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Abstract. We study the equivalence problem of cubic forms. We lower
bound its complexity by that of F-algebra isomorphism problem and
hence by the graph isomorphism problem (for all fields F). For finite
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are regular and indecomposable.

Keywords. cubic forms, algebras, graphs, isomorphism, equivalence,
complexity.

Subject classification. Computer Science, Algebra.

1. Introduction

Suppose we are given two polynomials f(x1, . . . , xn) and g(x1, . . . , xn) of total
degree d with coefficients in a field F. We say that f is equivalent to g, denoted
by f ∼ g, if there is an invertible linear transformation τ sending each xi to a
linear combination of x1, . . . , xn such that:

f (τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

The polynomials f, g are assumed to be provided in the input in expanded form:∑
0≤i1+...+in≤d

ai1,...,inx
i1
1 · · ·xinn

Example 1.1. Suppose f(x, y) = x2 + y2 and g(x, y) = 2x2 + 2y2 are poly-

nomials over Q. Then the map τ :

{
x 7→ x+ y

y 7→ x− y
applied on f gives g, i.e.,

τ ◦ f(x, y) = g(x, y). Thus, f ∼ g over rationals. ♦
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Example 1.2. Consider f(x) = x2 and g(x) = 2x2. Then f and g are not
equivalent over Q but they are equivalent over R as τ : x 7→

√
2x is an equiva-

lence. ♦

The computational problem of polynomial equivalence is to check whether
two input polynomials f, g ∈ F[x] are equivalent, in time polynomial in the size
of the input. We treat the degree d as a constant while the number of variables
n varies. We show in this paper that this easily defined problem is apparently
harder than commutative F-algebra isomorphism (F-algebras given in the basis
form) and hence (by Lemma 6.13) as a corollary the graph isomorphism problem
too reduces to polynomial equivalence. Also, in the other direction most cases
of polynomial equivalence reduce to the commutative F-algebra isomorphism
problem.

Previous research on polynomial equivalence has primarily focussed on a
restricted case – when f, g are homogeneous polynomials called forms. The
most celebrated case is perhaps when f, g are quadratic forms – homogeneous
polynomials of degree 2. The classification of quadratic forms is known due
to the works of Minkowski (1885), Hasse (1921) and Witt (Witt & Kersten
1998). The classification theorem of quadratic forms is effective in the sense
that it gives algorithms for deciding and finding quadratic forms equivalence
over “interesting” fields like finite fields, Q,R and C.

In this work we focus on polynomial equivalence for homogeneous polyno-
mials of degree 3 – cubic forms. This case of polynomial equivalence seems
to be significantly harder than quadratic forms equivalence as we show that a
fairly general case of ring isomorphism – commutative F-algebra isomorphism
– reduces to cubic forms equivalence. This reduction (together with Lemma
6.13) implies that graph isomorphism reduces to cubic forms equivalence too.
Moreover, we also give evidence that the problem of equivalence for higher de-
gree forms reduces to that of cubic forms. Thus, cubic forms seem to be the
most important restricted case of polynomial equivalence. Cubic forms equiv-
alence has been well studied in mathematics (for instance see Harrison 1975;
Harrison & Pareigis 1988; Manin 1986; Rupprecht 2003). Over the last ten
years, it has been found to be useful in computer science as well: Courtois
et al. (1998); Patarin (1996) propose a cryptosystem based on the hardness of
the cubic forms equivalence over finite fields. Graph isomorphism is ofcourse a
well studied open problem in computer science, see Köbler et al. (1993). Thus,
this fundamental connection of isomorphism problems with cubic forms we find
interesting and intriguing.



On the Complexity of Cubic Forms 3

In Section 2 we prove upper and lower bounds for the polynomial equiva-
lence problem over various fields. In Section 3 we lower bound the cubic forms
case of polynomial equivalence by algebra isomorphism. In Section 4 we present
some known results about quadratic and cubic forms equivalence. Finally, in
Section 5 we study properties of the cubic forms we get out of algebras. Some
of the standard results about rings useful to us have been collected in the
Appendix.

Preliminary versions of this paper were presented in Agrawal & Saxena
(2005, 2006).

2. The Complexity of Polynomial Equivalence

For a given field F and degree d let us define the language for the problem of
polynomial equivalence over F as:

polyEquivd,F := {(f, g) | f, g are polynomials of total degree d over F and f ∼ g}

2.1. Upper Bounds. The complexity of polynomial equivalence depends
upon the base field. In this section we give upper bounds on polynomial equiv-
alence for various “interesting” fields.

Theorem 2.1. For any fixed d ∈ Z>0, the problem of polynomial equivalence
satisfies:

1) For a finite field F, polyEquivd,F ∈ NP ∩ coAM.

2) When F = R, polyEquivd,F ∈ EEXP.

3) For an algebraically closed field F (eg. C), polyEquivd,F ∈ PSPACE.

Proof (1). Let F be a finite field of size q. Given a linear transformation
τ on the variables x1, . . . , xn, it is easy to check whether f(τx1, . . . , τxn) =
g(x1, . . . , xn) simply by substituting for τ in f and doing the computations in
time poly(nd, log q). Thus, polynomial equivalence over F is in NP.

Let us now see an AM protocol for polyEquivF. Suppose f, g ∈ F[x1, . . . , xn]
are two given polynomials. We call an invertible linear transformation φ ∈
(Fn×n)∗ an automorphism of f if f(φx) = f(x). Let us define a set C(f) as:

C(f) :=
{
(f(τx), φ) | τ, φ ∈

(
Fn×n

)∗
and φ is an automorphism of f(τx)

}
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If s is the number of invertible n×n matrices over F then observe that the size
of the set C(f) is:

#C(f) = (number of polynomials ∼ f(x)) ·#Aut(f)

=
s

#Aut(f)
·#Aut(f)

= s

Similarly, we have the set C(g) and we define C(f, g) = C(f) ∪ C(g). It is
a simple exercise to show that given Fq and n we can compute the number s
of n × n invertible matrices over Fq in polynomial time. Now let us see how
#C(f, g) behaves:

f 6∼ g ⇒ C(f) ∩ C(g) = ∅ ⇒ #C(f, g) = 2s.

f ∼ g ⇒ C(f) = C(g) ⇒ #C(f, g) = s.

Thus, the set C(f, g) is larger by a factor of 2 when f 6∼ g. Also, membership
in C(f, g) can be clearly decided in polynomial time. Both these properties of
C(f, g) together give us a standard AM protocol (Babai & Szemerédi 1984) to
decide whether f 6∼ g and hence, polyEquivd,F is in AM. �

Proof (2). When F = R, we consider the equivalence as a matrix A over
R in n2 unknowns ((ai,j)) and then solve the system of equations that we get
from:

f(Ax) = g(x)

This system of equations can be solved in EEXP due to the result of Tarski on
the decidability of first-order equations over reals (Davenport & Heintz 1988).

�

Proof (3). When F is an algebraically closed field, we consider the equiva-
lence as a matrix A over F in n2 unknowns ((ai,j)) and then solve the system
of equations that we get from:

f(Ax) = g(x)

This system of equations can be solved over F in PSPACE by using Hilbert’s
Nullstellensatz (Brownawell 1987). �

Remark 2.2. When F = Q, it is not yet known if the problem is decidable.
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2.2. Reduction to F-algebra Isomorphism (in some cases). At the first
glance, the problem of polynomial equivalence does not appear to be related to
the problems of ring isomorphism. But in this section we exhibit a connection
of polynomial equivalence to the ring isomorphism problem. We show that
the problem of polynomial equivalence restricted to homogeneous polynomials
reduces to the ring isomorphism problem for most cases.

Theorem 2.3. Suppose F is a field having dth roots, i.e. ∀α ∈ F, α 1
d ∈ F.

Then equivalence of homogeneous polynomials of degree d over F is many-one
polynomial time reducible to F-algebra isomorphism.

Proof. Suppose f, g are homogeneous polynomials of degree d in n variables
over F. Then construct a commutative F-algebra Rf from f as:

Rf := F[x1, . . . , xn]/ (f, Id+1)

where, the ideal Id+1 is generated by all the monomials of degree d + 1. We
claim that the rings Rf and Rg are isomorphic iff f ∼ g.

Suppose ψ is an equivalence that sends f to g. Then ψ easily extends to an
isomorphism from Rf to Rg.

Conversely, suppose φ is an isomorphism from Rf → Rg. Then φ(f) has to
map to 0 in Rg thus, there is a c ∈ F such that:

(2.4) φ(f) = cg(x) + (terms of degree d+ 1 or more)

Since, xd+1
i = 0 in Rf , φ(xi) cannot have a constant term otherwise φ(xi)

d+1 6=
0. Let us denote the linear part of φ(xi) by ψ(xi). Hence, for all i ∈ [n]:

φ(xi) = ψ(xi) + (quadratic and higher degree terms)

Since, f is homogeneous of degree d, the degree d terms of φ(f) are exactly
those in ψ(f). Thus:

(2.5) φ(f) = ψ(f) + (terms of degree d+ 1 or more)

The Equations (2.4) and (2.5) imply that ψ(f) = cg. Now since F has dth roots
and g is homogeneous of degree d we further get:

f(ψ(x1), . . . , ψ(xn)) = g(c
1
dx1, . . . , c

1
dxn)

Thus, f ∼ g.
Hence, Rf

∼= Rg iff f ∼ g. �
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Remark 2.6. If one slightly generalizes the definition of polynomial equiva-
lence as f ∼ g iff there is a τ ∈ Fn×n and a c ∈ F such that f(τ(x)) = c · g(x)
then this theorem works for all fields F.

2.3. A Lower Bound: Reduction from F-algebra Isomorphism. Here,
we will show that a fairly general case of the ring isomorphism problem –
commutative F-algebra isomorphism – reduces to the equivalence problem of
polynomials having total degree 3 (called cubic polynomials).

An isomorphism of F-algebras has to preserve all the multiplicative rela-
tions, which are ∼ n2 if there are n basis elements. On the other hand an
equivalence of polynomials has to satisfy only one equation. It is interest-
ing that there is a way to combine the various multiplicative relations of a
commutative F-algebra into one polynomial such that its equivalence gives an
F-algebra isomorphism.

Theorem 2.7. Commutative F-algebra Isomorphism ≤P
m cubic polynomial

equivalence.

Proof. Let R be a commutative F-algebra with additive basis b1, . . . , bn over
F. Furthermore, multiplication in R is defined as: for all 1 ≤ i ≤ j ≤ n,

bi · bj =
n∑
k=1

ai,j,kbk, where, ai,j,k ∈ F

Let us define a polynomial that captures the multiplicative relations defining
ring R:

(2.8) fR(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
1≤k≤n

ai,j,kbk

)

Note that here z = (z1,1, . . . , zn,n) and b = (b1, . . . , bn) are formal variables and
fR is a polynomial in F[z, b]. Similarly, for another commutative F-algebra R′

the polynomial would be:

fR′(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
1≤k≤n

a′i,j,kbk

)

An isomorphism from R to R′ easily gives an equivalence from fR to fR′ :
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Claim 2.9. If R ∼= R′ then fR ∼ fR′ .

Proof of Claim 2.9. Let φ be an isomorphism from R to R′. Note that φ
sends each bi to a linear combination of b’s and for all i ≤ j ∈ [n]: φ(bi)φ(bj)−∑

1≤k≤n ai,j,kφ(bk) = 0 in R′. This implies that there exist constants ci,j,k,` ∈ F
such that:

φ(bi)φ(bj)−
∑

1≤s≤n

ai,j,sφ(bs) =
∑

1≤k≤`≤n

ci,j,k,`

(
bkb` −

∑
1≤s≤n

a′k,`,sbs

)

This immediately suggests that the linear transformation τ that sends:

for all 1 ≤ i ≤ n, bi 7→ φ(bi)

for all 1 ≤ k ≤ ` ≤ n,

( ∑
1≤i≤j≤n

ci,j,k,`zi,j

)
7→ zk,`

makes fR equal to fR′ . The linear transformation τ is an invertible map because
τ |b = φ is invertible and τ |z has a range space of full dimension implying that
τ |z is invertible too. �

The converse, i.e., getting an F-algebra isomorphism from a polynomial
equivalence, is more involved to show.

Claim 2.10. If fR ∼ fR′ then R ∼= R′.

Proof of Claim 2.10. Let φ be a linear transformation such that
(2.11)∑
1≤i≤j≤n

φ(zi,j)

(
φ(bi)φ(bj)−

∑
1≤k≤n

ai,j,kφ(bk)

)
=

∑
1≤i≤j≤n

zi,j

(
bibj −

∑
1≤k≤n

a′i,j,kbk

)

By comparing the cubic terms on both sides we get:

(2.12)
∑

1≤i≤j≤n

φ(zi,j)φ(bi)φ(bj) =
∑

1≤i≤j≤n

zi,jbibj

We aim to show that φ(bi) has no z’s, i.e., φ(bi) is a linear combination of only
b’s. We will be relying on the following property of the RHS of Equation (2.12):
if τ is an invertible linear transformation on the z’s then for all 1 ≤ i ≤ j ≤ n,
the coefficient of zi,j in

∑
1≤i≤j≤n τ(zi,j)bibj is nonzero.
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Suppose φ(bi0) has z’s, i.e.,

φ(bi0) =
∑
j

ci0,jbj +
∑
j,k

ci0,j,kzj,k

We can apply an invertible linear transformation τ on z’s in Equation (2.12)
such that τ maps

∑
j,k ci0,j,kzj,k to z1,1. Then apply an evaluation map val

that substitutes z1,1 by
(
−
∑

j ci0,jbj

)
. Now val ◦ τ ◦ φ(bi0) = 0 and thus,

Equation (2.12) becomes:

(2.13)
∑

1≤j≤k≤n
j,k 6=i0

val ◦ τ ◦ φ(zj,kbjbk) =
∑

1≤j≤k≤n
(j,k) 6=(1,1)

zj,k(quadratic b’s) + (cubic b’s)

Notice that the LHS of Equation (2.12) had
(
n+1

2

)
summands while the LHS

of Equation (2.13) has at most
{(

n+1
2

)
− n

}
summands. These summands

on the LHS of Equation (2.13) are of two kinds: those that have a nonzero
occurrence of a z-variable and those that are cubic in b’s. So we repeat this
process of applying invertible linear transformations on z’s and fixing z’s in
Equation (2.13) so that for all 1 ≤ j ≤ k ≤ n, j, k 6= i0, val ◦ τ ◦ φ(zj,kbjbk)
either maps to zero or to a cubic in b’s. Thus, after

{
1 +

(
n+1

2

)
− n

}
z-fixings

the LHS of Equation (2.12) is a cubic in b’s while the RHS still has
(
n+1

2

)
−{

1 +
(
n+1

2

)
− n

}
= (n− 1) unfixed z’s, which is a contradiction.

Since φ(bi)’s have no z’s and there are no cubic b’s in the RHS of Equa-
tion (2.11) we can ignore the b’s in φ(zj,k)’s. Thus, now φ(zj,k)’s are linear
combinations of z’s and φ(bi)’s are linear combinations of b’s. Again looking
at Equation (2.11), this means that

(
φ(bi)φ(bj)−

∑
1≤s≤n ai,j,sφ(bs)

)
is a lin-

ear combination of (bkb`−
∑

1≤s≤n a
′
k,`,sbs

)
for 1 ≤ k ≤ ` ≤ n; implying that(

φ(bi)φ(bj)−
∑

1≤s≤n ai,j,sφ(bs)
)

= 0 in ring R′. This combined with the fact

that φ|b is an invertible linear transformation on b means that φ induces an
isomorphism from ring R to R′. �

The above two claims complete the proof. �

3. Another Lower Bound: F-algebra Isomorphism
reduces to Cubic Forms Equivalence

We had seen in Theorem 2.7 how to construct non homogeneous cubic poly-
nomials that capture the multiplicative relations of a given F-algebra. Now
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what happens if we homogenize those cubic polynomials, does an equivalence
between such cubic forms give us isomorphism between the original F-algebras?

In this section we first give a reduction from commutative F-algebra iso-
morphism to local commutative F-algebra isomorphism. Then from these local
commutative F-algebras we construct cubic forms (obtained by homogenizing
Equation (2.8)) and prove that an equivalence between these cubic forms in-
duces an isomorphism between the local commutative F-algebras. Thus, cubic
forms equivalence problem is at least as hard as the isomorphism problem of
commutative F-algebras. Consequently, for any field F, cubic forms equivalence
problem is at least as hard as the graph isomorphism problem (by Lemma 6.13).

3.1. Commutative F-algebras reduce to local F-algebras. An F-algebra
is local if it cannot be broken into simpler F-algebras, i.e., if it cannot be writ-
ten as a direct product of algebras. Given a commutative F-algebra this direct
product decomposition can be done by factoring polynomials over the field F.
Any non-unit r in a finite dimensional local commutative F-algebra is nilpotent,
i.e., there is an m such that rm = 0. For more details on local rings refer the
appendix or the text by McDonald (1974).

In this section we give a many-to-one reduction from commutative F-algebra
isomorphism to local commutative F-algebra isomorphism. Moreover, the local
commutative F-algebras that we construct have basis elements most of whose
products vanish. We exploit the properties of this local F-algebra to give a
reduction from commutative F-algebra to cubic forms in the next subsection.

Theorem 3.1. Commutative F-algebra isomorphism ≤P
m Local F-algebra iso-

morphism.

Proof. Given two F-algebras R and S, Theorem 2.7 constructs two cubic
polynomials p and q respectively such that p, q are equivalent iff R,S are iso-
morphic. These polynomials live in F[z1,1, . . . , zn,n, b1, . . . , bn] and look like:

p(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
k

ai,j,kbk

)

q(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
k

a′i,j,kbk

)
Let

(3.2) p3(z, b) :=
∑

1≤i≤j≤n

zi,jbibj and p2(z, b) := −
∑

1≤i≤j≤n

(
zi,j
∑
k

ai,j,kbk

)
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Similarly define q3(z, b) and q2(z, b) from q. Thus, p = p3 + p2 and q = q3 + q2,
where p3, q3 are homogeneous of degree 3 and p2, q2 are homogeneous of degree
2.

Using p, q we construct the following commutative F-algebras:

R′ := F[z, b, u]/
〈
p3, up2, u

2, I
〉

S ′ := F[z, b, u]/
〈
q3, uq2, u

2, I
〉

(3.3)

where, I is the ideal generated by all possible products of 4 variables (with
repetition) from the set:

{z1,1, . . . , z1,n, . . . , zn,1, . . . , zn,n, b1, . . . , bn, u}

Note that all the variables in R′, S ′ are nilpotent and hence the two rings are
local commutative F-algebras (see the appendix). The following claim tells us
that it is enough to consider the isomorphism problem for these local structures.
Recall that R ∼= S iff p, q are equivalent polynomials.

Claim 3.4. p(z, b), q(z, b) are equivalent polynomials iff R′ ∼= S ′.

Proof of Claim 3.4. If p, q are equivalent then the same equivalence, extended
by sending u 7→ u, gives an isomorphism from R′ to S ′.

Conversely, say φ is an isomorphism from R′ to S ′. Our intention is to show
that the linear part of φ, i.e., ignoring the quadratic or higher degree terms
in φ(v), where variable v ∈ {z1,1, . . . , zn,n, b1, . . . , bn, u}, induces an equivalence
from p to q. Note that since z, b, u are nilpotents in R′, therefore ∀i ≤ j ∈
[n], k ∈ [n], φ(zi,j), φ(bk), φ(u) can have no constant term.

Let us see where φ sends u. Since, φ(u)2 = 0 in S ′, while for all i, j:
z2
i,j and b2i are nonzero in S ′, thus, we deduce that the linear part of φ(u)

can have no z, b’s. Further, as φ is an isomorphism φ(u) should have at least
one linear term. Thus,

φ(u) = c · u+ (terms of degree 2 or more), where c ∈ F∗.(3.5)

Now by the definition of φ there are c1, c2 ∈ F such that:

φ(p3) = c1·q3+c2·uq2+(linear terms in z, b, u)·u2+(terms of degree 4 or more)

By substituting u = 0 we get,

φ(p3) |u=0 = c1q3 + (terms of degree 4 or more)(3.6)
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Also, there are d1, d2 ∈ F such that:

φ(up2) = d1·q3+d2·uq2+(linear terms in z, b, u)·u2+(terms of degree 4 or more)

Using Equation (3.5) we deduce that d1 = 0. Thus,

φ(up2) = d2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more)

As c 6= 0 in Equation (3.5), we deduce that there is a d′2 ∈ F:

uφ(p2) = d′2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more)

Factoring out u and substituting u = 0 gives us:

φ(p2) |u=0 = d′2 · q2 + (terms of degree 3 or more)(3.7)

Let ψ be the linear part of φ |u=0, that is:

for all i ≤ j, ψ(zi,j) := linear terms of φ(zi,j) other than u, and

for all i, ψ(bi) := linear terms of φ(bi) other than u

By comparing degree 3 and degree 2 terms on both sides of Equations (3.6)
and (3.7) respectively, we get:

ψ(p3) = c1q3(3.8)

ψ(p2) = d′2q2(3.9)

Note that since φ is an isomorphism, ψ has to be an invertible map and thus,
ψ(p3), ψ(p2) 6= 0. As a result c1 and d′2 are both non-zero. Consider the map

ψ′ := (
d′2
c1

) ◦ ψ. The above two equations give us: ψ′(p3 + p2) =
d′32
c21
· (q3 + q2).

Denote
d′32
c21

by c. Thus,

ψ′(p(z, b)) = c · q(z, b)
Now we can get rid of the extra factor of c by defining a map ψ′′:

∀i, j, ψ′′(zi,j) :=
1

c
ψ′(zi,j)

∀i, ψ′′(bi) := ψ′(bi)

It follows that ψ′′(p) = 1
c
ψ′(p) = q and thus, p(z, b), q(z, b) are equivalent

under the map ψ′′. �

Thus, R ∼= S iff R′ ∼= S ′ and hence it is sufficient to study F-algebra
isomorphism over local commutative F-algebras of the form occurring in Equa-
tion (3.3). �
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3.2. Local commutative F-algebras reduce to Cubic Forms. Here, we
show that local commutative F-algebra isomorphism reduces to cubic forms
equivalence. This result when combined with the last subsection shows that
cubic forms equivalence is at least as hard as the commutative algebra isomor-
phism and graph isomorphism.

We construct cubic forms from the rings of Equation (3.3) and then heav-
ily use the properties of the underlying local commutative F-algebra to study
the equivalences of these cubic forms. The reduction that we exhibit in the
following theorem holds for any field F.

Theorem 3.10. Commutative F-algebra isomorphism≤P
m F-cubic forms equiv-

alence.

Proof. Given commutative F-algebras R, S we will construct cubic forms
φR, φS such that the cubic forms are equivalent iff the algebras are isomor-
phic. The construction involves first getting the local F-algebras R′, S ′ (as in
Theorem 3.1) and then the cubic forms out of these local commutative algebras.

Let b1, . . . , bn be the additive basis of R over F. Let the multiplication in
the algebra be defined as:

for all i, j ∈ [n] : bi · bj =
n∑
k=1

ai,j,kbk, where ai,j,k ∈ F

Consider the following local ring R′ constructed from R:

R′ := F[z, b, u]/
〈
p3, up2, u

2, I
〉

(3.11)

where, p3(z, b) :=
∑

1≤i≤j≤n zi,jbibj and p2(z, b) :=
∑

1≤i≤j≤n zi,j (
∑n

k=1 ai,j,kbk).
I is the set of all possible products of 4 variables (with repetition) from
{z1,1, . . . , zn,n, b1, . . . , bn, u}.

Similarly, construct S ′ from S and we know from Theorem 3.1 that R ∼= S
iff R′ ∼= S ′. Now we move on to constructing cubic forms from these local
commutative algebras R′ and S ′.

A natural set of generators of the ring R′ is: {1}∪{zi,j}1≤i≤j≤n∪{bi}1≤i≤n∪
{u}. For simplicity let us call them 1, x1, . . . , xg, u respectively, where g :=(
n+1

2

)
+ n. A natural additive basis of R′ over F is:

{1} ∪ {xi}1≤i≤g ∪ {u} ∪ {xixj}1≤i≤j≤g ∪ {uxi}1≤i≤g ∪ {xixjxk}1≤i≤j≤k≤g

∪ {uxixj}1≤i≤j≤g minus one term each from p3 and up2
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(3.12)

For simplicity denote the elements of this additive basis by 1, c1, . . . , cd respec-
tively, where,

d := g+1+

(
g + 1

2

)
+g+

(
g + 2

3

)
+

(
g + 1

2

)
−2 = 2g+2

(
g + 1

2

)
+

(
g + 2

3

)
−1

Finally, we construct a cubic form φR using R′ as follows:

φR(y, c, v) :=
∑

1≤i≤j≤d

yi,jcicj − v
∑

1≤i≤j≤d

yi,j

(
d∑

k=1

ãi,j,kck

)
(3.13)

where ∀i, j, ci · cj =
∑d

k=1 ãi,j,kck in R′, for some ãi,j,k ∈ F.
Observe that the v terms in this cubic form are “few” because most of the

ã are zero. This property is useful in analysing the equivalence of such forms.
Let us first bound the number of v terms in φR.

Claim 3.14. The number of nonzero v terms in RHS of Equation (3.13) is less
than (3d− 6).

Proof of Claim 3.14. The number of nonzero v terms in RHS of Equation (3.13)
is:

≤ # {(k, `) | 1 ≤ k ≤ ` ≤ d, ckc` 6= 0 in R′}+3 [#(terms in p3) + #(terms in p2)]

The first expression above accounts for all the relations in R′ of the form ckc` =
cm. The second expression takes care of the relations that arise from p3 = 0
and up2 = 0. The factor of 3 above occurs because a term xixjxk in p3, up2

can create v terms in at most 3 ways: from (xi) · (xjxk) or (xj) · (xixk) or
(xk) · (xixj).

≤ #
{

(k, `) | k ≤ `, ck, c` ∈ {xi}1≤i≤g

}
+ #

{
(k, `) | ck ∈ {xi}1≤i≤g , c` = u

}
+#

{
(k, `) | ck ∈ {xi}1≤i≤g , c` ∈ {xixj}1≤i≤j≤g

}
+#

{
(k, `) | ck ∈ {xi}1≤i≤g , c` ∈ {uxi}1≤i≤g

}
+#

{
(k, `) | ck = u, c` ∈ {xixj}1≤i≤j≤g

}
+ 3 [#(terms in p3) + #(terms in p2)]

≤
[(
g + 1

2

)
+ g + g ·

(
g + 1

2

)
+ g2 +

(
g + 1

2

)]
+3

[(
n+ 1

2

)
+

(
n+ 1

2

)
· n
]
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Note that the dominant term in the above expression is g3

2
while in that of d

it is g3

6
. Thus, the above expression should be around 3d. Exact computation

gives the following bound:
< (3d− 6)

�

Construct a cubic form φS from ring S in a way similar to that of Equa-
tion (3.13).

φS(y, c, v) :=
∑

1≤i≤j≤d

yi,jcicj − v
∑

1≤i≤j≤d

yi,j

(
d∑

k=1

ẽi,j,kck

)
(3.15)

where ∀i, j, ci · cj =
∑d

k=1 ẽi,j,kck in S ′ for some ẽi,j,k ∈ F.
The following claim is what we intend to prove now.

Claim 3.16. φR(y, c, v) is equivalent to φS(y, c, v) iff R′ ∼= S ′ iff R ∼= S.

Proof of Claim 3.16. The part of this claim that needs to be proved is
φR ∼ φS ⇒ R′ ∼= S ′. Suppose ψ is an equivalence from φR(y, c, v) to φS(y, c, v).
We will show how to extract from ψ an isomorphism from R′ to S ′.

We have the following starting equation to analyze:

∑
1≤i≤j≤d

ψ(yi,j)ψ(ci)ψ(cj)− ψ(v)
∑

1≤i≤j≤d

ψ(yi,j)

(
d∑

k=1

ãi,j,kψ(ck)

)

=
∑

1≤i≤j≤d

yi,jcicj − v
∑

1≤i≤j≤d

yi,j

(
d∑

k=1

ẽi,j,kck

)
(3.17)

The main property of this huge equation that we would like to show is:
ψ(ci) consists of only c terms. Thus, ψ(ci) has enough information to extract
a ring isomorphism from R′ to S ′. In the rest of the proof we will “rule out”
the unpleasant cases of ψ(ci) having y, v terms and ψ(v) having y terms.

Let for every i ∈ [d], ψ(ci) =
∑

j αi,jcj+
∑

j,k βi,j,kyj,k+γiv where α, β, γ’s ∈
F. For obvious reasons we will call the expression

∑
j,k βi,j,kyj,k as the y part

of ψ(ci). y parts of ψ(v) and ψ(yi,j) are defined similarly. We will show that
the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) is less than 3.
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Assume that for some i, j, k the y parts of ψ(ci), ψ(cj), ψ(ck) are linearly
independent over F. By a term on LHS of Equation (3.17) we mean expressions
of the form ψ(y`,s)ψ(c`)ψ(cs) or ψ(v)ψ(y`,s)ψ(ct), where `, s, t ∈ [d]. Let T0 be
the set of all terms on LHS of Equation (3.17). There are at least d+(d− 1)+
(d− 2) = (3d− 3) terms on LHS of Equation (3.17) that have an occurrence of
ψ(ci), ψ(cj) or ψ(ck), denote this set of terms by T1 and the set of the remaining
terms by T2. Let us build a maximal set Y of linearly independent y parts and
a set T of corresponding terms as follows:
Start with keeping y parts of ψ(ci), ψ(cj), ψ(ck) in Y and setting T = T1.
Successively add a new y part to Y that is linearly independent from the
elements already in Y and that occurs in a term t ∈ T0 \ T , also, add t to T .
When Y has grown to its maximal size, it is easy to see that:

#Y ≤ 3 + #T2 [∵ initially, #Y = 3 and there are #T2 terms outside T ]

= 3 +

[(
d+ 1

2

)
+ #(terms having ψ(v))−#T1

]
< 3 +

[(
d+ 1

2

)
+ (3d− 6)− (3d− 3)

]
[by Claim 3.14 and ∵ #T1 ≥ (3d− 3)]

=

(
d+ 1

2

)
= # {yi,j}1≤i≤j≤d

Now apply an invertible linear transformation τ on the y variables in Equa-
tion (3.17) such that all the y parts in Y are mapped to distinct single y
variables, let τ(Y ) denote the set of these variables. By substituting suitable
linear forms, having only c, v’s, to variables in τ(Y ) we can make all the terms
in τ(T ) zero and the rest of the terms, i.e. τ(T0 \ T ), will then have no occur-
rence of y variables (as Y is the maximal set of linearly independent y parts).
Thus, LHS of Equation (3.17), after applying τ and the substitutions, is com-
pletely in terms of c, v while RHS still has at least one free y variable (as we
fixed only #τ(Y ) < # {yi,j}1≤i≤j≤d y variables and as τ is an invertible linear
transformation). This contradiction shows that the y part of ψ(ci), ψ(cj), ψ(ck)
cannot be linearly independent, for any i, j, k. Using a similar argument it can
be shown that the y part of ψ(ci), ψ(cj), ψ(v) cannot be linearly independent,
for any i, j. Thus, the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) is ≤ 2. For
concreteness let us assume that the rank is exactly 2, the proof we give below
will easily go through even when the rank is 1.

Again let Y be a maximal set of linearly independent y parts occurring in
{ψ(yi,j)}1≤i≤j≤d with the extra condition that y parts in Y are also linearly in-
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dependent from those occurring in ψ(c1), . . . , ψ(cd), ψ(v). As we have assumed
the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) to be 2 we get #Y =

(
d+1
2

)
− 2.

Let (i1, j1), (i2, j2) be the two tuples such that the y parts of ψ(yi1,j1), ψ(yi2,j2)
do not appear in Y . To make things easier to handle let us apply an invertible
linear transformation τ1 on the variables in Equation (3.17) such that:

◦ the y parts of τ1◦ψ(c1), . . . , τ1◦ψ(cd), τ1◦ψ(v) are all linear combinations
of only yi1,j1 and yi2,j2 .

◦ for all (i, j) other than (i1, j1) and (i2, j2), the y part of τ1◦ψ(yi,j) is equal
to yi,j.

◦ τ1 is identity on c, v.

For clarity let ψ′ := τ1◦ψ. Rest of our arguments will be based on comparing
the coefficients of yi,j, for (i, j) 6= (i1, j1), (i2, j2), on both sides of the equation:

∑
1≤i≤j≤d

ψ′(yi,j)

(
ψ′(cicj)− ψ′(v)

d∑
k=1

ãi,j,kψ
′(ck)

)

=
∑

1≤i≤j≤d

yi,j(quadratic terms in c, v)(3.18)

For any ci, choose distinct basis elements cj, ck and c` satisfying cicj = cick =
cic` = 0 in R′ (note that there is an ample supply of such j, k, `), such that by
comparing coefficients of yi,j, yi,k, yi,` (assumed to be other than yi1,j1 , yi2,j2) on
both sides of Equation (3.18) we get:

ψ′(cicj) + (ei,j,1E1 + ei,j,2E2) = (quadratic terms in c, v)

ψ′(cick) + (ei,k,1E1 + ei,k,2E2) = (quadratic terms in c, v)

(3.19) ψ′(cic`) + (ei,`,1E1 + ei,`,2E2) = (quadratic terms in c, v)

where, ei,j,1, ei,j,2, ei,k,1, ei,k,2, ei,`,1, ei,`,2 ∈ F and

E1 = ψ′(ci1cj1)− ψ′(v)
d∑

k=1

ãi1,j1,kψ
′(ck)

E2 = ψ′(ci2cj2)− ψ′(v)
d∑

k=1

ãi2,j2,kψ
′(ck)
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Now there exist λ1, λ2, λ3 ∈ F (not all zero) such that Equations (3.19) can be
combined to get rid of E1, E2 and get:

ψ′(ci) (λ1ψ
′(cj) + λ2ψ

′(ck) + λ3ψ
′(c`)) = (quadratic terms in c, v)

This equation combined with the observation that both ψ′(ci) and (λ1ψ
′(cj) +

λ2ψ
′(ck) + λ3ψ

′(c`)) are non-zero (as ψ′ is invertible) implies that:

(3.20) ∀i, ψ′(ci) = (linear terms in c, v)

This means that the y-variables are only in ψ′(yi,j)’s and possibly ψ′(v). Again
apply an invertible linear transformation τ2 on the y-variables in Equation (3.18)
such that τ2 ◦ ψ′(v) has only yi0,j0 in the y part and the y part of τ2 ◦ ψ′(yi,j)
is equal to yi,j for all (i, j) except possibly (i0, j0). For clarity let ψ′′ := τ2 ◦ ψ′.
Our equation now is:

∑
1≤i≤j≤d

ψ′′(yi,j)

(
ψ′′(cicj)− ψ′′(v)

d∑
k=1

ãi,j,kψ
′′(ck)

)

=
∑

1≤i≤j≤d

yi,j(quadratic terms in c, v)(3.21)

By comparing coefficients of yi,j (other that yi0,j0) on both sides of the above
equation we get:(
ψ′′(cicj)− ψ′′(v)

d∑
k=1

ãi,j,kψ
′′(ck)

)
+ e ·

(
ψ′′(ci0cj0)− ψ′′(v)

d∑
k=1

ãi0,j0,kψ
′′(ck)

)
= (quadratic terms in c, v), for some e ∈ F.

Pick i, j such that
∑d

k=1 ãi,j,kck 6= 0 in R′. Now if ψ′′(v) has a nonzero yi0,j0
term then by comparing coefficients of yi0,j0 on both sides of the above equation
we deduce:

(3.22)
d∑

k=1

ãi,j,kψ
′′(ck) + e ·

d∑
k=1

ãi0,j0,kψ
′′(ck) = 0

But again we can pick i, j suitably so that
(∑d

k=1 ãi,j,kck

)
6∈
{

0, −e ·
∑d

k=1 ãi0,j0,kck

}
and hence avoiding Equation (3.22) to hold. Thus, proving that ψ′′(v) has no
yi0,j0 term. So we now have:

ψ′′(v) = (linear terms in c, v)
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and

(3.23) ∀i, ψ′′(ci) = (linear terms in c, v)

Since, y-variables are present only in ψ′′(yi,j)’s, comparing coefficients of
yi,j’s on both sides of Equation (3.21) gives:
(3.24)

∀i, j, ψ′′(cicj)−ψ′′(v)
d∑

k=1

ãi,j,kψ
′′(ck) = (quadratic terms in c)−v(linear terms in c)

Using this equation we will prove now that ψ′′(ci) has only c-variables.
Consider a ci such that c2i = 0 in R′, then from Equation (3.24):

(3.25) ψ′′(ci)
2 = (quadratic terms in c)− v(linear terms in c)

Now if ψ′′(ci) has a nonzero v term then there will be a v2 term above on LHS
which is absurd. Thus, ψ′′(ci) has only c-variables when c2i = 0 in R′. When
c2i 6= 0 then c2i =

∑d
k=1 ãi,i,kck in R′ where the ck’s with nonzero ãi,i,k satisfy

c2k = 0. This happens because the way c’s are defined in Equation (3.12) the
expression of c2i will have only quadratic or cubic terms in x and the square
of these terms would clearly be zero in R′. Thus, again if ψ′′(ci) has a v term
then there will be an uncancelled v2 term on LHS of the equation:

ψ′′(ci)
2 − ψ′′(v)

d∑
k=1

ãi,i,kψ
′′(ck) = (quadratic terms in c)− v(linear terms in c)

Thus, we know at this point that ψ′′(v) has only c, v terms and ψ′′(ci) has only
c terms. Since, τ1, τ2 act only on y’s we have what we intended to prove in the
beginning (recall Equation (3.17)):

ψ(v) = (linear terms in c, v)

and

(3.26) ∀i, ψ(ci) = (linear terms in c)

We have now almost extracted a ring isomorphism from the cubic form equiv-
alence ψ, just few technicalities are left which we resolve next.

Apply an invertible linear transformation τ3 on the y-variables in Equa-
tion (3.17) such that the y part of τ3 ◦ ψ(yi,j) is equal to yi,j for all i ≤ j ∈ [d].
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Of course, we assume that τ3 is identity on the c, v variables. So, on comparing
coefficients of yi,j on both sides of the Equation (3.17) after applying τ3 we get:
(3.27)

∀i, j, τ3 ◦ψ(cicj)− τ3 ◦ψ(v)
d∑

k=1

ãi,j,kτ3 ◦ψ(ck) =
∑
i≤j

λi,j

(
cicj − v

d∑
k=1

ẽi,j,kck

)

for some λi,j ∈ F.
Substitute v = 1 in the expression for τ3◦ψ(v) = γv,vv+

∑
i αv,ici and denote

the result by m. Observe that γv,v 6= 0 and ∀i, ci is a nilpotent element in S ′

and hence m is a unit in the ring S ′. On substituting v = 1 in Equation (3.27)
we get:

∀i, j, τ3 ◦ ψ(ci) · τ3 ◦ ψ(cj)−m ·
d∑

k=1

ãi,j,kτ3 ◦ ψ(ck) = 0 in S ′

If we define Ψ := τ3◦ψ
m

then we get:

(3.28) ∀i, j, Ψ(ci)Ψ(cj)−
d∑

k=1

ãi,j,kΨ(ck) = 0 in S ′

Now observe that if for some λi’s ∈ F, Ψ(
∑d

i=1 λici) = 0 in S ′ then τ3 ◦
ψ(
∑d

i=1 λici) = 0 in S ′. Since τ3 ◦ ψ is an invertible linear map from R′ to

equi-dimensional S ′ this means that
∑d

i=1 λici = 0 in R′. Therefore, Ψ is a
bijection from R′ to S ′. Together with Equation (3.28) this tells us that Ψ is
an isomorphism from R′ to S ′. �

This completes the reduction from commutative F-algebra isomorphism to
cubic form equivalence. �

4. Equivalence of Forms: Known results

The last two sections indicate that the problem of cubic forms equivalence is
quite an interesting special case of polynomial equivalence. Not much is known
about the structure of cubic forms. On the other hand, structure of quadratic
forms is well understood. We collect in this section the main ideas that have
been around to understand forms equivalence. The notions of regularity and
decomposability of cubic forms given here will be used to study our cubic forms
(that appeared in Equation (3.13)) in the next section.
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4.1. Quadratic Forms Equivalence. In this subsection we sketch the clas-
sification theorem known for quadratic forms. As a byproduct we also get al-
gorithms for solving quadratic forms equivalence over finite fields, Q,R and C.
The detailed proofs can be found in Serre (1973), we present the main ideas
here simply for their beauty.

Here we will assume that char F 6= 2. Let f ∈ F[x1, . . . , xn] be a quadratic
form and let V be the vector space Fn. Observe that the map Θ : V × V → F
defined as Θ(u, v) = f(u+v)−f(u)−f(v)

2
is symmetric and bilinear, i.e., Θ(u, v) =

Θ(v, u) and Θ(u+ u′, v) = Θ(u, v) + Θ(u′, v). Also, f is recoverable from Θ as
f(u) = Θ(u, u). Thus, there is a 1− 1 correspondence from quadratic forms to
symmetric bilinear maps on the underlying vector space and this connection is
quite fruitful in classifying quadratic forms.

4.1.1. The Algorithm. Suppose we are given two nonzero quadratic forms
f, g ∈ F[x1, . . . , xn]. We will show how to check f ∼ g over F.

Step 0:(Base case) If f = aix
2
i and g = bjx

2
j then f ∼ g iff ai

bj
is a square in F.

Step 1:(Diagonalization) Let us express f as a matrix product:

f(x1, . . . , xn) =
n∑
i=1

ai,ix
2
i +

∑
1≤i<j≤n

2ai,jxixj

= (x1 . . . xn)A (x1 . . . xn)
T

where, A is a symmetric matrix with ai,j as the (i, j)th and (j, i)th entries. Since
A is a symmetric matrix over a field we can apply Gaussian elimination to get
an invertible matrix C such that CACT is diagonal, say diag[b1 . . . bn]. Then
we have,

f ((x1 . . . xn)C) = (x1 . . . xn)CAC
T(x1 . . . xn)

T

=
n∑
i=1

bix
2
i

Thus, from now on we can assume that the input quadratic forms f, g are given
as sums of squares. Note that in this step we needed char F 6= 2.

Step 2:(Root-finding) Let f =
∑n

i=1 aix
2
i and g =

∑n
i=1 bix

2
i , where ai, bi’s

are nonzero in F. Find a root (α1, . . . , αn) ∈ Fn of the diagonal quadratic
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equation:

(4.1)
n∑
i=1

aix
2
i = bn

Step 3:(Witt’s decomposition) Let Θ be the symmetric bilinear map corre-
sponding to f . Using simple linear algebra compute the subspace:

U :=
{
u ∈ Fn | Θ

(
(α1 · · ·αn)T , u

)
= 0
}

Now Witt’s theorem states that subspace U and the “orthogonal” vector (α1 · · ·αn)T
span the full space V :

V = F

α1
...
αn

⊕ U

This means that any v ∈ V can be written as λ(α1 · · ·αn)T + u, where λ ∈ F
and u ∈ U . Thus,

f(v) = Θ(v, v)

= Θ
(
λ(α1 · · ·αn)T + u, λ(α1 · · ·αn)T + u

)
= λ2Θ

(
(α1 · · ·αn)T , (α1 · · ·αn)T

)
+ Θ(u, u)

= λ2f
(
(α1 · · ·αn)T

)
+ f(u)

= λ2bn + f(u)

This simply means that f ∼ bnx
2
n + f1(x1, . . . , xn−1) for some quadratic form

f1 ∈ F[x1, . . . , xn−1].

Step 4:(Witt’s cancellation) So, we now have f(x1, . . . , xn) ∼ bnx
2
n+f1(x1, . . . , xn−1)

and g(x1, . . . , xn) = bnx
2
n +

∑n−1
i=1 bix

2
i . Witt’s cancellation lemma says that:

bnx
2
n + f1(x1, . . . , xn−1) ∼ bnx

2
n +

n−1∑
i=1

bix
2
i

iff

f1(x1, . . . , xn−1) ∼
n−1∑
i=1

bix
2
i
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So, now we can recursively do steps 0-3 on these smaller quadratic forms of
rank n− 1.

Observe that steps 0, 1 and 3 are ‘easy’ to do, so the only part that needs
explanation is step 2 – solving diagonal quadratic equations.

4.1.2. Solving diagonal quadratic equations. Here we are interested in
solving Equation (4.1) in step 2. We will show how to find roots when F is a
finite field, C,R and Q.

Suppose F is a finite field, say Fq. If n = 1 we need to solve a1x
2
1 = bn which

is just finding square-roots. If n ≥ 2 a classic theorem of Weil (see Bach 1996)
states that for a random choice of x1, . . . , xn−1 ∈ Fq there exists an xn ∈ Fq
satisfying the Equation (4.1). Thus, in all the cases we can find roots of the
Equation (4.1) over Fq in randomized polynomial time.

Suppose F is R or C then it is easily seen that roots of the Equation (4.1)
can be found in deterministic polynomial time.

Suppose F = Q. If n = 1 then solving a1x
2
1 = bn is just finding square-roots

over rationals. The first nontrivial case is n = 2 when we need to solve a1x
2
1 +

a2x
2
2 = bn. We can first pre-process the equation by clearing the denominators

of a1, a2, bn and then taking the square parts of the integer coefficients ‘in’
x1, x2 to get an equation: ax2 + by2 = z2 where a, b are square-free integers
and we want coprime x, y, z ∈ Z. We now demonstrate an algorithm, due to
Legendre, to solve this equation. We just need to define the norm of elements
in the number field Q(

√
a). Elements of Q(

√
a) are of the form (α + β

√
a)

for some α, β ∈ Q and we define the norm function N : Q(
√
a) → Q as:

N(α+ β
√
a) = α2 − aβ2. Observe that it is a multiplicative function.

Wlog assume |a| < |b|. If ax2 + by2 = z2 has a solution then for any
prime p|b, p cannot divide x (otherwise p|z ⇒ p2|by2 ⇒ p|y ⇒ x, y, z are not
coprime). Thus, a is a square mod p. As a is a square mod p for every prime

p|b we get that a is a square mod b. Thus, there is a t ∈ Z such that |t| ≤ |b|
2

and a = t2(mod b). Let b′ ∈ Z be such that:

(4.2) t2 = a+ bb′ over Z

Now we claim that ax2 + by2 = z2 has a solution iff ax2 + b′y2 = z2 has a
solution. This happens because (say) if ax2 + by2 = z2 has a solution then:

b = N

(
z + x

√
a

y

)
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Also, from Equation (4.2):

bb′ = N(t+
√
a)

⇒ b′ = N

(
yt+ y

√
a

z + x
√
a

)
Which on rationalizing the denominator effectively gives an integral solution of
ax2+b′y2 = z2. Conversely, if ax2+b′y2 = z2 has a solution then ax2+by2 = z2

can be shown to have solutions in the exact same way as above.

Now notice that the equation ax2 + b′y2 = z2 is a “smaller” equation, for:

|a|+ |b′| = |a|+
∣∣∣∣t2 − a

b

∣∣∣∣
≤ |a|+

∣∣∣∣t2b
∣∣∣∣+ ∣∣∣ab ∣∣∣

< |a|+ |b|
4

+ 1

< |a|+ |b|

Thus, the above procedure can be repeatedly applied till we reach the equation
±x2 ± y2 = z2 or ±x2 = z2 which are trivial to solve over integers.

The interesting thing to note in the above algorithm is that it constructively
shows that the equation ax2 + by2 + cz2 = 0 has a solution over Q iff it has a
solution over R and mod p for all primes p. This property is famously known
as the local-global principle.

Rational root-finding for diagonal quadratic equations when n > 2 uses the
above algorithm and the ‘tool’ of local-global principle.

This completes the sketch of algorithms for quadratic forms equivalence and
we collect the results in the following theorem.

Theorem 4.3 (Hasse, Witt et al). (i) Over finite fields, quadratic forms equiv-
alence can be decided in P and found in ZPP.

(ii) Over R and C, quadratic forms equivalence can be decided and found in
P.

(iii) Over Q, quadratic forms equivalence can be done in EXP.
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4.2. Cubic Forms Equivalence. Unlike quadratic forms the theory of cubic
forms is still in its infancy. We collect here some known notions useful in “pre-
processing” a given cubic form (Harrison 1975).

Let f(x1, . . . , xn) be a cubic form over F. In this section we will assume
that characteristic of F is not 2 or 3. Let V = Fn. We say that a map
Θ : V × V × V → F is symmetric if for any permutation π on {1, 2, 3} and any
v1, v2, v3 ∈ V , Θ(v1, v2, v3) = Θ(vπ(1), vπ(2), vπ(3)). Θ is said to be 3-linear if it
is linear in all the 3 arguments, where linear in the first argument means that:
for all u, u′, v, w ∈ V , Θ(u+ u′, v, w) = Θ(u, v, w) + Θ(u′, v, w). Now the claim
is that we can define a symmetric 3-linear map on V from any given cubic form

f(x1, . . . , xn) =
∑

1≤i≤j≤k≤n ai,j,kxixjxk. Let x1 =

x1,1
...

xn,1

 , x2, x3 be vectors in

V = Fn. Define a map Θ from the cubic form f as:

Θ (x1, x2, x3) = Θ


x1,1

...
xn,1

 ,

x1,2
...

xn,2

 ,

x1,3
...

xn,3




=
1

6

∑
α

Dα(f) · xα(1),1xα(2),2xα(3),3

where α ranges over all maps from {1, 2, 3} → {1, 2, . . . , n} and the coefficient
Dα(f) is given as:

Dα(f) :=
∂3f(x1, . . . , xn)

∂xα(1)∂xα(2)∂xα(3)

It is easily seen that this map Θ is symmetric 3-linear and moreover:

Θ


x1

...
xn

 ,

x1
...
xn

 ,

x1
...
xn


 = f(x1, . . . , xn)

Thus, we have a 1−1 correspondence between the cubic forms and the symmet-
ric 3-linear maps on the underlying vector space (compare this with a similar
observation for quadratic forms in Section 4.2).
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Example 4.4. Let f(x, y) = x3+x2y be a cubic form. Then the corresponding
symmetric 3-linear map Θ on V = F2 is defined as:

Θ

((
x1

y1

)
,

(
x2

y2

)
,

(
x3

y3

))
= x1x2x3 +

1

3
x1x2y3 +

1

3
x1x3y2 +

1

3
x2x3y1

and verify that:

Θ

((
x
y

)
,

(
x
y

)
,

(
x
y

))
= f(x, y)

♦

4.2.1. Regularity. The first thing we would like to ensure about a given
cubic form f is that there should not be “extra” variables in f , i.e., there is
no invertible linear transformation τ such that f(τx1, . . . , τxn) has less than n
variables. Such a cubic form is called regular.

Example 4.5. The cubic form f(x) = x3 is regular while f(x, y) = (x+ y)3 is
not regular as the invertible map:

τ :

{
x+ y 7→ x

y 7→ y

reduces the number of variables of f . ♦

By regularizing a given cubic form f we mean finding an invertible linear
transformation that applied on f makes it regular.

Proposition 4.6 (Harrison). A given cubic form can be regularized in deter-
ministic polynomial time.

Proof. Suppose f ∈ F[x1, . . . , xn] is a given cubic form and Θ(·, ·, ·) is its
corresponding symmetric 3-linear map on V = Fn. Suppose f(x1, . . . , xn) is
not regular and its regularized form is f reg(x1, . . . , xm) in smaller number of
variables 1 ≤ m < n. Further, let Θreg be the symmetric 3-linear map cor-
responding to f reg and A be the invertible matrix in Fn×n such that for all
x1, x2, x3 ∈ V :

Θ(Ax1, Ax2, Ax3) = Θreg


x1,1

...
xm,1

 ,

x1,2
...

xm,2

 ,

x1,3
...

xm,3



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Now observe that the RHS above is independent of the last coordinates, i.e.

xn,1, xn,2, xn,3. Thus, if we fix x1 to be


0
...
0
1

 then for all x2, x3 ∈ V :

Θ

A


0
...
0
1

 , Ax2, Ax3

 = Θreg

0,

x1,2
...

xm,2

 ,

x1,3
...

xm,3


 = 0

As A is invertible v := A


0
...
0
1

 6= 0 and we have Θ(v, ·, ·) = 0.

More interestingly, we will now see that the converse holds too, i.e., if there
is a nonzero v ∈ V such that Θ(v, ·, ·) = 0 then f is not regular. Consider the
following equation in the variables x1,1, x2,1, . . . , xn,1:

(4.7) for all x2, x3 ∈ V, Θ (x1, x2, x3) = 0

If we compare the coefficient of xi,2xj,3 on both sides of the equation we get a
linear equation and hence as i, j vary over all of {1, 2, . . . , n} we get a system
of homogeneous linear equations, say:

M

x1,1
...

xn,1

 = 0

Now, if there is a nonzero v ∈ V such that Θ(v, ·, ·) = 0 then it means
that Mv = 0 and hence, rank(M) < n. Now, by applying Gaussian elimi-
nation on M we get invertible matrices C,D such that the last (n− rank(M))
columns of DMC =: M ′ are zero. Thus, the elements of the column vector
M(Cx1) = (D−1M ′)x1 are independent of xrank(M)+1,1, . . . , xn,1. In other words,
Θ (Cx1, x2, x3) is independent of the last (n−rank(M)) coordinates of x1. Now
since Θ is symmetric 3-linear and C is an invertible linear transformation, the
system of equations in the variables x2 that we get from the following equality:

for all x1, x3 ∈ V, Θ (Cx1, x2, x3) = 0
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is equivalent to the system: Mx2 = 0. Thus, as before, M(Cx2) is independent
of the last (n − rank(M)) coordinates of x2 implying that Θ (Cx1, Cx2, x3) is
independent of the last (n−rank(M)) coordinates of x1 and that of x2. Repeat-
ing this same argument again, we deduce: Θ (Cx1, Cx2, Cx3) is independent of
the last (n− rank(M)) coordinates of x1, x2, x3.

Thus, f

C
x1

...
xn


 = Θ

C
x1

...
xn

 , C

x1
...
xn

 , C

x1
...
xn


 is independent

of
xrank(M)+1, . . . , xn and regular over the variables x1, . . . , xrank(M).

Note that all the steps in the above discussion require simple linear algebra
and hence can be executed in deterministic polynomial time. �

4.2.2. Decomposability. Cubic forms do not satisfy the nice property of
diagonalization unlike quadratic forms, for example: x3+x2y cannot be written
as a sum of cubes. But there is a notion of decomposability of cubic forms into
simpler cubic forms. We call a cubic form f(x1, . . . , xn) decomposable if there
is an invertible linear transformation τ , an i ∈ [n] and cubic forms g, h such
that:

f(τx1, . . . , τxn) = g(x1, . . . , xi) + h(xi+1, . . . , xn)

This is also denoted by: f ∼ g ⊕ h.

Example 4.8. The cubic form f1(x, y) = x3 + y3 is decomposable while the
cubic form f2(x, y) = x3 + xy2 is indecomposable. ♦

It is interesting that given a cubic form f the decomposition of f can be
found algorithmically. To show this we need the notion of centre of a cubic
form that captures the symmetries of the underlying 3-linear map.

Definition 4.9. Let f be a cubic form and Θ be the corresponding symmetric
3-linear map on the space V . The center, Cent(f), of the cubic form f is defined
as: {

M ∈ Fn×n | for all v1, v2, v3 ∈ V, Θ(Mv1, v2, v3) = Θ(v1,Mv2, v3)
}

Example 4.10. Let f(x) be the cubic form x3 then Cent(f) = F. If f(x, y) =
x3 + y3 then Cent(f) ∼= Cent(x3)× Cent(y3) ∼= F× F. ♦

The following properties of the center were first proved by Harrison (1975):
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Lemma 4.11. Suppose f(x1, . . . , xn) is a regular cubic form and Θ is the cor-
responding symmetric 3-linear map on V = Fn.

(1) Cent(f) is a commutative F-algebra.

(2) f is indecomposable if and only if Cent(f) is indecomposable.

Proof (1). Suppose M1,M2 ∈ Cent(f) then M1 + M2 is also in the centre
and it is routine to show that (Cent(f),+) is an abelian group.

To see that M1 ·M2 ∈ Cent(f) observe that for any u, v, w ∈ V :

Θ(M1 ·M2u, v, w) = Θ(M2u, v,M1w) [∵ M1 ∈ Cent(f)]

= Θ(u,M2v,M1w) [∵ M2 ∈ Cent(f)]

= Θ(u,M1 ·M2v, w) [∵ M1 ∈ Cent(f)]

Thus, by definition M1 ·M2 is in Cent(f). Multiplication in Cent(f) is associa-
tive simply because it is matrix multiplication. To see commutativity observe
that:

Θ(M1 ·M2u, v, w) = Θ(M2u, v,M1w) [∵ M1 ∈ Cent(f)]

= Θ(u,M2v,M1w) [∵ M2 ∈ Cent(f)]

= Θ(M1u,M2v, w) [∵ M1 ∈ Cent(f)]

= Θ(M2 ·M1u, v, w) [∵ M2 ∈ Cent(f)]

Thus, Θ ((M1 ·M2 −M2 ·M1)u, ·, ·) = 0. As f is regular this means that (M1 ·
M2 − M2 · M1)u = 0 (refer the proof of the Proposition 4.6). Since, this
happens for all u ∈ V we have that (M1 ·M2 −M2 ·M1) = 0 implying that
M1 ·M2 = M2 ·M1.

Also, F is clearly contained in Cent(f). Thus, Cent(f) is a commutative
F-algebra. �

Proof (2). Here, we need a property of local commutative rings proved in
the appendix: a finite dimensional commutative algebra R is decomposable iff
there is a nontrivial idempotent element, i.e., there is a r ∈ R \ {0, 1}, r2 = r.

If the cubic form f decomposes as f1 ⊕ f2 then it is easy to show that
Cent(f) decomposes as Cent(f1)× Cent(f2).

Conversely, suppose Cent(f) is decomposable. Then there is a matrix M ∈
Cent(f) such that M2 = M but M 6= 0, I. Now we want to decompose f using
M .
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Firstly, observe that if there is a v ∈MV ∩(I−M)V then Mv = (I−M)v =
0 and by adding the two we get v = 0. Next, observe that for any u, v, w ∈ V :

Θ(Mu, (I −M)v, w) = Θ(u,M(I −M)v, w) [∵ M ∈ Cent(f)]

= 0 [∵ M2 = M ]

Thus, for any v1 ∈ MV, v2 ∈ (I − M)V, Θ(v1, v2, ·) = 0 or in other words:
MV, (I −M)V are orthogonal subspaces of V with respect to Θ. This means
that for any v ∈ V if we express v as v = v1+v2, where v1 ∈MV, v2 ∈ (I−M)V ,
then:

f(v) = Θ(v, v, v)

= Θ(v1 + v2, v1 + v2, v1 + v2)

= Θ(v1, v1, v1) + Θ(v2, v2, v2) [∵ Θ is linear and v1, v2 are orthogonal]

If f1 is the cubic form corresponding to Θ acting on MV and f2 is the cubic
form corresponding to Θ acting on (I − M)V then the above equation says
that: f ∼ f1 ⊕ f2. �

Note that given a cubic form f we can compute the center in terms of a
basis over F as it just requires linear algebra computations. Thus, the above
lemma gives a method of decomposing the cubic form if we can decompose its
centre.

Proposition 4.12 (Harrison). Cubic form decomposition can be done in poly-
nomial time given an oracle of polynomial factoring over F.

Proof. Suppose f is a cubic form. Assume wlog that f is regular as oth-
erwise we can regularize f by applying Proposition 4.6. Now compute its
centre, Cent(f), in deterministic polynomial time. As Cent(f) is a commu-
tative F-algebra we can find the decomposition of Cent(f), using polynomial
factoring over F (see Remark 6.11), into local commutative rings. In particular,
if Cent(f) is decomposable we can compute a nontrivial decomposition:

Cent(f) = R1 ×R2

from where we get a nontrivial idempotent, for example, the element of Cent(f)
corresponding to (0, 1) (where 0 is the zero of R1 and 1 is the unity of R2).
Now, the proof of Lemma 4.11 outlines a way of decomposing f using this
nontrivial idempotent of Cent(f). �
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5. Our Cubic Forms

The cubic forms that we worked with in this paper were of a special form.
They owe their origin to local commutative F-algebras. Suppose R is such an
F-algebra and M is its unique maximal ideal (refer Lemma 6.12 to see the
form of these maximal ideals). Let b1, . . . , bn be a basis of M over F and the
multiplication in R is defined as:

(5.1) for all 1 ≤ i ≤ j ≤ n, bi · bj =
∑

1≤k≤n

ai,j,kbk, where, ai,j,k’s are in F

Now if we combine these multiplicative relations by considering bi’s as formal
variables, homogenizing variable u and ‘fresh’ formal variables zj,k’s then we
get the following cubic form f from M:

f(u, b, z) =
∑

1≤i≤j≤n

zi,j

(
bibj − u

∑
1≤k≤n

ai,j,kbk

)

These are more involved versions of hyperbolic cubic forms:
∑

1≤i≤j≤n zi,jbibj
(Keet 1993). If R1, R2 are two F-algebras with maximal ideals M1,M2 and
the corresponding cubic forms f1, f2 then the proof of Claim 2.9 essentially says
that an isomorphism from R1 to R2 gives an equivalence from f1 to f2.

In this section we show that these cubic forms are regular and indecompos-
able over any field F of char 6= 2, 3.

Theorem 5.2. Let F be a field with char 6= 2, 3. LetM be a maximal ideal of a
local commutative F-algebra R such that M2 6= 0. The multiplicative relations
of M are given by Equation (5.1) and additionally b2n−1 = 0, bnM = 0. Define
a cubic form f as:

f(u, b, z) =
∑

1≤i≤j≤n

zi,j

(
bibj − u

∑
1≤k≤n

ai,j,kbk

)

Then,

(1) f is regular.

(2) f is indecomposable.

Proof (1). As M2 6= 0 note that f above is not u-free. Let Θ be the
symmetric 3-linear map corresponding to f . Define the vector space V := Fm,
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where m := 1+n+
(
n+1

2

)
. Let us fix the notation for specifying the coordinates

of a vector vi in V as:

(ui, b1,i, . . . , bn,i, z1,1,i, . . . , z1,n,i, z2,2,i, . . . , z2,n,i, . . . , zn,1,i, . . . , zn,n,i)
T

or more compactly as: uibi
zi


If f is not regular then there is a nonzero v ∈ V such that Θ(v, ·, ·) = 0. So

consider the following equation in the variables u1, b1, z1:

(5.3) for all

u2

b2
z2

 ,

u3

b3
z3

 ∈ V, Θ

u1

b1
z1

 ,

u2

b2
z2

 ,

u3

b3
z3

 = 0

Therefore, by considering the coefficient of zi,i,3 in the above equation we get:

(5.4)
bi,1bi,2

3
− u1

6

∑
1≤k≤n

ai,i,kbk,2 −
u2

6

∑
1≤k≤n

ai,i,kbk,1 = 0

and by considering the coefficient of zi,j,3, for 1 ≤ i < j ≤ n, we get:

(5.5)
bi,1bj,2

6
+
bj,1bi,2

6
− u1

6

∑
1≤k≤n

ai,j,kbk,2 −
u2

6

∑
1≤k≤n

ai,j,kbk,1 = 0

If u1 = 0 then the coefficient of bi,2 in Equation (5.4) gives: bi,1 = 0. As i

varies over [1 . . . n] we get:

(
u1

b1

)
= 0.

If u1 6= 0 then considering the coefficient of bk,2 in Equation (5.4) we get:
ai,i,k = 0 for all k ∈ [n]\{i}. Thus, in the ideal M: b2i = ai,i,ibi or bi(bi−ai,i,i) =
0. This implies that ai,i,i = 0 for otherwise (bi − ai,i,i) is invertible (as bi is in
the unique maximal ideal M) forcing bi = 0. Thus, in the ideal M: b2i = 0 for
all i ∈ [n]. Similarly, considering the coefficient of bk,2 in Equation (5.5) we get:
ai,j,k = 0 for all k ∈ [n] \ {i, j}. Thus, in the ideal M: bibj = ai,j,ibi + ai,j,jbj.
Multiplying this equation by bi and using b2i = 0 we get: ai,j,jbibj = 0 and
symmetrically, ai,j,ibibj = 0. So if bibj 6= 0 then ai,j,i = ai,j,j = 0 and hence
bibj = 0. Thus, in the ideal M: bibj = 0 for all 1 ≤ i ≤ j ≤ n. But this
contradicts the hypothesis that M2 6= 0.
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Thus, a solution of Equation (5.3) must satisfy:

(
u1

b1

)
= 0. Using this we

can now expand Equation (5.3) as:

for all

u2

b2
z2

 ,

u3

b3
z3

 ∈ V,
∑

1≤i≤j≤n

zi,j,1

(
bi,2bj,3

6
+
bj,2bi,3

6
− u2

6

∑
1≤k≤n

ai,j,kbk,3

−u3

6

∑
1≤k≤n

ai,j,kbk,2

)
= 0

The above equation clearly means that: zi,j,1 = 0 for all 1 ≤ i ≤ j ≤ n. Thus,u1

b1
z1

 = 0 and hence f is regular. �

Proof (2). We compute the center of f and then show that it is an inde-
composable F-algebra which means, by Lemma 4.11, that f is indecomposable.

Let Θ be the symmetric 3-linear map corresponding to f . Define the vector
space V := Fm, where m := 1 +n+

(
n+1

2

)
. Let us fix the notation of specifying

the coordinates of a vector vi in V as:

(ui, b1,i, . . . , bn,i, z1,1,i, . . . , z1,n,i, z2,2,i, . . . , z2,n,i, . . . , zn,1,i, . . . , zn,n,i)
T

or more compactly as: uibi
zi


Recall that Cent(f) consists of matrices M ∈ Fm×m such that:

∀

u1

b1
z1

 ,

u2

b2
z2

 ,

u3

b3
z3

 ∈ V, Θ

M
u1

b1
z1

 ,

u2

b2
z2

 ,

u3

b3
z3


= Θ

u1

b1
z1

 ,M

u2

b2
z2

 ,

u3

b3
z3

(5.6)

Consider the matrix M in block form as:

(
M11 M12

M21 M22

)
such that M11 is (n +

1) × (n + 1) and M22 is
(
n+1

2

)
×
(
n+1

2

)
. We prove properties of these block

matrices in the subsequent claims.
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Claim 5.7. M12 = 0.

Proof of Claim 5.7. Substitute

(
u1

b1

)
=

(
u3

b3

)
= 0 in Equation (5.6) to get:

∀
(

0
z1

)
,

u2

b2
z2

 ,

(
0
z3

)
∈ V, Θ

(M12z1

M22z1

)
,

u2

b2
z2

 ,

(
0
z3

) = 0

If M12 6= 0 then we can assign z1 = v1 ∈ F(n+1
2 )×(n+1

2 ) such that M12v1 6= 0 and:

(5.8) ∀

u2

b2
z2

 ,

(
0
z3

)
∈ V, Θ

(M12v1

M22v1

)
,

u2

b2
z2

 ,

(
0
z3

) = 0

Notice that we can now run the proof of the regularity of f , as equations
similar to Equation (5.4) and Equation (5.5) can be obtained by comparing
the coefficients of zi,i,3, zi,j,3 in the Equation (5.8), to deduce M12v1 = 0. This
contradiction shows that M12 = 0. �

Thus, an M ∈ Cent(f) looks like: M =

(
M11 0
M21 M22

)
. Let τ be a linear

transformation on V induced by M , i.e.,

M

uibi
zi

 =



τ(ui)
τ(b1,i)

...
τ(bn,i)
τ(z1,1,i)

...
τ(zn,n,i)



Claim 5.9. There is an α ∈ F such that M11 = α · I.

Proof of Claim 5.9. To understand M more let us substitute: z1 = z2 =
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0,

(
u3

b3

)
= 0 in the Equation (5.6):

∀

u1

b1
0

 ,

u2

b2
0

 ,

(
0
z3

)
∈ V, Θ


M11

(
u1

b1

)
M21

(
u1

b1

)
 ,

u2

b2
0

 ,

(
0
z3

)

= Θ


u1

b1
0

 ,

M11

(
u2

b2

)
M21

(
u2

b2

)
 ,

(
0
z3

)
(5.10)

In the above equation comparing the coefficient of zi,j,3, for 1 ≤ i ≤ j ≤ n,
gives:

τ(bi,1)bj,2
6

+
τ(bj,1)bi,2

6
− τ(u1)

6

∑
1≤k≤n

ai,j,kbk,2 −
u2

6

∑
1≤k≤n

ai,j,kτ(bk,1)

=
bi,1τ(bj,2)

6
+
bj,1τ(bi,2)

6
− u1

6

∑
1≤k≤n

ai,j,kτ(bk,2)−
τ(u2)

6

∑
1≤k≤n

ai,j,kbk,1

(5.11)

We have bnM = 0 in R thus, b2n = 0 in R and so an,n,k = 0 for all k ∈ [n].
Thus, the Equation (5.11) for (i, j) = (n, n) is simply:

τ(bn,1)bn,2
3

=
bn,1τ(bn,2)

3

Since, the above equation holds for all

u1

b1
0

 ,

u2

b2
0

 ∈ V we deduce that there

is an α ∈ F such that τ(bn,1) = α · bn,1.
Note that bibn = 0 in R, for any i ∈ [n], so ai,n,k = 0 for all k ∈ [n]. Thus,

Equation (5.11) for (i, j) = (i, n), where 1 ≤ i < n, becomes:

τ(bi,1)bn,2
6

+
τ(bn,1)bi,2

6
=
bi,1τ(bn,2)

6
+
bn,1τ(bi,2)

6

⇒ τ(bi,1)bn,2
6

+
αbn,1bi,2

6
=
αbi,1bn,2

6
+
bn,1τ(bi,2)

6
[∵ τ(bn,1) = α · bn,1]

⇒ (τ(bi,1)− αbi,1) bn,2 = bn,1 (τ(bi,2)− αbi,2)
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Since, the above equation holds for all

u1

b1
0

 ,

u2

b2
0

 ∈ V we deduce that there

is a β ∈ F such that

(5.12) τ(bi,1)− αbi,1 = β · bn,1 for all i ∈ [n− 1]

Since, b2n−1 = 0 in R, we have an−1,n−1,k = 0 for all k ∈ [n] and thus, Equa-
tion (5.11) for (i, j) = (n− 1, n− 1) becomes:

τ(bn−1,1)bn−1,2

3
=
bn−1,1τ(bn−1,2)

3

Since, the above equation holds for all

u1

b1
0

 ,

u2

b2
0

 ∈ V we deduce that there

is a γ ∈ F such that τ(bn−1,1) = γ · bn−1,1. This together with Equation (5.12)
gives:

τ(bn−1,1) = γ · bn−1,1 = α · bn−1,1 + β · bn,1
⇒ γ = α and β = 0

Finally, this together with Equation (5.12) gives us a nice form for τ :

(5.13) τ(bi,1) = α · bi,1 for all i ∈ [n]

Now choose i ≤ j ∈ [n] such that bibj 6= 0 in R so that there is a k ∈ [n] such
that ai,j,k 6= 0. Plugging Equation (5.13) in Equation (5.11) we get:

τ(u1)

6

∑
1≤k≤n

ai,j,kbk,2 +
αu2

6

∑
1≤k≤n

ai,j,kbk,1 =
αu1

6

∑
1≤k≤n

ai,j,kbk,2 +
τ(u2)

6

∑
1≤k≤n

ai,j,kbk,1

⇒ (τ(u1)− αu1)
∑

1≤k≤n

ai,j,kbk,2 = (τ(u2)− αu2)
∑

1≤k≤n

ai,j,kbk,1

If bibj 6= 0 in R then there is a k ∈ [n] such that ai,j,k 6= 0 and as the above

equation holds for all

u1

b1
0

 ,

u2

b2
0

 ∈ V we deduce that there is a γ ∈ F such

that:

τ(u1)− αu1 = γ ·
∑

1≤k≤n

ai,j,kbk,1 where r :=
∑

1≤k≤n

ai,j,kbk,1 6= 0
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If γ 6= 0 then since the LHS of the above equation is independent of i, j we
will have that for all i ≤ j ∈ [n] either bibj = 0 or r. Thus, r2 = c · r for some
c ∈ F. As r is a nonzero element of the maximal ideal M this implies that
r = 0. This contradiction means that γ = 0 and hence:

τ(u1) = αu1

This together with Equation (5.13) gives:

M11

(
u1

b1

)
=


τ(u1)
τ(b1,1)

...
τ(bn,1)

 =


αu1

αb1,1
...

αbn,1


⇒ M11 = α · I

(5.14)

�

Claim 5.15. M22 = α · I, where α is the same as in the last claim.

Proof of Claim 5.15. Let us start by substituting:

(
u1

b1

)
= 0, z2 = z3 = 0 in

the Equation (5.6):

Θ

( 0
M22z1

)
,

u2

b2
0

 ,

u3

b3
0

 = Θ

( 0
z1

)
,

M11

(
u2

b2

)
M21

(
u2

b2

)
 ,

u3

b3
0




⇒ Θ

( 0
M22z1

)
,

u2

b2
0

 ,

u3

b3
0

 = Θ

( 0
z1

)
,

 α

(
u2

b2

)
M21

(
u2

b2

)
 ,

u3

b3
0




⇒ Θ

( 0
M22z1

)
,

u2

b2
0

 ,

u3

b3
0

 = Θ

( 0
z1

)
,

α(u2

b2

)
0

 ,

u3

b3
0


⇒ Θ

( 0
(M22 − αI)z1

)
,

u2

b2
0

 ,

u3

b3
0

 = 0

(5.16)
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As the above equation holds for all

(
0
z1

)
,

u2

b2
0

 ,

u3

b3
0

 ∈ V we deduce:

M22 = αI

�

Thus, any element M in the center of f looks like:(
0 0
M12 0

)
+ αI where, α ∈ F

Now if M is idempotent then:

M2 = M

⇒ M(M − I) = 0

But one of the matrices M or (M − I) will always be invertible and hence
M = 0 or M = I. Thus, Cent(f) is an indecomposable F-algebra and, hence,
f is indecomposable by Lemma 4.11. �

6. Discussion

This paper studied the complexity of the problem of polynomial equivalence.
Over finite fields this problem is of intermediate complexity and, hence, unlikely
to be NP-hard. Over infinite fields we know very little about this general
problem! The special case of quadratic forms is completely understood due to
the works of Minkowski (1885), Hasse (1921) and Witt (Witt & Kersten 1998).
Inspired from quadratic forms, we considered the “slightly” more general case
of cubic forms and proved some interesting results. We gave a reduction from
commutative F-algebra isomorphism to F-cubic forms equivalence for any field
F. Two of its consequences are: Graph isomorphism reduces to the problem
of cubic forms equivalence over any field F, and equivalence of higher degree
d-forms reduces to cubic forms equivalence over fields F having d-th roots.
Clearly, cubic forms equivalence seems to be the most important special case
of the problem of polynomial equivalence.

We hope that the rich structure of cubic forms will eventually give us
more insights about the isomorphism problems of commutative F-algebras and
graphs. As a first step to understanding cubic forms, we believe that the de-
cidability of cubic forms equivalence over Q should be resolved.
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In the case of quadratic forms over Q the problem of equivalence reduced to
questions of finding Q-roots of a quadratic form. In particular, if two quadratic
forms are equivalent over R and represent the same set of points over Q then
they are equivalent over Q. Here, we show that such a result does not hold
for cubic forms, thus, giving evidence that Q-root finding of a cubic form may
not be related to the problem of equivalence of cubic forms. Let us define two
rings:

R := Q[x]/(x2 − 1) and S := Q[x]/(x2 − 2)

Notice that the Q-algebras R,S are isomorphic over R but nonisomorphic over
Q. Thus, using the construction given in Theorem 3.10 we get two cubic forms
φR(y, c, v), φS(y, c, v) that are equivalent over R but nonequivalent over Q. But
what are the rational points that these cubic forms represent? If we choose an
i such that the coefficient of yi,i in φR is c2i then:

φR(0, . . . , yi,i, . . . , 0, c, v) = yi,ic
2
i

Clearly, there exists such an i (recall the way we constructed φR) and, hence,
φR represents all points in Q. Similarly, φS represents all points in Q. This
gives us two cubic forms that are equivalent over R, represent the same set of
points over Q but are yet nonequivalent over Q.

Finally, we pose some questions whose answers might unfold more structure
of cubic forms:

◦ What are the invariants of cubic forms (under equivalence)?

◦ If cubic forms f, g are equivalent over R and are equivalent modulo pk,
for all primes p (except finitely many primes) and k ∈ Z≥1, then are they
equivalent over Q?

◦ Can we reduce F-cubic forms equivalence problem to that of F-algebra
isomorphism, over all fields F?

◦ Does R-algebra isomorphism reduces to R-cubic forms equivalence, where
R is a commutative ring?

Appendix: Facts about Rings

A ring is a set R equipped with two binary operations + and ·, called addition
and multiplication, such that (a, b, c are general elements in R):

1). (R,+) is an abelian group with identity element 0:
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◦ Associativity: (a+ b) + c = a+ (b+ c)

◦ Commutativity: a+ b = b+ a

◦ Identity: 0 + a = a+ 0 = a

◦ Inverse: ∀a ∃(−a) such that a+−a = −a+ a = 0

2). (R, ·) is a monoid with identity element 1:

◦ Identity: 1 · a = a · 1 = a

◦ Associativity: (a · b) · c = a · (b · c)

3). Multiplication distributes over addition:

◦ a · (b+ c) = (a · b) + (a · c)

◦ (a+ b) · c = (a · c) + (b · c)

If (R \ {0}, ·) is an abelian group too then R becomes a field.

Example 6.1. R0 := (Z/nZ,+, ·) is a ring, it is a field iff n is prime. R1 :=
R0[x]/(x

r − 1) is a commutative ring but never a field for r > 1. The set
R2 :=

{
A | A ∈ R2×2

0

}
is a noncommutative ring under matrix addition and

multiplication in R0. ♦

We first collect some results related to decomposition of rings into simpler
rings. A ring R is said to be decomposable if there are subrings R1, R2 such
that:

◦ R1 ·R2 = R2 ·R1 = 0, i.e., for all r1 ∈ R1, r2 ∈ R2, r1 · r2 = r2 · r1 = 0.

◦ R1 ∩R2 = {0}.

◦ R = R1 + R2, i.e., for every r ∈ R there are r1 ∈ R1, r2 ∈ R2 such that
r = r1 + r2.

Such a ring decomposition has been denoted by R = R1×R2 in this work. The
subrings R1, R2 are called component rings of R.
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Example 6.2. The ring R := F[x]/(x2 − x) decomposes as: R = Rx×R(1−
x) ∼= F × F. Here, Rx is a short-hand for the set {r · x | r ∈ R}. Note that
Rx,R(1 − x) are subrings of R and have x, (1 − x) as their (multiplicative)
identity elements respectively. ♦

An element r ∈ R is called an idempotent if r2 = r. The following lemma
shows how idempotents help in decomposing a commutative ring.

Lemma 6.3. A commutative ring R decomposes iff R has an idempotent ele-
ment other than 0, 1.

Proof. Suppose R = R1 × R2 is a nontrivial decomposition and let the
identity element 1 of R be expressible as 1 = s+ t where s ∈ R1, t ∈ R2. Then
by the definition of decomposition we have:

1 · 1 = (s+ t) · (s+ t)

⇒ 1 = s2 + t2 [∵ s · t = 0]

⇒ s+ t = s2 + t2

⇒ s− s2 = t2 − t

⇒ s− s2 = 0 [∵ s− s2 ∈ R1 ∩R2 = {0}]
⇒ s is an idempotent.

Note that if s = 0 then t = 1 and then R1 = 0 (as for all r1 ∈ R1, r1 ·R2 = 0)
and similarly, if s = 1 then R2 = 0. As R1, R2 are nonzero subrings of R we
deduce that s 6= 0, 1 and hence s is an idempotent other than 0, 1.

Conversely, suppose that s 6= 0, 1 is an idempotent of R. Then consider the
subrings R · s and R · (1− s). Note that s, (1− s) are the identity elements of
Rs,R(1− s) respectively. For any two elements rs ∈ Rs, r′(1− s) ∈ R(1− s):
rs ·r′(1−s) = rr′(s−s2) = 0. If r ∈ Rs∩R(1−s) then rs = 0 and r(1−s) = 0
implying that r = 0. Finally, we can express any r ∈ R as: r = rs + r(1− s).
Thus, R decomposes as: R = Rs×R(1− s). �

The following lemma shows that a decomposition of a ring into indecom-
posable rings is unique.

Lemma 6.4. Let R be a ring and R1, . . . , Rk be indecomposable nonzero rings
such that:

R = R1 ×R2 × · · · ×Rk

Then this decomposition is unique upto ordering, i.e. if we have indecomposable
nonzero Sj’s such that:

R = R1 × · · · ×Rk = S1 × · · · × Sl
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then k = l and there exists a permutation π such that for all i ∈ [k], Ri =
Sπ(i).

Proof. Assume wlog that k ≥ l. Let φ1 be a homomorphism of the ring R
such that φ1 is identity on S1 and φ1(S2) = · · · = φ1(Sl) = 0. φ1 is well defined
simply because R = S1 × · · · × Sl.

Clearly, φ1(R1), φ1(R2), · · · , φ1(Rk) are all subrings of S1 and:

φ1(R) = φ1(R1) + φ1(R2) + · · ·+ φ1(Rk) = S1

Can these subrings have nontrivial intersection? Say, s1 ∈ φ1(Ri) ∩ φ1(Rj) for
some i 6= j then there are some s, s′ ∈ S2 + · · ·+ Sl such that s1 + s ∈ Ri and
s1 + s′ ∈ Rj. Let a be the (multiplicative) identity of R1 + · · ·+Ri−1 +Ri+1 +
· · ·+Rk and b be the identity of Ri. Then:

(s1 + s)a = 0 and (s1 + s′)b = 0 [∵ R = R1 × · · · ×Rk]

⇒ (s1 + s)a+ (s1 + s′)b = 0

⇒ s1(a+ b) + sa+ s′b = 0

⇒ s1 + (sa+ s′b) = 0 [∵ 1 = a+ b]

⇒ s1 = (sa+ s′b) = 0 [∵ s1 ∈ S1 and sa, s′b ∈ S2 + · · ·+ Sl]

⇒ φ1(Ri) ∩ φ1(Rj) = {0} for all i 6= j ∈ [k]

Also, for any ri ∈ Ri, rj ∈ Rj, rirj = 0 implying that φ1(ri) · φ1(rj) = 0. The
properties above together mean that:

S1 = φ1(R1)× φ1(R2)× · · · × φ1(Rk)

Since S1 was assumed to be indecomposable we have that exactly one of the
subrings above is nonzero. Wlog say, φ1(R2) = · · · = φ1(Rk) = 0 and then it is
implied that φ1(R1) = S1.

Similarly, we can define φi to be a homomorphism of the ring R such that
φi is identity on Si and φi(Sj) = 0 for all j ∈ [l]\{i}. Then the above argument
says that there is an injective map τ : [l] → [k] such that for all i ∈ [l]:

(6.5) φi(Rτ(i)) = Si and φi(Rj) = 0 for all j ∈ [k] \ {τ(i)}

Now consider an l × k matrix D = ((δi,j)) where δi,j = 1 if φi(Rj) = Si else
δi,j = 0. Eqn. (6.5) tells us that each row of D has exactly one 1. Now if k > l
then D has more columns than rows and hence there is a zero column, say j-th,
implying that φi(Rj) = 0 for all i ∈ [l]. But this means that Rj = 0 which is a
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contradiction. Hence, k = l and D has exactly one 1 in each row and column,
thus making τ a permutation.

So now we have that for any j ∈ [k], φτ−1(j)(Rj) = Sτ−1(j) and φi(Rj) = 0
for all i ∈ [k] \ {τ−1(j)}. In other words for any j ∈ [k], Rj = Sτ−1(j).

This completes the proof of unique decomposition of rings into indecom-
posable subrings. �

So what is the structure of these indecomposable rings that appear in the
decomposition? Here, we sketch the form of indecomposable rings that are
finite and commutative.

Lemma 6.6. Let R be a finite commutative indecomposable ring. Then,

(i) R has a prime-power characteristic, say pm for some prime p.

(ii) R can be expressed in the form:

R = ((Z/pmZ)[z]/(h(z))) [y1, . . . , yk]/ (ye11 , . . . , y
ek
k , h1(z, y1, . . . , yk), . . . ,

. . . , hl(z, y1, . . . , yk))

where, h(z) is irreducible over Z/pZ and hi’s are multivariate polynomials
over Z/pmZ.

Remark 6.7. The ring (Z/pmZ)[z]/(h(z)), where h(z) is irreducible over Z/pZ,
is called Galois ring. It is a finite field if m = 1.

Notice that the form of R claimed in (2) above says that the generators
y1, . . . , yk of R are nilpotents, i.e. they vanish when raised by a suitable integer.

Proof (i). Suppose R is a finite commutative indecomposable ring with
characteristic n. If n nontrivially factors as: n = ab, where a, b ∈ Z>1 are
coprime, then by Chinese remaindering R factors too:

R = aR× bR

(Convince yourself that this is a decomposition.) This contradiction shows that
n is a prime power, say n = pm. �

Proof (ii). We assume m = 1 for simplicity of exposition. These ideas carry
forward to largerm’s (McDonald 1974). So suppose that R is an Fp-algebra and
is given in terms of basis elements b1, . . . , bn. Let g1(b1, . . . , bn), . . . , gl(b1, . . . , bn)
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be the multivariate polynomials that define the multiplication operation of the
ring R. Thus, we have an expression for R as:

(6.8) R ∼= Fp[x1, . . . , xn]/(g1(x1, . . . , xn), . . . , gl(x1, . . . , xn))

Since, R is of dimension n, {1, x1, x
2
1, . . . , x

n
1} cannot all be linearly independent

and hence there is a polynomial f1(z) ∈ Fp[z] of degree atmost n such that
f1(x1) = 0 in R. Further, assume that f1 is of lowest degree. Now if f1

nontrivially factors as: f1(z) = f11(z)f12(z), where f11, f12 are coprime, then
by Chinese remaindering R decomposes as:

R ∼= R · f11(x1)×R · f12(x1)

As R is assumed to be indecomposable we deduce that f1 is a power of an irre-
ducible polynomial. Say, f1(z) = f11(z)

e1 where f11 is an irreducible polynomial
over Fp of degree d1. Now we claim that there are g′1, . . . , g

′
l ∈ Fpd1 [x1, . . . , xn]

such that:

(6.9) R ∼= Fpd1 [x1, . . . , xn]/(x
e1
1 , g

′
1(x1, . . . , xn), . . . , g

′
l(x1, . . . , xn))

To prove the above claim we need the following fact:

Claim 6.10. If f(x) is an irreducible polynomial, of degree d, over a finite
field Fq then

S = Fq[x]/(f(x)e) ∼= Fqd [u]/(ue)

Proof of Claim 6.10. Consider the ring S ′ := (Fq[x]/(f(x)))[u]/(ue) ∼=
Fqd [u]/(ue). We claim that the map φ : S → S ′ which fixes Fq and maps
x 7→ (x+ u), is an isomorphism.

Note that f(x+u)e = 0 in the ring S ′ simply because f(x+u)−f(x) = u·q(x)
for some q(x) ∈ Fq[x]. Thus, φ is a ring homomorphism from S to S ′. Next we
show that the minimum polynomial that φ(x) satisfies over S ′ is of degree de,
thus the dimension of φ(S) is the same as that of S ′ over Fq and hence φ is an
isomorphism.

Suppose g(z) :=
∑d′

j=0 ajx
j is the least degree polynomial over Fq such that

g(x+ u) = 0 in S ′. This means that in S ′:

0 = g(x+ u) = g(x) + u · g(1)(x) + u2 · g
(2)(x)

2!
+ · · ·+ ue−1 · g

(e−1)(x)

(e− 1)!

where, g(i)(x)
i!

=
∑d′

j=i
j(j−1)···(j−i+1)

i!
ajx

j−i. But since 1, u, . . . , ue−1 are linearly
independent over Fq[x]/(f(x)). We have:

g(x) = g(1)(x) = · · · = g(e−1)(x) = 0 over Fq[x]/(f(x))
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Whence we get, f(z)e|g(z) which by the definition of g means that g(z) = f(z)e.
Thus, φ is an isomorphism from S to S ′. �

From the above claim we now deduce:

R ∼= Fp[x1, . . . , xn]/(f11(x1)
e1 , g1(x1, . . . , xn), . . . , gl(x1, . . . , xn))

∼= Fpd1 [u, x2, . . . , xn]/(u
e1 , g′1(u, x2, . . . , xn), . . . , g

′
l(u, x2, . . . , xn))

∼= Fpd1 [x1, x2, . . . , xn]/(x
e1
1 , g

′
1(x1, x2, . . . , xn), . . . , g

′
l(x1, x2, . . . , xn))

This new ring which we obtained has x1 as a nilpotent. We can now consider
the lowest degree polynomial f2(z) ∈ Fpd1 [z] such that f2(x2) = 0 in R. The
above process when repeated on f2, x2 in place of f1, x1 gives us that there are
d2, e2 ∈ Z≥1 and g′′1 , . . . , g

′′
l ∈ Fpd1d2 [x1, . . . , xn] such that:

R ∼= Fpd1d2 [x1, . . . , xn]/(x
e1
1 , x

e2
2 , g

′′
1(x1, . . . , xn), . . . , g

′′
l (x1, . . . , xn))

Continuing this way we get that there is a d ∈ Z≥1 and polynomials h1, . . . , hl ∈
Fpd [x1, x2, . . . , xn] such that:

R ∼= Fpd [x1, . . . , xn]/(x
e1
1 , . . . , x

en
n , h1(x1, . . . , xn), . . . , hl(x1, . . . , xn))

�

Remark 6.11. Note that the above proof can be viewed as an algorithm to
decompose a finite dimensional commutative ring, given in basis form, into
indecomposable rings. It is indeed a deterministic polynomial time algorithm
given oracles to integer and polynomial factorization.

Let us now see a structural property of commutative indecomposable rings.

Lemma 6.12. For a field F, consider a ring R of the form:

R = F[x1, . . . , xn]/(x
e1
1 , . . . , x

en
n , h1(x1, . . . , xn), . . . , h`(x1, . . . , xn))

Then,

(i) R is indecomposable.

(ii) R has a unique maximal ideal M and M = set of nilpotents of R.
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Proof (i). Any element r of R looks like a0 +a1(x)x1 + · · ·+an(x)xn where,
a0 ∈ F and a1(x), . . . , an(x) ∈ F[x1, . . . , xn].

Suppose a0 = 0. Since, xe11 = · · · = xen
n = 0 we have that:

re1+···+en = (a1(x)x1 + · · ·+ an(x)xn)
e1+···+en

= 0

Suppose a0 6= 0. Let r0 := r − a0 and e := e1 + · · ·+ en. Then we have:

(a0 + r0)(a
e
0 − ae−1

0 r0 + · · ·+ (−1)e−1a0r
e−1
0 + (−1)ere0) = ae+1

0 − (−r0)e+1

= ae+1
0 [∵ re0 = 0]

∈ F∗

⇒ r ∈ R∗

Thus, every element r of R is either a nilpotent or a unit depending upon
whether a0 = 0 or not.

Now suppose R is decomposable. By Lemma 6.3 there has to be a nontrivial
idempotent t ∈ R. But we have:

t2 = t

⇒ t(t− 1) = 0

⇒ t = 0 or 1 [∵ t or (t− 1) is a unit]

This contradiction shows that R is indecomposable. �

Proof (ii). Define a set M := R \ R∗. As shown above M is the set of
nilpotents of R and hence is an ideal. M is maximal because any element
outside it is a unit. M is unique because it contains all the non-units of R. �

Agrawal & Saxena (2005) showed that the problem of graph isomorphism
can be reduced to F-algebra isomorphism for any field F. We tag the proof
here for the sake of completeness. The reduction gives a way to construct a
local commutative F-algebra out of a given graph.

Lemma 6.13. Graph Isomorphism ≤P
m F-algebra Isomorphism.

Proof. The proof involves constructing a local commutative F-algebra. We
associate variables to each vertex (x-variable) and capture the “adjacency” in
the graph by defining the edges-polynomial –

∑
(u,v) is an edge xuxv – as zero in

the ring.
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Let G be an undirected graph with n vertices and no self loops. Choose
any field F of characteristic not equal to 2. Define the following commutative
F-algebra:

R(G) := F[x1, . . . , xn]/I

where, ideal I has the following relations:

◦ x’s are nilpotents of degree 2, i.e., for all i ∈ [n]: x2
i = 0.

◦ the edges-polynomial is zero, i.e.,
∑

1≤i<j≤n
(i,j)∈E(G)

xixj = 0.

◦ all cubic terms are zero, i.e., for all i, j, k ∈ [n] : xixjxk = 0.

Suppose (i0, j0) is an edge in G such that 1 ≤ i0 < j0 ≤ n. Then the
additive structure of the ring is:

(R(G),+) = F · 1⊕
⊕
i∈[n]

F · xi ⊕
⊕
i<j∈[n]

(i,j) 6=(i0,j0)

F · (xixj)

Thus, the dimension of the ring over F is
(
n+1

2

)
. Multiplication satisfies the

associative law simply because the product of any three variables (in any order)
is zero. Also, R(G) is a local commutative F-algebra.

Observe that if G ∼= G′ then any graph isomorphism φ induces a natural
isomorphism between rings R(G) and R(G′). So we only have to prove the
converse:

Claim 6.14. Let G and G′ be two undirected graphs having no self-loops.
Further, assume that graphs G and G′ are not a disjoint union of a clique and
a set of isolated vertices. Then, R(G) ∼= R(G′) implies G ∼= G′.

Proof of Claim 6.14. Suppose φ is an isomorphism from R(G) → R(G′). Let

(6.15) φ(xi) = ci,0 + ci,1x1 + . . .+ ci,nxn + (quadratic terms).

where all ci,j’s in the coefficients are in F.

By squaring the above we get:

0 = φ(x2
i ) = φ(xi)

2 = c2i,0 + (linear and quadratic terms)
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which means that ci,0 = 0. The next observation about φ is that there is at
most one nonzero linear term in φ(xi). Let Ci = {j ∈ [n] | ci,j 6= 0} be of size
> 1. Then φ(xi)

2 = 0 gives:∑
j<k∈Ci

(2ci,jci,k)xjxk = 0 in R(G′)

We know that inR(G′) the quadratic relations are x2
i = 0 and

∑
1≤i<j≤n

(i,j)∈E(G′)
xixj =

0. This means that the above equation holds only if there is a λ ∈ F:∑
1≤j<k≤n
j,k∈Ci

(2ci,jci,k)xjxk = λ ·
∑

1≤i<j≤n
(i,j)∈E(G′)

xixj = 0

This equality interpreted in graph terms means that G′ is a union of a clique
on Ci and a set of (n−#Ci) isolated vertices (remember that 2 6= 0 in F). This
we ruled out in the hypothesis, thus size of Ci ≤ 1. If #Ci = 0 then for any j,
φ(xixj) = 0 which contradicts the assumption that φ is an isomorphism. Thus,
for all i ∈ [n], #Ci = 1. Define a map π : [n] → [n] such that the nonzero
linear term occurring in φ(xi) is xπ(i).

Suppose π is not a permutation on [n] then there are i 6= j such that
π(i) = π(j). But then there will exist a, b ∈ F∗ such that there is no nonzero
linear term in φ(axi + bxj). Whence, we get that φ(axixk + bxjxk) = 0 for all
k ∈ [n] which contradicts the assumption that φ is an isomorphism. Hence, π
is a permutation on [n]. Now look at the action of φ on the edges-polynomial:

0 = φ

 ∑
1≤i<j≤n
(i,j)∈E(G)

xixj


=

∑
1≤i<j≤n
(i,j)∈E(G)

φ(xi)φ(xj)

=
∑

1≤i<j≤n
(i,j)∈E(G)

ci,π(i)cj,π(j)xπ(i)xπ(j)

Since the above is a zero relation in the ring R(G′), we get that the polynomial∑
1≤i<j≤n

(i,j)∈E(G′)
xixj divides the above. Hence, (π(i), π(j)) ∈ E(G′) if (i, j) ∈ E(G).

By symmetry this shows that π is an isomorphism from G→ G′. �

The theorem follows from the claim. �



48 Agrawal & Saxena

Remark 6.16. The above reduction does not work for fields F of characteristic
2. We can modify the ring R(G) slightly to make the reduction go through
even when F is a field of characteristic 2. Define the ring R(G) from a graph
G, having n vertices, as:

R(G) := F[x1, . . . , xn]/I

where, ideal I has the following relations:

(i) x’s are nilpotents of degree 3, i.e., for all i ∈ [n]: x3
i = 0.

(ii) the modified edges-polynomial is zero, i.e.,
∑

1≤i<j≤n
(i,j)∈E(G)

(x2
ixj + xix

2
j) = 0.

(iii) all quartic terms are zero, i.e., for all i, j, k, l ∈ [n] : xixjxkxl = 0.

A similar proof as above shows that isomorphism problem for rings like R(G)
solves the graph isomorphism problem too.

Remark 6.17. Note that even if graph G is rigid (i.e., G has no nontrivial
automorphism) the ring R(G) has lots of nontrivial automorphisms, for exam-
ple, φ : xi 7→ xi + x1x2. Thus, unfortunately, this reduction does not reduce
the problem of testing rigidity of graphs to testing rigidity of rings.
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