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Abstract

Mulmuley and Sohoni (2001) proposed an ambitious program, the Geometric Complex-
ity Theory (GCT), to prove P ̸= NP and related conjectures using algebraic geometry and
representation theory. Gradually, GCT has introduced new structures and questions in com-
plexity. GCT tries to capture the algebraic/geometric notion of ‘approximation’ by defining
border classes. Surprisingly, (Kumar ToCT’20) proved the universal power of the border of top-
fanin-2 depth-3 circuits (Σ[2]ΠΣ); which is in complete contrast to its classical model. Recently,
(Dutta,Dwivedi,Saxena, FOCS’21) put an upper bound, by showing that bounded-top-fanin
border depth-3 circuits (Σ[k]ΠΣ for constant k) can be computed by a polynomial-size algebraic
branching program (ABP). It was left open to show an exponential separation between the class
of ABPs and Σ[k]ΠΣ.

In this article, we show a strongly-exponential separation between any two consecutive
border classes, Σ[k]ΠΣ and Σ[k+1]ΠΣ, establishing an optimal hierarchy of constant top-fanin
border depth-3 circuits. Put in GCT language: we prove an exponential-hierarchy for padded-
k-th-secant-varieties of the Chow variety of Fn+1. This positively answers [Open question
2 of Dutta,Dwivedi,Saxena FOCS’21] and [Problem 8.10 with constant r, of Landsberg, An-
nal.Ferrara’15].

Keywords. approximative, border, depth-3, hierarchy, formula, GCT, secant variety, padded,
ABP, ROABP, ARO, VF, inhomogeneous.
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1 Introduction

The main aim of Computational Complexity is to fathom, as meticulously as possible, the amount
of computational resources required to perform computational tasks. These resources could be of
various kinds depending on the computational model under consideration— e.g., time/ space for
Turing machines; size/ depth/ fanin for boolean and algebraic circuits; and so on. A fundamental
question in this context is “Does more (of the same) resource =⇒ more power?”. Classical theorems
in Computational Complexity such as the Time Hierarchy [HS65] and Space Hierarchy [SHL65]
answer this question (affirmatively) for the resources of time respectively space on multitape Turing
machines. In this paper, we consider an analogous question for algebraic circuits.

A polynomial f ∈ F[x1, . . . , xn], over a field F, is computable by an algebraic circuit of size s
and depth d, if there exists a directed acyclic graph whose size (number of nodes and edges) is ≤ s,
and depth is ≤ d, such that its leaf nodes are labeled by variables or field-constants, internal nodes
are labeled with field-operators (+ and ×), and the polynomial computed at the root is f . For
polynomial f , the size of the smallest circuit computing it, is denoted as size( f ). Another important
complexity parameter is the depth – the length of the longest path in the circuit (from leaf to root).
In this paper, we are interested in depth-3 circuits Σ[k]ΠΣ; they compute polynomials of the form
∑i∈[k] ∏j ℓij, where ℓij are affine linear functions.

We consider the question of proving a top-fanin-hierarchy theorem for algebraic circuits (in the
border/ approximative sense). Informally, we ask the following.

Question 1 (The fanin-hierarchy question). For fixed k ≥ 1, are there ‘explicit’ families of polynomials
Pn ∈ F[x1, . . . , xn], such that Pn can be ‘approximated’ by a small Σ[k+1]ΠΣ-circuit but not ‘approximated’
by a small Σ[k]ΠΣ-circuit?

See section 2 for the definition of terms ‘explicit’ and ‘approximation’. Explicitness, and approxima-
tion by a small Σ[k]ΠΣ, are natural constructive hypotheses; as without these, a simple geometric-
dimension argument lower-bounds top-fanin in a non-constructive way. Interestingly, if one consid-
ers the above question in the classical ‘exact’ setting (i.e. without approximation), there is an easy
impossibility result known, which shows that the inner product polynomial, IPk+1 := ∑i∈[k+1] xi · yi,
for k ≥ 1, cannot be computed by Σ[k]ΠΣ-circuit regardless of the size; see [Kum20, CGJ+18].

However, the unexpected universality of border depth-3 fanin-2 circuits [Kum20] means that the
classical impossibility result breaks down in the border for k ≥ 2; for a detailed statement, see sub-
section 1.1. Therefore, an exponential separation between the two classes becomes a nontrivial
& intriguing question to study. In this work, we affirmatively and optimally answer Question 1;
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see Theorem 1 and its remarks. In particular, this is related to fundamental variety construc-
tions in geometric complexity theory (GCT). As one can see, Question 1 is a simply-phrased
question, and our candidate polynomial will be simple (namely, degree d version of IPk+1; see sub-
section 1.2). But, solving Question 1 is far from obvious and we will employ quite powerful models
like ABP,ARO,Gen(k, s) in the proofs; for respective definitions, see Appendix A and section 4.

So, here we remind a few important models of computation which appear in our proofs. For
e.g., if in a circuit, out-degree of internal nodes is 1, then it is a formula. Any formula can be converted
into a layered graph called algebraic branching program (ABP) with polynomial blowup in size. With
different models, comes different complexity classes which accordingly classify polynomials. For
e.g. VP is the class of polynomials of polynomial degree, computable by polynomial-sized circuits.
Similarly, one can define VBP and VF, for ABPs respectively formulas. Finally, polynomials in VNP,
can be expressed as an exponential-sum of projection of a VP circuit. Valiant [Val79] conjectured
that VBP ̸= VNP (respectively VP ̸= VNP), as an algebraic analog of the P vs. NP problem. For
details, see [SY10, Mah13].
Inception of GCT. In [MS01], Ketan Mulmuley and Milind Sohoni developed the Geometric
Complexity Theory (GCT) program and strengthened Valiant’s conjecture to: VNP ̸⊆ VBP,
i.e. ℓm−n · permn(X) ̸∈ GLm2(C) · detm(X), for a linear form ℓ and m = poly(n). In words: padded
permanent does not lie in the orbit closure of ‘small’ determinants. This padding was required
to tackle non-homogeneity. Of course, the hope in the GCT program, is to convert complexity
lower bound questions to algebraic geometry terms; and then translate algebro-geometric ques-
tions to those in representation theory, and finally solve them using rich mathematics. In a way,
it advances the notion of border complexity which has intimate connections with diversified top-
ics including – designing matrix multiplication algorithms [Str74, Bin80, BCRL79, CW90, LO15],
computational invariant theory [FS13, Mul12b, GGOW16, BGO+18, IQS18], algebraic natural
proofs [GKSS17, BIL+21, CKR+20, KRST20], lower bounds [BI13, Gro15, LO15], optimization
[AZGL+18, BFG+19], derandomization [Mul12a, Muk16, DDS21], and many more. We refer
to [BLMW11, Mul12b, Mul12a] for expository references.
Algebraic approximations. Perhaps the simplest notion of the approximative closure comes from
the following definition [Bür04, Bür20]: Polynomial f (x) ∈ F[x1, . . . , xn] is approximated by rational-
function g(x, ϵ) ∈ F(ϵ)[x] if there exists polynomial S(x, ϵ) ∈ F[ϵ][x] such that g = f + ϵ S. In
F = R, it mimics the Euclidean topology: we can think analytically that limϵ→0 g = f . The
class C, the approximative closure of a complexity class C, can be defined analogously. Note that,
arbitrary ϵ-power is allowed as ’cost-free’ constants when computing g ∈ C. Further, algebraically
one can define the closure as Zariski closure, over any field F, i.e. take the closure of the set of
polynomials, considered as points, of C. Interestingly, these notions are known to be equivalent over
the algebraically closed field C [Mum95, S2.C]; which is usually the source of all geometry ideas.
Complexity measure. The approximative (or border) complexity of f , denoted size( f ), is the mini-
mum size of the circuit computing g, over F(ϵ); evidently, size( f ) ≤ size( f ). Due to the possible
(1/ϵ)-power terms in the circuit computing g, evaluation at ϵ = 0 is not necessarily valid, although
the ‘limit’ exists. Hence, any relation between the border and the exact complexity of f is not at all
clear. Since g = f + ϵ · S, we could interpolate by setting ‘random’ ϵ-values from F. However, the
trivial bound on the circuit size of f would linearly depend on the degree M of ϵ (& 1/ϵ); which is
known to be exponential in the size of the circuit computing g ! Therefore, the following relation is
the best one known: size( f ) ≤ size( f ) ≤ exp(size( f )) [Bür04, Theorem 5.7].
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1.1 The Chow variety and lower bounds in GCT

Border depth-3 circuits: An algebraic view. Since, depth-2 circuits are closed under taking limit,
i.e. ΠΣ = ΠΣ and ΣΠ = ΣΠ, it is natural to study border of depth-3 circuits. Again, it is not hard
to show that ΠΣΠ = ΠΣΠ which leaves us to understand ΣΠΣ. Kumar [Kum20] showed that
border depth-3 fanin-2 circuits are ’universal’; i.e. Σ[2]Π[D]Σ over C(ϵ) can approximate any d-degree,
n-variate polynomial 1; though this expression requires an exceedingly large D = exp(n, d). In the
case of ‘smaller’ D, [DDS21] proved that Σ[k]ΠΣ ⊆ VBP; formally any f ∈ Σ[k]ΠΣ, of approximative
circuit size s, can be exactly computed by (affine projection of) determinant of size sexp(k). This
raises a basic open question: Σ[k]ΠΣ

?
̸= VBP (even, Σ[k]ΠΣ

?
̸= VNP is left open!).

Border depth-3 circuits: A geometric view. Theoretical computer scientists are interested in proving
‘robust’ lower bounds, i.e. lower bound results & techniques which would also work under limit.
This could be roughly translated into asymptotic geometry terms as follows: Given a sequence of
some ‘nice’ vector spaces Vn, and sequences of points and groups, does the inclusion (by inclusion, we mean
the points under the group action in Vn) fail for every n ≥ n0, for some n0? The Chow variety is one of
the simplest varieties studied in the field of algebraic geometry; it is believed to be a good testing
ground for GCT [Lan15, Section 2]. Interestingly, this goes back to 19th century mathematics,
studied independently by Hermite (1854) and Hadamard (1897).

Informally, if one specializes to group of diagonal matrices and takes the orbit closure, one
obtains the famous Chow variety, Chd(W) ⊂ PSdW; usually W = Cn (or, for detn/ permn, Cn2). We
denote by SdW, the space of polynomials of degree d on W∗, PV denotes the projective space and
we denote [v] as a corresponding point. Then, formally,

Chd(W) := {[z] ∈ PSdW | z = w1 . . . wd, forwj ∈ W} .

Therefore, one can define the Chow rank of a homogeneous polynomial f of degree d, denoted
rankCh( f ), to be the minimum k such that f = ∑k

i=1 ∏d
j=1 ℓij, where ℓij are linear forms. Often in

the literature, rankCh( f ) = k is equivalently expressed as: the smallest k such that f (as a point) is
in σ0

k (Chd(W)) (= set of points with Chd(W)-rank at most k).
Moving to the approximative setting, one defines Chow border rank, rankCh( f ), as the border

analogue of the Chow rank. In other words, rankCh( f ) = k ⇐⇒ f ∈ σk(Chd(W)) = the Zariski
closure in PSdW of σ0

k (Chd(W)); it is called the k-th secant variety2 of the Chow variety of W. For
details, refer to [Lan15, Lan17]. These two ranks happen to exactly coincide with the depth-3
respectively border depth-3 homogeneous circuits of f , with the smallest fanin k.

In general, from algebraic complexity perspective, we are interested in the non-homogeneous
setting. For instance, Kumar’s expression [Kum20, Section 3.1] is non-homogeneous. However,
with suitable padding (& W = Cn+1), Kumar’s result translates into geometric terms: For any
degree-d homogeneous polynomial f , there exists a linear form ℓ such that ℓm−d f ∈ σ2(Chm(W)), for
m = exp(n, d), or equivalently, rankCh(ℓm−d f ) = 2. On the other hand, if one restricts m = poly(n, d),
Dutta, Dwivedi and Saxena [DDS21] showed that σ2(Chm(W)) ⊆ VBP; the same result holds if one
replaces σ2 by σk, as long as k is a constant. They called this phenomenon de-bordering.
Quest for lower bounds. Perhaps, the upper bound (de-bordering) results are must-to-understand,

1[Kum20] states the result for homogeneous polynomials. But trivially, the proof also works for any non-homogeneous
polynomial, by homogenizing it using a new variable x0, and finally de-homogenizing it by setting x0 = 1.

2For a given variety X, s-th secant variety of X is Zariski closure of the union of all secant (s − 1)-planes to X.
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to demystify the limitations and power of computations/approximations in different models. How-
ever, identifying explicit polynomials which are hard to compute/approximate, and proving it
remains a major template in algebraic complexity. A significant result of Baur and Strassen [Str73,
BS83] shows existence of an explicit n-variate degree-d polynomial which requires circuits of size
at least Ω(n · log d). Though for d = poly(n), it gives superlinear lower bound, ideally one would
hope for at least a super-polynomial, optimistically even exponential, lower bound. Since it can be
proved that ‘most’ polynomials require exponential size circuits to compute/approximate.

Similarly, if one restricts themodel of computation, we have better lower bounds; for eg. formulas.
Kalorkoti [Kal85] showed Ω(n2/ log n) formula lower bound for an explicit n-variate polynomial,
which could be easily extended to the approximative setting. We refer the readers to [Sap19] for a
comprehensive survey of lower bounds in algebraic complexity.

The situation inGCT, is noway better and near towhatwas expected at its inception. The linchpin
of the GCT program was that the permanent and determinant are both uniquely characterized (up
to a constant factor) by their symmetries; and moreover, lower bounds are equivalent to orbit
closure containment [Gro12, Section 3.3.2]. Therefore, the ’simplest’ way of proving lower bound
would be to find occurrence obstructions, i.e. finding an irreducible representation with multiplicity
for permanent larger than that of determinant. However a strongly ‘negative’ result by Bürgisser,
Ikenmeyer, and Panova [BIP19] almost refuted this approach.

On the contrary, a recent breakthrough result by Limaye, Srinivasan & Tavenas [LST21] showed
the first superpolynomial lower bound against general algebraic circuits/formulas of constant-depth,
over all fields of characteristic 0 or large. Since their method is linear-rank-based, the proofs can be
lifted in the border classes analogously [Gro15, AF22]. This gives us a stronger urge to continue the
quest to show exponential separation, in the constant-depth regime using non-linear/non-geometric
approaches. The current work is a step in that pursuit.

1.2 Our results: The fanin-hierarchy theorem

We state our result formally now. Our result holds for any field of characteristic 0/large characteristic.
Theorem 1 (Fanin-hierarchy exp-gap). Fix any constant k ≥ 1. There is an explicit n-variate, degree
< n polynomial f with Σ[k+1]ΠΣ size O(n), while f requires an exponential (=2Ω(n)) size Σ[k]ΠΣ-circuit.

Remarks. 1. Interestingly, Theorem 1 is optimally exponential for k ≥ 2, as (2n
n ) = 2Θ(n) is also an

upper bound in Kumar’s [Kum20] fanin-2 representation. Thus, we have completely characterized
the gap between two constant-top-fanin border depth-3 circuits.

2. Consider the following degree-d (> 2) polynomial on 3d-variables f (x) := x1 · · · xd +
xd+1 · · · x2d + x2d+1 · · · x3d. Note that f (x) has a trivial Σ[3]ΠΣ circuit of size O(d). Surprisingly, our
proof method actually shows that f has a Σ[2]ΠΣ-border complexity of 2Θ(d).
Aword on the polynomial family. Our candidate polynomial family, for a fixed k, is the sum-product
polynomial3 Pk+1 := (Pk+1,d)d, where

Pk+1,d := ∑
i∈[k+1]

d

∏
j=1

x(i−1)d+j .

This is a strict generalization of the inner product polynomial IPk+1, defined before. Using [Kum20,
Theorem 1.3], it follows that IPk+1 ∈ Σ[2]Π[O(k)]Σ. Therefore, we cannot show a strong size lower

3This term has been taken from [Lan17, Section 8.12.2].
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bound against IPk+1. This can be mitigated by working with general d-degree monomials (instead
of quadratic ones); though the technique to prove an exponential lower bound is far from obvious
due to the ‘limit’ operator.

Clearly, Pk+1,d is a multilinear degree-d polynomial on (k + 1) · d-variables. Lower bounds for
P2 has been studied by Shpilka [Shp02], in a different context. This polynomial is closely related
to the Trace-Iterated-Matrix-Multiplication, Tr-IMMk+1,d, which is the trace of the product of d-
many (k + 1)× (k + 1) symbolic matrices Xr, tr(∏r∈[d] Xr), where the (i, j)-th entry of the matrix
Xr is x(r)i,j . In particular, take diagonal matrices Xr with (i, i)-th entry being the variable x(i−1)d+r.
Clearly, Pk+1,d = tr(X1 · · · Xd). Trivially, this is a restriction on Xr, implying that our proof holds for
Tr-IMMk+1,d as well.
Non-triviality and implications. 1. If we restrict ourselves to only homogeneous setting, then it is
easy to argue that Pk+1,d, cannot be computed by a homogeneous Σ[k]ΠΣ circuit. The proof directly
extends to the border, where substituting k many linear forms to 0, one from each product, makes the
circuit 0 while it cannot make Pk+1,d vanish; for a proof see Corollary 3. However, this impossibility
result no longer holds when we allow non-homogeneity [Kum20]. The naive proof methods fail
miserably, as setting many affine linear functions to zero leads to inconsistency. Eg. x1 − ϵx2 and
x1 − ϵx3 − 1 are never both zero in the border (as ϵ → 0); while at the same time x2, x3 contribute in
the computation due to the use of the powers of (1/ϵ). This is what lends the, seemingly innocuous,
border computing model Σ[2]ΠΣ, the universal expressive power!

2. Also, efficient PIT algorithms are known for Σ[k]ΠΣ circuits [LST21, DDS21]. However, they
are not known to imply strong lower bounds in the same model. This is primarily due to the fact that
this model is computationally weak; and does not facilitate the known proof techniques for proving
lower bounds from derandomization results. The latter techniques, in particular, are insensitive to
fanin-k [HS80, KI03, AGS19, KS19]; as they require the ability to interpolate, which blows-up the
top-fanin of the model.

3. Moreover, it was asked in [DDS21] whether Σ[k]ΠΣ ̸= VBP or not. Our proof of Theorem 1,
in fact, shows an exponential separation between Σ[k]ΠΣ and Σ[k+1]ΠΣ. Consequently, we have
exponentially-separated Σ[k]ΠΣ from VF (respectively VBP, VNP).

4. Further, ours is probably the first strong depth-3 lower bound in the border setting which is
non-rank-based, non-geometric (absence of algebraic geometry abstraction), and does not really
care about the upper bound on the ϵ-power that hides in the expression.

5. The same proof can be adapted for detd and permd analogously. Interestingly, Theorem 1
answers a restricted version of a question asked in [Lan15, Problem 8.10]; namely, ℓm−d · detd ̸∈
σr(Chm(W)), for any m ≤ 2o(d) and constant r. Geometrically, Theorem 1 exponentially separates
the padded k-th-secant varieties of the Chow variety of W = Cn+1, for all constants k.

Comparing our parameters with [LST21] breakthrough. Interestingly, our proof method works
with both IMMk+1,d (where instead of trace, one is interested in (1, 1)-th entry), and the trace
version Tr-IMMk+1,d, already defined before. The linear-rank-based lower bound method by Limaye,
Srinivasan & Tavenas [LST21] shows (which extends to the border as well) ‘only’ a superpolynomial
separation between depth-3 (unbounded fanin) circuits and IMM, with different parameters [thus
showing a superpolynomial separation between VBP and Σ[k]ΠΣ]. Their dominating variable is n
(with d = o(log n)) and they showed an n

√
d lower bound (which further weakens above depth-
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4); which is not optimal (as optimal would be nd). While, we show an optimal lower bound of
≈ ((k+1)d+d

d ) ≈ 2Ω(d) [thus establishing an exponential separation between VBP and Σ[k]ΠΣ], since
we take k = O(1) and our dominating variable is d.

More significantly, [LST21] shows a superpolynomial-gap depth-hierarchy; while our result is
about an exponential-gap fanin-hierarchy inside the depth-3 regime. In summary, the parameters
and the results in [LST21] are incomparable with ours, and their method is very different since our
method is non-linear at heart.

1.3 An overview of the proof

At a very high level, the idea behind our result is to show that if a ’robust’ polynomial family
can be computed by small bounded-top-fanin border depth-3 circuits, then after some suitable
transformation, the polynomials can also be approximated by a ratio of two small depth-3 diagonal
circuits. Recall the definition of depth-3 diagonal circuits, denoted as Σ∧Σ; they compute polynomials
of the form ∑i ℓ

ei
i , for linear polynomials ℓi. Informally, the robustness means that after substituting

constantly many variables to 0, the polynomials still continue to carry its core properties. The proof
concludes by showing that there are well-known hard polynomial families, for eg. Pk+1, which
after substituting constantly (≤ k)-many variables to 0, can not be approximated by a ratio of two
sub-exponential size Σ∧Σ circuits.

Till now it sounds uncomplicated, but the proof soon stumbles upon technical difficulties which
need serious care & machinery. We will try to point out a few of them without obscuring the main
idea; while asking the reader for a leap of faith and referring to the correct sections if needed.
Power series and dlog. In the proof, we will use the ring of formal power series R[[x1, . . . , xn]] (in
short R[[x]]), for some suitable ring R, see [Niv69, DSS18, Sin19]. One of the key benefit of this
ring comes from the inverse identity: (1 − x)−1 = ∑i≥0 xi.

The logarithmic derivative operator dlog z( f ) = (∂z f )/ f is another key tool which linearizes the
product gate, since

dlogy( f · g) = ∂y( f g)/( f g) = ( f · ∂yg + g · ∂y f )/( f g) = dlogy( f ) + dlogy(g) .

This operator enables us to use power-series expansion, and converts the ∏-gate to ∧.
Looking modulo an ideal generated by linear forms. Given a polynomial f (x) and a linear form
ℓ(x), let us try to understand what f (x) mod ℓ means; since a generalization of this will play a
key role to define the ‘robustness’. If ℓ := x1, it is just looking at f (0, x2, . . . , xn). For an arbitrary
ℓ, we apply a suitable isomorphism ϕ, on the space of linear forms, which sends ℓ to, let us say,
x1. Since, ϕ( f ) = f (Ax), for some invertible matrix A, f mod ℓ essentially translates to looking at
f (Ax) mod x1. This is nothing but equal to f (ℓ1, . . . , ℓn), for some linear forms ℓi which are x1-free,
and rankF(ℓ1, . . . , ℓn) = n − 1.

Similarly, this can be extended to looking at f (x) mod ⟨L1, . . . , Lt⟩, for some suitable t, where
⟨L1, . . . , Lt⟩ is the ideal generated by t-many linear forms Li, for i ∈ [t], i.e., any g ∈ ⟨L1, . . . , Lt⟩
must be of the form g =: ∑i∈[t] ai · Li, for some ai ∈ F[x]. In that case, we are looking at f (ℓ1, . . . , ℓn)
with rankF(ℓ1, . . . , ℓn) ≥ n − t; one could think of {ℓ1, ..., ℓn} as containing at least {xt+1, . . . , xn}.
This perspective will play a crucial role in the proofs; see Lemma 2.
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Lower bound for Σ[k]ΠΣ circuits: The overall plan

Let x := {x1, . . . , xn}, n := (k + 1)d, and polynomial f := Pk+1,d ∈ F[x]. Suppose that f ∈ Σ[k]ΠΣ
of size s, i.e. g = f + ϵ · S, where sizeF(ϵ)(g) ≤ s (as a Σ[k]ΠΣ-circuit), S ∈ F[ϵ, x]. We want to
understand the parameter s as a function of k and d. Assume that 1 ≤ k < d.
▶ k = 1 case. [BIZ18, Prop. A.12] showed that ΠΣ = ΠΣ. Eventually, the proof relies on

the fact that the product distributes the ϵ-powers showing (ΠC) ⊆ Π(C), for any reasonable class
C (see Lemma 14); here by f ∈ ΠC we mean f =: ∏ fi, where fi ∈ C. Thus, it suffices to show
that P2,d does not have any ΠΣ circuit (i.e. impossibility). It is evident that P2,d is an irreducible
polynomial. One way to argue is: since, P2,d is a homogeneous polynomial, all its factors must be
homogeneous. Thus, take a linear form ℓ that divides P2,d. As argued in Lemma 2, there are linear
forms ℓ1, . . . , ℓn with n = 2d such that

P2,d mod ℓ = P2,d(ℓ1, . . . , ℓn), and rank(ℓ1, . . . , ℓn) = n − 1 .

Thus, it is easy to deduce: RHS = ∏j∈[d] ℓj + ∏j∈[d] ℓd+j ̸= 0. This contradicts our assumption:
ℓ | P2,d.

Unfortunately, there is no analogous result to eliminate ϵ-powers in Σ[2]ΠΣ. So the above simple
idea does not extend to k = 2; hence we cannot deduce impossibility of P3,d. However, we can
continue with a part of the basic proof template, and improvise the machinery.
▶ k = 2 case: A synopsis. Recall from the definition, g := T1 + T2 = f + ϵ · S where T1, T2 are

multiplication terms (ΠΣ-circuits over F(ϵ)[x]) and f := P3,d. The sum gate makes it hard to give
any relevant information. However, if we can somehow reduce it to k = 1 case ‘carefully’, our job
gets done. To do that, let us focus on the structure of the polynomials Ti. By taking out ϵ, we could
assume that each Ti is a product of an ϵ-power, and s-many linear polynomials in F[ϵ, x], none of
which is divisible by ϵ. One of the three things can happen.

1 (Easy case). Both Ti have at least one factor whose ϵ-free term is a homogeneous linear form
over F;

2 (Intermediate case). Exactly one of Ti, say wlog, T1, has at least one factor whose ϵ-free term
is a homogeneous linear form;

3 (Hard case). None of the factors of Ti, has ϵ-free term as a homogeneous linear form.

• Handling the first case. The first case is almost similar to (but not exactly) k = 1. Suppose, a linear
form ℓ1(x, ϵ) | T1, over F(ϵ). Ideally, we would like to look at g mod ℓ1 which reduces fanin to 1.
Understanding g mod ℓ1. Wlog, ℓ1 =: x1 + ϵℓ̃1, where ℓ̃1 is x1-free; if ℓ1(ϵ = 0) ̸= x1, we can always
apply a suitable isomorphism & relabel. Interestingly, isomorphisms would not really change the
proof structure; for details see Lemma 2. Note that, g mod ℓ1 is equivalent to looking at g|x1=−ϵ·ℓ̃1

.
The immediate question would be what happens to the limit, after this substitution. Interestingly,

lim
ϵ→0

g(−ϵ · ℓ̃1, x2, . . . , xn) = lim
ϵ→0

f (−ϵ · ℓ̃1, x2, . . . , xn) = f (0, x2, . . . , xn) .

So, it is like looking at f |x1=0.
Since, f is homogeneous, so is f (0, x2, . . . , xn). By the reduced fanin, we have f (0, x2, . . .) ∈ ΠΣ,

which looks similar to studying P2,d. Thus, an argument similar to the above (k = 1) finishes
the proof of the first case. We call this case ’easy’ because we just had to work with an ideal of
appropriate linear polynomials and do substitutions.
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• Handling the second case. In the second case, we again work with a homogeneous linear form
ℓ1 | T1 and the above argument shows that f (0, x2, . . .) ∈ ΠΣ, a non-homogeneous circuit; since each
linear factor of T2 is non-homogeneous by assumption. But this cannot happen as f (0, x2, . . .) is
homogeneous and from k = 1 case, ΠΣ circuit must be homogeneous (as we have simply projected
from P3,d). This again leads to impossibility.

However, we point out that for general k, this strategy will just reduce this case to border of k − 1
sum of non-homogeneous product ΠΣ-circuits (assuming ℓ1 was the easy case instance, otherwise
we take modulo more linear forms, i.e. a non-rank-preserving projection of f via Lemma 2) which
really is the third case. It is thus justified to call this the ‘intermediate’ step.
• Handling the third case. This is the hardest among the three, since the modulo idea becomes
unreliable due to inhomogeneous ideals. Primary counter-example being: if each ℓi | T1 (similarly
T2) is such that ℓi|ϵ=0 = 1, then the above substitution idea becomes nonsensical! For e.g., take
k = 2, ℓ1 = 1 and ℓ2 = 1 + ϵ · ℓ, for some non-zero linear form ℓ ∈ F[x]. Strikingly, this is exactly
the format of expressing arbitrary f as border of T1 + T2 in [Kum20, Section 3.1] (T1 was picked
as an ϵ-power). Clearly, this implies that the all-non-homogeneous case should be the proof’s core
part. Our analysis in the above also shows that it suffices to show lower bound for this specific
all-non-homogeneous case.

The basic idea now is to show that (i) assuming the all-non-homogeneous structure and after
some operations, f can be almost-written as an poly(s)-sized Σ∧Σ circuit, (ii) f = P3,d, requires
2Ω(d)-sized Σ∧Σ to compute, implying s ≥ 2Ω(d), as desired!
• Technical details: A bird’s overview. To start with, we apply a simple variable-scaling map
Φ : F(ϵ)[x] → F(ϵ)[x, z] that scales xi 7→ z · xi. This makes z the “degree counter” as it helps track
the degree of the polynomial; but more importantly it allows us univariate derivation. Now, let the
maximum power of ϵ dividing T2 be a2 (which could be < 0), i.e., Φ(T2) = ϵa2 · T̃2. Dividing both
sides by T̃2, we get

Φ(g)/T̃2 = ϵa2 + Φ(T1)/T̃2
differentiate wrt z

=⇒ ∂z (Φ(g)/T̃2) = ∂z (Φ(T1)/T̃2) ,

where ∂z(·) := d(·)/dz. This has reduced the number of summands on the right hand side to 1,
although the surviving summand has become more complicated now. Further, (seemingly) we
have no control on what happens as ϵ → 0.

What is limϵ→0 ∂z(Φ(g)/T̃2)? Note: (i) Φ is a scaling map and f is homogeneous, and (ii) T̃2
is invertible both in the ring of power series in z and ϵ, and limϵ→0 T̃2 =: c mod z, for c ∈ F \ {0}.
Using these, it can be seen that ∂z(Φ(g)/T̃2) ≡ c′ · zd−1 · f (x) mod ⟨zd, ϵ⟩, for nonzero constant c′

(see Claim 5). Formally, the following equation is well-defined:
c′ · zd−1 · f (x) ≡ ∂z(Φ(g)/T̃2) ≡ ∂z(Φ(T1)/T̃2) mod ⟨ϵ, zd⟩ . (1)

Unfortunately, we have completely disfigured the model by introducing a division gate (and then
taking a mod). This is exactly where logarithmic derivative (aka dlog) enters, with a bunch of helpful
properties. In particular, the expression ∂z

(
Φ(T1)/T̃2

) can be re-written as
Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
=

(
Φ(T1)/T̃2

)
·
(
dlog(Φ(T1))− dlog(T̃2)

)
.

Note that the dlog operator distributes the product gate into summation giving dlog(ΠΣ) =

∑ dlog(Σ), where Σ denotes linear polynomials. Observe that dlog(Σ) = Σ/Σ ∈ Σ∧Σ, the depth-3
powering circuits, over an appropriate function-ringR(ϵ, x), whereR := F[z]/⟨zd⟩. To achieve this,
analytically expand 1/ℓ, where ℓ is a linear polynomial dividing Φ(Ti), i ∈ [2], as sum of powers of
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linear functions; using the inverse identity:
1/(1 − a · z) ≡ 1 + a · z + · · ·+ ad−1 · zd−1 mod zd .

Since Σ∧Σ is ’closed’ under taking product and addition (Appendix B), we obtain a final Σ∧Σ
circuit for dlog (Φ(T1)/T̃2

). Details of this step can be found in Claim 7. Therefore, ∂z
(
Φ(T1)/T̃2

)
is actually in a bloated class – (ΠΣ/ΠΣ) · (Σ∧Σ), over R(ϵ, x) – which computes elements of
the form (A/B) · C, where A, B ∈ ΠΣ and C ∈ Σ∧Σ. Moreover, from Equation 1, computing
limϵ→0 ∂z(Φ(T1)/T̃2) mod zd suffices.

The crucial thing about these ΠΣ circuits, that appeared, is that their ΠΣ|z=0=ϵ is a nonzero
constant. Hence, the coefficient of the minimum z-power, does not have contribution from these ΠΣ
circuits at all (in the limit). Further, de-bordering, for a product gate, is distributive (Lemma 14).

Consequently, we get that limϵ→0 ∂z(Φ(T1)/T̃2) mod zd, has a poly(s)-size Σ∧Σ circuit. In partic-
ular, coefficient of zd−1 has also an Σ∧Σ-circuit of poly(s)-size, by simple interpolation (Lemma 12).
Comparing this with the LHS in Equation 1, we get that f can be computed by a poly(s)-size Σ∧Σ.
We point out that Σ∧Σ circuit has an important property that it has small partial-derivative space
(see [CKW11, Lemma 10.2] and Lemma 8), which will be crucial to show the lower bound below.

To show the lower bound, a simple cone-size argument (using partial-derivatives) shows:
the cone-size [the number of monomials dividing the given monomial; for a formal definition
see section 2] of the leading monomial (wrt some monomial ordering) in f is 2d; whereas for the
Σ∧Σ, it should have an upper bound of poly(s). This implies the desired lower bound of s ≥ 2Ω(d);
while trivially f = Pk+1,d has Σ[k+1]ΠΣ-size O(d). For details, see Lemma 8.
▶ Extending the proof to general k. The general constant k case is a bit more technical and it

depends on a more general bloated class (it is in depth-5):
Gen(k, s) := Σ[k] (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) ,

they compute elements of the form ∑k
i=1(Ui/Vi) · (Pi/Qi), where Ui, Vi ∈ ΠΣ, invertible in the ring,

and Pi, Qi ∈ Σ∧Σ, and the circuit (with division allowed) has size s; see Definition 2. Moreover, we
will show three important properties:

(i) if Pk+1,d was computed by a Σ[k]ΠΣ-circuit, then there are linear forms ℓ1, . . . , ℓn, with n :=
(k + 1)d, such that rank(ℓ1, . . . , ℓn) ≥ n − k, and Pk+1,d(ℓ1, . . . , ℓn) can be computed by an
‘all-non-homogeneous’ Σ[m]ΠΣ-circuit, for some m ≤ k (Lemma 2),

(ii) Pk+1,d(ℓ1, . . . , ℓn) · (Σ∧Σ/Σ∧Σ), is the coefficient of the minimum z-power in the limit of a
small Gen(1, ·) circuit, see induction-hypotheses-4 in subsection 4.1,

(iii) the coefficient of the minimum z-power in limϵ→0 Gen(1, ·) is a ratio of two ‘small size’ Σ∧Σ
circuits (Claim 7).

Though this circuit ‘division’ along with the non-rank-preserving projection make things scarier,
we keep calm and manage to adapt the above cone-size comparison, to argue an exponential lower
bound on s; see Lemma 8.

(im)Possibility of a ‘simpler’ proof, and comparison with [DDS21]

The crux of this lower bound approach is to — (1) ‘convert’ the general problem into all-non-
homogeneous setting (to reap the advantages of ΠΣ|z=0=ϵ being a nonzero constant) and then, (2)
do the standard dimension argument carefully. So, one would wonder whether we can just shift
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the x-variables randomly at first, achieving the desired non-homogeneity, and proceed without
doing the case-analysis! However, if we work with Pk+1,d(x + a), a ∈ Fn, and variable-scale
to get Pk+1,d(zx + a), this becomes very hard to handle even after one division and derivation
(subsection 4.1). Since ∂z(Pk+1,d(zx + a)) ‘spreads’ the coefficients of Pk+1,d across different z-
powers; we cannot use anymore the last-step argument we gave above for Pk+1,d · (Σ∧Σ/Σ∧Σ). This
product gets stuck in the notorious polynomial multiplication convolution.

To elaborate, let us say, for k = 2, there is a size-s depth-3 fanin-2 circuit approximating Pk+1,d; af-
ter shifting-and-scaling, dividing, deriving and using dlog and finally taking limit, wewill eventually
get that

∂z (Pk+1,d(zx + a)/ΠΣ) ≡ Σ∧Σ · (ΠΣ) mod zd ,

for poly(s)-sized Σ∧Σ and ΠΣ-circuits. From this expression showing an exponential lower bound
on s is not clear at all. The non-homogeneity kills the property (which holds in our proof sketched)
that minimum z-power carries the full ‘hardness information’ of Pk+1,d (see subsection 4.1, induction-
hypothesis-4). Moreover, for a larger k, it is even worse, since we do not understand how to ‘lift’
(back to f ) the lower bound from the polynomial after doing (k − 1)-many times ‘division and
derivation’ to f . We remark that lifting requires interpolation, which is why [DDS21] moved to
ABP/ABP, instead of our weaker model Σ∧Σ/Σ∧Σ (in fact, it was analyzed via ARO/ARO). We
avoid lifting in our current proof case by exploiting the minimum z-power property.

Since the homogeneity of f is crucial for our proof to work, it requires us to reduce the border
circuit to all-non-homogeneous setting (namely, the ‘hard case 3’ above). We do this carefully
without any variable-shift (Lemma 2), so that the homogeneity of f is maintained and yet ‘all’ the
linear functions are invertible! For a ‘coarser’ upper bound of ABP, [DDS21] did not require these
innovations at all.

After reducing to the all-non-homogeneous case, we do use DiDIL technique to analyze Σ[k]ΠΣ,
introduced in [DDS21]. DiDIL is an acronym for the steps: Divide, Derive, Induct, with Limit.
In this paper, DiDIL process is applied in a new, somewhat simplified, setting; namely, to the all-
non-homogeneous case spelled in Lemma 2. Since, we do not use any shifting unlike in [DDS21],
this really gives us the advantage to closely study the target polynomial Pk+1,d, and yields certain
‘bloated’ structures, which need an intricate analysis; for details see subsection 4.1.

1.4 Known depth-3 lower bounds and their limitations

In this section, we briefly discuss about the well-known depth-3 circuit lower bounds (mostly in
the classical setting), their techniques, and why they fail to yield our result in the border.

In a very influential piece of work, Nisan and Wigderson [NW96] showed that over any field
F, any homogeneous ΣΠΣ circuit computing the determinant detd must be of size 2Ω(d). This uses
partial-derivatives method and thus can be easily adapted in the border setting. We remark that
the lower bound is actually on the top-fanin and thus for constant top-fanin k, detd can not be even
computed by a homogeneous Σ[k]ΠΣ circuit. For an alternative non-rank based proof, see Lemma 2.
Unfortunately, partial-derivative measure behaves very badly when we allow non-homogeneity,
simply because the degree-bound gets lost, and thus the proof fails miserably. Moreover, if we
focus on Pk+1,d instead of detd or IMMk+1,d, the exponential gap of k vs. (k + 1), cannot be shown via
rank methods since a naive calculation of the trivial upper bound and lower bounds do not yield
anything useful. For similar reasons, techniques from Grigoriev and Karpinski [GK98], Grigoriev
and Razborov [GR00], over fixed finite field, fails.
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There have been significant work on restricted depth-3 circuit lower bounds where the restriction
is on the bounded independence, bounded read/occur, bounded bottom-fanin etc. Amajor theme of
the proofs depend on the following reductions: It reduces the (non-homogeneous) depth-3 circuits
of top-fanin s to a subclass of depth-5 circuits where the top-fanin gets blown up to s · exp(

√
d)

[SW01, GKKS16], use a random restriction to obtain a (homogeneous) depth-4 decomposition and
then show lower bound using variant of shifted partial derivative measure [KLSS17, KS17, KS16].
Although these proofs can be adapted in the border setting, they fail to give any meaningful
hierarchy-theorem, or exponential-gap, for non-homogeneous Σ[k]ΠΣ circuits.

Even for showing lower bound for Σ[2]ΠΣ circuits, we can not probably expect to use fac-
toring or chinese remaindering (CRT) based ideas, since mod ⟨ϵM⟩, we get non-unique, usu-
ally exponentially many, factors. For e.g., x2 ≡ (x − a · ϵM/2) · (x + a · ϵM/2) mod ⟨ϵM⟩; for all
a ∈ F. In this case, there are, in fact, infinitely many factorizations. Moreover, limϵ→0 1/ϵM ·(
x2 − (x − a · ϵM/2) · (x + a · ϵM/2)

)
= a2. Therefore, infinitely many factorizations may give in-

finitely many limits, and possibilities, and thus the analysis becomes much more intricate.
In the classical affine settings, it is known that computing immanant (which includes determinant

and permanent) requires exponential size Σ[k]ΠΣ circuits [ASSS16, Theorem 1.7]. Jacobian was
used to show such strong lower bounds. However, it is not at all clear how it behaves (or defined?)
wrt limϵ→0. For eg. let f1 = x1 + ϵM · x2, and f2 = x1, where M is arbitrary large. Then, the
underlying Jacobian J( f1, f2) = ϵM is nonzero; but it becomes zero in the limit. Seemingly, this
makes the whole Jacobian machinery collapse in the border setting; as it cannot possibly give a
variable reduction for the border model. (E.g., one needs to keep faithful to both x1 and x2 above.)

Though not exactly comparable, but [BIZ18] showed a counter-intuitive ’collapse’ in the border
setting: VBP2 = VBP3 = · · · = VBPk, for any constant k, whereas it is also known that VBP2 ⊊
VF = VBP3 = · · · = VBPk [BOC92, AW16]. The techniques used in these works (to show ‘collapse’)
are quite different and do not help in achieving our result (to show strict ‘hierarchy’).

Lastly, in subsection 1.2, we have already compared and pointed out the similarities and dissim-
ilarities with [LST21]. This concludes the comparisons, and obstacles, in the prior works.

2 Notation and preliminaries

In this section, we describe some of the assumptions and notations used throughout the paper.
Notation. Denote [n] = {1, . . . , n}, and x = (x1, . . . , xn). We use F[[x]], to denote the ring of formal
power series over F. Formally, f = ∑i≥0 cixi, with ci ∈ F, is an element in F[[x]]. Further, F(x)
denotes the function field, where the elements are of the form f /g, where f , g ∈ F[x] (g ̸= 0).

We call ℓ =: a1x1 + . . . + anxn, a linear polynomial without the constant term, as a linear form.
Throughout the paper, by rank(ℓ1, . . . , ℓn), we mean rankF(ℓ1, . . . , ℓn), i.e. the dimension of the

linear space generated by the linear forms {ℓ1, . . . , ℓn}.
Explicit. A family {Pn ∈ F[x1, . . . , xn] | n ≥ 1}, is said to be explicit if there is a deterministic
algorithm that given as input 1n and a monomial m over the variables x1, . . . , xn, computes the
coefficient of the monomial m in Pn in time poly(n).
Logarithmic derivative. Over a ring R and a variable y, the logarithmic derivative dlogy : R[y] −→
R(y) is defined as dlogy( f ) := ∂y f / f ; here ∂y denotes the partial derivative wrt variable y. One
important property of dlog is that it is additive over a product as dlogy( f · g) = ∂y( f g)/( f g) =
( f · ∂yg + g · ∂y f )/( f g) = dlogy( f ) + dlogy(g). [dlog linearizes product]
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Circuit size. Some of the complexity parameters of a circuit are – 1) size, the total number of nodes
and edges, 2) depth, the number of layers, 3) degree, the maximum degree polynomial computed by
any node, and 4) fanin, the maximum number of inputs to a node.
Depth-2 & Depth-3 circuits. Product depth-2 circuits, denoted as ΠΣ, compute polynomials of the
form ∏i ℓi, where ℓi are affine linear polynomials. Depth-3 circuits with top-fanin k are denoted
as Σ[k]ΠΣ; they compute polynomials of the form ∑i∈[k] ∏j ℓij, where ℓij are affine linear functions.
Also, depth-3 diagonal circuits are denoted as Σ[s] ∧ Σ; they compute polynomials of the form
∑s

i=1 ℓ
ei
i , for linear polynomials ℓi. When we write Σ∧Σ, it means the top-fanin is unbounded (and

thus trivially bounded by the circuit size).
Ideal generated by linear forms. For given n-variate linear forms L1, . . . , Lr, we denote ⟨L1, . . . , Lr⟩,
the ideal generated by Li, for i ∈ [r], which contains elements of the form ∑i∈[r] ai · Li, for ai ∈ F[x].
Operation on Complexity Classes. For class C and D defined over ring R, our bloated model is any
combination of sum, product, and division of polynomials from respective classes. For instance,
C/D = { f /g : f ∈ C, 0 ̸= g ∈ D}, similarly C · D for products, C +D for sum, and other possible
combinations. Also we use CR to denote the basic ring R over which C is being computed.
Valuation. Valuation is a map valy : R[y] −→ Z≥0, over a ring R, such that valy(·) is defined to be
the maximum power of y dividing the element. It can be easily extended to localized/fraction ring
R(y), by defining valy(p/q) := valy(p)− valy(q); where the integer value can be negative.
Field. We denote the underlying field as F and assume that it is of characteristic 0 (eg. the field of
rationals Q, the field of reals R, the field of p-adics Qp etc.). All our results hold for other fields
(eg. Fpe etc.) of large characteristic p. We also denote F∗, as the multiplicative group of the field F.
Approximative closure. For an algebraic complexity class C, the ‘approximation’ is formally
modeled as follows [BIZ18, Definition 2.1].

Definition 1 (Approximative closure of a class). Let CF be a class of polynomials defined over a field
F. Then, f (x) ∈ F[x1, . . . , xn] is said to be in approximative closure C if and only if there exists polynomial
Q ∈ F[ϵ, x] such that CF(ϵ) ∋ g(x, ϵ) = f (x) + ϵ · Q(x, ϵ). In short, we denote limϵ→0 g(x, ϵ) := f (x).

Cone-size of monomials. For a monomial xa, the cone of xa is the set of all sub-monomials of xa.
The cardinality of this set is called cone-size of xa. It equals ∏i∈[n] (ai + 1), where a = (a1, . . . , an).
We will denote cs(m), as the cone-size of the monomial m.

3 Hardness lies in all-non-homogeneity

We want to prove lower bounds on border depth-3 circuits Σ[k]Π[d]Σ; these circuits compute polyno-
mials f , where ϵM · f (x) + ϵM+1 · S(x, ϵ) = ∑i∈[k] Ti, where each Ti = ∏j∈[d] ℓij, where ℓij ∈ F[ϵ][x],
are affine linear functions. Since, in the homogeneous setting, exponential lower bound is easy-to-
show, we somehowwant to ‘exclude’ homogeneous polynomials ℓi that contribute to approximating
the polynomial and focus only on all-non-homogeneity.

Intuitively speaking, since Kumar’s expression [Kum20] also involved the polynomials Ti with
each linear factor being strictly affine (nonzero constant), these cases should be the ‘hard’ cases.
We also briefly mentioned about this being the hardest to analyze, in subsection 1.3. Motivated
thus, here is an important ’reduction’ which shows that proving lower bound in general, reduces to
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proving for the ‘all-non-homogeneous’ case, i.e. every linear factor is affine with nonzero constant.
The following lemma holds for a general n-variate polynomial f (x).

Lemma 2 (Reduction to all-non-hom. setting). If n-variate f is computed by an s-size Σ[k]ΠΣ-circuit,
then there exists 0 ≤ m ≤ k, and (homogeneous) linear forms ℓ1, . . . , ℓn such that

1 (large rank). Rank(ℓ1, . . . , ℓn) = n − t, for some 0 ≤ t ≤ k − m, and each ℓi is {x1, . . . , xt}-free;

2 (all-non-hom.). There exists H(x, ϵ) ∈ F[x, ϵ] and M ≥ 0, such that
ϵM · f (ℓ1, . . . , ℓn) + ϵM+1 · H(x, ϵ) = T1 + . . . + Tm ,

where ∀ i ∈ [m],(
Ti

ϵvalϵ(Ti)

) ∣∣∣∣
x=ϵ=0

∈ F − {0} and ∑
i
sizeF(ϵ)(Ti) ≤ O(s · n) .

Remarks. 1. t = 0 is the case where we do not need to reduce since it is already in all-non-
homogeneous case; so, we simply take ℓi := xi, ∀ i ∈ [n]. Cases t ≥ 1 need more care and a longer
proof.

2. m = 0 implies that ϵM · f (ℓ1, . . . , ℓn) = 0 mod ϵM+1 =⇒ f (ℓ1, . . . , ℓn) = 0. Though for
an arbitrary polynomial f , this non-rank-preserving projection can make f zero, but for ‘robust’
polynomials, for e.g. f := Pk+1,d, one can argue that it cannot be zero. For details see the proof
of Corollary 3.

Proof of Lemma 2. Suppose, ϵM · f + ϵM+1 · S(x, ϵ) = T1 + . . . + Tk, where Ti ∈ F[ϵ, x], product of
linear polynomials. Now if already each Ti is such that after taking out the maximum ϵ-power,
ϵ-free term mod⟨x1, . . . , xn⟩ ∈ F − {0}, then we are already done. Otherwise, it must happen that
at least one of the Ti has a linear factor whose ϵ-free term is a linear form.

Formally, after possible relabeling, T1 =: g1 · h1, in F[ϵ, x], where g1|ϵ=0 is a nonzero linear
form. Here is the first step which reduces the fanin from k to k − 1. We denote Ti =: Ti0, and
S(x, ϵ) =: S0(x, ϵ) (since this is the base case or the 0-th step). Also, let R := F[ϵ]/⟨ϵM+1⟩. We
work in F[x, ϵ] ∩R[x]; we would not keep mentioning the underlying ring, unless it changes.
First step: Reduction from k to (≤ k − 1). Let g1 =: g10 + ϵ · g11, where g10 ∈ F[x] is ϵ-free,
and g11 ∈ F[ϵ, x]. Since g10 is a nonzero linear form by assumption, extend {1, g10} to a basis say
{1, L1 := g10, L2, . . . , Ln} of the linear space Vn := {∑n

i=1 aixi + a0 | ∀ ai ∈ F}, which has dimension
n + 1. Define an isomorphism ϕ1 on Vn, which maps Li 7→ xi, for all i.

Let us write ϕ1(g1) =: (1 + ϵ · p1(ϵ)) · x1 + ϵ · R1, where R1 is a polynomial which is x1-free,
and p1(ϵ) ∈ F[ϵ]; this can be achieved by clubbing all the x1 coefficients together which must look
like 1 + ϵ · p1(ϵ), since ϕ1(g10) = x1 and other terms of x1 must come from multiple of ϵ terms.

By assumption, ϵM · f + ϵM+1S0 = T10 + . . . + Tk0; apply ϕ1 both side and then substitute
x1 := −ϵ · R1/(1 + ϵ · p1(ϵ)), which essentially sends g1 7→ 0. We denote the last substitution map
by ψ1. We want to stress: since 1/(1 + ϵ · p1(ϵ)) mod ⟨ϵM+1⟩ exists, and belongs to F[ϵ], we can
think of substituting x1 := −ϵ · q1(ϵ) · R1, where q1 := 1/(1 + ϵ · p1(ϵ)) mod ϵM+1. By doing this,
we get the following equation:

ϵM · ψ1 ◦ ϕ1( f (x)) + ϵM+1 · ψ1 ◦ ϕ1(S0) =
k

∑
i=k1+1

ψ1 ◦ ϕ1(Ti0) . (2)

14



In the last equation, we used the fact that ψ1 ◦ ϕ1(g1) = 0 =⇒ ψ1 ◦ ϕ1(T10) = 0. In the above
process, the fanin may reduce even further (and not just by 1), since the map can ‘kill’ some other
Tij as well. We may assume that the first k1-many Tij vanish. Therefore, the reduced fanin becomes
k − k1. Denote, for i ∈ [k1 + 1, k]:

Ti1 := ψ1 ◦ ϕ1(Ti0) and vi1 := valϵ (Ti1) .

Note that Ti1 are elements in F[ϵ, x] ∩R[x] which are x1-free. Just to state the obvious, if one of
them becomes 0 after applying ψ1, the summand further reduces. Also, size of Ti1 may blowup by
a factor of n, without changing its degree, since the linear-transformation ψ1 ◦ ϕ1 is acting on just
n-variate linear functions.

Also, denote limϵ→0 ψ1 ◦ ϕ1( f ) =: f (ℓ(1)1 , . . . , ℓ(1)n ) = : D1(x) (which is x1-free), for linear forms
ℓ
(1)
i ∈ F[x], where rank(ℓ(1)1 , . . . , ℓ(1)n ) = n − 1; since ψ1 can be thought of as a single homogeneous
zero-constraint. Then, Equation 2 implies that (with abusing notation x, which now means x1-free):

ϵM · D1(x) + ϵM+1 · (blah) =
k

∑
i=k1+1

Ti1 .

Now if, for all i ∈ [k1 + 1, k], (Ti1/ϵvi1)|ϵ=0 mod ⟨x1, . . . , xn⟩ ∈ F − {0}, that means we are done
as promised! Otherwise, there must exist an i ∈ [k1 + 1, k], say w.l.o.g., i = k1 + 1, such that
(Ti1/ϵvi1) has a linear factor (say g2) with ϵ-free term being a linear form, and we proceed similarly
as before. Moreover, the inner structure of f changes in a bit more complicated way. To specify the
details, we induct.
(j + 1)-th step: Fanin reduction from k − k j to ≤ (k − k j − 1). For j ≥ 1, let us say we have

ϵM · Dj + ϵM+1 · Sj(x, ϵ) =
k

∑
i=k j+1

Tij ,

where –

1. vij := valϵ(Tij) and
(
Tij/ϵvij

) has a linear factor (say gj+1) with ϵ-free term being a linear form,
along with deg(Tij) ≤ s. Moreover, k j ≥ j.

2. Dj = ψj ◦ ϕj(Dj−1) = f (ℓ(j)
1 , . . . , ℓ(j)

n ), where linear map ϕj is invertible, and linear map ψj has
the property that it sets x1, . . . , xj to 0, but keeps the other n − j variables unchanged. Equiv-
alently, ℓ(j)

i ∈ F[x] are linear forms, which are {x1, . . . , xj}-free, with rank(ℓ(j)
1 , . . . , ℓ(j)

n ) =
n − j.

In the base case, of course, we used the notation: D0 = f (x) and ℓ
(0)
i = xi. Note that, we need

Condition (1), otherwise we are already done and achieved the form we wanted!
We follow the similar strategy as in the base case. Let, after possible relabeling, Tk j+1,j =: gj+1 ·

hj+1, over F[ϵ, x]where gj+1|ϵ=0 is a nonzero linear form in xj+1, . . . , xn. Let gj+1 =: gj+1,0 + ϵ · gj+1,1.
Since gj+1,0 is a linear form, extend {1, x1, . . . , xj, gj+1,0} to a basis say {1, L1 := x1, L2 := x2, . . . , Lj :=
xj, Lj+1 := gj+1,0, Lj+2, . . . , Ln}.

Define an isomorphism ϕj+1 on Vn which maps Li 7→ xi, for i ∈ [n]. Let us write ϕj+1(gj+1) =:
(1+ ϵ · pj+1(ϵ)) · xj+1 + ϵ ·Rj+1, where pj+1(ϵ) ∈ F[ϵ], and Rj+1 is a polynomialwhich is {x1, . . . , xj, xj+1}-
free; this can be achieved similarly as before, by clubbing all the xj+1 coefficients together which
must look like 1 + ϵ · pj+1(ϵ).
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Apply ϕj+1 both side and substitute xj+1 := −ϵ · Rj+1/(1 + ϵ · pj+1(ϵ)), which essentially
sends gj+1 7→ 0. We denote the substitution map by ψj+1. Here again we want to stress: since
ϵ/(1 + ϵ · pj+1(ϵ)) ∈ R, we can think of substituting xj+1 := −ϵ · qj+1(ϵ) · Rj+1, where qj+1 :=
1/(1 + ϵ · pj+1(ϵ)) mod ϵM+1. By doing this, we get the following equation:

ϵM · ψj+1 ◦ ϕj+1(Dj(x)) + ϵM+1 · ψj+1 ◦ ϕj+1(Sj+1) =
k

∑
i=k j+1+1

ψj+1 ◦ ϕj+1(Ti,j) . (3)

In Equation 3 we used the fact that ψj+1 ◦ ϕj+1(gj+1) = 0; moreover, it kills many such Ti,j’s (say
from i = k j + 1 to k j+1). This reduces the fanin to k − k j+1 < k − k j; since we have k j+1 > k j ≥ j.
This proves hypothesis-1-part-2.

Denote limϵ→0 ψj+1 ◦ ϕj+1(Dj) =: Dj+1, which is x≤j+1-free. Because of this new zero-constraint,
the rank decreases by exactly 1; this proves hypothesis-2 (rank = n − j − 1).

Let Ti,j+1 := ψj+1 ◦ ϕj+1(Ti,j) and vi,j+1 := valϵ(Ti,j+1). Note that, deg(Ti,j+1) ≤ s remains an
invariant, due to linear transformations. Therefore, one can write Equation 3 as follows:

ϵM · Dj+1(x) + ϵM+1 · (blah) =
k

∑
i=k j+1+1

Ti,j+1 .

Note that we have shown the desired hypothesis-1-part-2. If hypothesis-1-part-1 happens, then we
proceed the induction; otherwise we have already achieved the desired form and we stop. In that
case, let the number of reductions be t, therefore, kt ≥ t.

Finally we are in the all-non-homogeneous case, where fanin becomes m := k − kt ≤ k − t =⇒
t ≤ k − m. The size blowup is also trivial to see since all we have done is a linear transformation on
n variables (and at the beginning, there are at most s many polynomials to consider). This finishes
the inductive reduction process and the proof.

As a warmup application, we prove a ‘folklore’ impossibility result in homogeneousmodels.

Corollary 3 (Impossibility result). For 1 ≤ k < d, the polynomial Pk+1,d is uncomputable by homoge-
neous Σ[k]ΠΣ circuits.

Proof. The proof is by contradiction. Suppose there is a Σ[k]ΠΣ circuit computing Pk+1,d. From the
above reduction process, we will eventually get n := (k + 1)d-many linear forms {ℓ1, . . . , ℓn}, with
r := rank(ℓ1, . . . , ℓn) ≥ n − k, such that ϵM · Pk+1,d(ℓ1, . . . , ℓn) = 0 mod ϵM+1; which implies it has
to be exactly 0 (as after dividing by ϵM both side, LHS is ϵ-free). We show that this cannot happen.

To argue, Pk+1,d(ℓ1, . . . , ℓn) ̸= 0 from the above structure in Lemma 2, ℓi are free of the variables
x1, . . . , xn−r. Remaining variables have to occur in some ℓi, by the ‘large rank’ hypothesis. We could
assume {xn−r+1, . . . , xn} is a subset of {ℓi | i ∈ [n]} =: B; as we can apply an isomorphism that
changes the basis of B, without affecting the nonzeroness.

By definition, Pk+1,d(ℓ1, . . . , ℓn) = ∑i∈[k+1] ∏j∈[d] ℓ(i−1)d+j. It is easy to see that ∏j∈[d] ℓ(i−1)d+j
must be of the form mi · (product of ti non-variable linear forms), for some ti ≤ n − r, since there
are n − r many non-variable linear forms available and mi is amultilinearmonomial of degree d − ti;
here non-variable linear form means that there are at least two variables with nonzero coefficient
in the linear form. Moreover, since n − r < k + 1, one of the ∏j∈[d] ℓ(i−1)d+j, for some i ∈ [k + 1],
remains ‘untouched’ i.e. it is just a pure multilinear monomial mi, a product of d-many distinct
variables. We now claim that for any [k + 1] ∋ i′ ̸= i, the monomials generated by a single product
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∏j∈[d] ℓ(i′−1)d+j can overlap with mi in at most n − r ≤ k < d many variables (very few!) in its
support.

To argue, suppose, ∏j∈[d] ℓ(i′−1)d+j = mi′ · (product of ti′ non-variable linear forms). Since the
monomials in Pk+1,d(x) have disjoint support and B has ≤ (n − r) non-variables, mi can intersect
with a monomial generated by ∏j∈[d] ℓ(i′−1)d+j, in at most t′i ≤ n − r ≤ k many variables because
mi and mi′ are variable disjoint. This proves the above claim. The ’few overlapping variables’
phenomenon readily implies the nonzeroness of Pk+1,d(ℓ1, . . . , ℓn). This finishes the proof.

By Lemma 2, it suffices to solve the following (restricted linear factors of Ti’s) lower bound
to prove Theorem 1. Note: (1) Pk+1,d =: f , n := (k + 1)d, with d > k ≥ 1 and the hardest case is
when t := k − m, and (2) We multiply 1/ϵM in RHS representation, but this does not change the
fundamental structure of polynomials Ti.
Problem 1 (Reduced lb problem). For a constant k, and some m ∈ [k], with 1 ≤ k < d, say

Pk+1,d(ℓ1, . . . , ℓn) + ϵ · H(x, ϵ) = T1 + . . . + Tm

where –

1. (large rank). ℓi are homogeneous linear forms (which are {x1, . . . , xk−m}-free) such that rank(ℓ1, . . . , ℓn) =
n − (k − m), and,

2. (all-non-hom.). Ti are product of linear polynomials such that (Ti/ϵvi)|x=ϵ=0 ∈ F − {0} (where
vi := valϵ(Ti)).

Then, ∑i size(Ti) ≥ 2Ω(d).

Note that, solving the above problem suffices to prove Theorem 1. As Lemma 2 shows that
solving Problem 1 implies: the size s of the approximative Σ[k]ΠΣ-circuit for Pk+1,d must be ≥ 2Ω(d),
as we desired. A couple of important pointers before proceeding further:

1. As already argued in Corollary 3, Pk+1,d(ℓ1, . . . , ℓn) can not be a zero polynomial, i.e. (Pk+1,d)d
is a ‘robust’ family of polynomials. This is exactly why in Problem 1, m ≥ 1, otherwise m = 0
readily implies Pk+1,d(ℓ1, . . . , ℓn) = 0, a contradiction!

2. Interestingly, the same robustness also holds for IMMk+1,d, detd, permd etc. Moreover, our
proofs (subsection 4.1 and Theorem 1) hold for these polynomials as well. But we will only
work with the polynomials Pk+1,d; as it suffices for our exponential-gap hierarchy-theorem.

3. Pk+1,d(ℓ1, . . . , ℓn) is a degree-d polynomial, with n − t = (k + 1)d − (k − m) variables.
4. Since Pk+1,d is a homogeneous polynomial and ℓi are linear forms, the polynomial Pk+1,d(ℓ1, . . . , ℓn)

is still homogeneous.

4 Proving lower bound for the core case: Problem 1

Assume that Pk+1,d(ℓ1, . . . , ℓn) =: f (ℓ1, . . . , ℓn) can be computed by the special Σ[m]ΠΣ, as in the
statement of Problem 1, of size s and we want to prove an exponential lower bound. Now, the proof
will go in a different direction; we will induct over a more general circuit class. For Pk+1,d, we use
n := (k + 1)d, throughout as the number of variables x.
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Definition 2 (Bloated model,[DDS21]). We say that a circuit C is in the class Gen(m, s), over the fraction-
ring R(x), with parameter m and size s, if it computes polynomials f ∈ R(x), of the form f = ∑i∈[k] Ti,
such that Ti = (Ui/Vi) · (Pi/Qi), with Ui, Vi, Pi, Qi ∈ R[x] such that

1. Ui, Vi ∈ ΠΣ; with Ui mod ⟨x1, . . . , xn⟩ and Vi mod ⟨x1, . . . , xn⟩ invertible in R, and

2. Pi, Qi ∈ Σ∧Σ.

Further, size(C) := ∑i∈[m] size(Ti), and size(Ti) := size(Ui) + size(Vi) + size(Pi) + size(Qi).

It is evident that size-s circuit Σ[m]ΠΣ lies in Gen(m, s), which will be our general model of
induction. The lower bound proof (of Problem 1) can be now divided into two parts:

1. Reducing Problem 1 to proving lower-bound on Gen(1, ·), in some appropriate ring; see
Lemma 4.

2. Proving lower bound for Gen(1, ·), see Lemma 8.

4.1 Reducing to bloated fanin-1 model Gen(1, ·)
In this section, we prove the first part which is to reduce it to fanin-1. Now we use the DiDIL-
technique developed in [DDS21]. By hypothesis, each Ti mod ⟨x⟩ has nonzero constant-term (after
extracting the ϵ-power). So, for the existence of 1/Ti, DiDIL-technique does not need any additional
shift: a mere scaling by a new variable z suffices (which is required for derivation and keeping a
counter on the x-degree). Recall that our target polynomial is f (x) := Pk+1,d(x1, . . . , xn), of degree
d with n := (k + 1)d.

Lemma 4 (Fanin-1 reduction). If hypotheses of Problem 1 is true with f (ℓ1, . . . , ℓn) being approximated
by Σ[m]ΠΣ-circuits of size s, over F(ϵ), then there is a rational function g ∈ F(x, ϵ, z) such that

1. g can be computed by a Gen(1, sO(m7m))-circuit mod zd′ , over F(ϵ), for some d′ ∈ [d + 1],

2. limϵ→0 g exists,

3. the coefficient of the minimum z-power in limϵ→0 g is of the form f (ℓ1, . . . , ℓn) · (Σ∧Σ/Σ∧Σ), where
Σ∧Σ are z-free circuits in F[x], of size and degree bounded by sO(m7m).

Proof. We will prove the theorem by induction and reducing the top-fanin by 1 at each step.
Bloat out: Reducing Σ[m]ΠΣ to Gen(m − 1, ·). Let g0 := f0 + ϵ · S0, where f0 := f (ℓ1, . . . , ℓn) and
g0 =: ∑i∈[m] Ti,0, such that Ti,0 is computable by a ΠΣ-circuit of size at most s over F(ϵ) with the
property: after dividing by the ϵ-power of ϵ-valuation, it is a nonzero constant mod⟨x1, . . . , xn⟩.
Moreover, define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 = 1 as the base input case (of Gen(1, ·) ). Also,
let d0 := d + 1.
Φ: The scaling map. To ensure invertibility and facilitate derivation, we define a homomorphism
(essentially a variable-scaling):

Φ : F(ϵ)[x] → F(ϵ)[x, z] , such that xi 7→ z · xi .
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Note that the ΠΣ circuits (i.e. factors of Ui,0) are invertible mod zd0 . Wewill beworkingwith different
ring Ri(x), at i-th step of induction, with R0 := F[z]/

〈
zd0

〉, and think of the z-variables as ‘cost-
free’. So, our target is to reduce the fanin in successive steps without changing the ‘core’ structure
of f0.
Divide and Derive. Assume that Φ(Ti,0) =: ϵai,0 · T̃i,0, where T̃i,0 =: ti,0 + ϵ · t̃i,0(x, z, ϵ) (thus ti,0 =
T̃i,0|ϵ=0). Note that, 0 = vi,0 := valz(T̃i,0). We divide Φ(g0) by T̃m,0 and derive wrt z:

Φ( f0)/T̃m,0 + ϵ · Φ(S0)/T̃m,0 = ϵam,0 + ∑
i∈[m−1]

Φ(Ti,0)/T̃m,0 [Divide]

=⇒ ∂z
(
Φ( f0)/T̃m,0

)
+ ϵ · ∂z

(
Φ(S0)/T̃m,0

)
= ∑

i∈[m−1]
∂z

(
Φ(Ti,0)/T̃m,0

)
[Derive]

= ∑
i∈[m−1]

(
Φ(Ti,0)/T̃m,0

)
· dlog

(
Φ(Ti,0)/T̃m,0

) (4)

=: g1 .

Definability. Let R1 := F[z]/⟨zd1⟩, and d1 := d0 − 1 = d. For i ∈ [m − 1], define
Ti,1 := (Φ(Ti,0)/T̃m,0) · dlog(Φ(Ti,0)/T̃m,0) , and f1 := ∂z (Φ( f0)/tm,0) .

Claim 5. Circuit g1 approximates f1 correctly, i.e. limϵ→0 g1 = f1, where g1 (respec. f1) is well-defined
over R1(ϵ, x) (respec. R1(x)). Moreover, the coefficient of the minimum z-power in f1 is a constant (in F∗)
multiple of f0.

Proof. As we divide by the minimum valuation, by Lemma 9 we have
valz(Φ(Ti,0)/T̃m,0) ≥ 0 =⇒ Φ(Ti,0)/T̃m,0 ∈ F(x, ϵ)[[z]] =⇒ Ti,1 ∈ F(x, ϵ)[[z]] .

We already remarked that f0 is a homogeneous degree-d polynomial; hence Φ( f0) = zd ·
f0 , and tm,0 ∈ F[x]; actually by assumption, tm,0 must be of the form c · ∏(1 + z · Aj), for linear
forms Aj. Hence, Φ( f0)/T̃m,0 ∈ F(x, ϵ)[[z]]. Moreover, (Φ( f0)/T̃m,0)|ϵ=0 = Φ( f0)/tm,0 ∈ F(x, z).
Combining these it follows that

Φ( f0)/tm,0 ∈ F(x)[[z]] =⇒ f1 = ∂z (Φ( f0)/tm,0) = ∂z

(
zd · f0/tm,0

)
∈ F(x)[[z]] .

Since tm,0 ≡ c mod z, for some nonzero constant c, the minimum power of z in f1 is indeed a
constant multiple of f0 from the above equation.

Once we know that each Ti,1 and f1 are well-defined power-series, we claim that Eqn. (4) holds
mod zd1 . Note that, Φ( f0) + ϵ · Φ(S0) = ∑i∈[m] Ti,1, holds mod zd+1. Thus after dividing by the
0-valuation element (wrt z), it still holds mod zd+1; finally after differentiation it must hold mod zd.

Further, since limϵ→0 T̃m,0 exists, we must have f1 = ∂z(Φ( f0)/tm,0) = limϵ→0 g1; i.e. g1 approxi-
mates f1 correctly, over R1(x). This finishes Claim 5.

However, we stress that we also think of these intermediate expressions as elements over
F(x, z, ϵ), with z-degree being ‘kept track of’ (which could be > d). All these different ‘lenses’ of
looking and computing will be important later.
Quest for lower fanin. We need to induct using the structure of Ti,1; Ti,0 was rather ‘special’ and we
managed easily. Now we have to work with general bloated models. We will eventually show that
each Ti,1 has small (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ)-circuit over R1(x, ϵ).
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Inductive step (j-th step): Reducing Gen(m − j, ·) to Gen(m − j − 1, ·). Suppose, we are at the j-th
(j ≥ 1) step. Our induction hypothesis assumes–

1. ∑i∈[m−j] Ti,j =: gj, over Rj(x, ϵ), such that it approximates f j correctly, where f j ∈ Rj(x),
where Rj := F[z]/⟨zdj⟩.

2. Here, Ti,j =: (Ui,j/Vi,j) · (Pi,j/Qi,j), where Ui,j, Vi,j ∈ ΠΣ and Pi,j, Qi,j ∈ Σ∧Σ, each inRj(ϵ)[x].
Each can be thought as an element in F(x, z, ϵ)

⋂
F(x, ϵ)[[z]] as well.

Assume that the syntactic degree of each denominator and numerator of Ti,j is bounded by
Dj. This will be required in the size analysis.

3. Let vi,j := valz(Ti,j) ≥ 0, for i ∈ [m − j]. Note that, unlike in j = 0, unfortunately we cannot
always claim vi,j to be 0.
Therefore, without loss of generality, assume that mini vi,j = vm−j,j. Moreover, Ui,j|z=0 ∈
F(ϵ)\{0} (similarly for Vi,j), a unit in F(ϵ).

4. If valz(gj) = bj (when viewed as element inF(x, ϵ)[[z]]), then
(

gj/zbj
)
|z=0 = f0 · (Σ∧Σ/Σ∧Σ),

where Σ∧Σ are z-free (in F(ϵ)[x]). Equivalently, the coefficient of the minimum z-power in f j,
is of the form f0 · (Σ∧Σ/Σ∧Σ), where both Σ∧Σ circuits are nonzero.

Quick pointers. Eventually we will divide and derive like the j = 0-th step done above, without
applying any new homomorphism, to reduce the fanin further by 1.
Divide and Derive. Let Tm−j,j =: ϵam−j,j · T̃m−j,j, where T̃m−j,j =: (tm−j,j + ϵ · t̃m−j,j) is not divisible by
ϵ. Divide gj =: f j + ϵ · Sj, by T̃m−j,j, to get:

f j/T̃m−j,j + ϵ · Sj/T̃m−j,j = ϵam−j,j + ∑
i∈[m−j−1]

Ti,j/T̃m−j,j

=⇒ ∂z
(

f j/T̃m−j,j
)
+ ϵ · ∂z

(
Sj/T̃m−j,j

)
= ∑

i∈[m−j−1]
∂z

(
Ti,j/T̃m−j,j

)
= ∑

i∈[m−j−1]

(
Ti,j/T̃m−j,j

)
· dlog

(
Ti,j/T̃m−j,j

) (5)

=: gj+1 .

Definability. Let Rj+1 := F[z]/⟨zdj+1⟩, where dj+1 := dj − vm−j,j − 1. For i ∈ [m − j − 1], define
Ti,j+1 :=

(
Ti,j/T̃m−j,j

)
· dlog

(
Ti,j/T̃m−j,j

)
, and f j+1 := ∂z( f j/tm−j,j) .

Claim 6 (Induction hypotheses). Circuit gj+1 approximates f j+1 correctly, i.e. limϵ→0 gj+1 = f j+1,
where gj+1 (respec. f j+1) are well-defined in the ring Rj+1(x, ϵ)

(
respec. ,Rj+1(x)

)
.

Proof. Remember, f j and Ti,j’s are elements in F(x, z, ϵ) which also belong to F(x, ϵ)[[z]]. Since, we
divide by the minimum valuation w.r.t. z, by similar argument as in Claim 5, it follows that

Ti,j+1, f j+1 ∈ F(x, z, ϵ)
⋂

F(x, ϵ)[[z]] , ∀ i ∈ [m − j − 1] ,

proving the second part of induction-hypothesis-(2). In fact, trivially vi,j+1 ≥ 0, for i ∈ [m − j − 1]
proving induction-hypothesis-(3).
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Similarly, Eqn. (5) holds overRj+1(ϵ, x), or equivalently mod zdj+1 ; this is because of the division
by z-valuation of vm−j,j and then differentiation, showing induction-hypothesis-(1). So, Eqn. (5)
being computed mod zdj+1 is indeed valid. Further,

valz( f j + ϵ · Sj) = valz( ∑
i∈[m−j]

Ti,j) ≥ vm−j,j
setting ϵ=0
======⇒ valz( f j) ≥ vm−j,j .

Hence, f j/T̃m−j,j ∈ F(x, ϵ)[[z]] (by Lemma 9). Further, since limϵ→0 T̃m−j,j = tm−j,j, we must have
that f j/tm−j,j ∈ F(x)[[z]] and thus, f j+1 exists.

Finally, it is also easy to see that valz(Sj) ≥ vm−j,j; if there is an ϵ-power in ϵ · Sj such that
coefficient of < vm−j,j power of z exists, then the valuation of f j + ϵ · Sj must be < vm−j,j as well, a
contradiction!

Thus, limϵ→0 ∂z(gj/T̃m−j,j) = limϵ→0 gj+1 = f j+1. This finishes Claim 6.

Action of dlog : A teaser. Before going into the size analysis, we want to remark that the dlog com-
putation plays a crucial role here. The action dlog(Σ∧Σ) ∈ Σ∧Σ/Σ∧Σ, is of poly-size (Lemma 13).

Since dlog distributes the product additively, so it suffices to work with dlog(ΠΣ); and we show
that dlog(ΠΣ) ∈ Σ∧Σ, is of poly-size. For the time being, we assume these hold. Then, one can
simplify to get the following:

Ti,j/T̃m−j,j = ϵ−am−j,j ·
(
(Ui,j · Vm−j,j)/(Vi,j · Um−j,j)

)
· (Pi,j · Qm−j,j)/(Qi,j · Pm−j,j) ,

and its dlog. Let Ui,j+1 := Ui,j · Vm−j,j; similarly Vi,j+1 := Vi,j · Um−j,j. Essentially, dlog computation
will produce (Σ∧Σ/Σ∧Σ)-circuits, which will further multiply with P′s and Q’s and we multiply
ϵ−am−j,j there; for details see Claim 7. This directly means: Ui,j+1|z=0, Vi,j+1|z=0 ∈ F(ϵ) \ {0}. This
proves the second part of induction-hypothesis-(3).
Induction-hypothesis-(4). By induction hypothesis, we have gj = zbj · f0 · (Σ∧Σ/Σ∧Σ)+ zbj+1 · (·).
Since, T̃m−j,j ∈ (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ), and that its ΠΣ|z=0 ∈ F(ϵ) \ {0}; so, gj/T̃m−j,j must look
like

gj/T̃m−j,j = zbj · f0 · (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ) + zbj+1 · (blah) .

In the first summand, we already used the fact that Σ∧Σ is closed under multiplication (Lemma 10).
Now of course, valz(Σ∧Σ/Σ∧Σ) in the first summand can be negative; however, it is ≥ −bj, as
otherwise, valz(gj/T̃m−j,j) < 0, a contradiction.

Since the degree of z is polynomially bounded, we can extract the coefficient of the minimum
z-power of Σ∧Σ/Σ∧Σ (the z-power gets subtracted from bj accordingly) and we still get Σ∧Σ/Σ∧Σ
(this is z-free) of size polynomially bounded; since ΠΣ|z=0 ∈ F(ϵ) \ {0}, it does not contribute
anything (except nonzero multiples from F(ϵ)). By definition valz(gj/T̃m−j,j) = bj+1 + 1 ≥ 1, since
its derivative has valuation bj+1 ≥ 0. Hence, the coefficient of the minimum z-power must be of
the form f0 · coefzbj+1+1(Σ∧Σ/Σ∧Σ). Since degz is polynomially-bounded, extracting the minimum
z-power individually from numerator and denominator gives a ‘small’ Σ∧Σ/Σ∧Σ which is now
z-free. Finally, after differentiating, we get the desired form. Also, the nonzeroness is immediate.

To tackle the ’equivalent’ part in the hypothesis-(4), note that
f j+1 = lim

ϵ→0
gj+1 = lim

ϵ→0

(
zbj+1 · f0 · Σ∧Σ/Σ∧Σ + zbj+1+1 · (·)

)
= zbj+1 · f0 · (Σ∧Σ/Σ∧Σ)+ zbj+1+1 · (·) .

Therefore, the coefficient of the minimum z-power in the above expression is f0 · (Σ∧Σ/Σ∧Σ),
because of the distributive property Lemma 14.
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The overall size blowup. Finally, we show the main step: how to control dlog which is the crux of
our reduction. We assume that at the j-th step, size(Ti,j) ≤ sj and by assumption s0 ≤ s.
Claim 7 (Size blowup fromDiDIL). T1,m−1 ∈ (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) overRm−1(x, ϵ) of size sO(m7m).
It is computed as an element in F(ϵ, x, z), with syntactic degree (in x, z) dO(m).

Proof. We divide the proof into multiple titled paragraphs since it is a bit lengthy. We remark
that steps j = 0 vs j > 0 are slightly different because of the homomorphism Φ. However the
main idea of using dlog and expand it as a power-series is the same, which eventually shows that
dlog(ΠΣ) ∈ Σ∧Σ with a controlled blowup.
dlog’s effect in j = 0 case. In this case, we would like to understand dlog’s effect on Φ(Ti,0)/T̃m,0
– (i) how it changes the structure and (ii) how the size gets blown up. As dlog distributes over
product, it suffices to study dlog(ℓ), where ℓ ∈ R(ϵ)[x] is linear.

However, since ΠΣ circuits are already non-homogeneous, the scaling Φ makes each ℓ of the
form ℓ = A − zB, where A ∈ F(ϵ)\{0} and B ∈ F(ϵ)[x]. Using the power series expansion, we
have the following, over R1(x, ϵ):

dlog(ℓ) = − ∂z (z · B)
A (1 − z · B/A)

= − B
A

·
d1−1

∑
j=0

(
z · B

A

)j

. (6)

Note, (B/A) and (−z · B/A)j have trivial powering circuits (∧Σ over R1), each of size O(dn).
By Lemma 10, we get the final Σ∧Σ circuit for dlog(ΠΣ) of size O(d2 · s). We use the fact that
d1 < d0 = d + 1. Here the syntactic degree blowsup to O(d). This settles j = 0 case.
dlog’s effect in j ≥ 1 case. For j > 0, the above equation holds over Rj(x). However, the degree
could be Dj (possibly > dj) of the corresponding ℓ (nonlinear), and after exponentiation further
increase to dj · Dj. This is exactly why we need to keep track of Dj, the syntactic degree as mentioned
in induction-hypotheses-(2). In this calculation, one needs to use the fact that dj ≤ d.

Since, Σ∧Σ is closed under differentiation (Lemma 13), effect of dlog on Σ∧Σ is straightforward.
Using Lemma 13, we obtain Σ∧Σ/Σ∧Σ circuit, computing dlog(Pi,j) (similarly dlog(Qi,j)) of size
O(D2

j · sj). Also, dlog(Ui,j ·Vm−j,j) ∈ Σ dlog(Σ), which could be computed using the above Equation.
Thus,

dlog(Ti,j/T̃m−j,j) ∈ dlog(ΠΣ/ΠΣ) ± Σ[4]dlog(Σ∧Σ)

⊆ Σ∧Σ + Σ[4] (Σ∧Σ/Σ∧Σ) = (Σ∧Σ/Σ∧Σ) .

Here, Σ[4](·)means sum of 4-many expressions of the form (·). The first containment is by lineariza-
tion. We can express dlog(ΠΣ/ΠΣ) as a single Σ∧Σ-expression since dlog(Σ) ⊂ Σ∧Σ. Similarly,
4-many dlog(Σ∧Σ) expressions give 4-many (Σ∧Σ/Σ∧Σ) expressions.
Size analysis of dlog(Ti,j/T̃m−j,j). The Σ∧Σ expression, obtained from dlog(ΠΣ/ΠΣ) is of size
O(D2

j djsj). Next, there are 4-many Σ∧Σ/Σ∧Σ expressions of size O(D2
j sj) as there are 4-many P’s

and Q’s. Additionally, the syntactic degree of each denominator and numerator of Σ∧Σ/Σ∧Σ
grows up to O(Dj). Finally, we club Σ∧Σ/Σ∧Σ expressions (4 of them) to express it as a single
Σ∧Σ/Σ∧Σ expression using Lemma 13, with size blowup of O(D12

j s4
j ). Finally, add the single Σ∧Σ

expression of size O(D3
j sj), and degree O(dDj), to get O(s5

j D16
j d) size representation.

Overall size blowup from j to j + 1. Also, we need to multiply with Ti,j/T̃m−j,j which is of
the form (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ), where each Σ∧Σ is basically product of two Σ∧Σ expressions
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of size sj and syntactic degree Dj and clubbed together, owing a blowup of O(Djs2
j ). Hence,

multiplying this (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ)-expression with the Σ∧Σ/Σ∧Σ expression obtained
from dlog-computation, gives a size blowup of sj+1 := s7

j DO(1)
j d.

As mentioned before, the main blowup of syntactic degree in the dlog computation could
be O(dDj) and clearing expressions and multiplying the without-dlog expression increases the
syntactic degree only by a constant multiple. Therefore, Dj+1 := O(dDj) =⇒ Dj = dO(j). Hence,
sj+1 = s7

j · dO(j) =⇒ sj ≤ (sd)O(j·7j). In particular, sm−1 ≤ sO(m·7m); here we used that d ≤ s. This
calculation quantitatively establishes induction-hypothesis-(2). This finishes Claim 7.

Hence successively doing this m − 1 times, we get that g = gm−1 ∈ Gen(1, sO(m7m)) mod zdm−1

(first point of Lemma 4), such that limϵ→0 gm−1 = fm−1 ∈ F(x, z) (second point of Lemma 4)
and moreover, the coefficient of the minimum z-power in gm−1 is nothing but f0 · (Σ∧Σ/Σ∧Σ).
These circuits Σ∧Σ also have size sO(m7m); since the degree bound on Σ∧Σ circuits is sO(m7m), we
had to extract the minimum coefficient from both numerator and denominator, as specified above
(in induction-hypothesis-4). Finally, taking the limit finishes the proof of the third point (of
Lemma 4).

4.2 Proving lower bound for bloated fanin-1 model Gen(1, ·)
Now it remains to establish the lower bound. Recall, we have shown that the minimum z-power
in gm−1 gives f (ℓ1, . . . , ℓn) · Σ∧Σ/Σ∧Σ, where Σ∧Σ are of size sO(m7m). Moreover, since gm−1 ∈
Gen(1, sO(m7m)), over F(ϵ), the limit of gm−1 itself is of the form Σ∧Σ/Σ∧Σ (recall: the other factors
satisfy ΠΣ|x=ϵ=0 ∈ F∗). Therefore, comparing the coefficients of the minimum z-power both
sides, we have eventually shown: f (ℓ1, . . . , ℓn) · Σ∧Σ/Σ∧Σ = Σ∧Σ/Σ∧Σ =⇒ f (ℓ1, . . . , ℓn) =
Σ∧Σ/Σ∧Σ. Here Σ∧Σ circuits have size sO(m7m), because of Lemma 10. Next, we show that this
implies: s ≥ 2Ω(d), when m ≤ k = O(1).
Lemma 8 (Lower bound for bloated fanin-1). If f (ℓ1, . . . , ℓn) = limϵ→0 (Σ∧Σ/Σ∧Σ), such that

1. size of the Σ∧Σ circuits, over F(ϵ), is sO(k7k), and

2. rank(ℓ1, . . . , ℓn) = n − (k − m) ≥ n − k,

then s ≥ 2Ω(d/(k7k)).

Proof. The proof is based on the cone-size measure. Note that, f (ℓ1, . . . , ℓn) =: Σ∧Σ1/Σ∧Σ2 =⇒
f (ℓ1, . . . , ℓn) · Σ∧Σ2 = Σ∧Σ1. We will work with the partial derivatives spaces (defined below):
Denote

Vϵ,i :=
〈

∂ (Σ∧Σi)

∂xe | e < ∞
〉

F(ϵ)

, and Vi :=
〈

∂ (Σ∧Σi)

∂xe | e < ∞
〉

F

.

Since, size(Σ∧Σi) ≤ sO(k7k), the partial derivative space of Σ∧Σi, over F(ϵ), is also bounded by
sO(k7k), i.e. dim(Vϵ,i) ≤ sO(k7k) (see [CKW11, Lemma 10.2]). Consider the partial-derivative matrix
Mϵ,i, where we index the rows by ∂xe , while columns are indexed by monomials supporting Σ∧Σi;,
and each row expresses the operator-values ∂xe (Σ∧Σi). We have, qi := dim(Vϵ,i) ≤ sO(k7k) (because
of Σ∧Σi). So, any (qi + 1)-many polynomials ∂ (Σ∧Σi)

∂xe are F-linearly dependent. In other words, deter-
minant of any (qi + 1)× (qi + 1) minor of Mϵ,i is 0. Note that limϵ→0 Mϵ,i = Mi, the corresponding
partial-derivative matrix for Σ∧Σi.
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Since, det is a continuous function, the zeroness of the determinant of any (qi + 1)× (qi + 1)minor
of Mϵ,i translates to the corresponding (qi + 1)× (qi + 1) submatrix of Mi as well. In particular,

dim(Vi) ≤ qi ≤ sO(k7k) . (7)
From this, it follows that leading monomial in Σ∧Σi (denoted LM(Σ∧Σi)) has cone-size at most
sO(k7k); see Lemma 15.

Since, cone-size(LM( f (ℓ1, . . . , ℓn) · Σ∧Σ2)) ≥ cone-size(LM( f (ℓ1, . . . , ℓn))), it suffices to show
that leading monomial of f (ℓ1, . . . , ℓn) has cone-size 2d.
Exploiting ‘large rank’. As argued in Corollary 3, f (ℓ1, . . . , ℓn) = Pk+1,d(ℓ1, . . . , ℓn) is nonzero, and
satisfies the property that after suitable isomorphism (which does not affect our proof), there is
a pure multilinear monomial, i.e. product of distinct variables, that survives. This implies that
with respect to a suitable monomial ordering, the leading term has cone-size = 2d. Implying:
size(Σ∧Σ1) ≥ cone-size(LM(Σ∧Σ1)) = cone-size(LM( f (ℓ1, . . . , ℓn) · Σ∧Σ2)) ≥ 2d (also, see the
remark below). Consequently, sk7k ≥ 2Ω(d). This finishes the lower bound proof.

Remark. In the above, we only work with Σ∧Σ. Since, Σ∧Σ has low partial derivative space, the
cone-size-based proof goes through (Lemma 15). This is exactly why our proofs naively cannot
give interesting lower bounds for Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ, since the cone-size-based argument no
longer works.

4.3 Tying the pieces together: Proof of Theorem 1

Proof of Theorem 1. We have shown and proved all the necessary steps for Theorem 1. To summarize,
we start with Pk+1,d and assume that it can be computed by a Σ[k]ΠΣ-circuit of size s. We now
reduce top-fanin in two totally different ways.

1. (Setting linear forms zero). If needed, use the reduction Lemma 2 to reduce to the setting of Prob-
lem 1. If we end up with m = 0, then a proof similar to Corollary 3 shows: Pk+1,d(ℓ1, . . . , ℓn) ̸=
0 for rank(ℓ1, . . . , ℓn) ≥ n − k. Thus m = 0 is an impossibility.

2. (DiDIL process). If m ≥ 1, then it suffices to solve Problem 1 as mentioned before. Use the
reduction from subsection 4.1 which reduces the top-fanin m to 1 (at the cost of moving to
the bloated model). Finally, use the lower bound for fanin-1 (Lemma 8) to conclude that
s ≥ 2Ω(d) (for constant k). This finishes Theorem 1.

5 Conclusion

In this work, we show a strong top-fanin-hierarchy theorem for depth-3 class in the border setting.
The methods used here, open a wide avenue of plausible questions, some of which may not be very
hard to answer. We list a few of them below.

1. Can we show exponential lower bound for Σ[o(n)]ΠΣ-circuits? The current method gives
subexponential lower bound only as long as k = o(log n).

2. Can we show exponential lower bound for Σ[k]ΠΣ∧-circuits (i.e. rather special depth-4)?
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3. Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4 circuits?
i.e., for a fixed constant δ, is Σ[1]ΠΣΠ[δ] ⊊ Σ[2]ΠΣΠ[δ] ⊊ Σ[3]ΠΣΠ[δ] · · · , where the respective
gaps are exponential? Clearly, δ = 1 holds, from this work.
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A Basics of algebraic complexity

Definition 3 (Algebraic Branching Program (ABP)). ABP is a computational model which is described
using a layered graph with a source vertex s and a sink vertex t. All edges connect vertices from layer i to
i + 1. Further, edges are labelled by univariate polynomials. The polynomial computed by the ABP is defined
as

f = ∑
path γ:s⇝t

wt(γ)

where wt(γ) is product of labels over the edges in path γ. Number of layers (∆) defines the
depth and the maximum number of vertices in any layer (w) defines the width of an ABP. The size (s)
of an ABP is the sum of the graph-size and the degree of the univariate polynomials that label. If d
is the maximum degree of univariates then s ≤ dw2∆; in fact, we will take the latter as the ABP-size
bound in our calculations.

Our interest primarily is in the following two ABP-variants: ROABP and ARO.
Definition 4 (Read-once Oblivious Algebraic Branching Program (ROABP)). An ABP is defined
as Read-Once Oblivious Algebraic Branching Program (ROABP) in a variable order (xσ(1), . . . , xσ(n)) for
some permutation σ : [n] → [n], if edges of i-th layer of ABP are univariate polynomials in xσ(i).

Definition 5 (Any-order ROABP (ARO)). A polynomial f ∈ F[x] is computable by ARO of size s if for
all possible permutation of variables there exists a ROABP of size at most s in that variable order.

Remark. We can de-border Σ∧Σ. Since Σ∧Σ ⊆ ARO, using duality trick (Lemma 16) and ARO =
ARO, from Nisan’ characterization (Lemma 17), it follows that Σ∧Σ ⊊ ARO. Note that, Σ∧Σ is a
strict subset of ARO since ∏n

i=1 xi has a small ARO, but it requires exp(n)-size Σ∧Σ-circuits.

B Basic tools

Here is an important lemma to show that positive valuation with respect to y, lets us express a
function as a power-series of y.
Lemma 9 (Valuation lemma,[DDS21, Lemma A.17]). Let f ∈ F(x, y) such that valy( f ) ≥ 0. Then,
f ∈ F(x)[[y]]

⋂
F(x, y).

In this section we will also discuss various properties of Σ∧Σ circuits and basic waring-rank.
The corresponding bloated model is Σ∧Σ/Σ∧Σ, that computes elements of the form f /g, where
f , g ∈ Σ∧Σ. For the detailed proofs, we refer to [DDS21].

Firstly, it is known that Σ∧Σ is closed under constant-fold multiplication.
Lemma 10 (Σ∧Σ closed under multiplication, [DDS21, Lemma A.10]). Let fi ∈ F[x], of syntactic
degree ≤ di, be computed by a Σ∧Σ circuit of size si, for i ∈ [k]. Then, f1 · · · fk has Σ∧Σ circuit of size
O((d2 + 1) · · · (dk + 1) · s1 · · · sk).

Using the additive and multiplicative closure of Σ∧Σ, one can show that Σ∧Σ/Σ∧Σ is closed
under constant-fold addition.
Lemma 11 (Σ∧Σ/Σ∧Σ closed under addition, [DDS21, Lemma A.11]). Let fi ∈ F[x], of syntactic
degree < di, be computable by Σ∧Σ/Σ∧Σ of size si, for i ∈ [k]. Then, ∑i∈[k] fi has a (Σ∧Σ/Σ∧Σ)
representation of size O((∏i di) · ∏i si).
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Using a simple interpolation, the coefficient of ye can be extracted from f (x, y) ∈ Σ∧Σ again as
a small Σ∧Σ representation.

Lemma 12 (Σ∧Σ coefficient extraction, [DDS21, Lemma A.12]). Let f (x, y) ∈ F[x][y] be computed
by a Σ∧Σ circuit of size s and degree d. Then, coefye( f ) ∈ F[x] is a Σ∧Σ circuit of size O(sd), over F[x].

Like coefficient extraction, differentiation of Σ∧Σ circuit is easy too.

Lemma 13 (Σ∧Σ differentiation, [DDS21, Lemma A.13]). Let f (x, y) ∈ F[x][y] be computed by a
Σ∧Σ circuit of size s and degree d. Then, ∂y ( f ) is a Σ∧Σ circuit of size O(sd2), over F[x][y].

Let C and D be two classes over F[x]. Consider the bloated-class (C/C) · (D/D), which has
elements of the form (g1/g2) · (h1/h2), where gi ∈ C and hi ∈ D (g2h2 ̸= 0). One can also similarly
define its border (which will be an element in F(x)). Here is an important observation.

Lemma 14 ([DDS21, Lemma A.19]). (C/C) · (D/D) ⊆ (C/C) · (D/D).

Proof. Suppose (g1/g2) · h1/h2 = f + ϵ · Q, where Q ∈ F(x, ϵ) and f ∈ F(x). Let valϵ(gi) =: ai and
valϵ(hi) =: bi. Denote, gi =: ϵai · g̃i, similarly h̃i. Further, assume g̃i =: ĝi + ϵ · ĝ′i ; similarly for h̃i, we
define ĥi ∈ F[x]. Note that ĝi ∈ C, similarly ĥi ∈ D.

So, LHS = ϵa1−a2+b1−b2 · (g̃1/g̃2) · (h̃1/h̃2). This has a limit limϵ→0, so a1 + b1 − a2 − b2 ≥ 0. If it
is ≥ 1, the limit in RHS is 0 and so f = 0. If a1 + b1 − a2 − b2 = 0, then

f = (ĝ1/ĝ2) · (ĥ1/ĥ2) ∈ (C/C) · (D/D) .

Lemma 15 ([Gho19, Lemma 2.3.15]). Let F be a field of characteristic 0 or greater than d. Let P be a set
of n-variate degree d polynomials over F such that for all P ∈ P , the dimension of the partial derivative space
of P is at most k. Then, every nonzero P ∈ P has a (≤ k)-cone-size leading-monomial.

Lemma 16 (Duality trick [Sax08]). The polynomial f = (x1 + . . . + xn)d can be written as
f = ∑

i∈[t]
fi1(x1) · · · fin(xn),

where t = O(nd), and fij is a univariate polynomial of degree at most d.

We remark that the above proof works for fields of characteristic = 0, or > d. This lemma
eventually shows that Σ∧Σ ⊆ ARO.

Next we state that polynomials approximated by ARO can be easily de-bordered. To the best
of our knowledge the following lemma was sketched in [For16]; also implicitly in [GKS16]. For a
detailed proof, see [DDS21, Lemma A.21]

Lemma 17 (De-bordering ARO). Consider a polynomial f ∈ F[x] which is approximated by ARO of size
s over F(ϵ)[x]. Then, there exists an ARO of size s which exactly computes f (x).
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