𝑖 , up to degree 𝑑 (notationally; 𝑔≤𝑑
𝑖

:= 𝑔𝑖 mod ⟨𝑥1, . . . , 𝑥𝑛⟩𝑑+1
), we can compute 𝑔 exactly.

In particular, suppose 𝐺 =
∏𝑑

𝑖=1
(𝑦 − 𝑔≤𝑑

𝑖
). Observe that the factor 𝑔 = 𝐺 ≤𝑑

, and thus, we have computed 𝑔 accurately.

For the details, see Section 3.1.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

The power series roots can be approximated using the classical Newton iteration method [BCS13, Theorem 2.31],

which works when the root we want to compute has multiplicity one. If a factor has multiplicity 𝑒 ≥ 2, then all its roots

would have multiplicity 𝑒 . If 𝑒 is poly(𝑠), then we can take (𝑒 − 1)-th derivative of the polynomial to be factored. In this

derivative polynomial (which can be computed by a small circuit), the roots we wanted have multiplicity 1 (and thus

one can use the classical Newton Iteration, see Lemma 15). If 𝑒 is exponential in 𝑠 , computing circuits of derivatives of

order 𝑒 may lead to an exponential blow-up of size [Kal87]. In that case, we devise a new method that approximates all

the roots simultaneously. If the number of roots is poly(𝑠) (equivalently, the degree of the radical is poly(𝑠)), then our

method shows that factors have small circuits. We briefly sketch the overall idea in the next paragraph.

Recursive root finding viamatrices (allRootsNI):We simultaneously find the approximations of all the power series

roots 𝑔𝑖 of 𝑓 (𝜏𝑥). At each recursive step, we get a better precision wrt degree. We show that knowing approximations

𝑔<𝛿
𝑖

, of 𝑔𝑖 up to degree 𝛿 − 1, is enough to (simultaneously for all 𝑖) calculate approximations of 𝑔≤𝛿
𝑖

, up to degree 𝛿 of

𝑔𝑖 . This new technique, of finding approximations of the power series roots, is at the core of Theorem 1.

Define,
˜𝑓 (𝑥,𝑦) := 𝑓 (𝜏𝑥) = ∏

𝑖 (𝑦 − 𝑔𝑖)𝛾𝑖 . Applying the derivative operator 𝜕𝑦 on
˜𝑓 , we get a classic identity (which

we call logarithmic derivative identity 5
): (𝜕𝑦 ˜𝑓)/ ˜𝑓 =

∑
𝑖 𝛾𝑖/(𝑦 − 𝑔𝑖) . Reduce the above identity modulo 𝐼𝛿+1

and define

𝜇𝑖 := 𝑔𝑖 (0) ≡ 𝑔𝑖 mod 𝐼 . This gives us (see Claim 2):

𝜕𝑦 ˜𝑓

˜𝑓
=

𝑑0∑
𝑖=1

𝛾𝑖

𝑦 − 𝑔𝑖
≡

𝑑0∑
𝑖=1

𝛾𝑖

𝑦 − 𝑔<𝛿
𝑖

+
𝑑0∑
𝑖=1

𝛾𝑖 · 𝑔=𝛿𝑖
(𝑦 − 𝜇𝑖)2

mod 𝐼𝛿+1 .

In terms of the 𝑑0 unknowns 𝑔=𝛿
𝑖

, the above is a linear equation. (Note- We treat 𝛾𝑖 , 𝜇𝑖 ’s as known.) As 𝑦 is a free

variable above, we can fix it to 𝑑0 “random” elements 𝑐𝑖 in F, 𝑖 ∈ [𝑑0]. One would expect these fixings to give a

linear system with a unique solution for the unknowns. We can express the system of linear equations succinctly in

the following matrix representation: 𝑀 · 𝑣𝛿 = 𝑊𝛿 mod 𝐼𝛿+1
. Here 𝑀 is a 𝑑0 × 𝑑0 matrix; each entry is denoted by

𝑀 (𝑖, 𝑗) :=
𝛾𝑖

(𝑐𝑖−𝜇 𝑗)2
. Vector 𝑣𝛿 respectively𝑊𝛿 is a 𝑑0 × 1 matrix where each entry is denoted by 𝑣𝛿 (𝑖) := 𝑔=𝛿

𝑖
respectively

𝑊𝛿 (𝑖) :=
𝜕𝑦 ˜𝑓

˜𝑓

��
𝑦=𝑐𝑖

−𝐺𝑖,𝛿 , where 𝐺𝑖,𝛿 :=
∑𝑑0

𝑘=1
𝛾𝑘/(𝑐𝑖 − 𝑔<𝛿𝑘) . We ensure that {𝑐𝑖 , 𝜇𝑖 | 𝑖 ∈ [𝑑0]} are distinct, and show

that the determinant of𝑀 is nonzero (Lemma 19). So, by knowing approximations up to 𝛿 − 1, we can recover 𝛿-th (and

thus up to degree 𝛿 as well) part by solving the above system as 𝑣𝛿 = 𝑀−1𝑊𝛿 mod 𝐼𝛿+1
.

An important point is that the random 𝑐𝑖 ’s will ensure: all the reciprocals involved in the calculation above do exist

mod 𝐼𝛿+1
.

To see the gory details, see the proof of Theorem 1 in Section 4.1. For our results on restricted models like formulas

and ABPs (Theorem 3), we use the classical Newton iteration method (Lemma 15).

Comparisons with other techniques:Most of the works on multivariate polynomial factoring use Hensel Lifting

(lifting factorization modulo powers of an ideal). Hensel lifting and Newton iteration (lifting roots) are mathematically

related, and various versions of them are equivalent. See [VzG84] for comparisons between these two techniques.

Nevertheless, for showing closure results in different models, one viewpoint may be more useful than the other.

Kaltofen’s classic works mostly used the Hensel lifting viewpoint, although his bivariate factoring [Kal85b] showed

either can be used.

Sasaki and Sasaki [SS93] used power series roots for multivariate factoring over different fields, but their way of

approximating the roots (via a version of Hensel lifting) and reconstructing factors from roots (via different linear

5
Very recently, this identity has found applications in other contexts, eg. constant top-fanin (& bottom-fanin) depth-4 PIT [DDS21b], and restricted

de-bordering results in GCT [DDS21a]. Since, it converts the product gate to a sum gate, quite often the expressions become very useful.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Discovering the roots: Uniform closure results for algebraic classes under factoring 9

combinations of powers of roots) are different from us. Our approach of using power series roots is inspired by the

approach of Oliveira [Oli16]. There are significant technical differences (in handling the non-monic case and in using

different versions of Newton iteration and most importantly, the simultaneous root approximation rather than one

at a time), still the core idea of using approximate roots to prove factor size bound is same. Some of the algorithmic

ideas (reconstructing a factor by computing a minimal polynomial of an approximate root using linear algebra) can

be found in the classic LLL algorithm [LLL82] and the bivariate polynomial factoring algorithm of Kaltofen [Kal85b].

Later, Bürgisser [Bür04] used Newton iteration to approximate a root and then find a minimal polynomial for the root

by solving a linear system (the trick of using an additional variable 𝑡 , performing a substitution 𝑥 𝑗 ↦→ 𝑡𝑥 𝑗 and then

seeing the polynomials in 𝑡 with coefficients over F(𝑥), helped to extend the bivariate case to general multivariate). Our

work uses ideas from some of these prior works.

There are numerical methods (similar to Newton iteration) to simultaneously approximate all the roots of a univariate

polynomial [Dur60, Ker66, Ehr67, Abe73]. However, it is well known that the Newton Iteration fails to approximate the

roots that repeat (see [Lec02]) in the algebraic setting. The same holds for these techniques as well. In contrast, the

allRootsNI technique can handle roots with high multiplicity.

Organization of the article. In the next section, we recall some basic operations for different algebraic models of

computation and some necessary algebraic tools which will be useful for us. In Section 3, we discuss the classical

Newton iteration formula and the usefulness of power series root approximation to factoring. We prove Theorem 1–2

in Section 4 which focuses on factor size bound of high degree polynomials computed by small sized circuits. Section 5

is devoted to proving Theorem 3, which focuses on factoring (size bound and algorithm) in the quasipolynomial size

regime for different algebraic models. Section 6 talks about results for approximative complexity classes and special

fields (when it is of low characteristic or it is not algebraically closed). Finally, we conclude with some open questions

in Section 7. Appendix A is for a detour and can be seen as a numerical analog (and application) of Theorem 1.

2 PRELIMINARIES

This section is mainly divided into two subsections– Section 2.1 is on the basic definition and operations of different

algebraic models which will be used to upper bound the size of factors computed by respective models and exactly

compute it at times, while Section 2.2 is for congregating the useful mathematical tools required for our results. Before

that, we talk about the fundamental mathematical notion that we use throughout the article, namely power series.

The formal power series ring is denoted as F[[𝑥1, . . . , 𝑥𝑛]]. The elements of this ring are multivariate formal power

series, with degree as precision. So, an element 𝑓 is written as 𝑓 =
∑∞
𝑖=0

𝑓 =𝑖 , where 𝑓 =𝑖 is the homogeneous part of

degree 𝑖 of 𝑓 . In algebra texts, it is also called the completion of F[𝑥1, . . . , 𝑥𝑛] wrt the ideal ⟨𝑥1, . . . , 𝑥𝑛⟩ (see [Kem10,

Chap.13]). The truncation 𝑓 ≤𝑑 , i.e. homogeneous parts up to degree 𝑑 , can be obtained by reducing modulo the ideal

⟨𝑥⟩𝑑+1
. Here 𝑑 is seen as the precision parameter of the respective approximation of 𝑓 . We will also denote 𝑓 <𝑑 as

degree < 𝑑 part of 𝑓 i.e. 𝑓 <𝑑 := 𝑓 ≤𝑑−1
. In fact, it is obvious that 𝑓 ≤𝑑 = 𝑓 <𝑑 + 𝑓 =𝑑 for all 𝑑 ≥ 0.

The advantages of the ring F[[𝑥]] are many. They usually emerge because of the inverse identity:

(1 − 𝑥1)−1 =
∑
𝑖≥0

𝑥𝑖
1

which would not have made sense in F[𝑥] but is available now. This fact will be used in division elimination in different

algebraic models (Lemma 5). For fast algorithms for various basic operations on formal power series, we refer the

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

classical papers [BK78, KT78]. For an overview of various issues related to the implementation of multivariate power

series in a computer algebra system, we refer [ABK
+
21].

The individual degree of 𝑓 with respect to variable 𝑥𝑖 , denoted by deg𝑥𝑖 (𝑓), is the largest power of 𝑥𝑖 appearing in a

monomial of 𝑓 . The individual degree of 𝑓 is the maximum individual degree with respect to each variables 𝑥𝑖 . The

sparsity of 𝑓 denotes the number of nonzero monomials present in 𝑓 .

2.1 A Primer on Algebraic Models

In our proofs, we will need some basic results about formulas, ABPs, and circuits. In particular, we can efficiently

eliminate a division gate, extract a homogeneous part, and compute derivatives. For more exposure, see [SY10, Sap19].

A formula is a rooted binary tree where internal nodes are labeled + or × and leaf nodes are labeled from the set

F
⋃
𝑋 , where 𝑋 is the set of indeterminates. The size is the number of nodes and edges of the tree.

Algebraic circuits correspond to directed acyclic graphs where each node is a source node (indegree 0) labeled from

the set F
⋃
𝑋 , or has indegree 2 (fanin 2)

6
and is labeled + or ×. A designated sink node (outdegree 0) is the output

node. Each node computes a polynomial in an obvious way, and the graph computes the polynomial at the output node.

The acyclicity constraint ensures that there is a linear ordering of the nodes such that each node, or instruction, only

uses previously computed polynomials. The fanout or the outdegree of any intermediate node can be > 1 and thus, the

reusal of nodes helps to compute more intricate polynomials in small-sized circuits, which might not be possible in

formulas.

ABP is a skew circuit, i.e. each multiplication gate has fanin two with at least one of its inputs being a variable or a

field constant. A completely different definition can be given via layered graphs or iterated matrix multiplication or

symbolic determinant. It is well-known that they are all equivalent up to polynomial blow up [Mah14].

Definition 4 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered graph with a

unique source vertex (say 𝑠) and a unique sink vertex (say 𝑡). All edges are from layer 𝑖 to 𝑖 + 1 and each edge is labelled by

a linear polynomial. The polynomial computed by the ABP is defined as 𝑓 =
∑
𝛾 :𝑠{𝑡 wt(𝛾), where for every path 𝛾 from 𝑠

to 𝑡 , the weight wt(𝛾) is defined as the product of the labels over the edges forming 𝛾 .

The size of the ABP is defined as the total number of edges in the ABP.Width is the maximum number of vertices in a

layer.

Equivalently, one can define 𝑓 as a product of matrices (of dimension at most the width), each one having linear

polynomials as entries. For more details, see [SY10].

Determinant is in VBP and is computable by a 𝑛𝑂 (log𝑛)
size formula. It is a famous result that the ABP model is the

same as symbolic determinant [MV97].

Computing homogeneous components and coefficients of a polynomial

Let 𝑓 (𝑥,𝑦) be polynomial of degree 𝑑 in variables 𝑦 and 𝑥 = (𝑥1, . . . , 𝑥𝑛). Let 𝐶 be a formula (respectively circuit or

ABP) of size 𝑠 that computes a polynomial 𝑓 . Write 𝑓 as a polynomial in 𝑦, with coefficients from F[𝑥], such that

𝑓 (𝑥,𝑦) = ∑𝑑
𝑖=0

𝑓𝑖 𝑦
𝑖
. Then, the coefficients 𝑓𝑖 (𝑥) have formulas (respectively circuits or ABPs) of size poly(𝑠, 𝑑).

First we replace every variable 𝑥𝑖 by𝑇𝑥𝑖 to get a formula computing 𝑃 (𝑇) = ∑𝑑
𝑖=0

𝑃𝑖𝑇
𝑖
. Nowwe take𝑑+1many distinct

numbers 𝛼0, . . . , 𝛼𝑑 that we substitute for 𝑇 . We create 𝑑 + 1 many arithmetic formulas computing 𝑃 (𝛼0), . . . , 𝑃 (𝛼𝑑).
We get the following equation where the leftmost matrix is the Vandermonde matrix.

6
The original circuit can have unbounded fanin. However, it is not hard to convert the same into fanin 2 with constant blowup in size.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Discovering the roots: Uniform closure results for algebraic classes under factoring 11


1 𝛼0 · · · 𝛼𝑑

0

1 𝛼1 · · · 𝛼𝑑
1

...
...

. . .
...

1 𝛼𝑑 · · · 𝛼𝑑
𝑑



𝑃0

𝑃1

...

𝑃𝑑


=


𝑃 (𝛼0)
𝑃 (𝛼1)
...

𝑃 (𝛼𝑑)


As the Vandermonde matrix is invertible, we get that each of 𝑃𝑖 is a linear combination of 𝑃 (𝛼0), . . . , 𝑃 (𝛼𝑑) and has

an arithmetic formula (respectively circuit or ABP) of size poly(𝑠, 𝑑). We refer to [Sap19, Lemma 5.4].

But, for a size 𝑠 circuit, the degree can be exponential in 𝑠 . In that scenario, the above interpolation trick would not

be efficient. However, Strassen in [Str73] argued that for any 𝑑 , there is a multi-output homogeneous circuit computing

all 𝑖-th degree homogeneous part for 𝑖 ≤ 𝑑 of size 𝑂 (𝑠 · 𝑑2). Note that this doesn’t involve the actual degree of the
original circuit Φ. We briefly give an idea of how to construct a new circuit Ψ of the claimed functionality:

For every gate 𝑣 in Φ, we define 𝑑 + 1 gates in Φ, which we denote (𝑣, 0), . . . , (𝑣, 𝑑) in such a way that (𝑣, 𝑖) computes

the 𝑖-th degree homogeneous part computed at 𝑣-th node in Φ; polynomial computed at 𝑣 in Φ, call it Φ𝑣 and at (𝑣, 𝑖)-th
gate in Ψ, we call it Ψ(𝑣,𝑖) . We construct Ψ inductively as follows. If v is an input gate (variables or constant), we can

clearly define (𝑣, 𝑖) as an input gate with the appropriate properties. If Φ𝑣 = Φ𝑢 + Φ𝑤 , define Ψ(𝑣,𝑖) = Ψ(𝑢,𝑖) + Ψ(𝑤,𝑖)
for all 𝑖 . If Φ𝑣 = Φ𝑢 ×Φ𝑤 , define Ψ(𝑣,𝑖) =

∑𝑖
𝑗=0

Ψ(𝑢,𝑗) × Ψ(𝑤,𝑖−𝑗) . Induction implies that Ψ computes each homogeneous

part of Φ, gate by gate. Every gate in Φ corresponds to at most 𝑂 ((𝑑 + 1)2) gates in Ψ (each product gate requires

𝑂 ((𝑑 + 1)2) additional sum gates), and so size of Ψ is 𝑂 (𝑠 · 𝑑2).
This does not work for formulas. We refer to [SY10, Theorem 2.2] and [Sap19, Lemma 5.2] for more details.

Basic operations on formulas, circuits and ABPs

We use the following standard results on size bounds for performing some basic operations (eg. division elimination,

taking derivatives) of circuits, formulas, ABPs.

Lemma 5. (Eliminate single division [Str73], [SY10, Theorem 2.1]) Let 𝑓 and𝑔 be two degree-𝐷 polynomials, each computed

by a circuit (respectively ABP respectively formula) of size-𝑠 with 𝑔(0) ≠ 0. Then 𝑓 /𝑔 mod ⟨𝑥⟩𝑑+1 can be computed by

𝑂 ((𝑠 + 𝑑)𝑑3) (respectively 𝑂 (𝑠𝑑2𝐷) respectively 𝑂 (𝑠𝑑2𝐷2)) size circuit (respectively ABP respectively formula).

Proof. Assume wlog that 𝑔(0) = 1; we can ensure this by appropriate normalization. So, we have the following

power series identity in F[[𝑥]]:
𝑓

𝑔
=

𝑓

(1 − (1 − 𝑔)) = 𝑓 + 𝑓 · (1 − 𝑔) + 𝑓 · (1 − 𝑔)2 + 𝑓 · (1 − 𝑔)3 + · · · .

Note that this is a valid identity as 1 − 𝑔 is constant free. For all 𝑑 ≥ 0, LHS=RHS mod⟨𝑥⟩𝑑+1
.

If we want to compute 𝑓 /𝑔 mod ⟨𝑥⟩𝑑+1
, we can take the RHS of the above identity up to the term 𝑓 (1 − 𝑔)𝑑 and

discard the remaining terms of degree greater than 𝑑 . The degree> 𝑑 monomials can be truncated, using Strassen’s

homogenization trick, in the case of circuits and an interpolation trick in the case of formulas (which also works for

ABPs and low degree circuits); see subsection 2.1 above. A careful analysis shows that the size blow-up is at most

𝑂 ((𝑠 +𝑑)𝑑2 ·𝑑) (respectively𝑂 (𝑠𝑑 ·𝐷 ·𝑑) respectively𝑂 (𝑠𝑑 ·𝐷2 ·𝑑)) for circuits (respectively ABP respectively formula).

It is easy to see that using the above result, we get poly(𝑠, 𝑑) size circuit (respectively ABP respectively formula) for

computing 𝑓 /𝑔 mod ⟨𝑥⟩𝑑+1
. □

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Remark. Note that it may happen that 𝑔(0) = 0, thus 1/𝑔 does not exist in F[[𝑥]], yet 𝑓 /𝑔 may be a polynomial of

degree 𝑑 . In such a case, we need to discuss a modified normalization that works. We can shift the polynomials 𝑓 , 𝑔 by

some random 𝛼 ∈ F𝑛 . The constant term of the shifted polynomial is nonzero with high probability (Lemma 8). Now,

we compute 𝑓 (𝑥 + 𝛼)/𝑔(𝑥 + 𝛼) using the method described above. Finally, we recover the polynomial 𝑓 /𝑔 by applying

the reverse shift 𝑥 ↦→ 𝑥 − 𝛼 .

What if our model has several division gates?

Lemma 6. (Div. gates elimination [SY10, Theorem 2.12]) Let 𝑓 be a polynomial computed by a circuit (respectively

formula), using division gates, of size 𝑠 . Then, 𝑓 mod ⟨𝑥⟩𝑑+1 can be computed by poly(𝑠𝑑) size circuit (respectively formula).

Proof idea. We pre-process the circuit (respectively formula) so that the only division gate used in the modified

circuit (respectively formula) is at the top. Now to remove the single division gate at the top, we use the above power

series trick.

The idea of the pre-processing is the following.We can separately keep track of numerator and denominator computed

at each gate and simulate addition, multiplication and division gates in the original circuit and incrementally go from

bottom to top. In particular, if at the 𝑖-th depth we have + gate coming from two nodes at the 𝑖 + 1-th depth computing

𝑢1/𝑣1 and 𝑢2/𝑣2 respectively, then at that specific node it computes 𝑢1/𝑣1 +𝑢2/𝑣2 = (𝑢1 · 𝑣2 +𝑢2 · 𝑣1)/(𝑣1 · 𝑣2). Similarly,

for × gate, it is (𝑢1 · 𝑢2)/(𝑣1 · 𝑣2). Note that, given 𝑢1, 𝑣1 and 𝑢2, 𝑣2, it only incurs constantly many additional gates.

Thus in a whole, this pre-processing incurs only 𝑂 (𝑠) additional blow up in the case of circuits. In the case of formulas

one has to ensure that in any path from the leaf to the root, there are only 𝑂 (log 𝑠𝑑) division gates. □

Lemma 7 (Derivative computation). If a polynomial 𝑓 (𝑥,𝑦) can be computed by a circuit (respectively formula

respectively ABP) of size 𝑠 and degree 𝑑 . Then, any 𝜕𝑘 𝑓

𝜕𝑦𝑘
can be computed by circuit (respectively formula respectively ABP)

of size poly(𝑠𝑘).

Proof. The idea is to use the homogenization and interpolation properties [Sap19, Section 5.1-2].

Let 𝑓 (𝑥,𝑦) = 𝑐0 + 𝑐1𝑦 + 𝑐2𝑦
2 + · · · + 𝑐𝛿𝑦𝛿 , where 𝑐0, 𝑐1, . . . , 𝑐𝛿 ∈ F[𝑥]. Given the circuit (respectively formula

respectively ABP) computing polynomial 𝑓 (𝑥,𝑦), we can get the circuits (respectively formula respectively ABP)

computing 𝑐0, . . . , 𝑐𝛿 using homogenization and interpolation as discussed before. Given 𝑐0, . . . , 𝑐𝛿 , computing
𝜕𝑘 𝑓

𝜕𝑦𝑘
in

size poly(𝑠𝑑) is trivial. We use this approach of computing derivative when the polynomial is of degree 𝑑 ≤ poly(𝑠).
□

Remark. In the case of high degree circuits, we cannot use the above approach. [Kal87, Theorem 1] shows that
𝜕𝑘 𝑓

𝜕𝑦𝑘
can

be computed by a circuit of size𝑂 (𝑘2𝑠), i.e. the degree of the circuit does not matter. The main idea is to use the Leibniz

product rule of 𝑘-th order derivative inductively. Kaltofen [Kal87] gave evidence that it is unlikely that we can compute

𝜕𝑘 𝑓

𝜕𝑦𝑘
in circuit size poly(𝑠, log𝑘). Otherwise, the permanent polynomial would have circuits of polynomial size.

Closure properties for VNP

We now discuss some closure properties of the class VNP which will be crucially required for proving Theorem 3.

VNP-size parameter (𝑤, 𝑣) of 𝐹 refers to𝑤 being the witness size and 𝑣 being the size of the verifier circuit 𝑓 .

Let 𝐹 (𝑥,𝑦),𝐺 (𝑥,𝑦), 𝐻 (𝑥) have verifier polynomials 𝑓 , 𝑔 and ℎ with the VNP size parameters (𝑤 𝑓 , 𝑣 𝑓),(𝑤𝑔, 𝑣𝑔), (𝑤ℎ, 𝑣ℎ)
respectively. Let the degree of 𝐹 wrt 𝑦 be 𝑑 . Then, the following closure properties can be shown ([BCS13] or [Bür13,

Theorem 2.19]):

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Discovering the roots: Uniform closure results for algebraic classes under factoring 13

(1) Add (respectively Multiply): 𝐹 +𝐺 (respectively 𝐹𝐺) has VNP-size parameter (𝑤 𝑓 +𝑤𝑔, 𝑣 𝑓 + 𝑣𝑔 + 3).
(2) Coefficient: 𝐹𝑖 (𝑥) has VNP-size parameter (𝑤 𝑓 , (𝑑 + 1) (𝑣 𝑓 + 1)), where 𝐹 (𝑥,𝑦) =:

∑𝑑
𝑖=0

𝐹𝑖 (𝑥)𝑦𝑖 .
(3) Compose: 𝐹 (𝑥, 𝐻 (𝑥)) has VNP-size parameter ((𝑑 + 1) (𝑤 𝑓 + 𝑑𝑤ℎ), (𝑑 + 1)2 (𝑣 𝑓 + 𝑣ℎ + 1)).

Proof. All the above statements are easy to prove using the definition of VNP.

(1)

(𝐹𝐺) (𝑥,𝑦) = ©­«
∑

𝑢∈{0,1}𝑤𝑓

𝑓 (𝑥,𝑢1, . . . , 𝑢𝑤𝑓
)ª®¬ · ©­«

∑
𝑢∈{0,1}𝑤𝑔

𝑔(𝑥,𝑢1, . . . , 𝑢𝑤𝑔
)ª®¬

=
∑

𝑢∈{0,1}𝑤𝑓 +𝑤𝑔

𝐴(𝑥,𝑢1, . . . , 𝑢𝑤𝑓 +𝑤𝑔
)

where,

𝐴(𝑥,𝑢1, . . . , 𝑢𝑤𝑓 +𝑤𝑔
) = 𝑓 (𝑥,𝑢1, . . . , 𝑢𝑤𝑓

) · 𝑔(𝑥,𝑢𝑤𝑓 +1, . . . , 𝑢𝑤𝑓 +𝑤𝑔
)

Trivially, 𝐴 has size 𝑣 𝑓 + 𝑣𝑔 + 3 (extra: one node, two edges) and witness size is𝑤 𝑓 +𝑤𝑔 . Similarly, with 𝐹 +𝐺 .
(2) Interpolation gives, 𝑓𝑖 (𝑥) =

∑𝑑
𝑗=0

𝛼 𝑗𝐹 (𝑥, 𝛽 𝑗), for some distinct arguments 𝛽 𝑗 ∈ F. Clearly, 𝐹 (𝑥, 𝛽 𝑗) has VNP-size
parameter (𝑤 𝑓 , 𝑣 𝑓). Using the previous addition property we get that the verifier circuit has size (𝑑 + 1) (𝑣 𝑓 + 1).
Witness size remains𝑤 𝑓 as we can reuse the witness string of 𝐹 .

(3) Write 𝐹 (𝑥,𝑦) =:

∑𝑑
𝑖=0

𝐹𝑖 (𝑥)𝑦𝑖 . We know that 𝐹𝑖 has VNP-size parameter (𝑤 𝑓 , (𝑑 + 1) (𝑣 𝑓 + 1)). For 0 ≤ 𝑖 ≤ 𝑑 , 𝐻 𝑖

has VNP-size parameter (𝑖𝑤ℎ, (𝑖 + 1)𝑣ℎ) using 𝑖-fold product (Item 1). Substituting 𝑦 = 𝐻 in 𝐹 , we can calculate

the VNP-size parameter.

Suppose 𝐹𝑖 and 𝐻
𝑖
have corresponding verifier circuits 𝐴𝑖 and 𝐵𝑖 respectively. Then,

𝐹 (𝑥, 𝐻 (𝑥)) =
𝑑∑
𝑖=0

𝐹𝑖 (𝑥)𝐻 𝑖 (𝑥)

=

𝑑∑
𝑖=0

©­«
∑

𝑢∈{0,1}𝑤𝑓

𝐴𝑖 (𝑥,𝑢)
ª®¬ · ©­«

∑
𝑢∈{0,1}𝑖𝑤ℎ

𝐵𝑖 (𝑥,𝑢)
ª®¬

Thus, the witness size is < (𝑑 + 1) (𝑤 𝑓 + 𝑑𝑤ℎ). The corresponding verifier circuit size is < (𝑑 + 1)2 (𝑣 𝑓 + 𝑣ℎ + 1).

□

2.2 Mathematical Toolkit

This section is dedicated for assembling the mathematical tools which we will need throughout.

In the following part, we use the DeMillo-Lipton-Schwartz-Zippel lemma, now called the Polynomial Identity Lemma,

which basically shows that a nonzero polynomial evaluates to nonzero at a random point from a large enough field. See

[CKS19b] and references therein for more details and the history of this lemma.

Lemma 8 (Polynomial Identity Lemma [Ore22, DL78, Zip79, Sch80])). Let 𝑝 (𝑥1, . . . , 𝑥𝑛) be an 𝑛-variate nonzero
polynomial of total degree 𝑑 . Let 𝑆 ⊆ F be a finite set. For 𝛼 ∈ 𝑆𝑛 picked independently and uniformly at random,

Pr[𝑝 (𝛼) = 0] ≤ 𝑑

|𝑆 | .

Remark. The above lemma implies that PIT ∈ co-RP, i.e. there is an efficient polynomial time randomized algorithm to

test whether a given polynomial is zero or not.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

By a random choice 𝛼 ∈𝑟 F, we always mean that we choose uniformly at random from a fixed finite set 𝑆 ⊆ F of
large enough size (say, ≥ 2𝑑 if 𝑑 is the degree of the nonzero polynomial where we substitute 𝛼 ∈ 𝑆𝑛).

We will use properties of gcd(𝑓 , 𝑔) and a related determinant polynomial called resultant.

Sylvester matrix & resultant. First, let us look at the notion of the resultant of two univariate polynomials. Let

𝑝 (𝑥), 𝑞(𝑥) ∈ F[𝑥] be of degree 𝑎, 𝑏 respectively. From Euclid’s extended algorithm, it can be shown that there exist two

polynomials 𝑢 (𝑥), 𝑣 (𝑥) ∈ F[𝑥] such that 𝑢 (𝑥)𝑝 (𝑥) + 𝑣 (𝑥)𝑞(𝑥) = gcd(𝑝 (𝑥), 𝑞(𝑥)). This is known as Bezout’s identity.

If gcd(𝑝 (𝑥), 𝑞(𝑥)) = 1, then (𝑢, 𝑣) with deg(𝑢) < 𝑏 and deg(𝑣) < 𝑎 is unique. Let 𝑢 (𝑥) = 𝑢0 +𝑢1𝑥 +𝑢2𝑥
2 + . . .+𝑢𝑏−1

𝑥𝑏−1

and 𝑣 (𝑥) = 𝑣0 + 𝑣1𝑥 + . . . + 𝑣𝑎−1𝑥
𝑎−1

.

Now, if we use the equation𝑢 (𝑥)𝑝 (𝑥)+𝑣 (𝑥)𝑞(𝑥) = gcd(𝑝 (𝑥), 𝑞(𝑥)) and compare the coefficients of 𝑥𝑖 , for 0 ≤ 𝑖 < 𝑎+𝑏,
we get a system of linear equations in the 𝑎 + 𝑏 many unknowns (𝑢𝑖 and 𝑣𝑖). The system of linear equations can be

represented in the matrix form as 𝑀𝑥 = 𝑦, where 𝑥 consists of the unknowns. The resultant of 𝑓 , 𝑔 is defined as the

determinant of the matrix𝑀 . It is easy to see that𝑀 is invertible if and only if the polynomials are coprime.

Now, the notion of resultants can be extended to multivariate, by defining the resultant of polynomials 𝑓 (𝑥,𝑦) and
𝑔(𝑥,𝑦) wrt some variable 𝑦. The idea is the same as before; now we take gcd wrt the variable 𝑦 and get a system of

linear equations from Bezout’s identity. The matrix can be explicitly written with entries being polynomial coefficients

(or they could be from F[[𝑥]]). This is known as the Sylvester matrix, which we define next.

Definition 9. Let 𝑓 (𝑥,𝑦) = ∑𝑙
𝑖=0

𝑓𝑖 (𝑥)𝑦𝑖 and 𝑔(𝑥,𝑦) =
∑𝑚
𝑖=0

𝑔𝑖 (𝑥)𝑦𝑖 . Define Sylvester matrix of 𝑓 and 𝑔 wrt 𝑦 as the

following (𝑚 + 𝑙) × (𝑚 + 𝑙) matrix:

Syl𝑦 (𝑓 , 𝑔) :=

©­­­­­­­­­­­­­­­­­«

𝑓0 0 · · · 0 𝑔0 0 · · · 0

𝑓1 𝑓0 · · · 0 𝑔1 𝑔0 · · · 0

𝑓2 𝑓1
...

... 𝑔1

...

...
...

. . . 𝑓0 𝑔𝑚
...

. . . 0

𝑓𝑙 𝑓𝑙−1
𝑓1 0 𝑔𝑚 𝑔0

0 𝑓𝑙 𝑓2 0 0 𝑔1

...
...

...
...

...
...

0 0 · · · 𝑓𝑙 0 0 · · · 𝑔𝑚

ª®®®®®®®®®®®®®®®®®¬

.

Now, the resultant can be formally defined as follows (for more details and alternate definitions, see [LN97, Chap.1]).

Definition 10. Given two polynomials 𝑓 (𝑥,𝑦) and 𝑔(𝑥,𝑦), define the resultant of 𝑓 and 𝑔 wrt 𝑦 as the determinant of

the Sylvester matrix,

Res𝑦 (𝑓 , 𝑔) := det(Syl𝑦 (𝑓 , 𝑔)) .

From the definition, it can be seen that Res𝑦 (𝑓 , 𝑔) is a polynomial in F[𝑥] with degree bounded by 2deg(𝑓)deg(𝑔).
Now, we state the following fundamental property of the Resultant, which is crucially used.

Proposition 11 (Resultant vs. Gcd). (1) Let 𝑓 , 𝑔 ∈ F[𝑥,𝑦] be polynomials with positive degree in 𝑦. Then,

Res𝑦 (𝑓 , 𝑔) = 0 ⇐⇒ 𝑓 and 𝑔 have a common factor in F[𝑥,𝑦], which has positive degree in 𝑦.

(2) There exists 𝑢, 𝑣 ∈ F[𝑥,𝑦] such that 𝑢𝑓 + 𝑣𝑔 = Res𝑦 (𝑓 , 𝑔).
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Discovering the roots: Uniform closure results for algebraic classes under factoring 15

The proof of this standard proposition can be found in many standard books on algebra including [vzGG13, Section

6]. In the following lemma, by coprimality wrt𝑦, we mean that there is no common factor that has a monomial involving

the variable 𝑦. For example, 𝑥2𝑦 and its derivative wrt 𝑦 (which is 𝑥2
) are coprime wrt 𝑦.

Lemma 12 (Sqarefree-ness). Let 𝑓 ∈ F(𝑥) [𝑦] be a polynomial with deg𝑦 (𝑓) ≥ 1. 𝑓 is squarefree iff 𝑓 and 𝑓 ′ := 𝜕𝑦 𝑓

are coprime wrt 𝑦.

Proof. The main idea is to show that there does not exist 𝑔 ∈ F(𝑥) [𝑦] with positive degree in 𝑦 such that 𝑔 |
gcd𝑦 (𝑓 (𝑥,𝑦), 𝑓 ′(𝑥,𝑦)). This is true because– suppose 𝑔 is an irreducible polynomial with positive degree in 𝑦 that

divides both 𝑓 (𝑥,𝑦) and 𝑓 ′(𝑥,𝑦). So,

𝑓 (𝑥,𝑦) = 𝑔ℎ =⇒ 𝑓 ′(𝑥,𝑦) = 𝑔ℎ′ + 𝑔′ℎ =⇒ 𝑔 | 𝑔′ℎ .

As 𝑔 is irreducible and deg𝑦 (𝑔′) < deg𝑦 (𝑔) we deduce that 𝑔 | ℎ. Hence, 𝑔2 | 𝑓 . This contradicts the hypothesis that
𝑓 is squarefree. □

Now, we state another standard lemma, which is useful to us and proven using the property of Resultant.

Lemma 13 (Coprimality). Let 𝑓 , 𝑔 ∈ F(𝑥) [𝑦] be coprime polynomials wrt 𝑦 (& nontrivial in 𝑦). Then, for 𝛽 ∈𝑟 F𝑛 ,
𝑓 (𝛽,𝑦) and 𝑔(𝛽,𝑦) are coprime (& nontrivial in 𝑦).

Proof. Consider 𝑓 =
∑𝑑
𝑖=1

𝑓𝑖𝑦
𝑖
and 𝑔 =

∑𝑒
𝑖=1

𝑔𝑖𝑦
𝑖
. Choose a random 𝛽 ∈𝑟 F𝑛 . Then, by Proposition 11 & Lemma 8,

𝑓𝑑 · 𝑔𝑒 · Res𝑦 (𝑓 , 𝑔) at 𝑥 = 𝛽 is nonzero. This, in particular, implies that Res𝑦 (𝑓 (𝛽,𝑦), 𝑔(𝛽,𝑦)) ≠ 0.

This implies, by Proposition 11, 𝑓 (𝛽,𝑦) and 𝑔(𝛽,𝑦) are coprime. □

Lemma 14 (Transform to monic). For a polynomial 𝑓 (𝑥) of total degree 𝑑 ≥ 0 and random 𝛼𝑖 ∈𝑟 F, the transformed

polynomial 𝑔(𝑥,𝑦) := 𝑓 (𝑥 + 𝛼𝑦 + 𝛽) has a nonzero constant as the coefficient of 𝑦𝑑 , and degree wrt 𝑦 is 𝑑 .

Proof. Suppose the transformation is 𝑥𝑖 ↦→ 𝑥𝑖 +𝛼𝑖𝑦+𝛽𝑖 where 𝑖 ∈ [𝑛]. Write 𝑓 =
∑

|𝛽 |=𝑑 𝑐𝛾𝑥
𝛾 + lower degree terms .

The coefficient of 𝑦𝑑 in 𝑔 is
∑

|𝛾 |=𝑑 𝑐𝛾𝛼
𝛾
. Clearly, for a random 𝛼 this coefficient will not vanish (Lemma 8), and it is the

highest degree monomial in 𝑔.

This ensures deg𝑦 (𝑔) = deg(𝑓) = 𝑑 and that 𝑔 is monic wrt 𝑦. □

Remark. In the above statement/proof, we do not need 𝛽 , in particular, 𝛽 = 0 works as well. Random 𝛽 is required to

ensure the existence of different power series roots, see the next section for the details. As we need the more general

linear shift later, we use it here as well.

3 FACTORIZATION OF POLYNOMIALS OVER POWER SERIES RING

First, we present the proof of classical Newton iteration (in the setting of formal power series). This is also a formal

power series version of implicit function theorem [KP12, Sec.1.3].

Lemma 15. (Power series root [BCS13, Theorem 2.31]) Let 𝑃 (𝑥,𝑦) ∈ F(𝑥) [𝑦], 𝑃 ′(𝑥,𝑦) = 𝜕𝑃 (𝑥,𝑦)
𝜕𝑦 and 𝜇 ∈ F be such that

𝑃 (0, 𝜇) = 0 but 𝑃 ′(0, 𝜇) ≠ 0 . Then, there is a unique power series 𝑆 such that 𝑆 (0) = 𝜇 and 𝑃 (𝑥, 𝑆) = 0 i.e.

𝑦 − 𝑆 (𝑥) | 𝑃 (𝑥,𝑦) .

Moreover, there exists a rational function 𝑦𝑡 , ∀𝑡 ≥ 0, such that

𝑦𝑡+1 = 𝑦𝑡 −
𝑃 (𝑥,𝑦𝑡)
𝑃 ′(𝑥,𝑦𝑡)

and 𝑆 ≡ 𝑦𝑡 mod ⟨𝑥⟩2
𝑡

with 𝑦0 = 𝜇 .

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Proof. We give an inductive proof of existence and uniqueness together. Suppose 𝑃 =
∑𝑑
𝑖=0

𝑐𝑖𝑦
𝑖
. We show that

there is 𝑦𝑡 , a rational function
𝐴𝑡

𝐵𝑡
such that 𝑦𝑡 ∈ F[[𝑥]] , For all 𝑡 ≥ 0, 𝑃 (𝑥,𝑦𝑡) ≡ 0 mod ⟨𝑥⟩2

𝑡
and for all 𝑡 ≥ 1,

𝑦𝑡 ≡ 𝑦𝑡−1 mod ⟨𝑥⟩2
𝑡−1

. The proof is by induction. Let 𝑦0 := 𝜇. Thus, the base case is true. Now suppose such 𝑦𝑡 exists.

Define 𝑦𝑡+1 := 𝑦𝑡 − 𝑃 (𝑥,𝑦𝑡)
𝑃 ′ (𝑥,𝑦𝑡) .

Now, 𝑦𝑡 ≡ 𝑦𝑡−1 mod ⟨𝑥⟩2
𝑡−1

=⇒ 𝑦𝑡 (0) = 𝜇 . Hence 𝑃 ′(𝑥,𝑦𝑡) |𝑥=0
= 𝑃 ′(0, 𝜇) ≠ 0 and so 𝑃 ′(𝑥,𝑦𝑡) is a unit in the

power series ring. So, 𝑦𝑡+1 ∈ F[[𝑥]]. Let us verify that it is an improved root of 𝑃 ; we use Taylor expansion. For the

algebraic version of Taylor expansion, see the treatment in [Bou13].

𝑃 (𝑥,𝑦𝑡+1) = 𝑃
(
𝑥, 𝑦𝑡 −

𝑃 (𝑥,𝑦𝑡)
𝑃 ′(𝑥,𝑦𝑡)

)
= 𝑃 (𝑥,𝑦𝑡) − 𝑃 ′(𝑥,𝑦𝑡)

𝑃 (𝑥,𝑦𝑡)
𝑃 ′(𝑥,𝑦𝑡)

+ 𝑃
′′(𝑥,𝑦𝑡)

2!

(
𝑃 (𝑥,𝑦𝑡)
𝑃 ′(𝑥,𝑦𝑡)

)
2

− · · ·

≡ 0 mod ⟨𝑥⟩2
𝑡+1

.

Thus, 𝑃 (𝑥,𝑦𝑡+1) ≡ 0 mod ⟨𝑥⟩2
𝑡+1

and 𝑦𝑡+1 ≡ 𝑦𝑡 mod ⟨𝑥⟩2
𝑡
. This completes the induction step.

Moreover, it is not hard to see that there exists a unique power series 𝑆 such that 𝑆 ≡ 𝑦𝑡 mod ⟨𝑥⟩2
𝑡
for all 𝑡 ≥ 0.

It is unique as 𝜇 is a non-repeated root of 𝑃 (0, 𝑦). As it holds for all 𝑡 ≥ 0, we must have 𝑃 (𝑥, 𝑆) = 0, as otherwise

𝑃 (𝑥, 𝑆) . 0 mod ⟨𝑥⟩2
𝑡
for some 𝑡 ≥ 1. This, in particular, would imply that 𝑃 (𝑥,𝑦𝑡) . 0 mod ⟨𝑥⟩2

𝑡
which is a

contradiction! Thus, 𝑃 (𝑥, 𝑆) = 0 ⇐⇒ 𝑦 − 𝑆 | 𝑃 . □

Remark. In a more general situation, where we have a system of 𝑛 polynomials or power series in several variables

𝑧1, . . . , 𝑧𝑛, 𝑥1, . . . , 𝑥𝑚 , we can compute the power series roots 𝑔1 (𝑥), . . . , 𝑔𝑛 (𝑥) using a multidimensional version of

Newton iteration using the Jacobian. See [Bou13] for details. Also, note that there is a slow version of Newton iteration,

which is 𝑦𝑡+1 = 𝑦𝑡 − 𝑃 (𝑥,𝑦𝑡)
𝜕𝑦𝑃 (0,𝑦0)

. To approximate roots up to degree 𝑑 , we have to use this version of Newton iteration

𝑑 many times repeatedly. For restricted models, we show that the fast version of NI has crucial advantage over the

slow version. There are applications of power series roots/implicit function theorem paradigm in algebraic complexity

[DSY09, KS16, PSS16, BJ18], in coding theory [AP00, NRS17, BSCI
+
20], in polynomial system solving [GHM

+
98, Kri02].

Now, to get the factorization over F[𝑥], we look into the analytic factorization pattern of a polynomial over the power

series ring F[[𝑥1, . . . , 𝑥𝑛]]. We need the notion of uniqueness of factorization, which the following classic proposition

ensures.

Proposition 16. [ZS75, Chap.VII] The power series ring F[[𝑥1, . . . , 𝑥𝑛]] is a unique factorization domain (UFD), and so

is F[[𝑥]] [𝑦].

Now, we show that by applying a random linear map, any polynomial splits completely over the ring F[[𝑥]]. (Recall:
F is algebraically closed.)

Theorem 17 (Power Series Complete Split). Let 𝑓 ∈ F[𝑥] with deg(rad(𝑓)) =: 𝑑0 > 0. Consider 𝛼𝑖 , 𝛽𝑖 ∈𝑟 F and the
map 𝜏 : 𝑥𝑖 ↦→ 𝛼𝑖𝑦 + 𝑥𝑖 + 𝛽𝑖 , 𝑖 ∈ [𝑛], where 𝑦 is a new variable.

Then, over F[[𝑥]], 𝑓 (𝜏𝑥) = 𝑘 · ∏𝑖∈[𝑑0] (𝑦 − 𝑔𝑖)𝛾𝑖 , where 𝑘 ∈ F∗, 𝛾𝑖 > 0, and 𝑔𝑖 (0) := 𝜇𝑖 . Moreover, 𝜇𝑖 ’s are distinct

nonzero field elements.

Proof. Let the complete irreducible factorization of 𝑓 be
∏

𝑖∈[𝑚] 𝑓
𝑒𝑖
𝑖
. We apply a random 𝜏 so that 𝑓 , and thus all its

factors, become monic in 𝑦 (Lemma 14). The monic factors
˜𝑓𝑖 := 𝑓𝑖 (𝜏𝑥) remain irreducible (because 𝜏 is invertible). Also,

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Discovering the roots: Uniform closure results for algebraic classes under factoring 17

˜𝑓𝑖 (0, 𝑦) = 𝑓𝑖 (𝛼𝑦 + 𝛽) and 𝜕𝑦 ˜𝑓𝑖 (0, 𝑦) remain coprime (because 𝛽 is random, apply Lemma 13). In other words,
˜𝑓𝑖 (0, 𝑦) is

squarefree (Lemma 12).

In particular, one can write
˜𝑓𝑖 (0, 𝑦) as

∏deg(𝑓𝑖)
𝑗=1

(𝑦− 𝜇𝑖, 𝑗) for distinct nonzero field elements 𝜇𝑖, 𝑗 (ignoring the constant,

which is the coefficient of the highest degree of 𝑦 in
˜𝑓𝑖). Using classical Newton Iteration (see Lemma 15), one can write

˜𝑓𝑖 (𝑥,𝑦) as a product of power series
∏deg(𝑓𝑖)

𝑗=1
(𝑦 −𝑔𝑖, 𝑗), with 𝑔𝑖, 𝑗 (0) := 𝜇𝑖, 𝑗 . Thus, each 𝑓𝑖 (𝜏𝑥) can be factored into linear

factors in F[[𝑥]] [𝑦].
As the polynomials 𝑓𝑖 are irreducible and coprime, by Lemma 13, it is clear that

˜𝑓𝑖 (0, 𝑦), 𝑖 ∈ [𝑚], are mutually coprime.

Thus, 𝜇𝑖, 𝑗 are distinct and they are

∑
𝑖 deg(𝑓𝑖) = 𝑑0 many. Hence, after proper renaming of the roots 𝑔𝑖, 𝑗 , 𝑓 (𝜏𝑥) can be

completely factored as

∏
𝑖∈[𝑚] 𝑓𝑖 (𝜏𝑥)𝑒𝑖 =

∏
𝑖∈[𝑑0] (𝑦 −𝑔𝑖)

𝛾𝑖
, with 𝛾𝑖 > 0 and the field constants 𝑔𝑖 (0) being distinct. □

Corollary 18. Suppose 𝑔 is a polynomial factor of 𝑓 . As before let 𝑓 (𝜏𝑥) = ∏
𝑖∈[𝑚] 𝑓𝑖 (𝜏𝑥)𝑒𝑖 = 𝑘 · ∏𝑖∈[𝑑0] (𝑦 − 𝑔𝑖)

𝛾𝑖 .

As 𝑔(𝜏𝑥) | 𝑓 (𝜏𝑥) we deduce that 𝑔(𝜏𝑥) = 𝑘 ′ · ∏(𝑦 − 𝑔𝑖)𝑐𝑖 with 0 ≤ 𝑐𝑖 ≤ 𝛾𝑖 and 𝑘 ′ ∈ F∗. If 𝑔 irreducible, then 𝑐𝑖 ∈ {0, 1}.
Moreover, we can get back 𝑔 by applying 𝜏−1 on the resulting polynomial 𝑔(𝜏𝑥).

3.1 Reducing factoring to power series root approximation:

Using the power series complete split (Theorem 17), we show that multivariate polynomial factoring reduces to power

series root finding up to a certain precision. Following the above notation 𝑓 splits as 𝑓 (𝜏𝑥) = ∏𝑑0

𝑖=1
(𝑦 − 𝑔𝑖)𝛾𝑖 . For all

𝑡 ≥ 0, it is easy to see that 𝑓 (𝜏𝑥) ≡ ∏𝑑0

𝑖=1
(𝑦 − 𝑔≤𝑡

𝑖
)𝛾𝑖 mod 𝐼𝑡+1

, where 𝐼 := ⟨𝑥1, . . . , 𝑥𝑛⟩. Note that there is a one-one
correspondence, induced by 𝜏 , between the polynomial factors of 𝑓 and 𝑓 (𝜏𝑥) (because 𝜏 is invertible and 𝑓 is 𝑦-free).

Next, we show case by case how to find a polynomial factor of 𝑓 (𝜏𝑥) from the approximate power series roots.

Case 1- Computing a linear factor of the form 𝑦 − 𝑔(𝑥): If the degree of the input polynomial is 𝑑 , all the non-trivial

factors have degrees ≤ (𝑑 − 1). So, if we compute the approximations of all the power series roots (wrt 𝑦) up to the

precision of degree 𝑡 = 𝑑 − 1, then we can recover all the factors of the form 𝑦 − 𝑔(𝑥1, . . . , 𝑥𝑛). Technically, this is
supported by the uniqueness of the power series factorization (Proposition 16).

Case 2- Computing a monic non-linear factor: Assume that a factor 𝑔 of total degree 𝑡 is of the form 𝑦𝑘 + 𝑐𝑘−1
𝑦𝑘−1 +

· · · + 𝑐1𝑦 + 𝑐0, where for all 𝑖 , 𝑐𝑖 ∈ F[𝑥]. Now, this factor 𝑔 also splits into linear (in 𝑦) factors over F[[𝑥]] and obviously,
these linear factors are also linear factors of the original polynomial 𝑓 (𝜏𝑥). So we have to take the right combination of

some 𝑘 power series roots, with their approximations (up to the degree 𝑡 wrt 𝑥), and take the product mod 𝐼𝑡+1
. Note

that if we only want to give an existential proof of the size bound of the factors (as required for Theorem 1), we need

not find the combination of the power series roots forming a factor algorithmically. Doing it through brute-force search

takes exponential time (

(𝑑
𝑘

)
choices). Interestingly, using a classical idea (solving a linear system), it can be done in

randomized polynomial time. We will spell out the ideas later while discussing the algorithm part of Theorem 3.

4 MAIN RESULTS: HIGH DEGREE CIRCUITS

This section proves Theorems 1–2. The proofs are self-contained and we assume for the sake of simplicity that the

underlying field F is algebraically closed and has characteristic 0. When this is not the case, we discuss the corresponding

theorems in Section 6.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

4.1 Factors of a circuit with low-degree radical: Proof of Theorem 1

We simultaneously find the approximations of all the power series roots 𝑔𝑖 of 𝑓 (𝜏𝑥). At each recursive step, we get

a better precision wrt degree. We show that knowing the approximations 𝑔<𝛿
𝑖

, of 𝑔𝑖 (for all 𝑖) up to degree 𝛿 − 1, is

enough to calculate approximations of 𝑔𝑖 (simultaneously for all 𝑖) up to degree 𝛿 .

In this section, we use Theorem 17.

Proof of Theorem 1. From the hypothesis 𝑓 = 𝑢0𝑢1. Define deg(𝑓) =: 𝑑 . Suppose 𝑢1 = ℎ
𝑒1

1
. . . ℎ

𝑒𝑚
𝑚 , where ℎ𝑖 ’s are

coprime irreducible polynomials. Let 𝑑0 be the degree of rad(𝑢1) =
∏

𝑖 ℎ𝑖 . Note that deg(ℎ𝑖),𝑚 ≤ 𝑑0 and the multiplicity

𝑒𝑖 ≤ 𝑑 ≤ 2
𝑠
, where 𝑠 is the size bound of the input circuit. Thus, to get the size bound of any factor of 𝑢1, it is enough to

show that for each 𝑖 , ℎ𝑖 has a circuit of size poly(𝑠𝑑0).
Using Theorem 17, we have

˜𝑓 (𝑥,𝑦) := 𝑓 (𝜏𝑥) = 𝑘 ·𝑢0 (𝜏𝑥) ·
∏

𝑖∈[𝑑0] (𝑦 −𝑔𝑖)
𝛾𝑖
, with 𝑔𝑖 (0) := 𝜇𝑖 being distinct nonzero

field elements. As deg(ℎ𝑖) ≤ 𝑑0; from Corollary 18, we deduce that for nonzero 𝑘𝑖 ∈ F,

ℎ𝑖 (𝜏𝑥) ≡ 𝑘𝑖 ·
∏

𝑖∈[𝑑0]
(𝑦 − 𝑔≤𝑑0

𝑖
)𝛿𝑖 mod 𝐼𝑑0+1

where 𝐼 := ⟨𝑥1, . . . , 𝑥𝑛⟩

where exponent 𝛿𝑖 ∈ {0, 1}. We can get ℎ𝑖 by applying 𝜏−1
. Hence, it is enough to bound the size of 𝑔

≤𝑑0

𝑖
.

Let 𝑢0 := 𝑢0 (𝜏𝑥). From the repeated applications of Leibniz rule of the derivative (𝜕𝑦 (𝐹𝐺) = (𝜕𝑦𝐹)𝐺 + 𝐹 (𝜕𝑦𝐺).), we
deduce a classic logarithmic derivative identity,

𝜕𝑦 ˜𝑓

˜𝑓
=
𝜕𝑦𝑢0

𝑢0

+
𝑑0∑
𝑖=1

𝛾𝑖

(𝑦 − 𝑔𝑖)
.

At this point, we move to the formal power series so that the reciprocals can be approximated as polynomials.

Note that 𝑦 − 𝑔𝑖 is invertible in F[[𝑥]] when 𝑦 is assigned any value 𝑐𝑖 ∈ F, which is not equal to 𝜇𝑖 . We intend to

find 𝑔𝑖 mod 𝐼𝛿 inductively, for all 𝛿 ≥ 1. We assume that 𝜇𝑖 ’s and 𝛾𝑖 ’s are known. Suppose, we have recovered up to

𝑔𝑖 mod 𝐼𝛿 and we want to recover 𝑔𝑖 mod 𝐼𝛿+1
. The relevant recurrence, for 𝛿 ≥ 1, is:

Claim 2 (Recurrence).
𝑑0∑
𝑖=1

𝛾𝑖 ·
𝑔=𝛿
𝑖

(𝑦 − 𝜇𝑖)2
≡
𝜕𝑦 ˜𝑓

˜𝑓
−
𝜕𝑦𝑢0

𝑢0

−
∑
𝑖

𝛾𝑖

(𝑦 − 𝑔<𝛿
𝑖

)
mod 𝐼𝛿+1

.

Proof of Claim 2. Using a power series calculation (Lemma 20), we have

1

𝑦 − 𝑔𝑖
≡ 1

𝑦 −
(
𝑔<𝛿
𝑖

+ 𝑔=𝛿
𝑖

) ≡ 1

𝑦 − 𝑔<𝛿
𝑖

+
𝑔=𝛿
𝑖

(𝑦 − 𝜇𝑖)2
mod 𝐼𝛿+1 .

Multiplying by 𝛾𝑖 and summing over 𝑖 ∈ [𝑑0], the claim follows. □

Wewill compute 𝑔≤𝛿
𝑖

incrementally; in particular knowing approximation up to the 𝛿−1 homogeneous parts of 𝑔𝑖 , we

will find the 𝛿-th part by solving a linear system. Concretely, assume that we have already computed a rational function

𝑔′
𝑖,𝛿−1

of the form 𝑔′
𝑖,𝛿−1

:= 𝐶𝑖,𝛿−1
/𝐷𝑖,𝛿−1

such that 𝑔′
𝑖,𝛿−1

approximates 𝑔𝑖 correctly up to 𝛿 − 1, i.e. 𝑔′
𝑖,𝛿−1

≡ 𝑔<𝛿
𝑖

mod 𝐼𝛿 .

In the free variable 𝑦 in Claim 2, we plug-in 𝑑0 random field values 𝑐𝑖 and get the following system of linear equations:

𝑀 · 𝑣𝛿 =𝑊𝛿 , where𝑀 is a 𝑑0 × 𝑑0 matrix while both 𝑣𝛿 and𝑊𝛿 are both 𝑑0 × 1 matrices. Both𝑀 and𝑊𝛿 are known

matrices; in particular:

𝑀 (𝑖, 𝑗) :=
𝛾 𝑗

(𝑐𝑖 − 𝜇 𝑗)2
, 𝑊𝛿 (𝑖) :=

(
𝜕𝑦 ˜𝑓

˜𝑓
−
𝜕𝑦𝑢0

𝑢0

) ����
𝑦=𝑐𝑖

− 𝐺̃𝑖,𝛿 where 𝐺̃𝑖,𝛿 :=

𝑑0∑
𝑗=1

𝛾 𝑗

(𝑐𝑖 − 𝑔′𝑗,𝛿−1
)

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Discovering the roots: Uniform closure results for algebraic classes under factoring 19

We want to solve for the unknown 𝑣𝛿 whose 𝑖-th entry is 𝑣𝛿 (𝑖). We define the rational function 𝑔′
𝑖,𝛿

iteratively as

follows:

𝑔′
𝑖,𝛿

=


𝜇𝑖 , when 𝛿 = 0

𝑔′
𝑖,𝛿−1

+ 𝑣𝛿 (𝑖), 𝛿 ≥ 1

We show that 𝑔′
𝑖,𝛿

approximates 𝑔𝑖 up to 𝛿 where we crucially use the fact that𝑀 is invertible (Lemma 19).

Claim 3 (Self-correction). Let 𝑖 ∈ [𝑑0] and 𝛿 ≥ 0. Then, 𝑔′
𝑖,𝛿

≡ 𝑔≤𝛿
𝑖

mod 𝐼𝛿+1
.

Proof of Claim 3. We prove this by induction on 𝛿 . It is true for 𝛿 = 0 by definition. Suppose it is true for 𝛿 − 1. This

means we have 𝑔′
𝑖,𝛿−1

≡ 𝑔<𝛿
𝑖

mod 𝐼𝛿 for all 𝑖 . Note that, 𝑔′
𝑖,𝛿−1

∈ F(𝑥)⋂F[[𝑥]]. Let us write
𝑔′
𝑖,𝛿−1

=: 𝑔<𝛿𝑖 + 𝐴𝑖,𝛿 + 𝐴′
𝑖,𝛿

where 𝐴′
𝑖,𝛿

≡ 0 mod 𝐼𝛿+1

Here 𝐴𝑖,𝛿 is homogeneous of degree 𝛿 . Hence, for 𝑖 ∈ [𝑑0], the linear constraint is:

𝑑0∑
𝑗=1

𝛾 𝑗 ·
𝑣𝛿 (𝑗)

(𝑐𝑖 − 𝜇 𝑗)2
≡
𝜕𝑦 ˜𝑓

˜𝑓
−
𝜕𝑦𝑢0

𝑢0

−
∑
𝑗

𝛾 𝑗

(𝑐𝑖 − 𝑔′𝑗,𝛿−1
) mod 𝐼𝛿+1

(1)

The “garbage” term 𝐴 𝑗,𝛿 in RHS can be isolated using Lemma 20 as:

1

(𝑐𝑖 − 𝑔′𝑗,𝛿−1
) ≡ 1

𝑐𝑖 −
(
𝑔<𝛿
𝑗

+𝐴 𝑗,𝛿

) ≡ 1

(𝑐𝑖 − 𝑔<𝛿𝑗)
+

𝐴 𝑗,𝛿

(𝑐𝑖 − 𝜇 𝑗)2
mod 𝐼𝛿+1

(2)

Plugging Eqn. (2) into (1), we get:

𝑑0∑
𝑗=1

𝛾 𝑗 · 𝑣𝛿 (𝑗)
(𝑐𝑖 − 𝜇 𝑗)2

≡
𝜕𝑦 ˜𝑓

˜𝑓
−
𝜕𝑦𝑢0

𝑢0

−
𝑑0∑
𝑗=1

𝛾 𝑗

𝑐𝑖 − 𝑔<𝛿𝑗
−

𝑑0∑
𝑗=1

𝛾 𝑗 · 𝐴 𝑗,𝛿

(𝑐𝑖 − 𝜇 𝑗)2
mod 𝐼𝛿+1 .

Rewriting this, using Claim 2, we get:

𝑑0∑
𝑗=1

𝛾 𝑗

(𝑐𝑖 − 𝜇 𝑗)2

(
𝑣𝛿 (𝑗) +𝐴 𝑗,𝛿

)
≡

𝑑0∑
𝑗=1

𝛾 𝑗

(𝑐𝑖 − 𝜇 𝑗)2
· 𝑔=𝛿𝑗 mod 𝐼𝛿+1 .

Rearranging, we get that

𝑑0∑
𝑗=1

𝛾 𝑗 ·
(𝑣𝛿 (𝑗) + 𝐴 𝑗,𝛿 − 𝑔=𝛿

𝑗
)

(𝑐𝑖 − 𝜇 𝑗)2
≡ 0 mod 𝐼𝛿+1 .

As we vary 𝑖 ∈ [𝑑0], we deduce, by Lemma 19, that 𝑣𝛿 (𝑗) +𝐴 𝑗,𝛿 − 𝑔=𝛿
𝑗

≡ 0 mod 𝐼𝛿+1
. Hence, for all 𝑗 ∈ [𝑑0]:

𝑔′
𝑗,𝛿

= 𝑔′
𝑗,𝛿−1

+ 𝑣𝛿 (𝑗)

≡ (𝑔<𝛿𝑗 +𝐴 𝑗,𝛿) + (𝑔=𝛿𝑗 −𝐴 𝑗,𝛿)

≡ 𝑔≤𝛿𝑗 mod 𝐼𝛿+1 .

□

Lemma 19 (Matrix inverse). Let 𝜇𝑖 , 𝑖 ∈ [𝑑], be distinct nonzero elements in F. Define a 𝑑 ×𝑑 matrix𝐴 with the (𝑖, 𝑗)-th
entry 1

(𝑦𝑖−𝜇 𝑗)2
. Its entries are in the function field F(𝑦). Then, det(𝐴) ≠ 0.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Corollary. As det(𝐴) ∈ F(𝑦)\{0}, using Polynomial Identity Lemma (Lemma 8), it follows that the matrix𝑀 where

𝑀 (𝑖, 𝑗) := 1

(𝑐𝑖−𝜇 𝑗)2
for 𝑐𝑖 ∈𝑟 F, is invertible.

Proof of Lemma 19. The idea is to consider the power series of the function 1/(𝑦𝑖 − 𝜇 𝑗)2
and show that a monomial

appears nontrivially in that of det(𝐴).
We first need a claim about the coefficient operator on the determinant.

Claim 4. Let 𝑓𝑗 =
∑
𝑖≥0

𝛽 𝑗,𝑖𝑥
𝑖
be a power series in F[[𝑥]], for 𝑗 ∈ [𝑑]. Then, Coeff

𝑥𝛼
◦ det

(
𝑓𝑗 (𝑥𝑖)

)
= det

(
𝛽 𝑗,𝛼𝑖

)
.

Proof of Claim 4. Observe that the rows of the matrix have disjoint variables. Thus, 𝑥
𝛼𝑖
𝑖

could be produced only from

the 𝑖-th row. This proves:

Coeff
𝑥𝛼

◦ det
(
𝑓𝑗 (𝑥𝑖)

)
= det

(
Coeff

𝑥
𝛼𝑖
𝑖

◦ 𝑓𝑗 (𝑥𝑖)
)
= det

(
𝛽 𝑗,𝛼𝑖

)
.

□

By Taylor expansion we have

1

(𝑥 − 𝜇)2
=

1

𝜇2

∑
𝑗≥1

𝑗

(
𝑥

𝜇

) 𝑗−1

.

Hence, the coefficient of 𝑦𝑖−1

𝑖
in 𝐴(𝑖, 𝑗) is

1

𝜇2

𝑗

𝑖

𝜇𝑖−1

𝑗

=
𝑖

𝜇𝑖+1

𝑗

.

By the above claim, the coefficient of

∏
𝑖∈[𝑑] 𝑦

𝑖−1

𝑖
in det(𝐴) is: det

((
𝑖

𝜇𝑖+1

𝑗

))
. By cancelling 𝑖 (from each row) and 1/𝜇2

𝑗

(from each column), we simplify it to the Vandermonde determinant:

det



1

𝜇0

1

1

𝜇0

2

. . . 1

𝜇0

𝑑

1

𝜇1

1

1

𝜇1

2

. . . 1

𝜇1

𝑑

...
... . . .

...

1

𝜇𝑑−1

1

1

𝜇𝑑−1

2

. . . 1

𝜇𝑑−1

𝑑


=

∏
𝑖< 𝑗 ∈[𝑑]

(
1

𝜇𝑖
− 1

𝜇 𝑗

)
≠ 0 .

Hence, the determinant of 𝐴 is nonzero. □

Remarks. (1) If the characteristic of F is a prime 𝑝 ≥ 2, then the above proof needs a slight modification. One should

consider the coefficient of

∏
𝑖∈[𝑑] 𝑦

𝑠𝑖−1

𝑖
in det(𝐴) for a set 𝑆 = {𝑠1, . . . , 𝑠𝑑 } of distinct non-negative integers that

are not divisible by 𝑝 . Moreover, must consider ‘random’ 𝜇𝑖 ’s to deduce det(𝐴) ≠ 0.

(2) The matrix 𝐴 defined by 𝐴(𝑖, 𝑗) := 1/(𝑦𝑖 − 𝜇 𝑗) is the famous Cauchy matrix. It is not hard to show that the same

proof of Lemma 19 works to establish the Cauchy matrix’s invertibility. For details on Cauchy matrix, see [Wik].

The following lemma is crucially used in Equation 2.

Lemma 20 (Series inverse). Let 𝛿 ≥ 1. Assume that𝐴 is a polynomial of degree < 𝛿 and 𝐵 is a homogeneous polynomial

of degree 𝛿 ≥ 1, such that 𝐴(0) =: 𝜇 ≠ 0. Then, we have the following identity in F[[𝑥]] (𝑦) ∩ F[[𝑥]] [[𝑦]]:
1

𝑦 − (𝐴 + 𝐵) ≡ 1

𝑦 −𝐴 + 𝐵

(𝑦 − 𝜇)2
mod ⟨𝑥⟩𝛿+1

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Discovering the roots: Uniform closure results for algebraic classes under factoring 21

Remark. Since 𝜇 ≠ 0 and 𝛿 ≥ 1, the expression 1/(𝑦−(𝐴+𝐵)) is a power series in both 𝑥 and𝑦 (and also a rational function
in 𝑦, with coefficients from F[[𝑥]]). This can been easily seen just by considering (−1/(𝐴 + 𝐵)) · 1/(1 − 𝑦/(𝐴 + 𝐵)) and
noting the fact that 1/(𝐴 + 𝐵) ∈ F[[𝑥]].

Proof. We will use the notation 𝐴 [1,𝛿−1]
to refer to the sum of the homogeneous parts of 𝐴 of degrees between 1

and 𝛿 − 1 (equivalently, it is 𝐴<𝛿 − 𝜇). Note that 𝐵 · 𝐴 [1,𝛿−1]
vanishes mod ⟨𝑥⟩𝛿+1

. Now, in F[[𝑥]] [[𝑦]],
1

𝑦 − (𝐴 + 𝐵) ≡ 1

𝑦 − 𝜇 −
(
𝐴 [1,𝛿−1] + 𝐵

) mod ⟨𝑥⟩𝛿+1

≡ 1

𝑦 − 𝜇
©­« 1

1 − 𝐴 [1,𝛿−1]+𝐵
𝑦−𝜇

ª®¬ mod ⟨𝑥⟩𝛿+1

≡ 1

𝑦 − 𝜇
©­«1 +

(
𝐴 [1,𝛿−1] + 𝐵

𝑦 − 𝜇

)
+

(
𝐴 [1,𝛿−1] + 𝐵

𝑦 − 𝜇

)
2

+ª®¬ mod ⟨𝑥⟩𝛿+1

≡ 1

𝑦 − 𝜇
©­«1 +

(
𝐴 [1,𝛿−1] + 𝐵

𝑦 − 𝜇

)
+

(
𝐴 [1,𝛿−1]

𝑦 − 𝜇

)
2

+
(
𝐴 [1,𝛿−1]

𝑦 − 𝜇

)
3

+ª®¬ mod ⟨𝑥⟩𝛿+1

≡ 1

𝑦 − 𝜇
©­«1 +

(
𝐴 [1,𝛿−1]

𝑦 − 𝜇

)
+

(
𝐴 [1,𝛿−1]

𝑦 − 𝜇

)
2

+ª®¬ + 𝐵

(𝑦 − 𝜇)2
mod ⟨𝑥⟩𝛿+1

≡ 1

𝑦 − 𝜇
©­« 1

1 − 𝐴 [1,𝛿−1]
𝑦−𝜇

ª®¬ + 𝐵

(𝑦 − 𝜇)2
mod ⟨𝑥⟩𝛿+1

≡ 1

𝑦 −𝐴 + 𝐵

(𝑦 − 𝜇)2
mod ⟨𝑥⟩𝛿+1 .

□

Size analysis: Here we give the overall process of finding factors using the allRootsNI technique and analyze the

circuit size needed at each step to establish the size bound of the factors. As discussed before, we need to analyze only

the power series root approximation 𝑔≤𝛿
𝑖

or 𝑔′
𝑖,𝛿
.

At the (𝛿 − 1)-th step of the allRootsNI process, we have a multi-output circuit (with division gates) computing 𝑔′
𝑖,𝛿−1

as a rational function, for all 𝑖 ∈ [𝑑0]. Specifically, let us assume that 𝑔′
𝑖,𝛿−1

=: 𝐶𝑖,𝛿−1
/𝐷𝑖,𝛿−1

, where 𝐷𝑖,𝛿−1
is invertible

in F[[𝑥]]. So, the circuit computing 𝑔′
𝑖,𝛿−1

has a division gate at the top that outputs𝐶𝑖,𝛿−1
/𝐷𝑖,𝛿−1

. We would eliminate

this division gate only in the end (see the standard Lemma 6). Now we show how to construct the circuit for 𝑔′
𝑖,𝛿

, given

the circuits for 𝑔′
𝑖,𝛿−1

.

From 𝑣𝛿 = 𝑀−1𝑊𝛿 , it is clear that there exist field elements 𝛽𝑖 𝑗 such that

𝑣𝛿 (𝑖) =

𝑑0∑
𝑗=1

𝛽𝑖 𝑗 ·𝑊𝛿 (𝑗) =

𝑑0∑
𝑗=1

𝛽𝑖 𝑗 ·
((
𝜕𝑦 ˜𝑓

˜𝑓
−
𝜕𝑦𝑢0

𝑢0

) ����
𝑦=𝑐 𝑗

− 𝐺̃ 𝑗,𝛿

)
Initially, we precompute, for all 𝑗 ∈ [𝑑0], (𝜕𝑦 ˜𝑓 / ˜𝑓 − 𝜕𝑦𝑢0/𝑢0) |𝑦=𝑐 𝑗 : Note that 𝜕𝑦 ˜𝑓 has poly(𝑠) size circuit (high

degree of the circuit does not matter, see Lemma 7). Invertibility of
˜𝑓 |𝑦=𝑐 𝑗 and 𝑢0 |𝑦=𝑐 𝑗 follows from the fact that we

chose 𝑐 𝑗 ’s randomly. In particular,
˜𝑓 (0, 𝑦), and so 𝑢0 (0, 𝑦), have roots in F which are distinct from 𝑐 𝑗 , 𝑗 ∈ [𝑑0]. Thus,

˜𝑓 (𝑥, 𝑐 𝑗) and 𝑢0 (𝑥, 𝑐 𝑗) have nonzero constants and so are invertible in F[[𝑥]]. Similarly, 𝛾ℓ/(𝑐 𝑗 −𝑔′ℓ,𝛿−1
) exists in F[[𝑥]].

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Thus, the matrix recurrence allows us to calculate the polynomials𝐶𝑖,𝛿 and 𝐷𝑖,𝛿 , given their 𝛿 − 1 analogs, by adding

poly(𝑑0) many wires and nodes. The precomputations cost us size poly(𝑠, 𝛿). Hence, both𝐶𝑖,𝛿 and 𝐷𝑖,𝛿 has poly(𝑠, 𝛿, 𝑑0)
sized circuit.

We can assume we have only one division gate at the top, as for each gate 𝐺 we can keep track of the numerator

and the denominator of the rational function computed at 𝐺 , and easily simulate all the algebraic operations in this

representation. When we reach precision 𝛿 = 𝑑0, we can eliminate the division gate at the top. As 𝐷𝑖,𝑑0
is a unit, we can

compute its inverse using the power series inverse formula and approximate only up to degree 𝑑0 (Lemma 5). Finally,

the circuit for the polynomial 𝑔
≤𝑑0

𝑖
≡ 𝐶𝑖,𝑑0

/𝐷𝑖,𝑑0
mod 𝐼𝑑0+1

, for all 𝑖 ∈ [𝑑0], has size poly(𝑠, 𝑑0).
Altogether, it implies that any factor of 𝑢1 has a circuit of size poly(𝑠, 𝑑0). □

4.2 Low degree factors of general circuits: Proof of Theorem 2

As a consequence of the reduction presented in Section 3.1, a direct approach to proving the Factor Conjecture is via

computing arithmetic circuits of small size giving approximations (up to some low degree) of power series roots that

have high multiplicity. First, we need to find methods for approximating roots with multiplicity ≥ 2. The classical

Newton iteration formula fails here, but a simple modification of Newton iteration works if we know the multiplicity

of the root. In the numerical analysis literature [DB08], this is known as modified/generalized Newton iteration with

multiplicity. Using this method, we give a plausible approach to prove the Factor Conjecture.

Newton Iteration with multiplicity: The following is a generalized Newton Iteration formula, as it works with any

multiplicity 𝑒 > 0.

Lemma 21 (NI with multiplicity). If 𝑓 (𝑥,𝑦) = ∏𝑑0

𝑖=1
(𝑦 −𝑔𝑖)𝛾𝑖 , where 𝑔𝑖 mod 𝐼 are non-zero and distinct, and 𝛾𝑖 > 0,

then the each power series 𝑔𝑖 can be approximated by the recurrence:

𝑦𝑡+1 := 𝑦𝑡 − 𝛾𝑖 ·
𝑓

𝜕𝑦 𝑓

����
𝑦=𝑦𝑡

(3)

where 𝑦𝑡 ≡ 𝑔𝑖 mod 𝐼2
𝑡
.

Proof. We will show the above for 𝑔1. We remark that 𝑦𝑡 is a rational function; this is easy to prove by simple

induction (on 𝑡). Rewrite

𝜕𝑦 𝑓

𝑓
=

𝑑0∑
𝑖=1

𝛾𝑖

(𝑦 − 𝑔𝑖)
=

(1 + 𝐿1) · 𝛾1

(𝑦 − 𝑔1)
where 𝐿1 :=

∑
1<𝑖≤𝑑0

𝛾𝑖

𝑦 − 𝑔𝑖
· 𝑦 − 𝑔1

𝛾1

This implies 𝑓 /𝜕𝑦 𝑓 = (1 + 𝐿1)−1 · (𝑦 − 𝑔1)/𝛾1. Now, if we put 𝑦 = 𝑦𝑡 := 𝑔<2
𝑡

1
, then 𝑦𝑡 − 𝑔𝑖 = 𝑔<2

𝑡

1
− 𝑔𝑖 is a unit

in F[[𝑥]] for 𝑖 ≠ 1 (because it is a nonzero constant mod 𝐼) i.e. 1/(𝑦𝑡 − 𝑔𝑖) must be a power series. Also, 𝑦𝑡 − 𝑔1 =

𝑔<2
𝑡

1
− 𝑔1 ≡ 0 mod 𝐼2

𝑡
. Together they imply that 𝐿1 |𝑦=𝑦𝑡 ≡ 0 mod 𝐼2

𝑡
. Hence,

𝑓 /𝜕𝑦 𝑓
��
𝑦=𝑦𝑡

≡ (𝑦𝑡 − 𝑔1)/𝛾1 · (1 + 𝐿1)−1 ≡ ((𝑦𝑡 − 𝑔1)/𝛾1) · (1 − 𝐿1 + 𝐿2

1
− . . .) ≡ (𝑦𝑡 − 𝑔1)/𝛾1 mod 𝐼2

𝑡+1

. (4)

The last expression implies that 𝑦𝑡 − 𝛾1 · 𝑓 /𝜕𝑦 𝑓
��
𝑦=𝑦𝑡

≡ 𝑔1 mod 𝐼2
𝑡+1

, as desired. □

Remarks. (1) Note that, when 𝛾1 = 1, (i.e 𝑔1 is a simple root of 𝑓), the above is an alternate proof of the classical

Newton Iteration (NI) [New69] that finds a simple root in a recursive way (see Lemma 15).

(2) There is a subtle point about Equation 3 when𝛾1 ≥ 2. The denominator 𝜕𝑦 𝑓 |𝑦=𝑦𝑡 is zero mod 𝐼 , thus, its reciprocal

does not exist! However, the ratio (𝑓 /𝜕𝑦 𝑓)
��
𝑦=𝑦𝑡

does exist in F[[𝑥]] (Equation 4); one can think of first reducing

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Discovering the roots: Uniform closure results for algebraic classes under factoring 23

the rational function (𝑓 /𝜕𝑦 𝑓), to 𝐴/𝐵, where 𝐴 and 𝐵 are coprime (wrt 𝑦) and then evaluating at 𝑦 = 𝑦𝑡 . In

particular, this means that (𝑓 /𝜕𝑦 𝑓)
��
𝑦=𝑦𝑡

always exists even if 𝑦𝑡 = 𝑔1, for some 𝑡 and 𝛾1 ≥ 2; in this case both 𝑓

and 𝜕𝑦 𝑓 , at 𝑔1 are 0, while the reduced expression is eventually 0 mod 𝐼2
𝑡+1

(and not anything illegal like 0/0).

(3) Also, note that efficiently reducing the rational function (𝑓 /𝜕𝑦 𝑓) is still open. Although 𝑓 and 𝜕𝑦 𝑓 have size 𝑠
circuits, we do not know if their gcd has a circuit of size poly(𝑠) as the gcd can be of high degree. Even if one

can compute gcd by a small circuit, we have to perform division by a high degree polynomial, which is again an

open question [Kal87].

(4) If 𝛾1 = 1 then the denominator 𝜕𝑦 𝑓 |𝑦=𝑦𝑡 is nonzero mod 𝐼 , thus, it is invertible in F[[𝑥]] and that is necessary

for fast algebraic circuit computation (esp. division elimination).

Using Newton iteration with multiplicity, our Theorem 2 reduces factor conjecture to a new problem, the modular

division problem. The problem is to show that if 𝑓 /𝑔 has a representative in F[[𝑥]], where polynomials 𝑓 and 𝑔 can

be computed by a circuit of size 𝑠 , then 𝑓 /𝑔 mod ⟨𝑥𝑑 ⟩ can be computed by a circuit of size poly(𝑠𝑑). Note that if 𝑔 is
invertible in F[[𝑥]], then the question of modular division can be solved using Strassen’s method of division elimination

[Str73]. But, in our case 𝑔 is not invertible in F[[𝑥]] (though 𝑓 /𝑔 is well-defined). The trick of applying a random shift

to make the denominator 𝑔 invertible does not work here as 𝑓 /𝑔 is not a polynomial.

Proof of Theorem 2. As discussed before, to show the size bound for an arbitrary factor (with low degree) of 𝑓 , it

is enough to show the size bound for the approximations of power series roots. From Theorem 17,
˜𝑓 (𝑥,𝑦) = 𝑓 (𝜏𝑥) =

𝑘 · ∏𝑑0

𝑖=1
(𝑦 − 𝑔𝑖)𝛾𝑖 , with 𝑔𝑖 (0) := 𝜇𝑖 being distinct.

Fix an 𝑖 from now on. We assume we know the multiplicity 𝛾𝑖 . Note that we need to know the multiplicity of

the root exactly to apply NI with multiplicity; here, we will simply guess them non-uniformly. To calculate 𝑔≤𝑑
𝑖

, we

iteratively use Newton iteration with multiplicity for log𝑑 +1 many times. We know that there are rational functions 𝑔𝑖,𝑡

such that 𝑔𝑖,𝑡+1 := 𝑔𝑖,𝑡 − 𝛾𝑖 ·
˜𝑓

𝜕𝑦 ˜𝑓

��
𝑦=𝑔𝑖,𝑡

and 𝑔𝑖,𝑡 ≡ 𝑔𝑖 mod ⟨𝑥⟩2
𝑡
. We compute the rational functions 𝑔𝑖,𝑡 incrementally,

0 ≤ 𝑡 ≤ log𝑑 + 1, by a circuit with division gates. As before,
˜𝑓 and 𝜕𝑦 ˜𝑓 have poly(𝑠) size circuits (Lemma 7).

If 𝑔𝑖,𝑡 has 𝑆𝑡 size circuit with division, then 𝑆𝑡+1 = 𝑆𝑡 + poly(𝑠). Hence, 𝑔𝑖,log𝑑+1
has poly(𝑠, log𝑑) size circuit with

the division gates.

By keeping track of the numerator and the denominator of the rational function computed at each gate, we can

assume that the only division gate is at the top. As the size of 𝑔𝑖,log𝑑+1
was initially poly(𝑠, log𝑑) with intermediate

division gates, it is easy to see that when division gates are pushed at the top, it computes 𝐴/𝐵 with the size of both 𝐴

and 𝐵 still poly(𝑠, log𝑑).
Finally, a degree 𝑑 polynomial factor ℎ |𝑓 will require us to estimate polynomials 𝑔≤𝑑

𝑖
for that many 𝑖 . Thus, such a

factor has poly(𝑠𝑑) size circuit, using a single modular division. □

5 CLOSURE OF RESTRICTED COMPLEXITY CLASSES: PROOF OF THEOREM 3

This subsection is dedicated towards proving closure results for certain algebraic complexity classes. In fact, for fields

like Q,Q𝑝 , or F𝑞 for prime-power 𝑞, we also give efficient randomized algorithms to output the complete factorization

of polynomials belonging to that class (stated as Theorem 26). We use the notation 𝑔 | | 𝑓 to denote that 𝑔 divides 𝑓 but

𝑔2
does not divide 𝑓 . Again, we denote 𝐼 := ⟨𝑥1, . . . , 𝑥𝑛⟩.

Proof of Theorem 3. There are essentially two parts in the proof. The first part talks only about the existential

closure results. In the second part, we discuss the algorithmic approach.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Proof of closure: Given 𝑓 of degree 𝑑 , we randomly shift by 𝜏 : 𝑥𝑖 ↦→ 𝑥𝑖 + 𝑦𝛼𝑖 + 𝛽𝑖 . From Theorem 17 we have that

˜𝑓 (𝑥,𝑦) := 𝑓 (𝜏𝑥) splits like ˜𝑓 =
∏𝑑0

𝑖=1
(𝑦 − 𝑔𝑖)𝛾𝑖 , with 𝑔𝑖 (0) =: 𝜇𝑖 being distinct. Here is the detailed size analysis of the

factors of polynomials represented by various models of our interest.

Size analysis for formula: Suppose 𝑓 has a formula of size 𝑛𝑂 (log𝑛)
. To show size bound for all the factors, it is

enough to show that the approximations of the power series roots, i.e. 𝑔≤𝑑
𝑖

has size 𝑛𝑂 (log𝑛)
size formula. This follows

from the reduction of factoring to approximations of power series roots (Section 3.1).

We differentiate
˜𝑓 wrt 𝑦, (𝛾𝑖 − 1) many times, so that the multiplicity of the root we want to recover becomes

exactly one. The differentiation would keep the size poly(𝑛log𝑛) (Lemma 7). Now, we have (𝑦 − 𝑔𝑖) | | ˜𝑓 (𝛾𝑖−1)
, and we

can apply classical Newton iteration formula (Lemma 15). For all 0 ≤ 𝑡 ≤ log𝑑 + 1, we compute 𝐴𝑡 and 𝐵𝑡 such that

𝐴𝑡/𝐵𝑡 ≡ 𝑔𝑖 mod 𝐼2
𝑡
. Moreover, 𝐵𝑡 is invertible in F[[𝑥]] (because 𝑔𝑖 is a simple root of

˜𝑓 (𝛾𝑖−1)
).

To implement this iteration using the formula model, each time there would be a blow-up of 𝑑2
. Note that in a

formula, there can be many copies of the same variable in the leaf nodes and if we want to feed something in that

variable, we have to make equally many copies. That means we may need to make 𝑠 (which is size(𝑓)) many copies at

each step. We claim that it can be reduced to only 𝑑2
many copies.

We can pre-compute (with blow-up at most poly(𝑠𝑑)) all the coefficients 𝐶0, . . . ,𝐶𝑑 wrt 𝑦, given the formula of

˜𝑓 =: 𝐶0 + 𝐶1𝑦 + · · · + 𝐶𝑑𝑦𝑑 using interpolation. We can do the same for the derivative formula. For details on this

interpolation trick, see Section 2.1. Using interpolation, we can convert the formula of
˜𝑓 and its derivative to the form

𝐶0 +𝐶1𝑦 + · · · +𝐶𝑑𝑦𝑑 . In this modified formula, there are 𝑂 (𝑑2) many leaves labelled as 𝑦. So in the modified formula

of the polynomial
˜𝑓 and in its derivative, we are computing and plugging in (for 𝑦) 𝑑2

copies of 𝑔<2
𝑡

𝑖
to get 𝑔<2

𝑡+1

𝑖
. This

leads to 𝑑2
blow up at each step of the iteration.

As the denominators 𝐵𝑡 are invertible, we can keep track of the division gates across iterations and, in the end,

eliminate them, causing a one-time size blow up of poly(𝑠𝑑) (Lemma 6).

Now, assume that max (size(𝐴𝑡), size(𝐵𝑡)) ≤ 𝑆𝑡 . Then we have 𝑆𝑡+1 ≤ 𝑂 (𝑑2𝑆𝑡) +poly(𝑠𝑑). Finally, we have 𝑆log𝑑+1
=

poly(𝑠𝑑) · 𝑑2 log𝑑 = poly(𝑛log𝑛).
Hence, 𝑔≤𝑑

𝑖
≡ 𝐴

log𝑑+1
/𝐵

log𝑑+1
mod 𝐼𝑑+1

has poly(𝑛log𝑛) size formula, and so does every polynomial factor of 𝑓

after applying 𝜏−1
.

Size analysis for ABP: This analysis is similar to that of the formula model, as the size blow-up in each NI iteration

for differentiation, division, and truncation (to degree ≤ 𝑑) is the same as that for formulas. A noteworthy difference is

that we need to eliminate division in every iteration (Lemma 5) and we cannot postpone it. This leads to a blow-up of

𝑑4
in each step. Hence, 𝑆

lg𝑑+1
= poly(𝑠𝑑) · 𝑑4 log𝑑 = poly(𝑛log𝑛).

Size analysis for VNP: Suppose 𝑓 can be computed by a verifier circuit of size, and witness size, 𝑛𝑂 (log𝑛)
. We call both

the verifier circuit size and witness size as size parameter. Now, our given polynomial
˜𝑓 has 𝑛𝑂 (log𝑛)

size parameters.

As before, it is enough to show that 𝑔≤𝑑
𝑖

has 𝑛𝑂 (log𝑛)
size parameters.

For the pre-processing (taking 𝛾𝑖 − 1-th derivative of
˜𝑓 wrt 𝑦), the blow-up in the size parameters is only poly(𝑛log𝑛).

Now we analyze the blow-up due to classical Newton iteration. We compute 𝐴𝑡 and 𝐵𝑡 such that 𝐴𝑡/𝐵𝑡 ≡ 𝑔𝑖 mod 𝐼2
𝑡
.

Using the closure properties of VNP (discussed in Section 2.1), we see that each time there is a blow-up of 𝑑4
. The main

reason for this blow-up is due to the composition operation, as we are feeding a polynomial into another polynomial.

Assume that the verifier circuit max (size(𝐴𝑡), size(𝐵𝑡)) ≤ 𝑆𝑡 and witness size ≤𝑊𝑡 . Then we have 𝑆𝑡+1 ≤ 𝑂 (𝑑4𝑆𝑡) +
poly(𝑛log𝑛). So, finally, we have 𝑆

log𝑑+1
= poly(𝑠𝑑) ·𝑑4 log𝑑 = poly(𝑛log𝑛). It is clear that 𝑔≤𝑑

𝑖
≡ 𝐴

log𝑑+1
/𝐵

log𝑑+1
mod

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Discovering the roots: Uniform closure results for algebraic classes under factoring 25

𝐼𝑑+1
has poly(𝑛log𝑛) size verifer circuit. The same analysis works for𝑊𝑡 , and the witness size remains 𝑛𝑂 (log𝑛)

.

Moreover, we get the corresponding bounds for every polynomial factor of 𝑓 after applying 𝜏−1
.

Remark. Recently, Chou, Kumar and Solomon [CKS19b] have improved our result on VNP, showing that VNP is closed

under factors. Also note that, we get a short non-algorithmic proof of the closure of VP under factors using Newton

iteration and the reduction of factor computation to approximating power series roots (Section 3.1). [CKS19a] gave

another short proof for the same using the multidimensional version of Newton iteration.

5.1 Randomized factoring algorithm for formulas and ABPs

This subsection is dedicated to the design and analysis of the constructive (algorithmic) part to factorize a given poly(𝑛)
degree and poly(𝑛log𝑛) size formula or ABP.

We need the following lemma (adapted from [KSS15]) that discusses how to perform linear algebra when the

coefficients of vectors are given as formulas (respectively ABPs).

Lemma 22. (Linear algebra using PIT [KSS15, Lemma 2.6]) Let 𝑀 = (𝑀𝑖, 𝑗)𝑘×𝑛 be a matrix (where 𝑘 is 𝑛𝑂 (1)) with

each entry being a degree ≤ 𝑛𝑂 (1) polynomial in F[𝑥]. Suppose, we have an algebraic formula (respectively ABP) of size

≤ 𝑛𝑂 (log𝑛) computing each entry. Then, there is a randomized poly(𝑛log𝑛)-time algorithm that either:

• finds a formula (respectively ABP) of size poly(𝑛log𝑛) computing a nonzero 𝑢 ∈ (F[𝑥])𝑛 such that𝑀𝑢 = 0, or

• outputs 0 which declares that 𝑢 = 0 is the only solution.

Proof. This was proved in [KSS15, Lemma 2.6] for the circuit model. Since we are using a different model, we repeat

the details. The idea is the following. Iteratively, for every 𝑟 = 1, . . . , 𝑛 we shall find an 𝑟 × 𝑟 minor contained in the first

𝑟 columns that is full rank. While continuing this process, we either reach 𝑟 = 𝑛 in which case it means that the matrix

has full column rank, hence, 𝑢 = 0 is the only solution, or we get stuck at some value say 𝑟 = 𝑟0. We use the fact that 𝑟0

is rank, and using this minor we construct the required nonzero vector 𝑢.

We explain the process in a bit more detail. Using a randomized algorithm, we look for some nonzero entry in the

first column. If no such entry is found we can simply take 𝑢 = (1, 0, . . . , 0). So assume that such a nonzero entry is

found. After permuting the rows we can assume wlog that this is𝑀1,1. Thus, we have found a 1 × 1 minor satisfying

the requirements. Assume that we have found an 𝑟 × 𝑟 full rank minor that is composed of the first 𝑟 rows and columns

(we can always rearrange and hence it can be assumed wlog that they correspond to first 𝑟 rows and columns). Denote

this minor by𝑀𝑟 .

Now for every (𝑟 + 1) × (𝑟 + 1) submatrix of 𝑀 contained in the first 𝑟 + 1 columns and containing 𝑀𝑟 , we check

whether the determinant is 0 by randomized algorithm (Lemma 8). If any of these submatrices have nonzero determinant,

then we pick one of them and call it𝑀𝑟+1. Otherwise, we have found that first 𝑟 +1 columns of𝑀 are linearly dependent.

As𝑀𝑟 is full rank, there is 𝑣 ∈ F(𝑥)𝑟 such that𝑀𝑟 𝑣 = (𝑀1,𝑟+1, . . . , 𝑀𝑟,𝑟+1)𝑇 . This can be solved by applying Cramer’s

rule. The 𝑖-th entry of 𝑣 is of the form det(𝑀 (𝑖)
𝑟)/det(𝑀𝑟), where𝑀 (𝑖)

𝑟 is obtained by replacing 𝑖-th column of𝑀𝑟 with

(𝑀1,𝑟+1, . . . , 𝑀𝑟,𝑟+1)𝑇 . Observe that det(𝑀𝑟), as well as det(𝑀 (𝑖)
𝑟), are both in F[𝑥].

Then it is immediate that 𝑢 := (det(𝑀 (1)
𝑟), . . . , det(𝑀 (𝑟)

𝑟),−det(𝑀𝑟), 0, . . . , 0)𝑇 is the desired vector.

To find𝑀𝑟 , each time we have to calculate the determinant and decide whether it is 0 or not. This is simply PIT for a

determinant polynomial with entries of algebraic complexity 𝑛𝑂 (log𝑛)
and degree 𝑛𝑂 (1)

. So, we have a comparable

randomized algorithm for this. Determinant of a symbolic 𝑛 × 𝑛 matrix has 𝑛𝑂 (log𝑛)
size formula (respectively poly(𝑛)

ABP) [MV97]. When the entries of the matrix have 𝑛𝑂 (log𝑛)
size formula (respectively ABP), altogether, the determinant

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

polynomial has the same algebraic complexity. There are < 𝑛2
PIT invocations to test zeroness of the determinant.

Altogether, we have a poly(𝑛log𝑛
)-time randomized algorithm for this (Lemma 8). □

Before moving to the constructive part, we discuss a new method for computing gcd of two polynomials, which not

only fits well in the algorithm but is also of independent interest. We recall the definition of gcd of two polynomials 𝑓 , 𝑔

in the ring F[𝑥]: gcd(𝑓 , 𝑔) =: ℎ ⇐⇒ ℎ |𝑓 , ℎ |𝑔 and (ℎ′ |𝑓 , ℎ′ |𝑔 ⇒ ℎ′ |ℎ). It is unique up to constant multiples.

Claim 5 (Computing formula gcd). Given two polynomials 𝑓 , 𝑔 ∈ F[𝑥] of degree 𝑑 and computed by a formula

(respectively ABP) of size 𝑠 . One can compute a formula (respectively ABP) for gcd(𝑓 , 𝑔), of size poly(𝑠, 𝑑 log𝑑), in
randomized poly(𝑠, 𝑑 log𝑑) time.

Proof of Claim 5. The idea is the following. Suppose, gcd(𝑓 , 𝑔) =: ℎ is of degree 𝑑 > 0, then we will compute ℎ(𝜏𝑥) for a
random map 𝜏 as in Theorem 17. We know wlog that

˜𝑓 := 𝑓 (𝜏𝑥) = ∏
𝑖 (𝑦 −𝐴𝑖)𝑎𝑖 and 𝑔 := 𝑔(𝜏𝑥) = ∏

𝑖 (𝑦 − 𝐵𝑖)𝑏𝑖 , where
𝐴𝑖 , 𝐵𝑖 ∈ F[[𝑥]]. Since F[𝑥] ⊂ F[[𝑥]] are UFDs (Proposition 16), we could say wlog that ℎ(𝜏𝑥) = ∏

𝑖∈𝑆 (𝑦 −𝐴𝑖)min(𝑎𝑖 ,𝑏𝑖)
,

where 𝑆 = {𝑖 | 𝐴𝑖 = 𝐵𝑖 } after possible rearrangement. Now, as 𝜏 is a random invertible map, we can assume that, for

𝑖 ≠ 𝑗 , 𝐴𝑖 ≠ 𝐵 𝑗 and that 𝐴𝑖 (0) ≠ 𝐵 𝑗 (0) (Lemma 13). So, it is enough to compute 𝐴≤𝑑
𝑖

and 𝐵≤𝑑
𝑗

and compare them using

evaluation at 0. If indeed 𝐴𝑖 = 𝐵𝑖 , then 𝐴
≤𝑑
𝑖

= 𝐵≤𝑑
𝑖

. If they are not, they mismatch at the constant term itself! Hence,

we know the set 𝑆 and so we are done once we have the power series roots with repetition.

Using univariate factoring, wrt 𝑦, we get all the multiplicities, of the roots, 𝑎𝑖 and 𝑏𝑖 , additionally, we get the

corresponding starting points of classical Newton iteration, i.e. 𝐴𝑖 (0) and 𝐵𝑖 (0)’s. Using NI, one can compute 𝐴≤𝑑
𝑖

and

𝐵≤𝑑
𝑖

, for all 𝑖 . Suppose, after rearrangement of 𝐴𝑖 and 𝐵𝑖 ’s (if necessary), we have 𝐴𝑖 = 𝐵𝑖 for 𝑖 ∈ [𝑠] =: 𝑆 and 𝐴𝑖 ≠ 𝐵 𝑗

for 𝑖 ∈ [𝑠 + 1, 𝑑], 𝑗 ∈ [𝑠 + 1, 𝑑]. Lemma 13 can be used to deduce that 𝐴𝑖 (0) ≠ 𝐵 𝑗 (0) for 𝑖, 𝑗 ∈ [1, 𝑑] − 𝑆 . So, we have in
gcd(˜𝑓 , 𝑔) = ∏

𝑖∈𝑆 (𝑦 −𝐴𝑖)min(𝑎𝑖 ,𝑏𝑖)
: the index set 𝑆 , the exponents and 𝐴𝑖 (0)’s computed.

Size analysis: To compute 𝐴≤𝑑
𝑖

(similarly 𝐵≤𝑑
𝑖

), we use the classical newton iteration (Lemma 15) after differentiating

(up to order to make multiplicity-1) to make 𝐴𝑖 a simple root (i.e. multiplicity 1) of the differentiated polynomial. That

leads to a polynomial blowup in size (Lemma 7). It is clear that at each NI step, there will be a multiplicative 𝑑2
blow

up (due to interpolation, division and truncation). There are log𝑑 iterations in NI. Altogether the truncated roots

have poly(𝑠, 𝑑 log𝑑) size formula (respectively ABP). This directly implies that gcd(˜𝑓 , 𝑔) has poly(𝑠, 𝑑 log𝑑) size formula

(respectively ABP). By taking the product of the linear factors, truncating to degree 𝑑 , and applying 𝜏−1
, we can compute

the polynomial gcd(𝑓 , 𝑔).
Randomization is needed for 𝜏 and possibly for the univariate factoring over F. Also, it is important to note that F

may not be algebraically closed. Then one has to go to an extension, do the algebraic operations and return to F. For

details, see Section 6.2. □

Randomized Algorithm. We give the broad s of our algorithm below. We are given 𝑓 ∈ F[𝑥], of degree 𝑑 > 0, as

input.

(1) Choose 𝛼, 𝛽 ∈𝑟 F𝑛 and apply 𝜏 : 𝑥𝑖 → 𝑥𝑖 + 𝛼𝑖𝑦 + 𝛽𝑖 . Denote the transformed polynomial 𝑓 (𝜏𝑥) by ˜𝑓 (𝑥,𝑦). Wlog,

from Theorem 17,
˜𝑓 has factorization of the form

∏𝑑0

𝑖=1
(𝑦 − 𝑔𝑖)𝛾𝑖 , where 𝜇𝑖 := 𝑔𝑖 (0) are distinct.

(2) Factorize
˜𝑓 (0, 𝑦) over F[𝑦]. This will give 𝛾𝑖 and 𝜇𝑖 ’s.

(3) Fix 𝑖 = 𝑖0. Differentiate ˜𝑓 , wrt 𝑦, (𝛾𝑖0 − 1) many times to make 𝑔𝑖0 a simple root.

(4) Apply Newton iteration (NI), on the differentiated polynomial, for 𝑘 := ⌈log(2𝑑2 + 1)⌉ iterations; starting with
the approximation 𝜇𝑖0 (mod 𝐼). We get 𝑔<2

𝑘

𝑖0
at the end of the process (mod 𝐼2

𝑘
).

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Discovering the roots: Uniform closure results for algebraic classes under factoring 27

(5) Apply the transformation 𝑥𝑖 ↦→ 𝑇𝑥𝑖 (𝑇 acts as a degree-counter). Consider 𝑔𝑖0 := 𝑔<2
𝑘

𝑖0
(𝑇𝑥). Solve the following

homogeneous linear system of equations, over F[𝑥], in the unknowns 𝑢𝑖 𝑗 and 𝑣𝑖 𝑗 ’s,∑
0≤𝑖+𝑗<𝑑

𝑢𝑖 𝑗 · 𝑦𝑖𝑇 𝑗 = (𝑦 − 𝑔𝑖0) ·
∑

0≤𝑖<𝑑
0≤ 𝑗<2

𝑘

𝑣𝑖 𝑗 · 𝑦𝑖𝑇 𝑗
mod 𝑇 2

𝑘

.

Solve this system, using Lemma 22, to get a nonzero polynomial (if one exists) 𝑢 :=
∑

0≤𝑖+𝑗<𝑑 𝑢𝑖 𝑗 · 𝑦𝑖𝑇 𝑗
.

(6) If there is no solution, return “𝑓 is irreducible”.

(7) Otherwise, find the minimal solution wrt deg𝑦 (𝑢) by brute force (try all possible degrees wrt 𝑦; it is in [𝑑 − 1]).
(8) Compute 𝐺 (𝑥,𝑦,𝑇) := gcd𝑦 (𝑢 (𝑥,𝑦,𝑇), ˜𝑓 (𝑇𝑥,𝑦)) using Claim 5.

(9) Compute𝐺 (𝑥,𝑦, 1) and transform it by 𝜏−1
: 𝑥𝑖 ↦→ 𝑥𝑖 −𝛼𝑖𝑦 − 𝛽𝑖 , 𝑖 ∈ [𝑛], and 𝑦 ↦→ 𝑦. Output this as an irreducible

polynomial factor of 𝑓 .

Claim 6 (Existence). If 𝑓 is reducible, then the linear system (Step 5) has a non-trivial solution.

Proof of Claim 6. If 𝑓 is reducible, then let 𝑓 =
∏
𝑓
𝑒𝑖
𝑖

be its prime factorization. Assume wlog that 𝑦 − 𝑔𝑖0 | ˜𝑓1 := 𝑓1 (𝜏𝑥).
Of course 0 < deg𝑦 (˜𝑓1) = deg(𝑓1) < 𝑑 .

Observe that we are done by picking 𝑢 to be
˜𝑓1 (𝑇𝑥,𝑦). For, total degree of 𝑓1 is < 𝑑 , and so that of

˜𝑓1 (𝑇𝑥,𝑦) wrt the
variables 𝑦,𝑇 is < 𝑑 .

Moreover, 𝑦 − 𝑔𝑖0 | ˜𝑓1 =⇒ ˜𝑓1 = (𝑦 − 𝑔𝑖0)𝑣 , for some 𝑣 ∈ F[[𝑥]] [𝑦] with deg𝑦 < 𝑑 . Hence,

˜𝑓1 ≡ (𝑦 − 𝑔<2
𝑘

𝑖0
) · 𝑣 mod 𝐼2

𝑘

=⇒ 𝑢 ≡ (𝑦 − 𝑔𝑖0) · 𝑣 (𝑇𝑥,𝑦) mod 𝑇 2
𝑘

This shows the existence of a nontrivial solution of the linear system (Step 5). □

Now, we show that if the linear system has a solution, then the solution corresponds to a non-trivial polynomial

factor of 𝑓 .

Claim 7 (Step 8’s success). If the linear system (Step 5) has a non-trivial solution, then 0 < deg𝑦 𝐺 ≤ deg𝑦 𝑢 < 𝑑 .

Proof of Claim 7. Suppose (𝑢, 𝑣) is the solution provided by the algorithm in Lemma 22 (𝑢 being in the unknown LHS

and 𝑣 being the unknown RHS). Consider 𝐺 = gcd𝑦 (𝑢, ˜𝑓 (𝑇𝑥,𝑦)). We know that there are polynomials 𝑎 and 𝑏 such

that 𝑎𝑢 + 𝑏 ˜𝑓 (𝑇𝑥,𝑦) = Res𝑦 (𝑢, ˜𝑓 (𝑇𝑥,𝑦)) (Section 2.2). Consider deg𝑇 (Res𝑦 (𝑢, ˜𝑓 (𝑇𝑥,𝑦)). As the degree of 𝑇 in 𝑢 and

˜𝑓 (𝑇𝑥,𝑦) can be at most 𝑑 , hence degree of𝑇 in Resultant can be atmost 2𝑑2
(Section 2.2). Clearly, deg𝑦 𝐺 ≤ deg𝑦 𝑢 < 𝑑 .

If deg𝑦 𝐺 = 0 then the resultant of 𝑢, ˜𝑓 (𝑇𝑥,𝑦) wrt 𝑦 will be nonzero (Proposition 11). Suppose the latter happens.

Now, we have 𝑢 = (𝑦 − 𝑔𝑖0)𝑣 mod 𝑇 2
𝑘
. Since 𝑦 − 𝑔𝑖0 | ˜𝑓 we get that 𝑦 − 𝑔𝑖0 (𝑇𝑥) | ˜𝑓 (𝑇𝑥,𝑦). Assume that

˜𝑓 (𝑇𝑥,𝑦) =:

(𝑦 − 𝑔𝑖0 (𝑇𝑥)) ·𝑤 .

Thus, we can rewrite the previous equation as: 𝑎𝑢 + 𝑏 ˜𝑓 (𝑇𝑥,𝑦) ≡ (𝑦 − 𝑔𝑖0) (𝑎𝑣 + 𝑏𝑤) ≡ Res𝑦 (𝑢, ˜𝑓 (𝑇𝑥,𝑦)) mod 𝑇 2
𝑘
.

Note that the latter is nonzero mod 𝑇 2
𝑘
because the resultant is a nonzero polynomial of deg𝑇 < 2

𝑘
. Putting 𝑦 = 𝑔𝑖0 the

LHS vanishes, but RHS does not (because it is independent of 𝑦). This gives a contradiction.

Thus, Res𝑦 (𝑢, ˜𝑓 (𝑇𝑥,𝑦) = 0. This implies that 0 < deg𝑦 𝐺 < 𝑑 . □

Next we show that if one takes the minimal solution 𝑢 (wrt degree of 𝑦), it will correspond to an irreducible factor of

𝑓 . We will use the same notation as above.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Claim 8 (Irred. factor). Suppose 𝑦 − 𝑔𝑖0 | ˜𝑓1 and 𝑓1 is an irreducible factor of 𝑓 . Then, 𝐺 = 𝑐 · ˜𝑓1 (𝑇𝑥,𝑦), for 𝑐 ∈ F∗, and
deg𝑦 (𝐺) = deg𝑦 (𝑢) = deg𝑦 (𝑓1) in Step 8.

Proof of Claim 8. Suppose 𝑓 is reducible, hence, as shown above, 𝐺 is a non-trivial factor of
˜𝑓 (𝑇𝑥,𝑦). Recall that

˜𝑓 (𝑇𝑥,𝑦) = ∏
𝑖 (𝑦 − 𝑔𝑖 (𝑇𝑥))𝛾𝑖 is a factorization over F[[𝑥,𝑇]]. We have that 𝑦 − 𝑔𝑖0 | 𝐺 mod 𝑇 2

𝑘
. Thus, 𝑦 − 𝑔𝑖0 (𝑇𝑥) | 𝐺

absolutely (because the power series ring is a UFD and use Theorem 17). So, 𝑦 − 𝑔𝑖0 (𝑇𝑥) | gcd𝑦 (𝐺, ˜𝑓1 (𝑇𝑥,𝑦)) over the
power series ring. Since,

˜𝑓1 (𝑇𝑥,𝑦) is an irreducible polynomial, we can deduce that
˜𝑓1 (𝑇𝑥,𝑦) | 𝐺 in the polynomial ring.

So, deg𝑦 (𝑓1) ≤ deg𝑦 (𝐺).
We have deg𝑦 (˜𝑓1 (𝑇𝑥,𝑦)) = deg(𝑓1) =: 𝑑1. By the above discussion, the linear system in the Step 7 will not have

a solution of deg𝑦 (𝑢) below 𝑑1. Let us consider the linear system in the Step 7 that wants to find 𝑢 of deg𝑦 = 𝑑1.

This system has a solution, namely the one with 𝑢 := ˜𝑓1 (𝑇𝑥,𝑦) mod 𝑇 2
𝑘
. Then, by the above claim, we will get

the 𝐺 as well in the subsequent Step 8. This gives deg𝑦 (𝐺) ≤ deg𝑦 (𝑢) = 𝑑1. With the previous inequality, we get

deg𝑦 (𝐺) = deg𝑦 (𝑢) = deg𝑦 (𝑓1). In particular, 𝐺 and
˜𝑓1 (𝑇𝑥,𝑦) are the same up to a nonzero constant multiple. □

Alternative to Claim 5: The above proof (Claim 8) suggests that the gcd question of Step 8 is rather special: One can

just write 𝑢 as

∑
0≤𝑖≤𝑑1

𝑐𝑖 (𝑥,𝑇)𝑦𝑖 and then compute the polynomial𝐺 =
∑

0≤𝑖≤𝑑1
(𝑐𝑖/𝑐𝑑1

) ·𝑦𝑖 as a formula (respectively

ABP), by eliminating division (Lemma 5).

Once we have the polynomial𝐺 we can fix𝑇 = 1 and apply 𝜏−1
to get back the irreducible polynomial factor 𝑓1 (with

power series root 𝑔𝑖0).

The running time analysis of the algorithm is by now routine. If we start with an 𝑓 computed by a formula (respectively

ABP) of size 𝑛𝑂 (log𝑛)
, then as observed before, one can compute 𝑔𝑖0 which has 𝑛𝑂 (log𝑛)

size formula (respectively

ABP). This takes care of s 1-4.

Now, solve the linear system in s 5-7 of the algorithm. Each entry of the matrix is a formula (respectively ABP) size

𝑛𝑂 (log𝑛)
. The time complexity is similar by invoking Lemma 22.

Step 8 is to compute gcd of two 𝑛𝑂 (log𝑛)
size formulas (respectively ABPs) which again can be done in 𝑛𝑂 (log𝑛)

time giving a size 𝑛𝑂 (log𝑛)
formula (respectively ABP) as discussed above.

This completes the randomized poly(𝑛log𝑛)-time algorithm that outputs 𝑛𝑂 (log𝑛)
sized factors. □

Remarks. (1) The above results hold true for the classes 𝑉𝐵𝑃 (𝑠),𝑉 𝐹 (𝑠),𝑉𝑁𝑃 (𝑠) for any size function 𝑠 = 𝑛Ω (log𝑛)
.

(2) By using a reversal technique [Oli16, Section 1.1.2] and a modified 𝜏 , our size bound can be shown to be

poly(𝑠, 𝑑 log 𝑟), where 𝑟 (respectively 𝑑) is the individual-degree (respectively degree) bound of 𝑓 . So, when 𝑟 is

constant, we get a factor as a poly(𝑠)-size formula (respectively ABP). Oliveira [Oli16] proved the same result

for formulas.

6 EXTENSIONS

6.1 Closure of approximative complexity classes

This section shows that all our closure under factoring results can be naturally generalized to corresponding approxi-

mative algebraic complexity classes.

In computer science, the notion of approximative algebraic complexity emerged in early works on matrix multipli-

cation (the notion of border rank, see [BCS13]). It is also an important concept in the geometric complexity theory

program (see [GMQ16]). The notion of approximative complexity can be motivated through two ways, topological and

algebraic and both the perspectives are known to be equivalent. Both allow us to talk about the convergence 𝜖 → 0.

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Discovering the roots: Uniform closure results for algebraic classes under factoring 29

In what follows, we can see 𝜖 as a formal variable and F(𝜖) as the function field. For an algebraic complexity class 𝐶 ,

the approximation is defined as follows [BIZ18, Defn.2.1].

Definition 23 (Approximative closure of a class [BIZ18]). Let 𝐶 be an algebraic complexity class over field F. A

family (𝑓𝑛) of polynomials from F[𝑥] is in the class 𝐶 (F) if there are polynomials 𝑓𝑛;𝑖 and a function 𝑡 : N ↦→ N such that

𝑔𝑛 is in the class 𝐶 over the field F(𝜖) with 𝑔𝑛 (𝑥) = 𝑓𝑛 (𝑥) + 𝜖 𝑓𝑛;1 (𝑥) + 𝜖2 𝑓𝑛;2 (𝑥) + · · · + 𝜖𝑡 (𝑛) 𝑓𝑛;𝑡 (𝑛) (𝑥).

The above definition can be used to define closures of classes like VF, VBP, VP, VNP which are denoted as VF, VBP,

VP, VNP respectively. In these cases one can assume wlog that the degrees of 𝑔𝑛 and 𝑓𝑛;𝑖 are poly(𝑛).
Following Bürgisser [Bür04]:- Let 𝐾 := F(𝜖) be the rational function field in variable 𝜖 over the field F. Let 𝑅 denote

the subring of 𝐾 that consists of rational functions defined in 𝜖 = 0. Eg. 1/𝜖 ∉ 𝑅 but 1/(1 + 𝜖) ∈ 𝑅.

Definition 24. [Bür04, Defn.3.1] Let 𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛]. The approximative complexity size(𝑓) is the smallest number

𝑟 , such that there exists 𝐹 in 𝑅 [𝑥1, . . . , 𝑥𝑛] satisfying 𝐹 |𝜖=0 = 𝑓 and circuit size of 𝐹 over constants 𝐾 is ≤ 𝑟 .

Note that the circuit of 𝐹 may be using division by 𝜖 implicitly in an intermediate step. So, we cannot merely assign

𝜖 = 0 and get a circuit free of 𝜖 . Also, the degree involved can be arbitrarily large wrt 𝜖 . Thus, potentially size(𝑓) can be

smaller than size(𝑓).
Using this new notion of size, one can define the analogous class VP. It is known to be closed under factors [Bür04,

Theorem 4.1]. The idea is to work over F(𝜖), instead of working over F, and use Newton iteration to approximate power

series roots. Note that in the case of VF, VBP, VP and VNP the polynomials have poly(𝑛) degree. So, by using repeated

differentiation, we can assume the power series root (of
˜𝑓 := 𝑓 (𝜏𝑥)) to be simple (i.e. multiplicity= 1) and apply classical

NI. Here we give a brief sketch of the overall idea.

Root finding using NI over 𝐾 . For degree-𝑑 𝑓 ∈ F[𝑥] if size(𝑓) = 𝑠 then: ∃𝐹 ∈ 𝑅 [𝑥] with a size 𝑠 circuit satisfying

𝐹 |𝜖=0 = 𝑓 . The degree of 𝐹 wrt 𝑥 may be greater than 𝑑 . In that case, we can extract the part up to degree 𝑑 and truncate

the rest [Bür04, Prop.3.1]. So wlog deg𝑥 (𝐹) = deg(𝑓).
By applying a random 𝜏 (using constants F) we can assume that 𝐹 := 𝐹 (𝜏𝑥) ∈ 𝑅 [𝑥,𝑦] ismonic (i.e. leading-coefficient,

wrt𝑦 in 𝐹 , is invertible in 𝑅). Otherwise, deg𝑦 (𝐹) = deg𝑦 (˜𝑓) = deg𝑥 (𝑓) will decrease on substituting 𝜖 = 0 contradicting

𝐹 |𝜖=0 = 𝑓 . Wlog, we can assume that the leading-coefficient of 𝐹 wrt 𝑦 is 1 and the 𝑦-monomial’s degree is 𝑑 . From now

on we have 𝐹 |𝜖=0 = ˜𝑓 and both have their leading-coefficients 1 wrt 𝑦.

Let 𝜇 be a root of ˜𝑓 (0, 𝑦) of multiplicity one (as discussed before). Since 𝐹 (0, 𝑦) ≡ ˜𝑓 (0, 𝑦) mod 𝜖 , we can build a power

series root 𝜇 (𝜖) ∈ F[[𝜖]] of 𝐹 (0, 𝑦) using NI, with 𝜇 as the starting point. But 𝜇 (𝜖) may not converge in 𝐾 . To overcome

this obstruction, [Bür04] devised a clever trick.

Define 𝐹 := 𝐹 (𝑥,𝑦 + 𝜇 + 𝜖) − 𝐹 (0, 𝜇 + 𝜖). Note that (0, 0) is a simple root of 𝐹 (𝑥,𝑦) [Bür04, Eqn.5]. So, a power series
root 𝑦∞ of 𝐹 can be built iteratively by classic NI (Lemma 15):

𝑦𝑡+1 := 𝑦𝑡 − 𝐹

𝜕𝑦𝐹

����
𝑦=𝑦𝑡

.

Where, 𝑦∞ ≡ 𝑦𝑡 mod ⟨𝑥⟩2
𝑡
. One can easily prove that 𝑦𝑡 is defined over the coefficient field 𝐾 , using induction on 𝑡 .

Note that 𝐹 |𝜖=0 = ˜𝑓 (𝑥,𝑦 + 𝜇) − ˜𝑓 (0, 𝜇) = ˜𝑓 (𝑥,𝑦 + 𝜇). So, 𝑦∞ is associated with a root of
˜𝑓 as well. This implies that

by using several such roots 𝑦∞, we can get an appropriate product𝐺 ∈ 𝑅 [𝑥,𝑦], such that an actual polynomial factor of

˜𝑓 (over field F) equals 𝐺 |𝜖=0.

The above process, when combined with the first part of the proof of Theorem 3, does imply:

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Theorem 25 (Approximative factors). The approximative complexity classes VF(𝑛log𝑛),
VBP(𝑛log𝑛) and VNP(𝑛log𝑛) are closed under factors.

The same question for the classes VF, VBP and VNP we leave as an open question. (Though, for the respective

bounded individual-degree polynomials we have the result as before.)

6.2 When field F is not algebraically closed

We show that all our results “partially” hold true for fields F which are not algebraically closed. The standard technique

used in all the proofs is the structural result (Theorem 17) which talks about power series roots with respect to 𝑦. Recall

that we use a random linear map 𝜏 : 𝑥𝑖 ↦→ 𝑥𝑖 + 𝛼𝑖𝑦 + 𝛽𝑖 , where 𝛼𝑖 , 𝛽𝑖 ∈𝑟 F, to make the input polynomial 𝑓 monic in

𝑦 and the individual degree of 𝑦 equal to 𝑑 := deg(𝑓). If we set all the variables to zero except 𝑦, we get a univariate
polynomial

˜𝑓 (0, 𝑦) whose roots we are interested in finding explicitly.

The other common technique in our proofs is the classical NI, which starts with just one field root, say 𝜇1 of
˜𝑓 (0, 𝑦),

and builds the full power series on it. Let 𝐸 ⊊ F be the smallest field where a root 𝜇1 can be found. Say, 𝑔| ˜𝑓1 (0, 𝑦) is the
minimal polynomial for 𝜇1. The degree of the extension 𝐸 := F[𝑧]/(𝑔(𝑧)) is at most 𝑑 . So, computations over 𝐸 can

be done efficiently. The key idea is to view 𝐸/F as a vector space and simulate the arithmetic operations over 𝐸 by

operations over F. The details of this kind of simulation can be seen in [vzGG13]. In circuits, it means that we make

deg(𝐸/F) copies of each gate and simulate the algebraic operations on these ‘tuples’ following the F-module structure

of 𝐸 [𝑥].
Once we have found all the power series roots of

˜𝑓 (𝑥,𝑦) over 𝐸 [[𝑥]], say starting from each of the conjugates

𝜇1, . . . , 𝜇𝑖 ∈ 𝐸, it is easy to get a polynomial factor in 𝐸 [𝑥,𝑦]. This factor will not be in F[𝑥,𝑦], unless 𝐸 is a splitting

field of
˜𝑓1 (0, 𝑦). A more practical method is: While solving the linear system over 𝐸 in s 5-7 (Algorithm in Theorem

3) we can demand an F-solution 𝑢. Basically, at the level of the algorithm in Lemma 22, we can rewrite the linear

system𝑀𝑤 = (∑
0≤𝑖≤𝑑 𝑀𝑖𝑧

𝑖) ·𝑤 = 0 as𝑀𝑖𝑤 = 0 (𝑖 ∈ [0, 𝑑]), where the entries of the matrix𝑀𝑖 are given as formulas

(respectively ABP) computing a poly(𝑛) degree polynomial in F[𝑥]. This way we get the desired F-solution 𝑢. Then, s

8-9 will yield an irreducible polynomial factor of 𝑓 in F[𝑥,𝑦]. This sketches the following more practical version of

Theorem 3.

Theorem 26. For F a number field, a local field, or a finite field (with characteristic > deg(𝑓)), there exists a randomized

poly(𝑠𝑛log𝑛)-time algorithm that: for a given 𝑛𝑂 (log𝑛) size formula (respectively ABP) 𝑓 of poly(𝑛)-degree and bitsize 𝑠 ,
outputs 𝑛𝑂 (log𝑛) sized formulas (respectively ABPs) corresponding to each of the nontrivial factors of 𝑓 .

Note that over these fields there are famous randomized algorithms to factor univariate polynomials in the base case,

see [vzGG13, Part III] & [Pau01]. See [Gao03] for multivariate factoring over the algebraic closure of a field.

The allRootsNI method in Theorem 1 seems to require all the roots 𝜇𝑖 , 𝑖 ∈ [𝑑0], to begin with. Let 𝑢̃1 := rad(𝑢1 (𝜏𝑥)).
Since 𝜇𝑖 ’s are in the splitting field 𝐸 ⊂ F of rad(𝑢̃1 (0, 𝑦)), we do indeed get the size bound of the power series roots 𝑔≤𝑑0

𝑖

of 𝑢̃1 assuming the constants from 𝐸. As seen in the proof, any irreducible polynomial factor
˜ℎ𝑖 := ℎ𝑖 (𝜏𝑥) of rad(𝑢̃1)

is some product of these (𝑦 − 𝑔≤𝑑0

𝑖
)’s mod 𝐼𝑑0+1

. So, for the polynomial
˜ℎ𝑖 in F[𝑥,𝑦] we get a size upper bound over

constants 𝐸. We leave it as an open question to transfer it over constants F (note: 𝐸/F can be of exponential degree).

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Discovering the roots: Uniform closure results for algebraic classes under factoring 31

6.3 Multiplicity issue in prime characteristic

The main obstruction in prime characteristic is when the multiplicity of a factor is a 𝑝-multiple, where 𝑝 ≥ 2 is the

characteristic of F. In this case, all versions of the Newton iteration fail. This is because the derivative of a 𝑝-powered

polynomial vanishes. When 𝑝 is greater than the degree of the input polynomial, these problems do not occur, so all

our theorems hold (also see Section 6.2).

When 𝑝 is smaller than the degree of the input polynomial in Theorem 3, adapting an idea from [KSS15, Section 3.1],

we claim that we can give 𝑛𝑂 (𝜆 log𝑛)
-sized formula (respectively ABP) for the 𝑝𝑒𝑖 -th power of 𝑓𝑖 , where 𝑓𝑖 is a factor of

𝑓 whose multiplicity is divisible exactly by 𝑝𝑒𝑖 , and 𝜆 is the number of distinct 𝑝-powers that appear.

Note that presently it is an open question to show that: If a circuit (respectively formula respectively ABP) of size 𝑠

computes 𝑓 𝑝 , then 𝑓 has a poly(𝑠𝑝)-sized circuit (respectively formula respectively ABP).

Theorem 3 can be extended to all characteristics as follows.

Theorem 27. Let F be of characteristic 𝑝 ≥ 2. Suppose the poly(𝑛)-degree polynomial given by a 𝑛𝑂 (log𝑛) size formula

(respectively ABP) factors into irreducibles as 𝑓 (𝑥) = ∏
𝑖 𝑓

𝑝𝑒𝑖 𝑗𝑖
𝑖

, where 𝑝 ∤ 𝑗𝑖 . Let 𝜆 := #{𝑒𝑖 |𝑖}.
Then, there is a poly(𝑛𝜆 log𝑛)-size formula (respectively ABP) computing 𝑓 𝑝

𝑒𝑖

𝑖
over F𝑝 .

Proof sketch. Note that 𝜆 = 𝑂 (log𝑝 𝑛).
Let the transformed polynomial of degree 𝑑 split into power series roots as follows:

˜𝑓 := 𝑓 (𝜏𝑥,𝑦) = ∏𝑑0

𝑖=1
(𝑦 − 𝑔𝑖)𝛾𝑖 .

𝑝 ∤ 𝛾𝑖 : If 𝑔𝑖 is such that 𝑝 ∤ 𝛾𝑖 , then we can find the corresponding power series roots using Newton iteration and

recover all such factors. After recovering all such irreducible polynomial factors, we can divide
˜𝑓 by their product. Let

𝐺 := ˜𝑓
/ ∏

𝑝∤𝛾𝑖 (𝑦 − 𝑔𝑖)
𝛾𝑖
. Clearly, 𝐺 is now a 𝑝-power polynomial.

𝑝 | 𝛾𝑖 : Computing the highest power of 𝑝 that divides the exponent of 𝐺 (given by a formula respectively ABP) is

easy. First, write the polynomial as𝐺 = 𝑐0 + 𝑐1𝑦 + · · · + 𝑐𝑑𝑦𝑑 using interpolation. Note that it is a 𝑝𝑒 -th power iff: 𝑐𝑖 = 0

whenever 𝑝𝑒 ∤ 𝑖 , and 𝑝𝑒+1
does not have this property. After computing the right value of 𝑝𝑒 , we can reduce factoring

to the case of a non-𝑝-power.

Rewrite𝐺 as𝐺 :=
∑
𝑝𝑒 |𝑖 𝑐𝑖 (𝑥) ·𝑦𝑖/𝑝

𝑒
, i.e. replacing𝑦𝑝

𝑒
by𝑦. Clearly,𝑔 is an irreducible factor of𝐺 iff𝑔 is an irreducible

factor of 𝐺 .

We can now apply NI to find the roots of 𝐺̃ , that have multiplicity coprime to 𝑝 . Divide by their product and then

repeat the above.

Size analysis. If 𝐺 can be computed by a size 𝑠 formula (respectively ABP), 𝐺 can be computed by a size 𝑂 (𝑑2𝑠)
formula (respectively ABP). Similarly, a single division gate leads to a blow-up by a factor of 𝑂 (𝑑2). The number of

times we need to eliminate division is at most 𝜆 log𝑑 . So the overall size is 𝑛𝑂 (𝜆 log𝑛)
.

However, the splitting field 𝐸 where we get all the roots of
˜𝑓 (0, 𝑦) may be of degree Ω(𝑑!). So, we leave the efficiency

aspects of the algorithm as an open question. □

High degree case. Note that the above idea cannot be implemented efficiently in the case of high degree circuits. Still

we can extend our Theorem 1 using allRootsNI. The key observation is that the allRootsNI formula still holds but the

summands that appear are exactly the ones corresponding to 𝑔𝑖 with 𝛾𝑖 ≠ 0 mod 𝑝 .

This motivates the definition of a partial radical: rad𝑝 (𝑓) :=
∏

𝑝∤𝑒𝑖 𝑓𝑖 , if the prime factorization of 𝑓 is
∏

𝑖 𝑓
𝑒𝑖
𝑖
.

Theorem 28. Let F be of characteristic 𝑝 ≥ 2. Let 𝑓 = 𝑢0𝑢1 such that size(𝑓)+size(𝑢0) ≤ 𝑠 . Any factor of rad𝑝 (𝑢1) has
size poly(𝑠 + deg(rad𝑝 (𝑢1))) over F.

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

Proof idea: Observe that the roots with multiplicity divisible by 𝑝 do not contribute to the allRootsNI process. So, the

process works with rad𝑝 (𝑢1), and the linear algebra complexity involved is polynomial in its degree.

7 CONCLUSION

We analyzed the complexity of approximating power series roots (up to some degree) of a multivariate polynomial in

various models. As the roots are related to factors, we get results on polynomial factoring in various models as well.

Finally, we list a few open questions related to multivariate factoring.

(1) The Factor Conjecture states that for a nonzero polynomial 𝑓 : 𝑔 | 𝑓 =⇒ size(𝑔) ≤ poly(size(𝑓), deg(𝑔)).
Motivated by Theorem 1, we would like to strengthen the Factor conjecture to a conjecture about the squarefree

part of a circuit:

Conjecture 1 (Radical Conjecture). For a nonzero 𝑓 : min{deg(rad(𝑓)), size(rad(𝑓))} ≤ poly(size(𝑓)).

Is the above conjecture true if we replace size by size?

(2) Suppose we have a circuit with division gates computing a polynomial of degree 𝑑 . Can we get a circuit of size

poly(𝑠) computing the same polynomial without using any division gate [Kal87]? A positive answer to this

question would prove the Factor conjecture as a corollary. Strassen’s classic result gives a poly(𝑠, 𝑑) bound for

this problem. Recently, [DJPS21] showed that division elimination can be efficiently done if the divisor is a low

degree polynomial (computed by a small circuit).

(3) Given two polynomials computed by circuits of size 𝑠 , can we get a circuit computing their gcd in size poly(𝑠)?
Kaltofen [Kal87] gave poly(𝑠, 𝑑𝑔) size upper bound, where 𝑑𝑔 is the degree of the gcd.

(4) Is VF closed under factoring? We might consider Theorem 3 as a positive evidence. Additionally, a special case

when 𝑓 = 𝑔𝑒 for some irreducible polynomial 𝑔, can be solved. This is easy to see using the classic Taylor series

of (1 + 𝑓)1/𝑒
, where 𝑓 ∈ ⟨𝑥⟩.

In fact, what about the classes which are contained in𝑉𝐹 (𝑛log𝑛) but larger than𝑉𝐹 . For example, is VF(𝑛log log𝑛)
closed under factoring?

(5) Can we compute factors of polynomials computed by circuits of low depth by keeping the depth constant and

the size small [DSY09, Oli16]? To further motivate this question, we mention the recent breakthrough by Limaye,

Srinivasan and Tavenas [LST21] where the authors gave the first superpolynomial lower bound against constant

depth circuits. They also gave the first subexponential PIT for the same model using an arithmetic hardness

vs randomness result from [CKS19b]. The work of [CKS19b] needed a size upper bound of roots of low depth

polynomials (different from the related prior work by [DSY09]). The application of [CKS19b] in [LST21] shows

the importance of studying factoring and root finding for restricted classes to settle fundamental questions in

algebraic complexity.

Finally, our results weaken when the underlying field F is not algebraically closed or has a small prime characteristic

(Sections 6.2, 6.3). Can we strengthen the methods to work for all F?

Acknowledgements. We thank Rafael Oliveira for extensive discussions regarding his works and circuit factoring

in general. In particular, we used his suggestions about VNP and VP in our results. We thank Manindra Agrawal,

Sumanta Ghosh, Partha Mukhopadhyay, Thomas Thierauf, and Nikhil Balaji for helpful discussions. We are grateful to

the organizers of WACT’16 (Tel Aviv, Israel) and Dagstuhl’16 (Germany) for the stimulating workshops. P.D. would

like to thank CSE, IIT Kanpur for the hospitality, Google India Research Program Team for the support of all travel

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Discovering the roots: Uniform closure results for algebraic classes under factoring 33

expenses and PhD Fellowship. N.S. thanks for the funding support from DST (DST/SJF/MSA-01/2013-14), DST-SERB

(CRG/2020/000045) and N. Rama Rao Chair. A.S. would like to thank Microsoft Research Lab India, IARCS, and ACM

India for supporting with travel grants for conferences. Previously, A.S. was supported by MHRD (Govt of India)

graduate student fellowship. Currently, he is supported by DFG grant TH 472/5-1.

REFERENCES
[Abe73] Oliver Aberth. Iteration methods for finding all zeros of a polynomial simultaneously. Mathematics of computation, 27(122):339–344, 1973.

[ABK
+
21] Mohammadali Asadi, Alexander Brandt, Mahsa Kazemi, Marc Moreno Maza, and Erik Postma. Multivariate power series in maple. arXiv

preprint arXiv:2106.15519, 2021.
[AGS19] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in algebraic circuits. Proceedings of the National Academy of

Sciences, 116(17):8107–8118, 2019.
[AP00] Daniel Augot and Lancelot Pecquet. A hensel lifting to replace factorization in list-decoding of algebraic-geometric and reed-solomon codes.

IEEE Transactions on Information Theory, 46(7):2605–2614, 2000.
[AV08] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th

Annual IEEE Symposium on, pages 67–75. IEEE, 2008.
[BCS13] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity theory, volume 315. Springer Science & Business Media, 2013.

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer Science & Business Media, 1998.

[Ber70] Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics of computation, 24(111):713–735, 1970.
[BIZ18] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs of small width. J. ACM, 65(5), 2018. (Preliminary

version in CCC’17).

[BJ18] Markus Bläser and Gorav Jindal. On the complexity of symmetric polynomials. In 10th Innovations in Theoretical Computer Science Conference
(ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[BK78] Richard P Brent and Hsiang T Kung. Fast algorithms for manipulating formal power series. Journal of the ACM (JACM), 25(4):581–595, 1978.
[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number of registers. SIAM Journal on Computing,

21(1):54–58, 1992.

[Bou13] Nicolas Bourbaki. Algebra II: Chapters 4-7. Springer Science & Business Media, 2013.

[BSCI
+
20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps for reed–solomon codes. In Electronic

Colloquium on Computational Complexity (ECCC), 2020. https://eccc.weizmann.ac.il/report/2020/083/.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive

functions and universal machines. Bulletin (New Series) of the American Mathematical Society, 21(1):1–46, 1989.
[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic factorization of sparse polynomials with bounded individual degree.

J. ACM, 67(2), May 2020.

[Bür01] Peter Bürgisser. On implications between P-NP-hypotheses: Decision versus computation in algebraic complexity. In MFCS, pages 3–17.
Springer, 2001.

[Bür04] Peter Bürgisser. The complexity of factors of multivariate polynomials. Foundations of Computational Mathematics, 4(4):369–396, 2004.
(Preliminary version in FOCS 2001).

[Bür13] Peter Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7. Springer Science & Business Media, 2013.

[CG00] David G Cantor and Daniel M Gordon. Factoring polynomials over 𝜌-adic fields. In International Algorithmic Number Theory Symposium,

pages 185–208. Springer, 2000.

[Chi94] Alexander L Chistov. Algorithm of polynomial complexity for factoring polynomials over local fields. Journal of mathematical sciences,
70(4):1912–1933, 1994.

[CKS19a] Chi-Ning Chou,Mrinal Kumar, andNoam Solomon. Closure of vp under taking factors: a short and simple proof. arXiv preprint arXiv:1903.02366,
2019.

[CKS19b] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure results for polynomial factorization. Theory of Computing, 15(13):1–34, 2019.
[CRS96] Richard Courant, Herbert Robbins, and Ian Stewart. What is Mathematics?: an elementary approach to ideas and methods. Oxford University

Press, USA, 1996.

[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields. Mathematics of Computation, pages
587–592, 1981.

[DB08] Germund Dahlquist and Åke Björck. Numerical methods in scientific computing, volume I. Society for Industrial and Applied Mathematics,
2008.

[DDS21a] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Demystifying the border of depth-3 algebraic circuits. In Proceedings of the 62nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2021), 2021.

Manuscript submitted to ACM

https://eccc.weizmann.ac.il/report/2020/083/

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

[DDS21b] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic identity testing paradigms for bounded top-fanin depth-4 circuits. In

Valentine Kabanets, editor, 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 11:1–11:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[DJPS21] Pranjal Dutta, Gorav Jindal, Anurag Pandey, and Amit Sinhababu. Arithmetic circuit complexity of division and truncation. In 36th
Computational Complexity Conference (CCC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Information Processing Letters, 7(4):193 – 195,

1978.

[DMS19] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Efficiently factoring polynomials modulo 𝑝4
. arxiv preprint arXiv:1901.06628, 2019. To appear

in ISSAC’19.

[DST21] Pranjal Dutta, Nitin Saxena, and Thomas Thierauf. A largish sum-of-squares implies circuit hardness and derandomization. In 12th Innovations
in Theoretical Computer Science Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for bounded depth arithmetic circuits. SIAM Journal on
Computing, 39(4):1279–1293, 2009. (Preliminary version in STOC’08).

[Dur60] Émile Durand. Solutions numériques des équations algébriques. Tome I, Équations du type F(x)= 0. In Racines d’une Polynôme, pages 279–281.
Masson, 1960.

[Dut21] Pranjal Dutta. Real 𝜏-conjecture for sum-of-squares: A unified approach to lower bound and derandomization. In International Computer
Science Symposium in Russia, pages 78–101. Springer, 2021.

[Ehr67] Louis W Ehrlich. A modified Newton method for polynomials. Communications of the ACM, 10(2):107–108, 1967.

[FS15] Michael A Forbes and Amir Shpilka. Complexity theory column 88: Challenges in polynomial factorization. ACM SIGACT News, 46(4):32–49,
2015.

[FSTW16] Michael A Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity lower bounds from algebraic circuit complexity. In

Proceedings of the 31st Conference on Computational Complexity, page 32. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[Gao03] Shuhong Gao. Factoring multivariate polynomials via partial differential equations. Mathematics of computation, 72(242):801–822, 2003.
[GHM

+
98] M Giusti, J Heintz, JE Morais, J Morgenstem, and LM Pardo. Straight-line programs in geometric elimination theory. Journal of Pure and

Applied Algebra, 124(1-3):101–146, 1998.
[GMQ16] Joshua A. Grochow, Ketan D. Mulmuley, and Youming Qiao. Boundaries of VP and VNP. In 43rd International Colloquium on Automata,

Languages, and Programming (ICALP 2016), volume 55, pages 34:1–34:14, 2016.

[Gre16] Bruno Grenet. Bounded-degree factors of lacunary multivariate polynomials. Journal of Symbolic Computation, 75:171–192, 2016.
[Gro15] Joshua A Grochow. Unifying known lower bounds via geometric complexity theory. Computational Complexity, 24(2):393–475, 2015.
[Gro20] Joshua A Grochow. Complexity in ideals of polynomials: questions on algebraic complexity of circuits and proofs. Bulletin of EATCS, 1(130),

2020.

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-geometric codes. In Foundations of Computer
Science, 1998. Proceedings. 39th Annual Symposium on, pages 28–37. IEEE, 1998.

[GTZ88] Patrizia Gianni, Barry Trager, and Gail Zacharias. Gröbner bases and primary decomposition of polynomial ideals. Journal of Symbolic
Computation, 6(2):149–167, 1988.

[IKRS12] Gábor Ivanyos, Marek Karpinski, Lajos Rónyai, and Nitin Saxena. Trading GRH for algebra: algorithms for factoring polynomials and related

structures. Mathematics of Computation, 81(277):493–531, 2012.
[Jan11] Maurice J Jansen. Extracting roots of arithmetic circuits by adapting numerical methods. In 2nd Symposium on Innovations in Computer

Science (ICS 2011), pages 87–100, 2011.
[Kal85a] Erich Kaltofen. Computing with polynomials given by straight-line programs I: greatest common divisors. In Proceedings of the 17th Annual

ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 131–142, 1985.
[Kal85b] Erich Kaltofen. Polynomial-time reductions from multivariate to bi-and univariate integral polynomial factorization. SIAM Journal on

Computing, 14(2):469–489, 1985.
[Kal86] Erich Kaltofen. Uniform closure properties of p-computable functions. In Proceedings of the 18th Annual ACM Symposium on Theory of

Computing, May 28-30, 1986, Berkeley, California, USA, pages 330–337, 1986.
[Kal87] Erich Kaltofen. Single-factor hensel lifting and its application to the straight-line complexity of certain polynomials. In Proceedings of the

nineteenth annual ACM symposium on Theory of computing, pages 443–452. ACM, 1987.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Randomness and Computation, 5:375–412, 1989.
[Kal90] Erich Kaltofen. Polynomial factorization 1982-1986. Dept. of Comp. Sci. Report, pages 86–19, 1990.
[Kal92] Erich Kaltofen. Polynomial factorization 1987–1991. LATIN’92, pages 294–313, 1992.
[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem. In Proceedings of the twenty-second annual

ACM-SIAM symposium on Discrete Algorithms, pages 1409–1421. Society for Industrial and Applied Mathematics, 2011.

[Kem10] Gregor Kemper. A course in Commutative Algebra, volume 256. Springer Science & Business Media, 2010.

[Ker66] Immo O Kerner. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen. Numerische Mathematik, 8(3):290–294, 1966.
[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. In Proceedings of

the thirty-fifth annual ACM symposium on Theory of computing, pages 355–364. ACM, 2003.

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Discovering the roots: Uniform closure results for algebraic classes under factoring 35

[KK08] Erich Kaltofen and Pascal Koiran. Expressing a fraction of two determinants as a determinant. In Proceedings of the twenty-first international
symposium on Symbolic and algebraic computation, pages 141–146. ACM, 2008.

[KP12] Steven G Krantz and Harold R Parks. The implicit function theorem: history, theory, and applications. Springer Science & Business Media, 2012.

[Kri02] Teresa Krick. Straight-line programs in polynomial equation solving. Foundations of computational mathematics: Minneapolis, 312:96–136,
2002.

[KS06] Neeraj Kayal and Nitin Saxena. Complexity of ring morphism problems. Computational Complexity, 15(4):342–390, 2006.
[KS09] Zohar S Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits with bounded top fan-in. In Computational

Complexity, 2009. CCC’09. 24th Annual IEEE Conference on, pages 274–285. IEEE, 2009.
[KS16] Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic rank. In 31st Conference on Computational Complexity,

CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 34:1–34:27, 2016.
[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity testing and polynomial factorization. computational

complexity, 24(2):295–331, 2015.
[KST19] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal bootstrapping of hitting sets for algebraic circuits. In Proceedings

of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 639–646. SIAM, 2019.

[KT78] HT Kung and Joseph Frederick Traub. All algebraic functions can be computed fast. Journal of the ACM (JACM), 25(2):245–260, 1978.
[Lan85] Susan Landau. Factoring polynomials over algebraic number fields. SIAM Journal on Computing, 14(1):184–195, 1985.
[Lec02] Grégoire Lecerf. Quadratic newton iteration for systems with multiplicity. Foundations of Computational Mathematics, 2(3):247–293, 2002.
[Len83] Arjen K Lenstra. Factoring polynomials over algebraic number fields. In European Conference on Computer Algebra, pages 245–254. Springer,

1983.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen,
261(4):515–534, 1982.

[LLMP90] Arjen K Lenstra, Hendrik W Lenstra, Mark S Manasse, and John M Pollard. The number field sieve. In Proceedings of the twenty-second
annual ACM symposium on Theory of computing, pages 564–572. ACM, 1990.

[LN97] Rudolph Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, Cambridge, UK, 1997.

[LS78] Richard J Lipton and Larry J Stockmeyer. Evaluation of polynomials with super-preconditioning. Journal of Computer and System Sciences,
16(2):124–139, 1978.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds against low-depth algebraic circuits. Electron.
Colloquium Comput. Complex., 28:81, 2021.

[LV16] Anand Louis and Santosh Srinivas Vempala. Accelerated newton iteration for roots of black box polynomials. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS’16, pages 732–740, 2016.

[Mah14] Meena Mahajan. Algebraic complexity classes. In Perspectives in Computational Complexity, pages 51–75. Springer, 2014.
[Mul12a] Ketan D. Mulmuley. The GCT program toward the P vs. NP problem. Commun. ACM, 55(6):98–107, June 2012.

[Mul12b] Ketan D. Mulmuley. Geometric complexity theory V: Equivalence between blackbox derandomization of polynomial identity testing and

derandomization of Noether’s normalization lemma. In FOCS, pages 629–638, 2012.
[Mul17] Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normalization. Journal of the American Mathematical

Society, 30(1):225–309, 2017.
[MV97] Meena Mahajan and V Vinay. A combinatorial algorithm for the determinant. In SODA, pages 730–738, 1997.
[New69] Isaac Newton. De analysi per aequationes numero terminorum infinitas [On analysis by infinite series] (in latin). 1669. (published in 1711 by

William Jones).

[NRS17] Vincent Neiger, Johan Rosenkilde, and Éric Schost. Fast computation of the roots of polynomials over the ring of power series. In Proceedings
of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pages 349–356, 2017.

[Oli16] Rafael Oliveira. Factors of low individual degree polynomials. Computational Complexity, 2(25):507–561, 2016. (Preliminary version in

CCC’15).

[Ore22] ystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
[Pau01] Sebastian Pauli. Factoring polynomials over local fields. Journal of Symbolic Computation, 32(5):533–547, 2001.
[Pla77] David Alan Plaisted. Sparse complex polynomials and polynomial reducibility. Journal of Computer and System Sciences, 14(2):210–221, 1977.
[PSS16] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over positive characteristic: New criterion and applications to

locally low algebraic rank circuits. In 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August
22-26, 2016 - Kraków, Poland, pages 74:1–74:15, 2016. (In print, Computational Complexity, 2018).

[Sap19] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github survey, 2019. https://github.

com/dasarpmar/lowerbounds-survey/releases.

[Sch77] Claus-Peter Schnorr. Improved lower bounds on the number of multiplications/divisions which are necessary to evaluate polynomials. In

International Symposium on Mathematical Foundations of Computer Science, pages 135–147. Springer, 1977.
[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701–717, October 1980.

[Sch82] Arnold Schönhage. The fundamental theorem of algebra in terms of computational complexity. Manuscript. Univ. of Tübingen, Germany, 1982.
[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Conference on Computational Complexity, 2016.

Manuscript submitted to ACM

https://github. com/dasarpmar/lowerbounds-survey/releases
https://github. com/dasarpmar/lowerbounds-survey/releases

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu

[SS93] Tateaki Sasaki and Mutsuko Sasaki. A unified method for multivariate polynomial factorizations. Japan journal of industrial and applied
mathematics, 10(1):21–39, 1993.

[ST20] Amit Sinhababu and Thomas Thierauf. Factorization of polynomials given by arithmetic branching programs. In 35th Computational
Complexity Conference (CCC 2020), 2020. https://eccc.weizmann.ac.il/report/2020/077/.

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathematik, 264:184–202, 1973.
[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal of complexity, 13(1):180–193, 1997.
[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends® in Theoretical

Computer Science, 5(3–4):207–388, 2010.
[Tay15] Brook Taylor. Methodus incrementorum directa et inversa [direct and reverse methods of incrementation] (in latin). 1715. (Translated into

English in Struik, D. J. (1969). A Source Book in Mathematics 1200–1800. Cambridge, Massachusetts: Harvard University Press. pp. 329–332.).

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May
2, 1979, Atlanta, Georgia, USA, pages 249–261, 1979.

[VL97] Paul MB Vitanyi and Ming Li. An introduction to kolmogorov complexity and its applications. 34(10), 1997.

[VSBR83] Leslie G. Valiant, Sven Skyum, Stuart Berkowitz, and Charles Rackoff. Fast parallel computation of polynomials using few processors. SIAM
Journal on Computing, 12(4):641–644, 1983.

[VzG84] Joachim Von zur Gathen. Hensel and newton methods in valuation rings. Mathematics of Computation, 42(166):637–661, 1984.
[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge university press, 2013.

[vZGH96] Joachim von Zur Gathen and Silke Hartlieb. Factorization of polynomials modulo small prime powers. Univ.-Gesamthochsch.-Paderborn,

Fachbereich Mathematik-Informatik, 1996.

[vzGK85] Joachim von zur Gathen and Erich Kaltofen. Factoring sparse multivariate polynomials. Journal of Computer and System Sciences, 31(2):265–287,
1985.

[Wik] Wikipedia. Cauchy matrix. https://en.wikipedia.org/wiki/Cauchy_matrix.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, EUROSAM ’79, pages 216–226, 1979.

[ZS75] Oscar Zariski and Pierre Samuel. Commutative algebra. II. Reprint of the 1960 edition, volume 29. Graduate Texts in Mathematics, 1975.

A NUMERICAL ANALOG OF THEOREM 1 : PROOF OF CLAIM 1

Claim 1 (restated). For each root 𝑎 ∈ (0, 1) of 𝑓 (𝑥), there is some 2
𝑚-bit approximation 𝑎′ such that bitsize(𝑎′) ≤

𝑂 ((𝑠 +𝑚) · log(1

𝜖)), where bitsize(𝑓) =: 𝑠 , and 𝜖 ∈ (0, 1) lower bounds the gap between 𝑎 and the other roots of 𝑓 (𝑥).

Proof sketch– Nowwe give the main s in the numerical result (the algebraic analog Theorem 1 would be more involved to

prove as it is stronger). We use general Newton iteration (or, NI with multiplicity). Observe that, we are interested in an

existential statement; so, assume that we know the multiplicity𝛾 of the root 𝑎 before-hand. Suppose, 𝑓 (𝑥) = (𝑥−𝑎)𝛾𝑔(𝑥)
where 𝑔(𝑎) ≠ 0. Assume that 𝑔(𝑥) = ∏𝑟

𝑖=1
(𝑥 − 𝑏𝑖)𝛾𝑖 .

Hypothesis says that |𝑎 − 𝑏𝑖 | ≥ 𝜖 , for all 𝑖 . We will use general NI to approximate 2
𝑚

bits of 𝑎 (in this case after the

decimal-point only). We will start with 𝑦0 such that |𝑦0 − 𝑎 | ≤ 𝜖 · 2
−3(𝑚+𝑠)−1

. Thus, to start with, 𝑦0 has a trivial circuit

of bitsize 𝑂 ((𝑚 + 𝑠) log(1

𝜖)).
Next, we use the general NI formula [DB08, Eqn.6.3.13], i.e.

𝑦𝑡+1 = 𝑦𝑡 − 𝛾 · 𝑓
𝑓 ′

����
𝑦𝑡

.

Finally, we need to show that the process has quadratic convergence. Inductively, we want to show that for all 𝑡 ≥ 0,

|𝑦𝑡 − 𝑎 | ≤ 𝜖 · 2
−3(𝑚+𝑠) · 2

−2
𝑡

. (5)

Note that the above inequality implies that 𝑦𝑚 is a 2
𝑚
-bit approximation of 𝑎. Moreover, computing 𝑦𝑡+1 as a circuit–

given the value 𝑦𝑡 and circuits for 𝑓 (𝑥), 𝑓 ′(𝑥) –requires 𝑂 (𝑠) additional bitsize (remember ÷ is allowed in the circuit).

So, 𝑦𝑚 will have a circuit of bitsize 𝑂 ((𝑠 +𝑚) log(1

𝜖)).

Manuscript submitted to ACM

https://eccc.weizmann.ac.il/report/2020/077/
https://en.wikipedia.org/wiki/Cauchy{_}matrix

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Discovering the roots: Uniform closure results for algebraic classes under factoring 37

We are only left to prove Equation 5. We have,

𝑓 (𝑦𝑡)
𝑓 ′(𝑦𝑡)

=
(𝑦𝑡 − 𝑎)𝛾𝑔(𝑦𝑡)

(𝑦𝑡 − 𝑎)𝛾−1 · (𝛾𝑔(𝑦𝑡) + (𝑦𝑡 − 𝑎)𝑔′(𝑦𝑡))

=
(𝑦𝑡 − 𝑎)𝑔(𝑦𝑡)

𝛾𝑔(𝑦𝑡) + (𝑦𝑡 − 𝑎)𝑔′(𝑦𝑡)
.

Hence,

|𝑦𝑡+1 − 𝑎 | =
����𝑦𝑡 − 𝑎 − 𝛾 𝑓 (𝑦𝑡)𝑓 ′(𝑦𝑡)

����
=

����(𝑦𝑡 − 𝑎) (
1 − 𝛾𝑔(𝑦𝑡)

𝛾𝑔(𝑦𝑡) + (𝑦𝑡 − 𝑎)𝑔′(𝑦𝑡)

)����
= |𝑦𝑡 − 𝑎 |2 ·

���� 𝑔′(𝑦𝑡)
𝛾𝑔(𝑦𝑡) + (𝑦𝑡 − 𝑎)𝑔′(𝑦𝑡)

����
= |𝑦𝑡 − 𝑎 |2 ·

����𝛾 𝑔(𝑦𝑡)𝑔′(𝑦𝑡)
+ (𝑦𝑡 − 𝑎)

����−1

≤ |𝑦𝑡 − 𝑎 |2 ·
(���� 𝑔(𝑦𝑡)𝑔′(𝑦𝑡)

���� − |𝑦𝑡 − 𝑎 |
)−1

.

Observe that by Leibniz rule:

𝑔′(𝑦𝑡)
𝑔(𝑦𝑡)

=

𝑟∑
𝑖=1

𝛾𝑖

𝑦𝑡 − 𝑏𝑖
.

By the induction hypothesis |𝑦𝑡 − 𝑎 | ≤ 𝜖2
−3(𝑚+𝑠) · 2

−2
𝑡
; so, we have for all 𝑖 ∈ [𝑟]:

|𝑦𝑡 − 𝑏𝑖 | ≥ |𝑎 − 𝑏𝑖 | − |𝑦𝑡 − 𝑎 | ≥ 𝜖 · (1 − 2
−2

𝑡

2
−3(𝑚+𝑠)) .

Since 𝛾𝑖 , 𝑟 ≤ 2
𝑠
(because bitsize-𝑠 circuit can have degree at most 2

𝑠
), we can upper bound as:����𝑔′(𝑦𝑡)𝑔(𝑦𝑡)

���� ≤ ∑
𝑖∈[𝑟]

𝛾𝑖

|𝑦𝑡 − 𝑏𝑖 |
≤ 2

2𝑠

𝜖 (1 − 2
−2

𝑡
2
−3(𝑚+𝑠))

.

This means,

��� 𝑔 (𝑦𝑡)
𝑔′ (𝑦𝑡)

��� ≥ 2
−2𝑠−1𝜖 . Consequently,���� 𝑔(𝑦𝑡)𝑔′(𝑦𝑡)

���� − |𝑦𝑡 − 𝑎 | ≥ 2
−2𝑠−1𝜖 − 𝜖2

−3(𝑚+𝑠) · 2
−2

𝑡

= 𝜖2
−3𝑠 ·

(
2
𝑠−1 − 2

−3𝑚 · 2
−2

𝑡
)

Hence,

|𝑦𝑡+1 − 𝑎 | ≤ |𝑦𝑡 − 𝑎 |2 ·
(���� 𝑔(𝑦𝑡)𝑔′(𝑦𝑡)

���� − |𝑦𝑡 − 𝑎 |
)−1

≤ 2
−2

𝑡+1

(𝜖 · 2
−3(𝑚+𝑠))2 ·

(
𝜖2

−3𝑠
)−1

≤ 2
−2

𝑡+1

· 𝜖 · 2
−3(𝑚+𝑠)

This finishes the inductive step and we are done. □

We leave some interesting questions open: Can we improve bitsize(𝑎) to poly(𝑠 +𝑚)? Can we prove a bound for

bitsize(𝑎) without requiring ÷ gates?

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 Previously known closure results
	1.2 Our results
	1.3 Polynomial factoring and power series roots

	2 Preliminaries
	2.1 A Primer on Algebraic Models
	2.2 Mathematical Toolkit

	3 Factorization of polynomials over power series ring
	3.1 Reducing factoring to power series root approximation:

	4 Main Results: High Degree Circuits
	4.1 Factors of a circuit with low-degree radical: Proof of Theorem 1
	4.2 Low degree factors of general circuits: Proof of Theorem 2

	5 Closure of restricted complexity classes: Proof of Theorem 3
	5.1 Randomized factoring algorithm for formulas and ABPs

	6 Extensions
	6.1 Closure of approximative complexity classes
	6.2 When field is not algebraically closed
	6.3 Multiplicity issue in prime characteristic

	7 Conclusion
	References
	A Numerical analog of Theorem 1 : Proof of Claim 1

