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ABSTRACT
Let C be a depth-3 circuit with n variables, degree d and
top fanin k (called ΣΠΣ(k, d, n) circuits) over base field F.
It is a major open problem to design a deterministic poly-
nomial time blackbox algorithm that tests if C is identically
zero. Klivans & Spielman (STOC 2001) observed that the
problem is open even when k is a constant. This case has
been subjected to a serious study over the past few years,
starting from the work of Dvir & Shpilka (STOC 2005).

We give the first polynomial time blackbox algorithm for
this problem. Our algorithm runs in time poly(n)dk, regard-
less of the base field. The only field for which polynomial
time algorithms were previously known is F = Q (Kayal &
Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010).
This is the first blackbox algorithm for depth-3 circuits that
does not use the rank based approaches of Karnin & Shpilka
(CCC 2008).

We prove an important tool for the study of depth-3 iden-
tities. We design a blackbox polynomial time transforma-
tion that reduces the number of variables in a ΣΠΣ(k, d, n)
circuit to k variables, but preserves the identity structure.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures

General Terms
Algorithms, Theory
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1. INTRODUCTION
Polynomial identity testing (PIT) is a major open problem

in theoretical computer science. The input is an arithmetic
circuit that computes a polynomial p(x1, x2, . . . , xn) over a
base field F. We wish to check if p is the zero polynomial,
or in other words, is identically zero. We may be provided
with an explicit circuit, or may only have blackbox access.
In the latter case, we can only evaluate the polynomial p at
various domain points. The main goal is to devise a deter-
ministic blackbox polynomial time algorithm for PIT. One
of the main reasons for interest in this problem is the con-
nection between PIT algorithms and circuit lower bounds
(Heintz & Schnorr [HS80], Kabanets & Impagliazzo [KI04]
and Agrawal [Agr05, Agr06]). Refer to surveys for a detailed
treatment of PIT [Sax09, AS09, SY10].

Since the problem of PIT is very hard, restricted versions
of it have been studied. One common and natural variant
is that of the bounded depth circuits. Results of Agrawal &
Vinay [AV08] justify this restriction. They essentially show
that an efficient blackbox identity test for depth-4 circuits
leads to (almost) the complete resolution of PIT and also
provides exponential lower bounds. Raz [Raz10] showed
that even lower bounds for depth-3 circuits imply super-
polynomial lower bounds for general arithmetic formulas.
Not surprisingly, the problem of PIT is still wide open for
the special case of depth-3 circuits.

A depth-3 circuit C over a field F is of the form C(x1, . . .,

xn) =
Pk

i=1 Ti, where Ti (a multiplication term) is a product
of at most d linear polynomials with coefficients in F. The
size of the circuit C can be expressed in three parameters:
the number of variables n, the degree d, and the top fanin k.
Such a circuit is referred to as a ΣΠΣ(k, d, n) circuit. Even
when the top fanin k is constant, blackbox polynomial time
algorithms were not known1.

The study of PIT algorithms for depth-3 circuits was initi-
ated by Dvir & Shpilka [DS06], who gave a quasi-polynomial
time non-blackbox algorithm. The first non-trivial blackbox
algorithm was given by Karnin & Shpilka [KS08]. There
have been many recent results in this area by Kayal & Sax-
ena [KS07], Saxena & Seshadhri [SS11, SS10a], and Kayal &
Saraf [KS09b]. Our main result is the first polynomial time

1Until this work.



blackbox tester for bounded top fanin depth-3 circuits over
any field.

Theorem 1. There is a deterministic blackbox poly(ndk)
time algorithm for PIT on ΣΠΣ(k, d, n) circuits, regardless
of the base field F.

Table 1 details the time complexities2 of previous algo-
rithms. For convenience, we do not give the list of all al-
gorithms, but only the important milestones for the case of
arbitrary fields. We stress that the time complexities bound
the number of bit operations.

Table 1: Depth-3 blackbox PIT algorithms over any
field

Paper Time complexity

[KS08] nd(2k
2

logk−2 d)

[SS11, SS10a] ndk2 log d

This paper ndk

The only field for which such polynomial time algorithms
were previously known was Q. This was a breakthrough
result of Kayal & Saraf [KS09b], which was followed by im-
provements in [SS10a]. These used beautiful incidence ge-
ometry theorems for the reals, but analogues of these results
are either unknown or false for other fields. Since the best
running time of these algorithms is poly(ndk2

), we get an
improved algorithm for this case as well.

As Table 1 shows, even for the simple case of k = 3 and
F = F2, no deterministic polynomial-time blackbox PIT al-
gorithm was known. Kayal & Saxena [KS07] gave a non-
blackbox algorithm (over all fields), which runs in poly(ndk)
time. Theorem 1 closes the gap between blackbox and non-
blackbox algorithms.

Throughout the following discussion, we will think of k as
a constant. Hence, when we refer to polynomial time, the
dependence on k will be ignored.

1.1 Variable reduction
Dvir & Shpilka [DS06] introduced a powerful idea. They

defined the notion of the rank of a ΣΠΣ(k, d, n) circuit. We
will not explain this precisely here but merely say that this
is the number of “free variables” in a ΣΠΣ circuit. They
proved the remarkable fact that the rank of every iden-
tity 3 is small. This led to the reduction of PIT for gen-
eral ΣΠΣ(k, d, n) circuits to PIT on ΣΠΣ circuits over few
variables. They developed a non-blackbox quasi-polynomial
time algorithm through their rank bounds. Karnin & Sh-
pilka [KS08] used the low rank results to devise blackbox
algorithms for ΣΠΣ circuits. Their algorithms had a run-
ning time that depended exponentially in the rank. Hence,
constant rank bounds would lead to polynomial time algo-
rithms. Unfortunately, Kayal & Saxena [KS07] gave con-
structions (extended in [SS11]) showing that for ΣΠΣ iden-
tities over finite fields, the rank could be unbounded (as
large as k log d). This means that the best running time
one could hope for over finite fields via this approach was

2Technically, the running times are polynomial in the stated
times.
3A small caveat: there are some technical restrictions of
simplicity and minimality.

dk log d. Tighter rank bounds from [SS11, SS10a] gave algo-
rithms that almost match this running time. For the special
case when the field F is Q, Kayal & Saraf [KS09b] proved a
constant rank bound, establishing the first polynomial time
blackbox algorithm for this case. Refer to [SS10a] for a more
detailed treatment of rank bounds.

Until this work, all blackbox algorithms relied solely on
the rank approach of Karnin & Shpilka [KS08]. As the ex-
amples of [KS07] show, even for the case of F2, a new idea
is required to get polynomial time algorithms. We provide
the first blackbox algorithm that circumvents the problem
of large rank identities. Interestingly, one of the main ideas
has roots in the non-blackbox polynomial time algorithm of
Kayal & Saxena [KS07]. This algorithm had a completely
different idea and used generalizations of the Chinese Re-
mainder Theorem. These algebraic ideas were further de-
veloped in a previous work of the authors [SS10a]. Karnin
& Shpilka [KS08] used extractors of Gabizon & Raz [GR08]
to construct their blackbox algorithm. We combine these
extractor ideas with the algebraic framework to develop a
very useful algorithmic tool. Any ΣΠΣ(k, d, n) circuit can
be converted into a small family of ΣΠΣ circuits over just
k variables. The original circuit is an identity iff all cir-
cuits in the family are identities. This transformation re-
quires no knowledge of the circuit and has a running time
of poly(kdn).

Theorem 2. Let F be an arbitrary field such that |F| >
dnk2. There is a deterministic algorithm that takes as input
a triple (k, d, n) of natural numbers and in time poly(kdn),
outputs a set of linear maps Ψi : F[x1, . . . , xn] → F[y1, . . . , yk]
(1 ≤ i ≤ poly(kdn)). A ΣΠΣ(k, d, n) circuit C is identically
zero iff ∀i, Ψi(C) = 0.

Remark: The field size restriction made in the theorem
is really no loss of generality. In the blackbox model, it is
standard to assume that we can query the given circuit on
points in an extension field. If F is small, then we just need
to move to a large enough extension field F′. Such an ex-
tension can be found by a deterministic poly(log |F′|) time
method of Adleman & Lenstra [AL86], or even by a slower
brute-force method of finding a suitable irreducible polyno-
mial over F. We do all our computations in this extension
field F′. Henceforth, for convenience, we will assume that
the field has size at least dnk2.

Observe the power of this theorem. Regardless of n, d
or F, every ΣΠΣ(3, d, n) non-identity can be converted to
an “equivalent” non-identity involving just 3 variables. The
time required to generate this transformation is truly poly-
nomial in the size of the circuit. We believe that this theo-
rem will be useful in reaching the holy grail of a truly poly-
nomial time PIT algorithm for ΣΠΣ circuits.

This theorem has a uniform treatment of all fields, and is
hence stronger than rank bounds. The circuits Ψi(C) only
involve k variables. Using some standard PIT techniques,
we can construct the following hitting set. This proves The-
orem 1.

Theorem 3. Given the triple of natural numbers (k, d, n),
a hitting set H ⊆ Fn for ΣΠΣ(k, d, n) circuits can be con-
structed in deterministic poly(ndk) time. In other words, for
every non-zero ΣΠΣ(k, d, n) circuit C over F, there is some
vector (α1, . . . , αn) ∈ H such that C(α1, . . . , αn) 6= 0.



The construction of our hitting set is analogous to that of
Karnin & Shpilka [KS08], though the size is much smaller
(and the proof of its properties is very different). We also
make a somewhat philosophical remark. By Schwartz-Zippel
we know that PIT for a depth-3 circuit C(x1, ..., xn) can be
done by feeding an n-wise independent random distribution.
The proof of Theorem 2 shows that for ΣΠΣ(k, d, n) circuits,
a k-wise independent random distribution suffices.

1.2 History
The first randomized polynomial time PIT algorithm was

given (independently) by Schwartz [Sch80] and Zippel [Zip79].
Algorithms using less randomness were devised by Chen
& Kao [CK97], Lewin & Vadhan [LV98], and Agrawal &
Biswas [AB03]. For depth-2 circuits, there has been a long
line of work studying blackbox PIT algorithms [BOT88,
CDGK91, Wer94, KS96, SS96, GKS90, KS01]. Raz & Sh-
pilka studied non-blackbox algorithms for non-commutative
formulas [RS05].

Klivans & Spielman [KS01] first observed that determin-
istic PIT was open even for depth-3 circuits with bounded
top fanin. Progress towards this was first made by the quasi-
polynomial time algorithm of Dvir & Shpilka [DS06]. The
problem was resolved (in the non-blackbox setting) by a
polynomial time algorithm given by Kayal & Saxena [KS07],
with a running time exponential in the top fanin.

The remaining history of depth-3 PIT has been explained
quite a bit in the previous sections. Identity tests are known
only for very special depth-4 circuits [AM07, Sax08, SV09,
KMSV10, SV11, AvMV11, SSS11, BMS11]. Agrawal &
Vinay [AV08] showed that an efficient blackbox identity test
for depth-4 circuits will actually give a quasi-polynomial
blackbox test, and exponential lower bounds, for circuits
of all depths that compute low degree polynomials. Thus,
understanding depth-3 identities seems to be a natural first
step towards the goal of PIT and circuit lower bounds.

At the end, we would just like to indicate how all the
depth-3 PIT results are interrelated and how they collec-
tively influenced progress in this problem. The rank no-
tion of Dvir & Shpilka [DS06], the Chinese Remaindering
of Kayal & Saxena [KS07], the rank preserving subspaces
of Karnin & Shpilka [KS08], the series of improved rank
bounds by the authors and Kayal & Saraf [SS11, KS09b,
SS10a]: each paper built of previous results and provided
enough food for thought for subsequent papers. This paper
also builds on the edifice constructed so far.

1.3 Organization
In Section 2, we give some basic definitions and give an in-

tuitive overview of our approach. Section 3 gives some of the
tools that were developed in previous works. In Section 4,
we give our main analysis and prove Theorems 2 and 3.

2. PRELIMINARIES AND INTUITION
We will denote the set {1, . . . , n} by [n]. We fix the base

field to be F, so the circuits compute multivariate polyno-
mials in the polynomial ring R := F[x1, . . . , xn]. We use F∗

to denote F \ {0}. A linear form is a linear polynomial in
R with zero constant term. We will denote the set of all
linear forms by L(R) :=

˘
Pn

i=1 aixi | a1, . . . , an ∈ F
¯

. The
set L(R) is a vector (or linear) space over F, a fact that
shall be repeatedly used. Much of what we do shall deal
with multi-sets of linear forms (also product of linear forms)

and equivalence classes inside them. A list of linear forms is
a multi-set of forms with an arbitrary order associated with
them.

Definition 4. We collect some important definitions from
[SS11]:

[Multiplication term and operators L(·) & M(·)] A
multiplication term f is an expression in R given as (the
product may have repeated ℓ’s), f := c ·

Q

ℓ∈S
ℓ, where c ∈ F∗

and S is a list of nonzero linear forms. The list of linear
forms in f , L(f), is just the list S of forms occurring in the
product above. For a list S of linear forms we define the
multiplication term of S, M(S), as

Q

ℓ∈S
ℓ or 1 if S = φ.

[ΣΠΣ circuits] An ΣΠΣ(k, d) circuit C is a sum of k

multiplication terms of degree d, C =
Pk

i=1 Ti. We assume
that the circuit is homogeneous, so each Ti is a product of
d linear forms. The list of linear forms occurring in C is
L(C) :=

S

i∈[k] L(Ti). Note that L(C) is a list of size exactly

kd.
For any subset S ⊆ [k], the sub-circuit CS is

P

s∈S
Ts.

For an i ∈ {0, . . . , k− 1}, define [i]′ := [k] \ [i]. Convention-
ally, [0] := ∅ and C∅ := 0.

[Span sp(·) and Rank rk(·)] For any S ⊆ L(R) we let
sp(S) ⊆ L(R) be the linear span of the linear forms in S
over the field F. (Conventionally, sp(∅) = {0}.) We use
rk(S) to denote the rank of S, considered as vectors in Fn.

2.1 Intuition and main ideas
We give a high-level description of the main ideas used

in this paper. Some notions are deliberately left vague, and
others may even be formally incorrect. Nonetheless, this
sketch is “morally” correct and, at some level, shows how
the authors arrived at their conclusions.

How do we convert a high variate ΣΠΣ(k, d, n) circuit
C into a low variate one and still preserve the structure
of C? We wish to do this by a linear transformation Ψ :
F[x1, . . . , xn] → F[y1, . . . , yℓ], where ℓ is comparable to k.
When the rank of the linear forms in C is itself comparable
to k, this can be done quite directly. We will get a circuit
Ψ(C) that is essentially isomorphic to C. For identities of
large rank, such a transformation seems impossible. Any
linear transformation will necessarily destroy some of the
structure of C. This is because forms that were independent
in C are now dependent in Ψ(C). But maybe we are trying
too hard to preserve the dependencies in C? After all, we
want a transformation Ψ that sends identities to identities.
(And, of course, non-identities to non-identities. Surely, sat-
isfying only the former condition is not too hard.) We are
not particularly bothered about how well Ψ(C) preserves
the exact structure of C. Though this seems obvious, this
is a very important point. All the previous approaches were
trying to preserve the complete structure of C through a lin-
ear transformation. We show that relaxing this requirement
allows for more efficient algorithms.

This is where the Chinese Remaindering techniques of [KS07]
and the ideal framework of [SS10a] enters the picture. For
any non-identity C, it was shown that there exists an ideal I
generated by products of forms in L(C) that “certifies” that
C is non-zero. Essentially, the polynomial C is not in ideal
I and hence, must be non-zero. In reality, it is much more
complicated than that, but for the sake of explanation, it
captures the main idea. The forms involved in generating I
have rank at most k. This gives a low-dimensional certificate
of the non-zeroness of C.



We argue that if Ψ can selectively preserve the forms gen-
erating I , then Ψ(I) remains a certificate for Ψ(C). In other
words, Ψ(C) will not be in Ψ(I). All that is needed is to
find such a Ψ that is independent of C (since we are in-
terested in blackbox algorithms). Enter [KS08]. They de-
velop the notion of rank-preserving subspaces. These can be
viewed as linear transformations from a large-dimensional
vector space S1 to a smaller dimensional one S2 . These
preserve the structure (in terms of linear independence) of
specific low dimensional subspaces of S1. These were con-
structed in a blackbox manner using extractors of [GR08].
By combining all the arguments properly, we can construct
a transformation Ψ such that Ψ(C) is a k-variate ΣΠΣ cir-
cuit. (To make this idea work, we will actually need a set of
transformations, and one Ψ will not suffice. )

The circuit Ψ(C) is of the form ΣΠΣ(k, d, k). This has
only a constant number of variables, and the Schwartz-Zippel
lemma [Sch80, Zip79] gives a simple blackbox algorithm for
such circuits. This is combined with the transformation Ψ to
construct the final hitting set. Our hitting set is structurally
the same as the one constructed in [KS08], although various
parameters differ and our analysis is completely different.

3. NECESSARY TOOLS
In this section, we list out the basic tools that we need. In

the first part, we explain the low-rank ideal certificates for
the non-zeroness of C. This requires some technical defini-
tions, before we can state the exact theorem. In the second
part, we give the key lemma of the Vandermonde matrix
transformation used in [KS08]. Once these tools are set in
place, we will explain how the variable reduction works.

3.1 Low rank certificates
This framework and the following theorems were devel-

oped in [SS10a]. The definitions are extremely technical,
and may appear to be somewhat unmotivated. These are
needed to precisely formalize the notion of the low-rank cer-
tificate for non-zeroness. We reproduce many of the defini-
tions and details for convenience. For more details, the inter-
ested reader should see the full version of [SS10a] ([SS10b]).
Figure 1 should help the reader understand the following
definitions.

Definition 5. (Ideal) An ideal I of R with generators
fi, i ∈ [m], is the set {

P

i∈[m] qifi|qi’s ∈ R} and is de-

noted by the notation 〈f1, . . . , fm〉. For an f ∈ R, the
following statements are equivalent: f ≡ 0(mod I), f ≡
0(mod f1, . . . , fm) and f ∈ I.

Two forms ℓ and ℓ′ are similar modulo I if ℓ ≡ αℓ′(mod I)
for some α ∈ F∗.

(Radical-span) Let S := {f1, . . . , fm} be multiplication
terms generating an ideal I. We associate a linear space to S
called the radical span, radsp(S) := sp(L(f1)∪ . . .∪L(fm)).

When the set of generators S for ideal I are clear from the
context we use the notation radsp(I). Similarly, radsp(I, f)
is shorthand for radsp(S ∪ {f}).

(Nodes) Let f be a multiplication term and let I be an
ideal generated by some multiplication terms. As the rela-
tion “similarity mod radsp(I)” is an equivalence relation on
L(R), it partitions the list L(f) into equivalence classes.

[repI(f)] For each such class, pick a representative ℓi and
define repI(f) := {ℓ1, . . . , ℓr}. (Note that form 0 can also
appear in this set, it represents the class L(f) ∩ radsp(I).)

[nodI(f)] For each ℓi ∈ repI(f), we multiply the forms in
f that are similar to ℓi mod radsp(I). We define nodes of
f mod I as the set of polynomials nodI(f) := {M(L(f) ∩
(F∗ℓ + radsp(I))) | ℓ ∈ repI(f)}. (Remark: When I = {0},
nodes of f are just the coprime powers-of-forms dividing f .)

(Paths) Let I be an ideal generated by some multiplica-
tion terms. Let C =

P

i∈[k] Ti be a ΣΠΣ(k, d) circuit. Let

vi be a sub-term of Ti (i.e. L(vi) ⊆ L(Ti)), for all i ∈ [k].
We call the tuple (I, v1, . . . , vk) a path of C mod I if, for all
i ∈ [k], vi ∈ nod〈I,v1,...,vi−1〉(Ti). It is of length k. (Remark:
We have defined path p as a tuple but, for convenience, we
will sometimes treat it as a set of multiplication terms, eg.
when operated upon by sp(·), 〈·〉, radsp(·), etc.)

Conventionally, when k = 0 the circuit C has just “one”
gate: 0. In that case, the only path C mod I has is (I),
which is of length 0.

Observe that the product of polynomials in nodI(f) just
gives f (upto a constant multiple). Also, modulo radsp(I),
each node is just a form-power ℓm. In other words, modulo
radsp(I), a node is a rank-one term. Refer to Figure 1.
The oval bubbles represent the list of forms in a term, and
the rectangles enclose forms in a node. The arrows show
a path. Starting with I as the zero ideal, v1 := x2

1, v2 :=
x2(x2 + 2x1), and v3 := (x4 + x2)(x4 + 4x2 − x1)(x4 + x2 +
x1)(x4 + x2 − 2x1) form a path. Initially the path is just
the zero ideal, so x2

1 is a node. Note how v2 is a power
of x2 modulo radsp(v1) and v3 is a power of x4 modulo
radsp〈v1, v2〉.

Theorem 25 of [SS10b] claims that in a non-zero depth-3
circuit C, there always exists a path “certifying” the non-
zeroness of C. Essentially, there is a path p such that modulo
p, the circuit C reduces to a single non-zero multiplication
term. The theorem is stated for general settings, but we will
always assume that I = 〈0〉. Note that the rank of radsp(p)
is at most (k − 1), since each node can increase the rank by
at most 1 and since one term is to be left uncancelled.

Theorem 6 (Certificate for a Non-identity). Let
I be an ideal generated by some multiplication terms. Let
C =

P

i∈[k] Ti be a ΣΠΣ(k, d) circuit that is nonzero mod-

ulo I. Then ∃i ∈ {0, . . . , k − 1} such that C[i] mod I has a
path p satisfying: C[k]\[i] ≡ α · Ti+1 6≡ 0 (mod p) for some
α ∈ F∗.

3.2 The Vandermonde linear transformation
Linear transformations based on the Vandermonde matrix

are used widely, for eg. in [GR08] to construct linear seeded
extractors for affine sources. This was adapted in [KS08] to
design depth-3 blackbox PIT algorithms. We will need ideas
from Lemma 6.1 from [GR08] to construct linear transforma-
tions that reduce the dimension of a space but still preserve
the structure of low rank subspaces.

We will design a linear transformation Ψβ : Fn → Fk for
any β ∈ F as follows. Let Vn,k,β denote the n × k Vander-
monde matrix. This is defined as (Vn,k,β)i,j := βij . We
have

(b1 . . . bk) = (a1 . . . an) · Vn,k,β (br =
n

X

i=1

aiβ
ri) (1)



T1 T2 T3

x1

x1

x2

x2 + 2x1

x3 + 10x1

x3 − x1

x3 + 3x1

x4 + x2

x4 + 4x2 − x1

x4 + x2 + x1

x4 + x2 − 2x1

Figure 1: Nodes and paths in C = T1 + T2 + T3 + . . .

So far, Ψβ has been seen as a linear transformation. But we
wish to eventually understand its action on ideals. For that
reason, it is necessary to view Ψβ as a linear homomorphism
from R = F[x1, . . . , xn] to R′ := F[y1, . . . , yk]. This means
that Ψβ maps R to R′ and preserves the ring operations of
addition and multiplication. We can equivalently define Ψβ

as

∀i ∈ [n], Ψβ : xi 7→
k

X

j=1

βijyj (2)

We define Ψβ(α) = α for all α ∈ F. This (naturally) defines
the action of Ψβ, on all the elements of R, that preserves
the ring operations of R. We now state a key property of
Ψ (Lemma 6.1 of [GR08]). For completeness, a proof is
provided in Appendix A.

Lemma 7 (Ψβ preserves k-rank). Let Ψβ : R → R′

be the linear homomorphism defined by Equation (2). Let
S ⊆ L(R) be a subset of linear forms with rk(S) ≤ k. For
all but nk2 values of β, rk(Ψβ(S)) = rk(S).

The homomorphism Ψβ depends solely on F, k, n. If β
has a bit representation of at most O(kdn) bits, then Ψβ is
computable in poly(kdn) time.

4. ANALYSIS
With all the basic definitions in place, we are now ready to

convert any ΣΠΣ(k, d, n) non-identity C into a ΣΠΣ(k, d, k)
non-identity. This will be done through a two-step process.
We will use the properties of Ψβ to prove a generalization of
Lemma 7. Not only does Ψβ preserves small subspaces, but
it also maintains the structure of ideals having low radical-
span. This leads to the second step. We deduce that Ψβ

must preserve all paths of C, since paths have a low radical
span. Since C has a certifying path p, we show that Ψβ(p)
must also be a certificate for Ψβ(C).

4.1 The moral nature of Ψβ: it maintains ide-
als

We study the action of Ψβ on ideals. Our main lemma is
the following.

Lemma 8 (Ψβ preserves ideals). Let f1, . . . , fm, f be
multiplication terms in R. Define the ideal I := 〈f1, . . . , fm〉.
Let the span sp(L(f)∪ radsp(I)), over F, be of rank at most
k. Then, for all but nk2 values of β: f ∈ I iff Ψβ(f) ∈
〈Ψβ(f1), . . . , Ψβ(fm)〉.

To prove this, we need to show that the map Ψβ is an
isomorphism on small enough subrings of R. This is a
fairly direct consequence of Lemma 7. For ℓ1, . . . , ℓk ∈
L(R), F[ℓ1, . . . , ℓk] ⊂ R denotes the set of all polynomials
g(ℓ1, . . . , ℓk), where g ∈ F[y1, . . . , yk]. This is the subalgebra
of R generated by {ℓ1, . . . , ℓk}.

Lemma 9. Let ℓ1, . . . , ℓk ∈ L(R) be k linearly indepen-
dent forms. Then, for all but nk2 values of β, Ψβ induces
an isomorphism between F[ℓ1, . . . , ℓk] and R′.

Proof. Let B denote F[ℓ1, . . . , ℓk] and set S := {ℓ1, . . . , ℓk}
⊂ L(R). It will be convenient to define Φβ to be the map
induced by Ψβ on B. We will show that Φβ : B → R′ is an
isomorphism. Since S is of rank k, B is isomorphic to R′

(under an invertible linear transformation of variables). To
show that the homomorphism Φβ is an isomorphism, it suf-
fices to prove that Φβ is onto. We need to show that for any
g(y1, . . . , yk) ∈ R′, there exists p ∈ B such that Φβ(p) = g.

For the set S, choose a value of β other than the nk2 values
given by Lemma 7. We have rk(Φβ(S)) = rk(S) = k. There-
fore, for each yi, there exist constants αj ∈ F such that yi =
P

j
αjΦβ(ℓj). By the linearity of Φβ , yi = Φβ(

P

j
αjℓj).

Hence, for each yi, there is some linear form ti ∈ L(B), such
that Φβ(ti) = yi. The polynomial p := g(t1, . . . , tk) is cer-
tainly in B. Since Φβ is a homomorphism, Φβ(p) = g.

We prove Lemma 8.

Proof of Lemma 8. If f ∈ I , then f =
P

i∈[m] gifi,

where gi ∈ R. Since Ψβ is a homomorphism, Ψβ(f) =
P

i∈[m] Ψβ(gi)Ψβ(fi). So Ψβ(f) ∈ 〈Ψβ(f1), . . . , Ψβ(fm)〉.

We now show the converse. Let the span sp(L(f)∪radsp(I))
over F be generated by linear forms ℓ1, . . . , ℓr ∈ L(R). Since
the rank of sp(L(f)∪ radsp(I)) is at most k, r ≤ k. Choose
arbitrary forms ℓr+1, . . . , ℓk such that ℓ1, . . . , ℓk are linearly
independent. Define subring (of R) B := F[ℓ1, . . . , ℓk]. Ap-
plying Lemma 9, we get that for all but nk2 values of β,



Ψβ induces an isomorphism Φβ : B → R′. Choose any
such β and fix the unique elements t1, . . . , tk ∈ B such that
Φβ(ti) = yi for all i ∈ [k].

Suppose Ψβ(f) ∈ 〈Ψβ(f1), . . . , Ψβ(fm)〉. Then there exist
g1, . . . , gm ∈ R′ such that,

Ψβ(f) =

m
X

i=1

gi · Ψβ(fi) (3)

Each gi is a polynomial in (y1, . . . , yk) over F. So we can
define the polynomial,

h := f −
m

X

i=1

gi(t1, . . . , tk) · fi.

Note that f and fi’s are multiplication terms generated by
forms in the sp(ℓ1, . . . , ℓk). Hence all of these are in B. The
polynomials gi(t1, . . . , tk) are also in B, so h ∈ B. Since Φβ

is a homomorphism,

Φβ(h) = Φβ(f) −
m

X

i=1

gi(Φβ(t1), . . . , Φβ(tk)) · Φβ(fi)

= Ψβ(f) −
m

X

i=1

gi(y1, . . . , yk) · Ψβ(fi) = 0

But Φβ is an isomorphism, so h = 0. This implies f =
Pm

i=1 gi(t1, . . . , tk) · fi. Note that the evaluations of the gi’s
are in R. Thus, f ∈ 〈f1, . . . , fm〉.

4.2 Variable reduction
We come to the main part where we merge the path cer-

tificates with the properties of Ψβ to prove the variable re-
duction. We will need a technical cancellation lemma from
[SS10b], proven in Appendix B.

Lemma 10. Let f1, . . . , fm be multiplication terms gener-
ating an ideal I, let ℓ ∈ L(R) and g ∈ R. If ℓ /∈ radsp(I)
then: ℓg ∈ I iff g ∈ I.

We now state our main variable reduction lemma. This,
combined with the polynomial time constructions of the
Ψβ ’s, completes the proof of Theorem 2.

Lemma 11. Let C be a ΣΠΣ(k, d, n) circuit and U ⊆ F

such that |U | = dnk2 + 1. Then C = 0 iff ∀β ∈ U, Ψβ(C) =
0.

Proof. Since Ψβ is a homomorphism, C = 0 implies
∀β, Ψβ(C) = 0.

Suppose C 6= 0, but ∀β ∈ U, Ψβ(C) = 0. Applying Theo-
rem 6 on C (with I := 〈0〉) yields a certifying path p. Thus,
∃i ∈ {0, . . . , k − 1} such that C[i] mod I has a path p satis-
fying,

C[k]\[i] ≡ α · Ti+1 6≡ 0 (mod p), for some α ∈ F
∗. (4)

Note that p is basically a sequence of multiplication terms
such that rk(radsp(p)) < k. Let g := M(L(Ti+1)∩radsp(p)).
This is just the product of all forms in Ti+1 that are in
radsp(p). So Ti+1/g is the product of forms not in radsp(p).
By repeated applications of Lemma 10, since Ti+1 /∈ 〈p〉, g /∈
〈p〉. The rank of sp(L(g) ∪ radsp(p)) is less than k. Indeed,
for any linear form ℓ ∈ L(Ti+1), the rank of {ℓ} ∪ radsp(p)
is at most k.

We will now collect a set B of“bad”β values. By Lemma 7,
for each ℓ ∈ L(Ti+1), there are at most nk2 values of β such

that Ψβ does not preserve rk({ℓ} ∪ radsp(p)). Add all of
these values to B. The total number of all these bad β val-
ues is at most dnk2. Therefore, there exists a good β in
U .

For any β ∈ U \ B, we know that Ψβ preserves rk(L(g)∪
radsp(p)) = rk(radsp(p)). Thus, by the proof of Lemma 8,
Ψβ preserves g /∈ 〈p〉. In other words, Ψβ(g) /∈ 〈Ψβ(p)〉. We
get a contradiction with the following claim.

Claim 12. Choose β ∈ U \ B. If Ψβ(C) = 0, then
Ψβ(g) ∈ 〈Ψβ(p)〉.

Proof. Observe that C[i] ≡ 0 (mod p), implying Ψβ(C[i]) ≡
0 (mod Ψβ(p)). We get 0 = Ψβ(C) = Ψβ(C[i])+ Ψβ(C[k]\[i]).
Going modulo p and applying Equation (4), Ψβ(Ti+1) ≡
0 (mod Ψβ(p)). In terms of ideals, Ψβ(Ti+1) ∈ 〈Ψβ(p)〉.
Consider any form ℓ ∈ L(Ti+1) such that ℓ /∈ radsp(p). We
will show that Ψβ(Ti+1)/Ψβ(ℓ) ∈ 〈Ψβ(p)〉.

We have rk({ℓ} ∪ radsp(p)) = rk(radsp(p)) + 1, by the
choice of ℓ. Since β /∈ B, rk({Ψβ(ℓ)} ∪ radsp(Ψβ(p))) =
rk(radsp(Ψβ(p))) + 1. This implies Ψβ(ℓ) /∈ radsp(Ψβ(p)).
Since Ψβ(Ti+1) ∈ 〈Ψβ(p)〉, Lemma 10 tells us that
Ψβ(Ti+1)/Ψβ(ℓ) ∈ 〈Ψβ(p)〉. We can iteratively repeat this
process for all such forms ℓ. We will end up with Ψβ(g) ∈
〈Ψβ(p)〉.

4.3 The final hitting set
Let (k, d, n) be the triple of natural numbers given in the

input. We design a simple hitting set H. We will generate
a set of vectors δ ∈ Fn that make H.

• Let S ⊆ F be an arbitrary set of size dnk2 + 1.

• Let T ⊆ F be an arbitrary set of size d + 1.

• For each β ∈ S and each vector (γ1, . . . , γk) ∈ T k,
define the vector δ in Fn as follows:

δi :=
X

j∈[k]

βijγj .

We use the classical Schwartz-Zippel theorem.

Theorem 13. (Schwartz-Zippel) Let f(y1, . . . , yk) be a poly-
nomial of degree d. Let T be a finite subset of F. The prob-
ability that f is zero on a random point in T k is at most
d/|T |.

Thus, for |T | > d, T k is a hitting set for all k-variate
polynomials of degree d.

We are now all set to finish the proof of Theorem 3.

Theorem 14. The set H is a hitting set for ΣΠΣ(k, d, n)
circuits. It can be generated in poly(ndk) time.

Proof. The latter statement is quite clear, given the con-
struction of H. Consider a non-zero ΣΠΣ(k, d, n) circuit
C. We need to show the existence of some δ ∈ H such
that C(δ) 6= 0. By Lemma 11, there exists a β ∈ S such
that Ψβ(C) 6= 0. Since Ψβ(C) is a ΣΠΣ(k, d, k) circuit,
Theorem 13 tells us that there is some γ ∈ T k such that
Ψβ(C)(γ) 6= 0. Consider the δ corresponding to this β and
γ. By construction of δ and the definition of Ψβ (Equa-
tion 2), C(δ) = Ψβ(C)(γ) 6= 0.



5. CONCLUSION
We show that ΣΠΣ(k, d, n) identity is only as complicated

as a ΣΠΣ(k, d, k) identity. We prove this fact by observing
that there is a “low rank” homomorphism that preserves the
ideal structure in depth-3 circuits. Since this low rank ho-
momorphism is easily computable, we get a poly(ndk) time
blackbox test. Can we identify properties of k-variate fanin
k identities to develop faster PIT algorithms? Currently, no
PIT algorithm is able to beat the exponential dependence
on k.

This work also raises a question for depth-4 circuits: are
there analogous low rank homomorphisms for ΣΠΣΠ(k) cir-
cuits? Such results would open the door for interesting PIT
algorithms for higher depth circuits.

Can this approach be used beyond PIT? In particular,
there are results known about learning ΣΠΣ(k) circuits where
PIT methods have turned out to be useful [KS09a]. The
variable reduction techniques might have some utility for
these problems.
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APPENDIX

A. A VANDERMONDE-INSPIRED LINEAR
TRANSFORMATION

Lemma 7. Let Ψβ : R → R′ be the linear homomor-
phism defined by Equation (2). Let S ⊆ L(R) be a subset
of linear forms with rk(S) ≤ k. For all but nk2 values of β,
rk(Ψβ(S)) = rk(S).

The homomorphism Ψβ depends solely on the triple of nat-
ural numbers (k, d, n) and is computable in poly(kdn) time.

Proof. We can assume wlog that S is of rank k, and
has k linearly independent forms ℓ1, . . . , ℓk ∈ L(R). Say Ψβ

maps ℓi =
P

j∈[n] ai,jxj to
P

j∈[k] bi,jyj , for all i ∈ [k]. De-

fine matrices B := ((bi,j))i∈[k],j∈[k] and A := ((ai,j))i∈[k],j∈[n].
By Equation (1) we deduce B = A ·Vn,k. We will show that
B is invertible.

Since the rows of A are linearly independent over F, we
can apply partial Gaussian elimination (i.e. row operations)
on A. This has the effect of left-multiplying A by an invert-
ible matrix E ∈ Fk×k ensuring: there are column indices
j1 > . . . > jk ∈ [n] such that ji is the maximal index with
(EA)i,ji

6= 0, for all i ∈ [k]. Now we consider the matrix
B′ := (EA) · Vn,k,

det(B′) =
X

σ∈Sk

sgn(σ) · Pσ(β), where Pσ(β) :=
Y

i∈[k]

B′
i,σ(i).



Note that we view B′
i,σ(i) as a polynomial in F[β] which,

by the assumption on EA, is of degree ji · σ(i). Thus,

deg(Pσ(β)) =
X

i∈[k]

ji · σ(i).

Since j1 > . . . > jk, it can be easily shown that the ex-
pression above achieves its maxima (over σ ∈ Sk) only if
σ(1) > . . . > σ(k). But this uniquely specifies σ, hence
there is a unique Pσ(β) of the largest degree (≤ nk2). Thus,
det(B′) is a nonzero polynomial in F[β] of degree at most
nk2. This means that B′ is invertible, hence B = E−1B′ is
invertible, for all but at most nk2 values of β.

B. A CANCELLATION LEMMA
An f ∈ R is called a zerodivisor of an ideal I (or mod I)

if f /∈ I and there exists a g ∈ R \ I such that fg ∈ I .
Let u, v ∈ R. It is easy to see that if u is nonzero mod

I and is a non-zerodivisor mod I then: uv ∈ I iff v ∈ I .
This can be seen as some sort of a “cancellation rule” for
non-zerodivisors. We show such a cancellation rule in the
case of ideals arising in ΣΠΣ circuits.

Lemma 10. Let f1, . . . , fm be multiplication terms gen-
erating an ideal I , let ℓ ∈ L(R) and g ∈ R. If ℓ /∈ radsp(I)
then: ℓg ∈ I iff g ∈ I .

Proof. Suppose ℓ /∈ radsp(I). If I = {0}, then the
lemma is trivially true. Assume that I 6= {0} and rk(radsp(
I)) =: r ∈ [n − 1]. Since ℓ /∈ radsp(I), there exists an
invertible linear transformation τ : L(R) → L(R) that
maps each form of radsp(I) to sp(x1, . . . , xr) and maps ℓ
to xn. Now suppose that ℓg ∈ I . This means that there are
q1, . . . , qm ∈ R such that ℓg =

Pm

i=1 qifi. Apply τ on this
to get:

xng′ =
m

X

i=1

q′iτ (fi). (5)

We know that τ (fi)’s are free of xn. Express g′, q′i-s as poly-
nomials wrt xn, say

g′ =
X

j≥0

ajx
j
n, where aj ∈ F[x1, . . . , xn−1] (6)

q′i =
X

j≥0

bi,jx
j
n, where bi,j ∈ F[x1, . . . , xn−1] (7)

For d ≥ 1, compare the coefficients of xd
n on both sides

of Equation (5). We get ad−1 =
Pm

i=1 bi,dτ (fi), thus ad−1

and ad−1x
d−1
n are in 〈τ (f1), . . . , τ (fm)〉. Doing this for all

d ≥ 1, we get g′ ∈ 〈τ (f1), . . . , τ (fm)〉. Hence, g = τ−1(g′) ∈
〈f1, . . . , fm〉 = I . This finishes the proof.


