
BLACKBOX IDENTITY TESTING

FOR SUM OF SPECIAL ROABPS

AND ITS BORDER CLASS

Pranav Bisht and Nitin Saxena

April 21, 2021

Abstract. We look at the problem of blackbox polynomial identity
testing (PIT) for the model of read-once oblivious algebraic branching
programs (ROABP), where the number of variables are logarithmic to
the input size of ROABP. We restrict width of ROABP to a constant
and study the more general sum-of-ROABPs model. This model is non-
trivial due to the arbitrary individual-degree. We give the first poly(s)-
time blackbox PIT for sum of constant-many, size-s, O(log s)-variate
constant-width ROABPs. The previous best for this model was quasi-
polynomial time (Gurjar et al, CCC’15; Computational Complexity’17)
which is comparable to brute-force in the log-variate setting. We also
show that we can work with unbounded-many such ROABPs if each
ROABP computes a homogeneous polynomial (or more generally for
degree-preserving sums). We also give poly-time PIT for the border.
We introduce two new techniques, both of which also work for the border
version of the stated models. (1) The leading-degree-part of an ROABP
can be made syntactically homogeneous in the same width. (2) There
is a direct reduction from PIT of sum-of-ROABPs to PIT of single
ROABP (over any field). Our methods improve the time complexity
for PIT of sum-of-ROABPs in the log-variate regime.

Keywords. Identity test, hitting-set, ROABP, blackbox, log variate,
width, diagonal, derandomization, homogeneous, sparsity, border com-
plexity.

Subject classification. Theory of computation– Algebraic complexity
theory, Fixed parameter tractability, Pseudorandomness and derandom-
ization; Computing methodologies– Algebraic algorithms; Mathematics
of computing– Combinatoric problems.

2 Bisht & Saxena

Contents

1 Introduction 3

1.1 Our results . 5

1.2 Previous works and motivation 8

1.2.1 ABPs . 8

1.2.2 Log-variate 9

1.2.3 Constant width 10

1.2.4 PIT for Border 10

1.3 Proof techniques 11

1.3.1 Syntactic homogeneity for ROABP 11

1.3.2 Reduction from many to one 12

1.4 Organization . 12

2 Notations and Preliminaries 13

2.1 Notations . 13

2.2 Algebraic models of computation 14

2.3 Nisan’s characterization 16

2.4 Hitting set generator (HSG) 17

2.5 Folklore facts . 19

3 PIT for Degree-preserving sum of ROABPs 22

3.1 Syntactically Homogeneous ROABP 22

3.2 PIT for single ROABP 25

3.3 PIT for Degree-Preserving Sum 27

4 PIT for Sum of ROABPs 28

4.1 Sum of two ROABPs 30

4.2 Sum of c ROABPs 36

5 PIT for Border 39

5.1 Border of ROABP 40

5.2 Border of Sum of ROABPs 41

6 Future Directions 44

Acknowledgements 44

PIT for sum of ROABPs 3

1. Introduction

Polynomial Identity Testing (PIT) is the problem of testing whether
a given multivariate polynomial is identically zero or not. The
input polynomial to be tested is usually given in a compact rep-
resentation – like an algebraic circuit or an algebraic branching
program (ABP). The PIT algorithm is said to be efficient if its
time complexity is polynomial in the input size of algebraic circuit
resp. ABP. There are two main types of PIT algorithms– blackbox
or whitebox. A blackbox PIT algorithm tests the zeroness of input
polynomial using only evaluations of circuit, resp. ABP, over field
points. However, a whitebox algorithm is allowed additional access
to look inside the circuit or ABP. The set of points H over which
a blackbox PIT algorithm evaluates is also commonly known as a
hitting-set. PIT admits a simple yet efficient randomized blackbox
algorithm due to Polynomial Identity Lemma (Demillo & Lipton
1978; Ore 1922; Schwartz 1980; Zippel 1979). The primary fo-
cus of research in PIT is to derandomize it and get a poly-time
deterministic blackbox algorithm. The problem of PIT also has
interesting connections with circuit lower bounds (Agrawal 2005;
Agrawal et al. 2019; Heintz & Schnorr 1980; Kabanets & Impagli-
azzo 2004), geometric complexity theory (Mulmuley 2012a,b) and
many other well known problems like matching (Fenner et al. 2017;
Mulmuley et al. 1987), primality testing (Agrawal et al. 2004) and
polynomial factoring (Kopparty et al. 2014). Refer to Sapthar-
ishi (2016); Saxena (2009, 2014); Shpilka & Yehudayoff (2010) for
detailed surveys on PIT and lower bounds.

The model in focus for this paper is that of read-once oblivious
ABPs (ROABPs) which is a special class of ABPs. An ABP is
defined using a layered directed graph with a unique source and
sink vertex. The graph has edges only among consecutive layers.
Each edge is directed from one layer to the next and has some linear
polynomial as its weight. The weight of a path is product of edge
weights along the path. The polynomial computed by the ABP
is then simply the sum of all weighted paths from source to sink.
The length of an ABP is the length of the longest path from source
to sink and width of an ABP is the maximum possible number of
vertices in a layer. An ABP is called read-once oblivious (ROABP)

4 Bisht & Saxena

if each variable is read in only one layer and each edge in a layer is
labeled with a univariate (of arbitrary degree) in its corresponding
variable. Equivalently, an ROABP of width w can be viewed as
a product of n matrices f(x) = D1(xπ(1)) · D2(xπ(2)) · · ·Dn(xπ(n))
where D1(xπ(1)) ∈ F1×w[xπ(1)], Di(xπ(i)) ∈ Fw×w[xπ(i)] for 2 ≤ i ≤
n−1 and Dn(xπ(n)) ∈ Fw×1[xπ(n)]. Here, π is a permutation on the
set {1, 2, . . . , n} and it describes what we call the variable order of
an ROABP. Size of an ROABP is given by three parameters: w, n
and degree d.

In the whitebox regime, ROABP has a well known poly-time
PIT algorithm (Raz & Shpilka 2005). However, in the blackbox
regime, we only have quasi-poly-time PIT algorithms (Agrawal
et al. 2015; Forbes & Shpilka 2013b) and no known poly-time al-
gorithms. Thus, one can also ask for blackbox PIT of ROABPs
with restriction on the width parameter. In Gurjar et al. (2017a)
they address this question and give a poly-time graybox (known
variable order) PIT for constant width ROABPs. The constant
width setting can be considered a necessary stepping stone before
solving PIT for general width ROABPs.

The sum of ROABPs is another interesting model for PIT. For
a constant number of ROABPs, Gurjar et al. (2017b) give the
first poly-time whitebox, and only a quasi-poly time blackbox PIT
algorithm. One can then ask for poly-time blackbox PIT for sum
of ROABPs under the restriction of constant width. This problem
is also open. What if we also restrict the number of variables? It is
a nontrivial model as the degree remains arbitrary. This brings us
to the question of poly-time blackbox PIT for sum of constantly-
many, constant-width, log-variate ROABPs. We give a positive
answer for this question.

Blackbox Polynomial Identity Testing for sum of constantly-many,
log-variate constant-width ROABPs is in polynomial time.

Under the single restriction of log-variate, we still get an improve-
ment over Gurjar et al. (2017b). More generally, we give efficient
PIT for the border version. Furthermore, if the sum is degree pre-
serving then we can drop the ‘constantly-many’ restriction.

PIT for sum of ROABPs 5

1.1. Our results.

PIT for sum of ROABPs. The main result of this work is
showing a reduction from designing a blackbox PIT algorithm for
sum of ROABPs to designing a blackbox PIT algorithm for a single
ROABP.

Theorem 1.1 (Reduction to one). Let T (r, n, d) be the time com-
plexity of a blackbox PIT algorithm for a single ROABP of width
r and degree d in n variables over any field F. Then, blackbox PIT
for sum of c-many ROABPs, each of width r and degree d in n vari-

ables, can be solved in time T ′(r, n, d, c) =
(
2n · T (2cr3c , n, d)

)O(c)

over F.

This reduction is poly-time when number of ROABPs, c is constant
and number of variables is logarithmic in the input size, that is
n = O(log(rd)). Thus, in the log-variate setting, if we have a poly-
time blackbox PIT for a single ROABP, then we show a poly-time
blackbox PIT for sum of c ROABPs. Though, sum of even two
ROABPs is provably harder than a single ROABP (see Fact 1.6),
we still get an efficient PIT for sum using PIT for single ROABP.

Blackbox PIT for a single ROABP, over any field F, has time
complexity (ndr)O(logn), which is only quasi-poly time. In the log-
variate setting, a dn = dO(log(rd)) (quasi-poly) time algorithm for
sum of ROABPs is already trivial via brute force derandomiza-
tion based on the Polynomial Identity Lemma. Thus, to extract
a poly-time PIT for sum using above theorem, we need poly-time
blackbox PIT for single ROABP. We indeed get one, when width
r is constant and n = O(log d), in Lemma 3.8. This then gives us
the following corollary.

Corollary 1.2 (Sum of ROABPs). Let P be a set of n-variate
polynomials, over a field F, computed by a sum of c-many ROABPs,
each of width r and degree d. Also, the variable order of each
ROABP is unknown. Then, blackbox PIT for P can be solved in
poly(dc, rnc3

c
) time.

6 Bisht & Saxena

Remark. If c, r = O(1) and n = O(log d), then input size is O(d)
and the stated time-complexity is poly(d).

The trivial time complexity for blackbox PIT of P is dn = dO(log d).
Gurjar et al. (2017b) gave a blackbox PIT algorithm for sum of
c ROABPs in (ndr)O(c2c log(ndr)) time. It is super-polynomial time,
even under the restrictions of constant-c, constant-width and log-
variate.

Gurjar et al. (2017a) gave a blackbox PIT algorithm for a sin-
gle ROABP in O(ndrlogn) time. It is poly-time for constant width
without the log-variate restriction. However, their algorithm as-
sumes the knowledge of variable order. Moreover, it works only
for fields of characteristic either zero or larger than ndrlogn. Our
algorithm is efficient in the log-variate setting, does not require
knowledge of variable order and works for all fields.

If we use Agrawal et al. (2015)’s blackbox PIT algorithm for
single ROABP in Theorem 1.1, we get another efficient PIT for the
sum of ROABPs as a corollary below.

Corollary 1.3 (Improved Sum PIT). Let P be a set of n-
variate polynomials, over a field F, computed by a sum of c-many
ROABPs, each of width r and degree d. Also, the variable order
of each ROABP is unknown. Then, blackbox PIT for P can be
solved in poly(2cn · nc logn, dc logn, r3c logn) time.

Remark. For c = O(1) and n = O(log(rd)), the stated time com-
plexity is (rd)O(log log(rd)). Thus, in the log-variate setting, without
any width restriction, we give a more efficient PIT than the result
of Gurjar et al. (2017b), which only yields a poly(rd)O(log(rd)) time
algorithm, even with n = O(log(rd)).

In a subsequent work, Guo & Gurjar (2020) improved the blackbox
PIT for a single ROABP. One can then also use that in conjunction
with our Theorem 1.1 to get a further improved blackbox PIT for
sum of ROABPs in the log-variate regime. This has been stated as
Theorem 1.2 in Guo & Gurjar (2020) by citing an earlier version
of Theorem 1.1 in this work.

PIT for sum of ROABPs 7

PIT for degree-preserving sum of ROABPs. For some k ∈
N, let f1(x), f2(x) . . . fk(x) be any k polynomials in F[x1, . . . , xn].
We call

∑k
i=1 fi(x), a degree-preserving sum, if for f(x) =

∑k
i=1 fi(x),

we have deg(f) = maxi deg(fi). In Corollary 1.2, the number of
ROABPs c, is assumed to be constant to get efficient blackbox PIT.
We could allow an arbitrary c, if the sum is degree-preserving. In
other words, with the additional restriction of a degree-preserving
sum, we bring down the double exponential dependence on c in
Corollary 1.2 to polynomial dependence on c in the theorem be-
low.

Theorem 1.4 (Degree-preserving sum). Let P be a set of n-
variate polynomials, over a field F, computed by a degree-preserving
sum of c ROABPs, each of width r and degree d. Also, the variable
order of each ROABP is unknown. Then, blackbox PIT for P can
be solved in poly(d, crn) time.

Remark. If r = O(1) and n = O(log d), then the stated time
complexity is poly(cd)– polynomial in the input-size. Consider
the class of polynomials which can be computed by a sum of c
ROABPs, where each ROABP computes a homogeneous polyno-
mial. In Section 3, we show that such a sum can be expressed as a
degree-preserving sum. Thus, we get a blackbox PIT for this class
in the same time.

If we could get a poly(d, crn) time PIT in the above theo-
rem without the degree-preserving sum restriction, then we get
poly-time PIT for the model of diagonal-depth 3 circuits (See
Lemma 2.12).

PIT for border of sum of ROABPs. Let C be an algebraic
class over field F, like arithmetic circuit or ABP or ROABP. An
approximation closure or border of class C, denoted as C is de-
fined as follows: a family (fn) is in C if there are polynomials
fn,1, . . . , fn,t ∈ F[x] such that the family (gn) defined by

gn(x, ε) := fn(x) + εfn,1(x) + ε2fn,2(x) + . . .+ εtfn,t(x)

8 Bisht & Saxena

is in C over the field F(ε), where t is called the error degree. Here
ε is a new indeterminate and limε→0 gn(x, ε) = fn(x). In other
words, fn is approximated by a polynomial gn which has a circuit
in class C over F(ε). Although the circuit C ∈ C computing gn
might involve internal computations with ε in the denominator,
the final output does not and is a polynomial over F[ε][x]. Border
classes can be more complicated because the degree of ε involved
can be super-polynomial. So, poly-time PIT algorithms for border
classes are rare. Below, we give blackbox PIT algorithm for the
border class of sum of c ROABPs.

Theorem 1.5 (Reduction for border). Let T (r, n, d) be the time
complexity of a blackbox PIT algorithm for a single ROABP of
width r in n variables and degree d over any field F. Then blackbox
PIT for border of sum of c ROABPs, each of width r and degree d

in n variables, can be solved in time
(
2n ·T (2cr3c , n, d)

)O(c)
over F.

Remark. Since the above theorem achieves the same time com-
plexity as in Theorem 1.1, all results for PIT of sum of ROABPs
above extend to their border versions also.

Thus, we also get poly(dc, rnc3
c
) and poly(2cn ·nc logn, dc logn, r3c logn)

time blackbox PIT algorithms for the border class of sum of c
ROABPs analogous to Corollary 1.2 and Corollary 1.3, respec-
tively. We will also get a new blackbox PIT for the border class
with the time complexity achieved in Theorem 1.2 of Guo & Gurjar
(2020).

1.2. Previous works and motivation. In this section, we will
discuss the major motivations behind this work by showing connec-
tions of ROABP with other algebraic models of computation. We
refer the reader to Section 2 for formal definitions of these models.

1.2.1. ABPs. It is well known that ABPs subsume determinants
and formulas. In turn, algebraic formulas subsume constant depth
circuits (see Ben-Or & Cleve 1992 and Nisan 1991, Lem. 1). The
combined restrictions on variables and width still gives interesting
sub-models for ABPs. For example Agrawal et al. (2019, Thm.22)

PIT for sum of ROABPs 9

Model Time Reference∑∧∑
(nd)O(logn) Agrawal et al. (2013)

— poly(d, 2n) Forbes et al. (2018)
ROABP (ndr)O(logn) Forbes & Shpilka (2013b)

— nO(d log r logn) Forbes et al. (2014)
— (ndr)O(logn) Agrawal et al. (2015)
— O(ndrlogn) Gurjar et al. (2017a)

Sum of c — (ndr)O(c2c log(ndr)) Gurjar et al. (2017b)
Border version (2n(nd)lognr3c logn)O(c) This work

— poly(dc, rnc3
c
) This work

Table 1.1: Time complexities of different PIT algorithms related
to n-variate, degree d and width r ROABP model.

show that even solving PIT for log-variate width-2 ABPs will al-
most solve the complete PIT problem. The ROABP model is also
quite nontrivial as a poly-time blackbox PIT is still open. Table 1.1
gives a comprehensive comparison between the time complexities
of previous works on ROABP model and this work. In the table,
algorithms of Forbes & Shpilka (2013b) and Gurjar et al. (2017a)
work only for known variable orders. The work of Forbes et al.
(2014) gives quasi-poly time PIT under the restriction of multilin-
earity or constant individual degree. Our border algorithms men-
tioned in Table 1.1 naturally also hold for the base class of sum of
c ROABPs.

1.2.2. Log-variate. There has been a recent line of work on
‘Bootstrapping variables’ in algebraic circuits. Agrawal et al. (2019)
prove that solving blackbox PIT for circuits that depend only on
the first log◦c s variables is sufficient to solve blackbox PIT for
general circuits. Here c is a constant and log◦c is a composition
of c logarithms. Kumar et al. (2019), Guo et al. (2019a) further
showed that even saving on one evaluation point from the brute-
force hitting-set of constant-variate algebraic circuits would solve
general PIT. Although such bootstrapping results are not known
for ROABPs, nonetheless log-variate ROABP is still an open in-
teresting model for the reasons discussed below.

10 Bisht & Saxena

The well studied diagonal depth-3 model
(∑∧∑)

is one of
the lower hanging fruits in PIT. Forbes et al. (2018) were able
to utilize low-variate setting to give the first poly-time blackbox
PIT for log-variate diagonal depth-3 circuits. The natural exten-
sion is to solve blackbox PIT for log-variate ROABPs. In fact, it
can be shown that PIT for log-variate commutative ROABPs im-
plies PIT for the general multivariate diagonal depth-3 model using
the results of Forbes et al. (2014); Forbes & Shpilka (2013a). See
Lemma 2.12 for details. Making progress in this direction has been
the key motivation behind the tools and techniques developed in
this work.

1.2.3. Constant width. The sum of few constant-width ROABPs
model is more expressive than that of a constant-width ROABP.
Kayal et al. (2016) observed that even a sum of two width-3 ROABPs
cannot be computed by a single constant-width ROABP which is
stated as Fact 1.6 here. Thus, this model is nontrivial and black-
box PIT for it is still open. Even in the log-variate setting, sum
of two width-3 ROABPs will require a single ROABP of super-
constant width. Thus, sum of constantly many, constant width,
log-variate ROABPs lacked a poly-time blackbox PIT, which we
solve in Corollary 1.2.

Fact 1.6 (Kayal et al. 2016, Thm. 7). There is an explicit fam-
ily of 3n-variate multilinear polynomials {gn}n≥1 which is com-
putable by sum of two width-3 ROABPs of size Θ(n), but any
single ROABP computing g must have width 2Ω(n).

1.2.4. PIT for Border. Border of a class can offer additional
computational power. Forbes (2016) gives an interesting example.
Consider the class of polynomials which are of the form α`d1 + β`d2,
where `1, `2 ∈ F[x] are homogeneous linear polynomials. For d ≥ 3,
it can be shown that xd−1y cannot be expressed as α`d1 + β`d2.
However, xd−1y can be computed in the border of this class, as
shown below

g :=
1

dε

(
(x+ εy)d − xd

)
lim
ε→0

g = xd−1y

PIT for sum of ROABPs 11

The fundamental problem in border complexity is to under-
stand this difference in the computational power of a class C and
its border class C. Generally, one would like to understand whether
VP = VP, where VP is the class of polynomials with polynomial
sized algebraic circuits. However, this question is open even for
more restricted classes like diagonal depth-3 circuits, depth-3 cir-
cuits, ABPs etc. Border classes play an important role in Mulmu-
ley’s ‘GCT approach’ to attack P 6= NP conjecture (Mulmuley &
Sohoni 2001, 2008), and in ‘GCT Chasm’ (Mulmuley 2012a,b). In
particular, showing VP 6= VNP is an important structural ques-
tion. We refer the reader to Bringmann et al. (2018) for an excellent
discussion on border complexity.

An interesting question in border complexity is to come up
with PIT algorithm for a border class. Of course to solve PIT for a
border class C, we necessarily need to solve PIT for C. However for
those circuit classes where we have an efficient PIT algorithm for
C and it is not known whether C = C, it is an interesting problem
to solve PIT for C.

For the algebraic class of ROABPs, one can show that the
border does not offer any additional computation power, that is,
ROABP = ROABP (Lemma 5.2). However, it is not clear if sum
of constantly many ROABPs is equal to its border class. See Sec-
tion 5.2 for a discussion on this. Therefore PIT for the border class
of sum of ROABPs is an interesting problem. We solve it for sum
of constantly-many, constant width, log-variate ROABPs.

1.3. Proof techniques.

1.3.1. Syntactic homogeneity for ROABP. Inspired by cir-
cuits we define syntactic homogeneity for ROABP (Definition 3.1).
We prove that if a degree-d homogeneous polynomial has an ROABP
of width-r, then it also has a syntactic homogeneous ROABP of the
same width, and in the same variable order (Theorem 3.3). Recall
that if one applies the usual homogenization trick, for circuits/ABP
(Shpilka & Yehudayoff 2010, Thm.2.2), then the ROABP width
blows up to O(rd2), making the width non-constant! Our new
technique helps solve blackbox PIT for a constant-width log-variate
ROABP, but also seems independently interesting. Moreover, The-

12 Bisht & Saxena

orem 3.3 is independent of any restrictions on width or number of
variables but we make use of these restrictions only in solving PIT.

1.3.2. Reduction from many to one. In Theorem 1.1, we
give a reduction from designing a polynomial time blackbox PIT
for sum of constantly many ROABPs to designing a polynomial
time blackbox PIT for a single ROABP, in the log-variate set-
ting. This reduction does not assume any restriction on width of
ROABPs. This already gives us an improvement over Gurjar et al.
(2017b) in Corollary 1.3. We need constant width in Corollary 1.2
only because poly-time blackbox PIT for an unbounded-width (log-
variate) ROABP is yet to be found.

Remark 1.7. In a recent subsequent work, Guo & Gurjar (2020,
Thm. 1.1) constructed explicit hitting sets of polynomial size for
a single log-variate ROABP of width upto 2O(log d/ log log d) over field
F with char(F) = 0 or char(F) > d. In their second theorem,
they directly call our Theorem 1.1 to extend their result to sum of
constantly many such ROABPs.

Gurjar et al. (2017b) also give a reduction from PIT of sum of
constantly many to PIT of single ROABP but it is an indirect one,
taking quasi-polynomial time. Also, instead of a hitting set, they
require something stronger, which a hitting set may not provide.
They need an efficient shift that l-concentrates a single ROABP. A
polynomial is said to be l-concentrated if all of its coefficients are
in the linear span of its coefficients corresponding to monomials
having variable support < l. They prove that this efficient shift
also l-concentrates sum of constantly-many ROABPs. Although,
they do not require log-variate restriction, their method only yields
a quasi-poly time reduction, since they fix l to O(log s) (s is size
of ROABP) and apply brute-force hitting set after the shift.

1.4. Organization. In Section 2, we recall preliminary tools and
techniques that will be useful for rest of the paper. We first discuss
the degree-preserving sum of ROABPs model in Section 3. Here,
we develop a structure theorem (Theorem 3.3) and use it to prove
Theorem 1.4. We also give a blackbox PIT algorithm for a single
ROABP here. We discuss the more general sum of ROABPs model

PIT for sum of ROABPs 13

in Section 4. Here, we prove our reduction given in Theorem 1.1
and use it to prove Corollary 1.2 and Corollary 1.3. We give the
border PIT results in Section 5.2. We prove Theorem 1.5 here.
Finally, we conclude with few open questions in Section 6.

2. Notations and Preliminaries

2.1. Notations. We follow some of the notations from Gurjar
et al. (2017b). Let [n] denote the set {1, 2, . . . , n}. Let x =
(x1, x2, . . . , xn) be a tuple of n-variables. xk or x≤k will denote
the tuple of first k variables (x1, x2, . . . , xk) and x>k will denote
the tuple of remaining variables (xk+1, xk+2, . . . , xn). Let π de-
note the variable order of an ROABP, where π : [n] → [n] is
some permutation. This means the variables are read in the order
(xπ(1), xπ(2), . . . , xπ(n)). Let F[x] denote the ring of polynomials in
n-variables over some field F. Let Fw×w[x] denote the ring of poly-
nomials in n-variables over the matrix algebra of w × w matrices.

Let A(x) ∈ F[x] be a polynomial in n variables of degree d.
Let a denote an exponent vector (a1, a2, . . . , an) ∈ Nn such that
xa denotes the monomial

∏n
i=1 x

ai
i and |a|1 denotes the degree of

this monomial. Polynomial A is said to have individual degree b
if degxi(A) ≤ b for all i ∈ [n]. Let coeff(A)(xa) ∈ F denote the
coefficient of the monomial xa in A(x). The sparsity of a poly-
nomial A(x)– sparsity(A) –is defined as the number of monomials
with non-zero coefficients in A. We use A[d] to denote the degree-
d homogeneous part of A(x) and A[<d] to denote the remaining
lower-degree terms. Let y and z be a partition of x such that
|y| = k, then the coefficient polynomial A(y,a), denotes the co-
efficient of monomial ya in A(x) which is a polynomial in F[z].
Similarly A(z,b) ∈ F[y] is the coefficient of monomial zb in A(x).
Observe that A(x,a) and coeff(A)(xa) are different. For example if
A(x) = x1x2+x2

2+2x1, then A(x1,1) = x2+2 while coeff(A)(x1) = 2.
A polynomial A(x) ∈ Fw×w[x] is called a matrix polynomial,

where the coefficients are w × w matrices of field constants. The
coefficient space of A(x) is defined as the span of all the coefficients
of A: spanF{coeff(A)(xa) | a ∈ {0, 1, . . . , d}n}. We can also define
it for any prefix of variables.

For a set of polynomials P , their F-span is defined as: spanFP :=

14 Bisht & Saxena

{∑
A∈P αA · A | αA ∈ F

}
. The set P is called F-linearly indepen-

dent if
∑

A∈P αA · A = 0 implies αA = 0 for all A ∈ P . DimFP
is then defined as cardinality of the largest F-linearly independent
subset of P .

2.2. Algebraic models of computation.

Algebraic circuit. An algebraic circuit or an arithmetic circuit
C over F[x], is defined as a directed acyclic graph with a unique
root-vertex computing the polynomial. Each leaf-vertex is labeled
by a literal – a variable or a field constant. Edge u→ v is labeled
with a field constant, which gets multiplied to the polynomial com-
puted by vertex u and fed as input to vertex v. Each internal node-
vertex is either labeled by + or ×. A + node computes the sum
of all the incoming polynomials, while × node computes the prod-
uct. The in-degree of a vertex is called its fan-in and out-degree
its fan-out. Size of an algebraic circuit is the size of the graph.
Depth of the circuit is the length of the longest path from root to a
leaf node. An algebraic circuit with fan-out 1 is called an algebraic
formula.

Algebraic circuits can be assumed to be layered with alternating
layer of + and × nodes, with the root node to be addition gate.
A depth-4 circuit is of the form ∑∏∑∏. Thus, it computes a
polynomial of the form f =

∑k
i=1

∏di
j=1 fij, where each fij is a

sparse polynomial.
A depth-3 circuit ∑∏∑ computes a polynomial of the form f =∑k
i=1

∏di
j=1 `ij, where each `ij is a linear polynomial. A diagonal

depth-3 circuit ∑∧∑, computes a polynomial of the form f =∑k
i=1 `

di
i , where each `i is a linear polynomial.

Algebraic branching program. An algebraic branching pro-
gram (ABP) is a layered directed graph with a unique source ver-
tex s and sink vertex t. The ABP of depth-d has d + 1 layers–
V0, V1, . . . , Vd, where first layer V0 =: {s}, and last layer Vd =: {t}.
The directed edges go from Vi to Vi+1, for 0 ≤ i ≤ d − 1 and are
labeled with linear polynomials from F[x]. The weight of a path p
is W (p) :=

∏
e∈pW (e), where W (e) denotes the weight (or label)

PIT for sum of ROABPs 15

of an edge. The final polynomial f(x) computed by the ABP is
then simply the sum of weight of all paths from source to sink:
f(x) :=

∑
path p :s tW (p). The length of the ABP is the number of

layers from s to t. The ABP has width w, if for 0 ≤ i ≤ d, |Vi| ≤ w.
Size of the ABP is its graph size.

ABP also has an alternate algebraic representation in terms of
matrix product. Let the set of vertices in ith-layer Vi be Vi =:
{vi,j | j ∈ [w]}. Then, f(x) =

∏d
i=1 Di, where D1 ∈ F1×w[x],

Di ∈ Fw×w[x] (for 2 ≤ i ≤ d− 1), and Dd ∈ Fw×1[x] such that the
entries are:

D1(j) := W (s, v1,j) , for j ∈ [w]

Di(j, k) = W (vi−1,j, vi,k) , for j, k ∈ [w] and 2 ≤ i ≤ d− 1

Dd(k) = W (vd−1,k, t) , for k ∈ [w] .

By default W (u, v) := 0, if there is no edge (u, v) in the ABP.

Read-once oblivious algebraic branching program. An ABP
is called read-once oblivious ABP (ROABP) if each variable ap-
pears in only one layer and instead of linear polynomials, edge
weights are univariate polynomials. So, ROABP has length equal
to the number of variables n. The variable order (xπ(1), . . . , xπ(n))
of ROABP is the order of variables as they appear in edge weights
between the layers i− 1 to i, for i ∈ [n] in the ROABP. Size of the
ROABP is the sum of its graph size and the individual degrees (of
the univariate edge-labels).

In the matrix product form, ROABP D(x) =
∏n

i=1 Di, where
D1 ∈ F1×w[xπ(1)], Di ∈ Fw×w[xπ(i)] for 2 ≤ i ≤ n − 1, and Dn ∈
Fw×1[xπ(n)]. One can also view Di as a univariate polynomial with
coefficients coming from w-dimensional vectors or w×w matrices.
For ROABP D(x), D≤i denotes the sub product

∏i
j=1Dj, and D>i

denotes
∏n

j=i+1 Dj.
We state the definition of characterizing dependencies which

defines an ROABP layer by layer.

Definition 2.1 (Gurjar et al. 2017b, Defn. 2.7). Let A(x) be a
polynomial of individual degree d with variable-order (xπ(1), xπ(2),
. . . , xπ(n)). Suppose, for each k ∈ [n] and y = (xπ(1), xπ(2), . . . , xπ(k)),

16 Bisht & Saxena

dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w. For k ∈ [n], we define the
spanning set spank(A) and the dependency set dependk(A) as sub-
sets of {0, 1, . . . , d}k as follows. For k = 0, let depend0(A) := ∅
and span0(A) := {ε}, where ε = () denotes the empty tuple. For
k ∈ [n], let

◦ dependk(A) := {(a, j) | a ∈ spank−1(A) and 0 ≤ j ≤ d}, i.e.
dependk(A) contains all possible extensions of the tuples in
spank−1(A).

◦ spank(A) ⊆ dependk(A) is a subset of size ≤ w, such that for
any b ∈ dependk(A), the polynomial A(y,b) is in the span of
{A(y,a) | a ∈ spank(A)}.

Such dependencies of {A(y,a) | a ∈ dependk(A)} over {A(y,a) |
a ∈ spank(A)} comprise the characterizing set of dependencies
(certifying the width of A).

2.3. Nisan’s characterization. Nisan (1991) gave an exact
width characterization for ROABPs. We follow the presentation of
Gurjar et al. (2017b) for this characterization.

Lemma 2.2 (Gurjar et al. 2017b, Lem. 2.4, 2.8). Let A(x) be
a polynomial of individual degree d, computed by an ROABP of
width w with variable order (xπ(1), xπ(2), . . . , xπ(n)). For k ∈ [n], let
y = (xπ(1), xπ(2), . . . , xπ(k)) be the prefix of length k and z be the
suffix of length n−k. Then, dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w.

Conversely, let A(x) be a polynomial of individual degree d,
with x = {x1, . . . , xn} and w ≥ 1, such that for any k ∈ [n] and
yk = (xπ(1), xπ(2), . . . , xπ(k)), we have dimF{A(yk,a) | a ∈ {0, 1, . . . ,
d}k} ≤ w. Then, there exists an ROABP of width w for A(x) in
the variable order (xπ(1), xπ(2), . . . , xπ(n)).

We need the following lemma later in Section 4.1, which is not
difficult to prove (simply inspect the required coefficient).

Lemma 2.3 (Gurjar et al. 2017b, Lem. 2.6). Let A(x) be a poly-
nomial of individual degree d, computed by an ROABP of width
w. Let y = (xi1 , xi2 , . . . , xik) be any k variables of x. Then, the
coefficient polynomial A(y,a) can be computed by an ROABP of

PIT for sum of ROABPs 17

width w, for every a ∈ {0, 1, . . . , d}k. Moreover, all these ROABPs
have the same variable order, inherited from the variable order of
the ROABP for A.

2.4. Hitting set generator (HSG). A hitting-set for a class
P of n-variate, d-degree polynomials over F, is defined as the set
H ⊆ Fn of field points such that, for all nonzero f ∈ P , there
exists at least one point α ∈ H which hits f , i.e. f(α) 6= 0. The
notion of efficient blackbox PIT is equivalent to a small-sized ex-
plicit hitting-set. Any P has a hitting-set of size (d+1)n by brute-
force derandomization of Polynomial Identity Lemma (Demillo &
Lipton 1978; Ore 1922; Schwartz 1980; Zippel 1979).

We also have the notion of generator (hitting set generator)
which is equivalent to a hitting set but is easier to work with PIT
algorithms, especially recursive PIT algorithms.

Definition 2.4 (Generator). Let P be a class of n-variate poly-
nomials. Consider Φ = (f1, f2, . . . , fn), a tuple of k-variate polyno-
mials where for each i ∈ [n], fi ∈ F[t1, t2, . . . , tk]. Let A(x1, . . . , xn)
be an n-variate polynomial. Define Φ : F[x1, . . . , xn]→ F[t1, . . . , tk]
as Φ(A) = A(f1, . . . , fn). We call Φ a k-seeded generator for class
P if for every non-zero A(x) ∈ P , Φ(A(x)) 6= 0. Degree of genera-
tor Φ is defined as deg(Φ) := max{deg(fi)}ni=1.

For poly-time PIT, k should be constant. A generator Φ ∈ F[t]n

acts as a variable reduction map which converts an input polyno-
mial f ∈ F[x1, . . . , xn] to Φ(f) ∈ F[t1, . . . , tk] such that f = 0 if and
only if Φ(f) = 0. Let D be the degree of Φ, which makes Φ(f) a
polynomial of individual degree dD. Thus, Φ gives us a hitting-set
of size (dD+1)k by brute-force derandomization for Φ(f). In other
words, we get a poly-time blackbox PIT for f when k is constant,
Φ can be designed in poly-time and its degree is also polynomi-
ally bounded. An HSG for class P also yields a hitting set for P .
See Forbes (2015); Shpilka & Volkovich (2009) for equivalence of
hitting-sets and generators.

Below we state the folklore trick of polynomial interpolation
which recovers coefficients of a univariate polynomial from suffi-
ciently many evaluations of the polynomial.

18 Bisht & Saxena

Lemma 2.5 (Lagrange Interpolation). Let α1, . . . , αk be any k
distinct points in F. Suppose we are given evaluations of a poly-
nomial f(x) ∈ F[x] of degree k − 1 at these k points, βi = f(αi)
for each i ∈ [k]. Then we can recover f as follows:

`i(x) =
∏

1≤j≤k
j 6=i

x− αj
αi − αj

f(x) =
k∑
i=1

βi`i(x)

Proof. Observe that `i(αj) = 0 for i 6= j and 1 when i = j.
Thus, f(αi) = βi. Also f(x) is the unique degree k− 1 polynomial
with these evaluations, since if there is another polynomial g 6= f
with same k evaluations, then f − g is a non-zero polynomial of
degree ≤ k − 1 having k roots, which is a contradiction. �

Often we have a set of candidate maps for a class of polynomials
P , such that for each polynomial f ∈ P , one of the maps in the set
acts as an HSG for that particular f . The following lemma shows
that we can replace these set of candidate generators with a single
HSG for class P .

Lemma 2.6 (Generator Interpolation). Let G = {Φ1, . . . ,Φk}
where each Φi ∈ F[t]n. Suppose G is a set of candidate gen-
erators for a class of n-variate polynomials P such that for any
non-zero f ∈ P , there exists i ∈ [k], Φi(f) 6= 0. Then, there ex-
ists a single generator Ψ ∈ F[t, y]n such that for every non-zero
f ∈ P , Ψ(f) 6= 0. Moreover, degt(Ψ) = max{deg(Φ)}Φ∈G and
degy(Ψ) = |G| − 1 = k − 1.

Proof. Let {α1, . . . , αk} be an arbitrary set of distinct con-
stants. Define Ψ ∈ F[t, y]n to be the Lagrange interpolation poly-
nomial as follows:

Ψ =
k∑
i=1

(∏
1≤j≤k
j 6=i

y − αj
αi − αj

)
Φi.

PIT for sum of ROABPs 19

Observe that Ψ|y=αi
= Φi for each i ∈ [k]. We know that for

any non-zero f ∈ P , there exists i ∈ [k], Φi(f) 6= 0. Therefore
Ψ(f)|y=αi

6= 0. Hence Ψ(f) 6= 0 as a polynomial in F[y, t] since its
evaluation at y = αi is non-zero. �

2.5. Folklore facts. We mention few well known relevant tools
and lemmas in this section. We start with the famous Kronecker
map.

Lemma 2.7 (Kronecker 1882). Let f(x) ∈ F[x1, . . . , xn] be a non-
zero multivariate polynomial of individual degree < d. Let the
Kronecker HSG, Φ ∈ F[t]n be defined as (td

0
, td

1
, . . . , td

n−1
). Then,

Φ(f) 6= 0.

Below we prove that a k-seeded HSG can be replaced with a
single seed HSG with appropriate parameters.

Lemma 2.8. Let Φ ∈ F[t1, . . . , tk]
n be a k-seeded hitting set gener-

ator for some class P of n-variate, degree d polynomials in F[x] such
that deg{Φ} = D. Then, there is a univariate (single seed) hitting
set generator Ψ ∈ F[z]n for class P with deg(Ψ) ≤ (dD + 1)k.

Proof. Let f ∈ P be a non-zero polynomial. Since Φ is a
generator for f , Φ(f) 6= 0. Now, consider the Kronecker HSG
Γ = (zB

0
, zB

1
, . . . , zB

k−1
) for the polynomial Φ(f) ∈ F[t1, . . . , tk],

where we set B := dD + 1. Since deg(Φ(f)) < B, by Lemma 2.7,
Γ(Φ(f)) 6= 0. Thus, we get a univariate HSG Ψ := Γ ◦ Φ ∈ F[z]n

such that for a non-zero f ∈ P , Ψ(f) 6= 0. Observe that deg(Ψ) =
deg(Γ).deg(Φ) = Bk−1.D ≤ (dD + 1)k �

Blackbox PIT for the class of sparse polynomials is achieved by
the following lemma.

Lemma 2.9 (Sparse HSG; Klivans & Spielman 2001). Let f ∈
F[x1, . . . , xn] be a non-zero polynomial of individual degrees ≤ d
such that sparsity(f) ≤ m. Let p be a prime larger than max(d,mn+
1). Then, there is some k ∈ [mn + 1] such that the univariate
polynomial f ′(y) := f(y, yk

1 mod p, . . . , yk
n−1 mod p) is non-zero. This

yields a HSG Ψ ∈ F[t]n for the class of m-sparse polynomials such
that deg(Ψ) = poly(m,n, d).

20 Bisht & Saxena

Proof. We refer reader to Shpilka & Yehudayoff (2010, The-
orem 4.12) for the proof of f ′(y) := f(y, yk

1 mod p, . . . , yk
n−1 mod p)

being non-zero. Observe that this gives us a set G of HSGs for
the class P of m-sparse polynomials, G = {Φk}k∈[mn+1], where

Φk = (y, yk
1 mod p, . . . , yk

n−1 mod p). Using Lemma 2.6, we get a sin-
gle bivariate HSG Φ ∈ F[y, z]n such that Φ(f) 6= 0 for a non-zero
f ∈ P . By using Lemma 2.8, we also get a univariate HSG Ψ for
class P . Degree of Ψ(f) is at most poly(m,n, d). We get a deter-
ministic poly-time blackbox PIT for class P by evaluating Ψ(f) on
its degree+1 distinct points. �

Lemma 2.10 (Top Sparse). Let f ∈ F[x1, . . . , xn] be a polynomial
of degree d such that sparsity(f [d]) ≤ m, where f [d] denotes the
top degree-d homogeneous part of f . Then, there is a hitting set
generator Ψ ∈ F[t]n for f with deg(Ψ) = poly(m,n, d).

Proof. Note that if f is a non-zero polynomial of degree d,
then f [d] 6= 0. Moreover sparsity of f [d] is at most m. Thus by
Lemma 2.9, we have an HSG Φ ∈ F[y]n for f [d] with deg(Φ) =
poly(m,n, d) such that Φ(f [d]) 6= 0. Let z be a new variable. Ob-
serve that,

f [d](x) = coeff
(
f(zx1, zx2, . . . , zxn)

)
(zd).

Let HSG Φ = (g1(y), . . . , gn(y)). This gives us a bivariate HSG
Φ′ = (zg1(y), . . . , zgn(y)) for f . This is because,

f(zx1, . . . , zxn) = f [d](x)zd + f [d−1](x)zd−1 + . . .+ f [0]z0

f(zg1, . . . , zgn) = f [d](g1, . . . , gn)zd + . . .+ f [0]z0

f(zg1, . . . , zgn) = Φ(f [d])zd + . . .+ f [0]z0

Since Φ(f [d]) 6= 0, this implies Φ′(f) = f(zg1, . . . , zgn) 6= 0. Note
that deg(Φ′) = poly(m,n, d). Now, by Lemma 2.8 we get a uni-
variate HSG Ψ ∈ F[t]n for f such that Ψ(f) 6= 0 and deg(Ψ) =
poly(m,n, d). �

PIT for sum of ROABPs 21

Lemma 2.11 (Parallel Sum). Let A and B be polynomials com-
putable by ROABPs of width w1 and w2 respectively, in the same
variable order. Then A + B can be computed by an ROABP of
width w1 + w2 in this order.

Proof. We compute the sum by joining the two ROABPs in
parallel. Let s1, t1 be the source and sink vertices of ROABP A
respectively and s2, t2 be that of B. Create a new source vertex s
and a sink vertex t for A+B. Draw an edge from s→ s1 with unit
label and an edge s → s2 with unit label. Similarly, join t1 → t
and t2 → t with unit labels. Clearly, the new ROABP is of width
w1 + w2. �

Lemma 2.12 (∑∧∑ to ROABP; Forbes et al. 2014, Saxena 2008).
If we have poly-time blackbox PIT for log-variate (commutative)
ROABPs, then we have poly-time blackbox PIT for (standard mul-
tivariate) diagonal depth-3 circuits. Moreover, if we have poly-time
blackbox PIT for sum of log-variate, constant width (commutative)
ROABPs, then also we get the same conclusion.

Proof sketch. Forbes & Shpilka (2013a,b) exploited the fact
that diagonal depth-3 circuits have low dimension partial-derivative
space to show that non-zero polynomials computed by them have a
nonzero log-support monomial. That is, a degree d polynomial f =∑k

i=1 `
di
i has dimF{∂<∞(f)} = poly(k, n, d) = poly(s), where s is

the size of circuit, `i’s are linear polynomials and {∂<∞(f)} denotes
the space of all partial derivatives of f . Note that a simple mono-
mial like x1x2 . . . xn with support n has dimF{∂<∞(x1 . . . xn)} = 2n.
With few additional observations, they prove that a non-zero f
must compute a monomial with non-zero coefficient, that is sup-
ported on at most O(log s) variables.

Under the promise of such a log-support monomial, we can
apply variable-reduction map Φ of Shpilka & Volkovich (2009),
used in Forbes et al. (2014) or the map of Vaid (2015), to get from
n to O(log n) variables. Both these maps preserve non-zeroness of
f , i.e Φ(f) 6= 0.

The maps are such defined that after applying either of them,
we will get to ‘power of sums of univariates’ form which we can

22 Bisht & Saxena

convert to ‘sum of products of univariates’ form using the duality-
trick of Saxena (2008), i.e Φ(f) =

∑t
i=1

∏n′

j=1 fij(xj) where t =
poly(s, d) and number of variables of Φ(f) =: n′ = O(log s). Ob-

serve that each product-of-univariates
∏n′

j=1 fij(xj), has a width-1
ROABP in any variable order (commutative). Thus, by Lemma 2.11,
Φ(f) can be computed by an O(log s)-variate, width t = poly(s, d)
ROABP. Thus, solving PIT for log-variate ROABP will solve PIT
for Φ(f) and hence for f . Second part follows by observing that
Φ(f) is also a sum of t-many width-1, log-variate ROABPs. �

3. PIT for Degree-preserving sum of ROABPs

We prove Theorem 1.4 in this section before proving Theorem 1.1
in the next section. We will be develop few tools here that will be
needed later for the proof of Theorem 1.1.

3.1. Syntactically Homogeneous ROABP. We call an ROABP
syntactically homogeneous if for any two nodes (u, v) in the ROABP,
as source and sink respectively, the polynomial computed from
u v is homogeneous. Clearly, every syntactically homogeneous
ROABP is an ROABP computing a homogeneous polynomial, but
every ROABP computing a homogeneous polynomial is not syn-
tactically homogeneous. This is because some edge label in the
ROABP may be inhomogeneous or some intermediate path may
be computing an inhomogeneous polynomial, which cancels out in
the end.

Throughout this paper, we work with unknown variable order
of ROABP. If the ROABP computes a polynomial over F[x], we
assume an arbitrary variable order (y1, . . . , yn), where for all i ∈ [n],
yi = xπ(i) for some unknown permutation π : [n]→ [n].

Definition 3.1 (Syntactic homogeneity). Let f(x) ∈ F[x] be
computed by an ROABP D(x) of width r in the variable order
(y1, . . . , yn). Let D(x) =:

∏n
i=1Di(yi), where D1(y1) ∈ F1×r[y1],

Dn(yn) ∈ Fr×1[yn], and Di ∈ Fr×r[yi] for 1 < i < n.

We call ROABP D(x), syntactically homogeneous, if for all 1 ≤
i < n, each entry in the subproduct row-vector D≤i :=

∏i
j=1Dj

PIT for sum of ROABPs 23

∈ F1×r[y≤i], is a homogeneous polynomial and so is each entry in
the subproduct column-vector D>i :=

∏n
j=i+1Dj ∈ Fr×1[y>i].

Although in this work, we only need Definition 3.1, it can be
shown that it is equivalent to the informal definition of syntactic
homogeneity stated at the start of this section. To see this ob-
serve that, Definition 3.1 clearly follows from homogeneity of the
polynomials [u v] computed from u to v, for any two nodes
(u, v) in ROABP. For the other side, let V be the vertex set of the
layer which contains u. Then, note that [s v] =

∑
w:w∈V [s

w] · [w v]. By Definition 3.1, [s v] is homogeneous and so
is each [s w]. Also, the set of polynomials {[s w] | w ∈ V }
is F-linearly independent by Nisan’s characterization. Now, apply
Lemma 3.2 below to get each [w v] (in particular [u v]) to
be homogeneous.

We first prove the following lemma, which we will need in the
proof of Theorem 3.3.

Lemma 3.2. Let y and z be a partition of variable set x. Suppose
f ∈ F[x] is a homogeneous polynomial of degree d having a variable
disjoint decomposition as f =

∑r
i=1 figi, where for all i ∈ [r], fi ∈

F[y] and gi ∈ F[z]. Suppose f1, . . . , fr are F-linearly independent
and each fi is also a homogeneous polynomial. Then, for each
i ∈ [r], gi is also a homogeneous polynomial.

Proof. For the sake of contradiction, suppose there exists a
gk, for some k ∈ [r], which is not homogeneous. Let fk be its
corresponding polynomial which is homogeneous and has degree,
say dk. Since f is homogeneous of degree d, let gk = g

[d−dk]
k +

g
[6=(d−dk)]
k , where g

[d−dk]
k is the degree (d− dk) homogeneous part of

gk and g
[6=(d−dk)]
k is the rest of the polynomial. We will prove that

the latter part has to be zero.
Let za be any monomial in g

[6=(d−dk)]
k with coefficient, say ck 6= 0,

where degree of monomial |a|1 6= d−dk. The nonzero term fk ·ckza
in f has to get canceled since it is of degree dk + |a|1 6= d. Observe
that this term can get canceled only by product of za with those
fi that have degree dk (simply by variable disjointedness & degree
comparison). For ` ≤ r, let fi1 , fi2 , . . . , fi` be the polynomials in

24 Bisht & Saxena

{f1, . . . , fr} of degree exactly dk. Let coeff(gi)(z
a) =: ci, for i ∈ [r],

where ci can be possibly zero except for ck. Then,

fi1 · (ci1za) + fi2 · (ci2za) + . . .+ fi` · (ci`za) = 0

⇒ ci1fi1 + ci2fi2 + . . .+ ci`fi` = 0 .

Since ck 6= 0, this contradicts F-linear independence of f1, . . . , fr.
Thus, g

[6=(d−dk)]
k is zero. Hence, ∀k ∈ [r], gk is a homogeneous

polynomial of degree d− deg(fk). �

If a homogeneous polynomial f is computed by an ROABP of
width w, then the optimal width ROABP for f constructed using
Nisan’s characterization (Lemma 2.2) has width r ≤ w. In the fol-
lowing theorem, we prove that it is also syntactically homogeneous.

Theorem 3.3 (Structure Theorem). Let f(x) ∈ F[x] be a degree
d homogeneous polynomial computed by an ROABP C(x) of width
w in the variable order (y1, . . . , yn). Then, f also has a syntactically
homogeneous ROABP D(x) =

∏n
i=1Di(yi) of optimal width r ≤ w

in the same variable order. Moreover, ∀i ∈ [n], each entry in Di(yi)
is merely a monomial in yi.

Proof. If f is computed by a width w ROABP C(x), it will
also have an optimal ROABP D(x) of width r ≤ w constructed
using Nisan’s characterization. Here, we follow the construction as
presented in Gurjar et al. (2017b, Lem.2.8). For all i ∈ [n− 1], we
can write f as f = D≤i ·D>i =

∑r
j=1 gj(y≤i)hj(y>i). Fix i. Nisan’s

characterization picks the entries of D≤i to be r F-linearly indepen-
dent polynomials g1, . . . , gr ∈ F[y≤i] and entries of D>i to another
r F-linearly independent polynomials h1, . . . , hr. By construction,
for each j ∈ [r], hj =: f(y≤i,ej), where {e1, . . . , er} := spani(f).
Observe that if f is a homogeneous polynomial, then so is each
coefficient polynomial hj = f(y≤i,ej). Since f is a homogeneous
polynomial and hj’s are F-linearly independent homogeneous poly-
nomials, this forces each gj to be also homogeneous, as proved in
Lemma 3.2. Thus, for all i ∈ [n− 1], each entry in D≤i and D>i is
a homogeneous polynomial.

PIT for sum of ROABPs 25

We now prove the second part of the theorem, that every entry
in each intermediate matrix Di(yi) is a monomial in yi. For D1,
consider the partition D = D1 · D>1. By syntactic homogeneity
proved above, each entry of D1 is homogeneous and thus is of
the form y

bj
1 (single monomial), for some bj ≥ 0. Similarly, each

entry of Dn is also homogeneous, when considering the partition
D = D≤n−1 ·Dn. For 1 < i < n, consider D = D<i ·Di ·D>i.

(3.4) D =
[
f1 f2 · · · fr

]

g11 g12 · · · g1r

g21 g22 · · · g2r
...

...
. . .

...
gr1 gr2 · · · grr

h1

h2
...
hr

Let entries of D<i be f1, . . . , fr ∈ F[y<i]. By syntactic homogene-
ity of D<i, each fk for k ∈ [r], is homogeneous. Also, by Nisan’s
characterization f1, . . . , fr are F-linearly independent. Note that
each entry of D≤i is inner product of D<i with appropriate col-
umn of r × r matrix Di. Without loss of generality, let us con-
sider the inner product with the first column whose entries are
g11, g21, . . . , gr1 ∈ F[yi]. By syntactic homogeneity of D≤i, we know
that G := f1g11 + f2g21 + . . . + frgr1 is homogeneous. Then, by
Lemma 3.2 again, for each k ∈ [r], gk1 is also a homogeneous poly-
nomial in yi. Similarly, for every other column in Di. This shows
that each matrix entry gij is homogeneous (& univariate) and hence
it is a monomial. �

3.2. PIT for single ROABP. As a simple corollary of the
structure theorem, we get the following sparsity bound for a ho-
mogeneous polynomial computable by a width r ROABP.

Lemma 3.5 (Sparsity bound). If f(x) is an n-variate homoge-
neous polynomial, which can be computed by an ROABP of width-
r, then sparsity(f) ≤ rn.

Proof. Let D(x) be the width-r ROABP computing f over the
field F. By Theorem 3.3, without loss of generality, we can assume
D(x) to be syntactically homogeneous with width ≤ r. Thus, each
edge label in the ROABP D is a univariate monomial. In that case,

26 Bisht & Saxena

each path from source to sink computes only a single monomial.
The number of paths from source to sink is at most rn. Hence the
polynomial computes a sum of at most rn monomials. �

We extend the above methods to prove another important prop-
erty below: if a polynomial has ROABP width-r, then so does its
lead homogeneous part. For our paper, we only require proof for
the highest degree homogeneous component, which we state below
but the same proof works for the lowest degree homogeneous com-
ponent as well. Let width(f) denote the minimum width in which
f can be computed by an ROABP.

Lemma 3.6 (Homogeneous-part width). Let f(x) = f [d]+f [<d] be
a polynomial of degree-d, in F[x1, . . . , xn], where f [d] is the (lead)
degree-d homogeneous component of f , and f<[d] is the rest of the
polynomial f . Then, width(f [d]) ≤ width(f), in the same variable
order.

Proof. Let f [d] have an ROABP of width(f [d]) =: k in unknown
variable order (y1, . . . , yn). For any fixed ` ∈ [n], consider the par-
tition {y1, . . . , y`}t{y`+1, . . . , yn}. Without loss of generality, there
are k coefficient polynomials of f [d] – g1, . . . , gk ∈ F[y>`] – that are
F-linearly independent. For some e1, . . . , ek ∈ {0, 1, . . . , d}`, these
are precisely gi =: (f [d])(y≤`,ei), for each i ∈ [k]. We claim that the
k coefficient-operators e1, . . . , ek ∈ {0, 1, . . . , d}`, that worked for
f [d], will also work for f .

Formally, the set of polynomials {f(y≤`,e1), . . . , f(y≤`,ek)} will
also be F-linearly independent. For each i ∈ [k], let hi be the
polynomial (f [<d])(y≤`,ei). Then,

f(y≤`,ei) = (f [d])(y≤`,ei) + (f [<d])(y≤`,ei) =: gi + hi .

Here, ∀i ∈ [k], hi is of degree strictly less than that of gi. Ob-
serve that the coefficient-operators (f [d])(y≤`,ei) respect homogene-
ity. Therefore, ∀i ∈ [k], gi is a nonzero homogeneous polynomial
of degree di := d − |ei|1. Since g1, . . . , gk are F-linearly indepen-
dent, any F-linear combination c1g1 + c2g2 + . . .+ ckgk is nonzero,
whenever ci ∈ F are not all zero. Now, we prove our claim that
the polynomials g1 + h1, . . . , gk + hk are F-linearly independent.

PIT for sum of ROABPs 27

Suppose not, then there exist c1, . . . , ck ∈ F not all zero such
that

c1(g1 + h1) + . . .+ ck(gk + hk) = 0

c1g1 + . . .+ ckgk = −(c1h1 + . . .+ ckhk) .(3.7)

Let d′ := maxi{deg(gi) | ci 6= 0}. We show that the LHS in (3.7)
is a nonzero polynomial of degree exactly d′. This is because gi
are homogeneous. So, if degree of LHS is < d′, then all the gi of
degree d′ have to cancel among themselves. This cannot happen
since they are linearly independent. Thus, LHS is of degree d′

but RHS in (3.7) is a polynomial of degree < d′, since deg(hi) <
deg(gi) ≤ d′, for each i ∈ [k]. This contradicts (3.7), thus proving
{g1 + h1, . . . , gk + hk} to be F-linearly independent. We conclude
that width(f) ≥ k. �

Together with sparsity bound, this immediately gives us black-
box PIT for a log-variate constant-width ROABP (possibly inho-
mogeneous).

Lemma 3.8 (Single ROABP). Let P be a set of polynomials,
over a field F, computed by an ROABP of width-r and degree-d
in n variables and unknown variable order. Then, we can design
a hitting set generator Ψ ∈ F[t]n for P with deg(Ψ) = poly(d, rn).
Thus, we get a blackbox PIT algorithm for P in poly(d, rn) time.

Proof. Let f ∈ P be of a non-zero polynomial of degree exactly
d. Thus, f [d] – the lead homogeneous part of f , is also non-zero.
By Lemma 3.6, the ROABP width for f [d] is also upper bounded
by r. Now by Lemma 3.5, we get sparsity(f [d]) ≤ rn. Thus by
Lemma 2.10, we get a univariate HSG Ψ ∈ F[t]n for f such that
Ψ(f) 6= 0 and deg(Ψ) = poly(d, rn). Thus, Ψ(f) is a univariate
polynomial in t, also with degree at most poly(d, rn). Evaluating
Ψ(f) on degree(Ψ(f)) +1 many points yields a poly(d, rn) time
blackbox PIT. �

3.3. PIT for Degree-Preserving Sum. In a similar fashion
as above, we also get a blackbox PIT for a degree-preserving sum
of c ROABPs, giving us the proof of Theorem 1.4 below.

28 Bisht & Saxena

Proof (Theorem 1.4). Let f(x) be a degree d polynomial com-
puted by a degree-preserving sum, f(x) =

∑c
i=1 fi(x), where for

each i ∈ [c], fi(x) is computed by a width r ROABP. For each
i ∈ [c], let di := deg(fi). By Lemma 3.6, the top degree homo-

geneous part of each fi, f
[di]
i is also computed by a width ≤ r

ROABP. Then, by Lemma 3.5, each f
[di]
i has sparsity at most rn.

For a non-zero f of degree d, the (leading) degree-d part of f ,
f [d] 6= 0. Since the sum is degree-preserving, there exists a subset
of indices S ⊆ [c] such that for all j ∈ S, dj = d. This yields the
homogeneous sum:

f [d] =
∑
j∈S

f
[d]
j .

Since |S| ≤ c, f [d] is non-zero with sparsity at most crn. Thus, we
get a univariate HSG Ψ ∈ F [t]n for f with deg(Ψ) = poly(d, crn),
using Lemma 2.10. Thus, Ψ(f) is a univariate polynomial of degree
poly(d, crn), which implies a blackbox PIT for f in poly(d, crn)
time. �

In the remark after Theorem 1.4, we stated that a sum of
ROABPs, where each ROABP computes a homogeneous polyno-
mial, can be expressed as a degree-preserving sum. We give a proof
of this below.

Proof (Remark of Theorem 1.4). Let f(x) =
∑c

i=1 fi(x), where
for each i ∈ [c], fi(x) is a homogeneous polynomial, say of degree
di, computed by an ROABP of width r. Let degree of f be d. Let
us consider the subset of indices S ⊆ [c], defined as S = {j | j ∈
[c], dj ≤ d}. Since f is of degree d, observe that f =

∑
j∈S fj, since

homogeneous polynomials of degree > d must cancel out. Thus, f
is computed by a degree-preserving sum

∑
j∈S fj. �

4. PIT for Sum of ROABPs

We start by showing below that any hitting-set map for a prefix
of variables, also preserves the coefficient space dimension up to
all subsequent variables. This will be used critically in proof of
Claim 4.5 later.

PIT for sum of ROABPs 29

Lemma 4.1 (Dim. preservation). Let D(y) be a matrix-product
polynomial: D(y) = D1(y1) · · ·Dk−1(yk−1)·Dk(yk)·D′(y>k), where
D1 ∈ F1×r[y1], Di ∈ Fr×r[yi] for 2 ≤ i < k, Dk ∈ Fr×r′ [yk] with r ≤
r′ and D′ ∈ Fr′×1[y>k]. Let Ψ : F[y1, . . . , yn]→ F[t, yk, yk+1, . . . , yn]
be a hitting-set generator for any width r ROABP in the first k−1
variables (Ψ keeps variables yk, . . . , yn as it is). Then, Ψ preserves
the k-prefix coefficient space dimension of D, i.e.

dimF{D(y≤k,a) | a} = dimF{Ψ(D)((t,yk),a) | a} .

Proof. Consider the matrix product for D(y) at (k−1)th layer:
D = D<k · Dk · D′, where D<k :=

∏k−1
i=1 Di ∈ F1×r[y<k]. With-

out loss of generality, let the entries of D<k · Dk be the r′ F-
linearly independent polynomials given by Nisan’s characterization
(Lemma 2.2). Similarly entries of D′ are r′ linearly independent
polynomials given by coefficient-extraction of D:

D<k ·Dk =: [P1, P2, . . . , Pr′],

D′ =: [Q1, Q2, . . . , Qr′]
ᵀ.

View Ψ as mapping the first k variables to F[t, yk] (keeping the rest
n − k variables unchanged). For ci ∈ F (i ∈ [r′]) not all zero, we
have:

(4.2) c1P1 + c2P2 + . . .+ cr′Pr′ 6= 0 .

Note that the polynomial-vector D<k ·Dk has a width r′ ROABP
(with r′ output gates) which is derived from the partial ROABP of
D. In the same width, we could represent the polynomial c1P1 +
c2P2 + . . .+ cr′Pr′ =: P .

Since Ψ is an HSG (univariate in t) for any width-r (k − 1)-
variate ROABP, it is also an HSG (bivariate in t, yk) for any width
≤ r′ k-variate ROABP (having a width r ROABP in first k − 1
layers), since the kth variable is left unchanged. Since P is indeed
of width r′ (& k-variate), therefore Ψ preserves the non-zeroness
of (4.2), implying F-linear independence of Ψ(P1), . . . ,Ψ(Pr′) ∈
F[t, yk]. Moreover,

Ψ(D) = [Ψ(P1), . . . ,Ψ(Pr′)] · [Q1, Q2, . . . , Qr′]
ᵀ.

30 Bisht & Saxena

Hence, dimF{Ψ(D)((t,yk),a) | a} = dimF{D(y≤k,a) | a} = r′, since
if the dimension reduces on applying Ψ, we get a new non-trivial
dependency among {Ψ(Pi)}r

′
i=1, say c1Ψ(P1) + . . .+ cr′Ψ(Pr′) = 0.

But these coefficients will not form a dependency among {Pi}r
′
i=1,

i.e. c1P1 + . . . + cr′Pr′ 6= 0 and since Ψ preserves non-zeroness of
(4.2), it leads to a contradiction. �

4.1. Sum of two ROABPs. We start with the sum of two
ROABPs A + B. The blackbox PIT developed here would be ex-
tended to sum of c ROABPs in Section 4.2. Testing A+ B = 0 is
same as testing equivalence of A and B. Let A,B ∈ F[x] be poly-
nomials of individual degree d, computed by width-r ROABPs,
each of size s in n variables. Suppose A is computed in some un-
known variable order (y1, y2, . . . , yn), where for all i ∈ [n], yi = xπ(i)

for some unknown permutation π : [n] → [n]. We can assume
that variable order of B is different from A, since otherwise by
Lemma 2.11, A+B can be computed by a single ROABP of width
≤ 2r. In that case, since we will be applying a hitting set map for
a single ROABP of width O(r3) in Lemma 4.11, we are already
done. The main idea in Gurjar et al. (2017b) is to construct an
ROABP for B in the variable order of A, by using the characteriz-
ing dependencies of A (Definition 2.1). Note that the width of an
ROABP can blow up exponentially when expressed in a different
variable order (see Forbes 2015). We can assume that B does not
have ROABP of width r in the variable order of A since otherwise,
we will again get a single ROABP of width 2r computing A + B
in which case, we are done.

Thus we are in the setting: A 6= −B, and B does not have a
width r ROABP in the order (y1, y2, . . . , yn). By Lemma 2.2, there
will be a minimum index k ∈ [n] such that

dimF{A(y≤k,a) | a ∈ {0, 1, . . . , d}k} ≤ r, and

dimF{B(y≤k,a) | a ∈ {0, 1, . . . , d}k} > r

In simple terms, k is the first layer in the variable order of A,
where B does not have an ROABP of width ≤ r. Let us consider
the dependency equations at this kth layer for both A and B. Ob-
serve that there exists an exponent b ∈ dependk(A) such that A

PIT for sum of ROABPs 31

will satisfy its dependency equation while B will violate its depen-
dency equation for this exponent. This is because, if B satisfies
dependency equations for all b ∈ dependk(A), then B also has a
width ≤ r ROABP till layer k, by Lemma 2.2. This contradicts
our choice of k. Thus, we have some b ∈ dependk(A) such that

A(u,b) =:
∑

a∈ spank(A)

αb,a · A(u,a)(4.3)

B(u,b) 6=
∑

a∈ spank(A)

αb,a ·B(u,a)(4.4)

where u := y≤k = (y1, y2, . . . , yk), and αb,a ∈ F are the depen-
dency coefficients defined by (4.3). Note that B may violate the
dependency equations of A before layer k, while having a width
≤ r representation. Unlike Gurjar et al. (2017b), in our proof, we
are ignoring such a layer and care only about the layer, where we
witness blow-up of width in ROABP of B. Such a layer will exist
under our assumption that B does not have a width ≤ r ROABP
in the variable order of A.

In the whitebox setting, one can essentially search for this
violation/non-zeroness certificate and verify the satisfiability of de-
pendency equations in poly-time. But in the blackbox setting, the
unknown variable order creates a hurdle in searching for this cer-
tificate. Guessing the variable order by brute force takes n! ≈ nn

time. We will show later that for the purpose of PIT, we can get
around this obstacle in 2n time. We are okay with this overhead
in the log-variate setting.

For a polynomial f ∈ F[y], let us use a short-hand f(y
a1
1 y

a2
2) ∈

F[y3, . . . , yn] to denote the coefficient polynomial of monomial ya11 y
a2
2

in f , which is same as f((y1,y2),(a1,a2)) in the earlier notation. Let
Φ1 ∈ F[t1]k−1 be an HSG for (k − 1)-variate ROABPs of width
r. We extend Φ1 to n variables by keeping the rest of the vari-
ables as it is, which makes Φ1 ∈ F[t1, yk, . . . , yn]n. We now show in
Claim 4.5 below that B continues to violate the dependency equa-
tion (4.4) of A at the yk-layer, under the image of map Φ1. We get
(4.6) and (4.7) below, analogous to (4.3) and (4.4), respectively.

Claim 4.5 (Prefix map). Let Φ1 : F[y1, . . . , yn] → F[t1, yk, yk+1,
. . . , yn] be a hitting set generator for any ROABP of width ≤ r

32 Bisht & Saxena

on first k − 1 variables (Φ1 leaves variables yk, . . . , yn unchanged).
Let degt1(Φ1(A)) and degt1(Φ1(B)) be at most d′, let E denote the
set {0, 1, . . . , d′}. Let span2(Φ1(A)) be a basis of size ≤ r such
that there exists a set of constants {γb,a}, with F-dependencies for
every two-tuple b ∈ E2, defined as

(4.6) Φ1(A)
(t

b1
1 y

b2
k)

=:
∑

a∈ span2(Φ1(A))

γb,a · Φ1(A)(t
a1
1 y

a2
k) .

Then, there exists b ∈ E2 with a dependency violation in Φ1(B),
that is,

(4.7) Φ1(B)
(t

b1
1 y

b2
k)
6=

∑
a∈ span2(Φ1(A))

γb,a · Φ1(B)(t
a1
1 y

a2
k) .

Proof. For the sake of contradiction, suppose Φ1(B) follows the
dependency equations of Φ1(A) in the yk layer. This means ∀b,
LHS equals RHS in (4.7). Since |span2(Φ1(A))| ≤ r, this means
Φ1(B) has a width r ROABP in the first two layers (t1 and yk).
In other words, coefficient space dimension for first two layers of
Φ1(B) is ≤ r. Observe that then by Lemma 4.1, Φ1 preserves the
coefficient space dimension of the first k layers of B too. Thus,

dimF{B(y≤k,a) | a ∈ Ek} = dimF{Φ1(B)((t1,yk),a) | a ∈ E2} ≤ r.

This contradicts our choice of k being the first variable up to
which B does not have a width r representation, which meant
dimF{B(y≤k,a) | a ∈ Ek} > r (as in Lemma 2.2). �

In the following claim, we pick an HSG Φ2 for y>k variables
such that the image of Φ1(B) under Φ2 continues to violate a de-
pendency equation of the image of Φ1(A) under Φ2.

Claim 4.8 (Suffix map). Assume the setup of Claim 4.5. Let Φ2:
F[t1, yk, yk+1, . . . , yn] → F[t1, yk, t2] be a hitting set generator for
any ROABP of width ≤ r2(r+1) on last n−k variables (Φ2 leaves
variables t1, yk unchanged). Then, there exists b ∈ E2 such that:

Φ2 ◦ Φ1(A)
(t

b1
1 y

b2
k)

=
∑

a∈ span2(Φ1(A))

γb,a · Φ2 ◦ Φ1(A)(t
a1
1 y

a2
k)(4.9)

PIT for sum of ROABPs 33

Φ2 ◦ Φ1(B)
(t

b1
1 y

b2
k)
6=

∑
a∈ span2(Φ1(A))

γb,a · Φ2 ◦ Φ1(B)(t
a1
1 y

a2
k) .

(4.10)

Proof. (4.9) in this claim directly follows by applying map Φ2

on (4.6) and it is true ∀b ∈ E2. Now we shall prove that in (4.7)
the difference polynomial g defined as,

g := Φ1(B)
(t

b1
1 y

b2
k)
−

∑
a∈ span2(Φ1(A))

γb,a · Φ1(B)(t
a1
1 y

a2
k) 6= 0

can be computed using a single ROABP of width at most r2(r+1).
Let σ represent the original variable order ofB: (xσ(1), . . . , xσ(n)).

By assumption, B had a width r representation for the first (k−1)
layers in the variable order of A (y1, . . . , yn), implying

B = [P1, P2, . . . , Pr] · [Q1, Q2, . . . , Qr]
ᵀ,

where ∀i ∈ [r], Pi ∈ F[y<k] and Qi ∈ F[y≥k]. Recall that, by
construction (Lemma 2.2), Qi’s are certain coefficient polynomials
of B, Qi = B(y<k,ai) where {a1, . . . , ar} = spank−1(A). Now, by
Lemma 2.3, each Qi has a width r ROABP in the variable order
inherited from B, that is, σ (y≥k). Clearly, for each a ∈ E,

Φ1(B)(t1,a) =
r∑
i=1

coeff(Φ1(Pi))(t
a
1) ·Qi,

implying Φ1(B)(t1,a) ∈ spanF{Q1, . . . , Qr}. For each a ∈ E, let
Φ1(B)(t1,a) =: Q′a, where Q′a is the suitable F-linear combination
of Q1, . . . , Qr. Observe that by Lemma 2.11, any F-linear combi-
nation

∑r
i=1 ciQi, where each ci ∈ F, can be computed by a single

ROABP of width r2 by placing ROABP of each Qi in parallel.
Thus, for each a ∈ E, Q′a also has an ROABP of width r2.

Moving one variable forward, again by applying Lemma 2.3 on
each Q′a, we know that for each b ∈ E, Q′a(yk,b)

:= (Q′a)(yk,b) also

has an ROABP of width r2 in the variable order σ (y>k). We can
rewrite our polynomial g as

g = Q′b1(yk,b2) −
∑

a∈ span2(Φ1(A))

γb,a ·Q′a1(yk,a2).

34 Bisht & Saxena

The number of summands in g is |span2(Φ1(A))| + 1 ≤ r + 1,
and each summand in g has a width r2 ROABP. Hence, again by
Lemma 2.11, g can be computed by a single ROABP of width
≤ r2(r + 1) by placing each of the width r2 ROABPs in parallel.

Finally, since Φ2 is an HSG for any (n− k)-variate ROABP of
width ≤ r2(r + 1), it will preserve the non-zeroness of g, giving us
the inequality in (4.10). �

Suppose we are given a correct guess of the variable order of A,
say (y1, y2, . . . , yn). Then, using Claim 4.5 and Claim 4.8, we show
that Φ is an HSG for A+B, because the dependency violation by
B is preserved under the image of Φ. Moreover, Φ(A + B) is a
trivariate polynomial which is easy to test for non-zeroness.

Now we handle the case where variable order of A is unknown.
Instead of going through all n! permutations, we only go over all
k-sized subsets of [n]. This is because we are applying an HSG
Φ1 of a single ROABP (of unknown variable order) on the prefix
variables and hence the order within the prefix-subset does not
matter. For each choice of subset, we go over additional n choices
by trying each variable as yk. This process will lead to constructing
a set G of HSGs such that for an input polynomial A+B 6= 0, there
is an HSG Φ ∈ G such that Φ(A + B) 6= 0. Moreover, our set G
has size ≤ n.2n which is poly(r, d) in the log-variate setting. Then,
using Lemma 2.6 we can combine all the generators into a single
generator. We formalize this construction in the lemma below.

Lemma 4.11 (Sum of two). Let A(x) and B(x) be two poly-
nomials of individual degree d, each computed by an ROABP of
width r. Let Γ ∈ F[t]n be a hitting set generator for the class
of width r, n-variate, d-degree ROABPs with degree of HSG Γ,
deg(Γ) =: T (r, n, d). Then, one can design a hitting set generator

Ψ ∈ F[z]n for the sum A + B in
(
n2n · T (2r3, n, d)

)O(1)
time such

that deg(Ψ) =
(
n2n · T (2r3, n, d)

)O(1)
.

Proof. We start with a non-zero input polynomial A+B. Sup-
pose we know the correct variable order of A: (y1, . . . , yn) and the
correct layer where B violates dependency equation of A, say the
yk layer. Invoke HSG Γ with appropriate parameters to get HSG

PIT for sum of ROABPs 35

Φ1 ∈ F[t1]k−1 for (k − 1)-variate, width ≤ r ROABPs and HSG
Φ2 ∈ F[t2]n−k for (n−k)-variate, width≤ r2(r+1) ROABPs as used
in Claim 4.5 and Claim 4.8 respectively. Let Φ := (Φ1, yk,Φ2) ∈
F[t1, yk, t2]n be the concatenation of the two HSGs. We now show
that if we guessed the correct order and layer, then Φ is an HSG
for A+B, that is, Φ(A+B) 6= 0. Claim 4.5 and Claim 4.8 together
prove that Φ(B) violates a dependency equation of Φ(A) in the yk
layer. In other words Φ(A) is an ROABP of width r, in the variable
order (t1, yk, t2), while (4.10) points out that Φ(B) does not have
width r ROABP in the same variable order. Thus, Φ(A+B) 6= 0.

Let us now work with unknown variable order. For Claim 4.5
to hold, we only need to ‘guess’ the prefix set {y1, . . . , yk} and the
variable yk. For each k ∈ [n], we go over all k-sized subsets of [n],
and try k choices of yk for each subset. The number of possibilities
is at most

∑n
k=1 k

(
n
k

)
=
∑n

k=1 n
(
n−1
k−1

)
≤ n2n−1. We try Φ for

each guess. For the Φ corresponding to correct guess of prefix and
variable yk, the above argument guarantees that Φ is an HSG for
A+B. Thus, we get a collection G of candidate HSGs, one for each
guess, with |G| ≤ n2n such that one of them is guaranteed to work.
Using Lemma 2.6, we get a single generator Ψ′ ∈ F[t1, yk, t2, s]

n,
which we can redefine to a univariate generator Ψ ∈ F[z]n for A+B
using Lemma 2.8.

We now calculate the degree of HSG Ψ in terms of degree of the
HSG Γ for a single ROABP. Observe that deg(Φ1) = T (r, k− 1, d)
and deg(Φ1) = T (r2(r + 1), n− k, d). Thus,

deg(Φ) = max{deg(Φ1), deg(Φ2)} ≤ T (2r3, n, d).

Now, degree for the single generator Ψ′ using Lemma 2.6 is

deg(Ψ′) = max{deg(Φ), deg(s)} = max{T (2r3, n, d), n2n}.

Thus, by Lemma 2.8, degree of the univariate generator Ψ is

deg(Ψ) ≤
(
n2n · T (2r3, n, d)

)O(1)
.

The time complexity for designing Ψ is also similarly bounded. �

Using the efficient HSG designed for a single constant-width,
log-variate ROABP in Lemma 3.8, we get an efficient HSG for sum
of two such ROABPs below.

36 Bisht & Saxena

Corollary 4.12. Let P be a set of n-variate polynomials over a
field F, computed by a sum of two ROABPs, each of width r and
degree d in unknown variable order. Then, blackbox PIT for P
can be solved in poly(d, rn) time.

Proof. We have HSG Φ for single ROABP of width r with
deg(Φ) = poly(d, rn) using Lemma 3.8. Now, by Lemma 4.11,
we have HSG Ψ ∈ F[z]n for P with deg(Ψ) = poly(d, 2n, r3n) =
poly(d, rn). Thus, deg(Ψ(f)) for some f ∈ P is also poly(d, rn).
By evaluating Ψ(f) on deg+1 points, we can check non-zeroness
of Ψ(f). This gives blackbox PIT for f . �

4.2. Sum of c ROABPs. Let the input be sum of c polynomi-
als A1(x), A2(x), . . . , Ac(x), each of individual degree d, computed
by ROABPs of width r. Again, we will assume the variable orders
for each ROABP to be different, lest we reduce to a smaller sum in-
stance. The simple recursive strategy used in Gurjar et al. (2017b)
is to reduce it to an instance of sum of two ROABPs. Let A := A1

and B := A2 + . . . + Ac. Suppose A has r-width ROABP in some
unknown variable order (y1, y2, . . . , yn). Thus, we get dependency
equations for A, as in (4.3). If the input sum is non-zero, then B
will not follow some dependency of A.

Note that unlike the sum of two ROABPs case, B is not com-
puted by a single ROABP of width r. This is not a cause of worry,
as we shall see now. Define Q := B(u,b) −

∑
a∈ spank(A) γb,a ·B(u,a),

where u := (y1, . . . , yk). Since B = A2 + . . .+ Ac, we get

(4.13) Q =
c∑
i=2

(
Ai(u,b) −

∑
a∈ spank(A)

γb,a · Ai(u,a)

)
.

Now each Ai(u,a) and Ai(u,b) have ROABPs of width r individually,
by Lemma 2.3. Thus, for each of the c− 1 summands in (4.13), we
have an ROABP of width r(r + 1), by Lemma 2.11. We apply Φ1

on first k − 1 variables and get analogous dependency equations

PIT for sum of ROABPs 37

for Φ1(A), Φ1(B) (and Φ1(Q) 6= 0) as in Claim 4.5.

Φ1(Q)
(t

b1
1 y

b2
k)

=
c∑
i=2

(
Φ1(Ai)(t

b1
1 y

b2
k)
−∑

a∈ span2(Φ1(A))

γb,a · Φ1(Ai)(t
a1
1 y

a2
k)

)
.

(4.14)

In (4.14), each of the c − 1 summands has an ROABP of width
r2(r+1) ≤ 2r3 (See proof of Claim 4.8). This effectively reduces the
problem, of designing Φ2, to an instance of blackbox PIT for sum
of c− 1 ROABPs of width O(r3), which can be solved recursively.
We formalize this process in the following lemma.

Lemma 4.15 (Sum of c). Let A1(x), A2(x), . . . , Ac(x) be c poly-
nomials of individual degree d, each computed by an ROABP of
width r. Let Γ ∈ F[t]n be a hitting set generator for the class
of width r, n-variate, d-degree ROABPs with degree of HSG Γ,
deg(Γ) =: T (r, n, d). Then, one can design a hitting set generator

Ψ ∈ F[z]n for the sum
∑c

i=1Ai(x) in
(
2n · T (2cr3c , n, d)

)O(c)
time,

with deg(Ψ) =
(
2n · T (2cr3c , n, d)

)O(c)
.

Proof. We prove by induction on c. Base case for c = 2 has
been proved earlier in Lemma 4.11. Suppose A = A1 has the
unknown variable order (y1, . . . , yn) where yi = xπ(i) for each i ∈
[n]. Let yk be the first layer where B = A2 + . . .+Ac deviates from
A. Suppose we have correctly guessed the variable order and the
variable yk. Then, we employ HSG Φ1 ∈ F[t1]k−1 for first k − 1
variables as used in Claim 4.5 and we get (4.6) for A while we get
(4.14) for B =

∑c
i=2Ai. Since B violates dependency equation of

A, (4.14) is non-zero polynomial, which can be computed as a sum
of c−1 ROABPs of width ≤ 2r3. By induction hypothesis, we can
design a (univariate) HSG Φ2 ∈ F[t2]n−k for Φ1(Q)

(t
b1
1 y

b2
k)

, which

acts on the remaining (n−k) variables, and preserves non-zeroness
of the polynomial. Thus, altogether Φ := Φ2 ◦ Φ1 ∈ F[t1, yk, t2]n

will preserve non-zeroness of A + B, since Φ(A) will satisfy all
its dependency equations but Φ(B) would continue to violate one.
This implies Φ(A+B) 6= 0 for A+B 6= 0.

38 Bisht & Saxena

Now, suppose the variable order is unknown. Then, observe
that we only need to guess the prefix subset of variables and the
correct variable yk in it. We simply brute-force search for them. In
other words, for each k-sized subset of [n] and for each variable as
yk, we apply Φ. Thus, we get a set of candidate generators G of size
|G| ≤ n2n such that for any non-zero A+B, there is some generator
Φ ∈ G for which Φ(A+B) 6= 0. Using Lemma 2.6, we can combine
the generators into a single generator Ψ′ ∈ F[t1, yk, t2, s]

n. Using
Lemma 2.8, we get a univariate generator Ψ ∈ F[z]n for

∑c
i=1 Ai.

Now, we calculate deg(Ψ). Observe that

deg(Φ1) = T (r, k − 1, d) ≤ T (r, n, d)

deg(Φ2) =
(
2n−k · T (2c−1r3c , n− k, d)

)O(c−1)

≤
(
2n · T (2cr3c , n, d)

)O(c−1)

deg(Φ) ≤
(
2n · T (2cr3c , n, d)

)O(c−1)

deg(Ψ′) ≤
(
2n · T (2cr3c , n, d)

)O(c−1)

deg(Ψ) ≤ (d · n2n)O(1) ·
(
2n · T (2cr3c , n, d)

)O(c−1)

≤
(
2n · T (2cr3c , n, d)

)O(c)

The first step follows since Φ1 is HSG for single ROABP. Degree
of Φ2 is given by induction hypothesis. Degree of Φ is simply the
maximum between deg(Φ1) and deg(Φ2). Degree of Ψ′ is calculated
using Lemma 2.6. Finally, by Lemma 2.8, we get degree of Ψ.

Let S(c, r, n, d) denote the time complexity of constructing Ψ.
Similar to the argument above, we get the following recursive for-
mula for designing Ψ, where S(1, r, n, d) = T (r, n, d)O(1)

S(c, r, n, d) ≤ n2n · T (r, n, d) · S(c− 1, 2r3, n, d) .

As a solution, we get S(c, r, n, d) ≤
(
2n · T (2cr3c , n, d)

)O(c)
. �

Now we complete the proof of our reduction from PIT of sum to
PIT of single ROABP.

Proof (Theorem 1.1). The proof simply follows from Lemma 4.15
because of equivalence between hitting set generator and blackbox

PIT for sum of ROABPs 39

PIT. That is, if we have an HSG of degree T (r, n, d) which can also
be constructed in the same time, then we have a poly(T (r, n, d))
time blackbox PIT and vice versa. See Section 2.4 and Shpilka &
Yehudayoff (2010, Lemma 4.1) for exact equivalence between HSG
and blackbox PIT. �

Finally after having developed all the machinery, we complete
the proofs of Corollary 1.2 and Corollary 1.3.

Proof (Corollary 1.2). Let f ∈ F[x] be an n-variate polynomial
computed by sum of c ROABPs, each of width r and degree d.
Using Lemma 3.8, we have a blackbox PIT for a single ROABP of
width r in poly(d, rn) time. Now, in Theorem 1.1, set T (r, n, d) :=

poly(d, rn) to get T ′(r, n, d, c) =
(
2n · d · rn3c

)O(c)
= poly(dc, rnc3

c
).

This gives us blackbox PIT algorithm for f with the required time
complexity. �

Proof (Corollary 1.3). Using result of Agrawal et al. (2015), we
have a (ndr)O(logn) time blackbox PIT for a single ROABP of width
r and degree d in n variables. Therefore, we can set T (r, n, d) :=
(ndr)O(logn) in Theorem 1.1 to get a poly(2cn ·nc logn, dc logn, r3c logn)
time blackbox PIT for border of sum of c ROABPs. �

5. PIT for Border

In this section, we cover the proof of Theorem 1.5. Before that, we
discuss few other things related to PIT for border classes.

For a class C, where the border class C is same as C, the
PIT algorithm will be same for both C and C. For example, the
class of sparse polynomials and also the class of single ROABPs
(Lemma 5.2). However, for classes where C 6= C, blackbox PIT al-
gorithms that work for C may not work for the border class C. The
only thing we can say for such classes, in general, is that PIT for
C is in PSPACE, as PIT for VP is in PSPACE (Forbes & Shpilka
2018; Guo et al. 2019b). PIT algorithms, which rely on a rank
based measure, usually work for the border class also, since the
rank based measure also works for the border class. An example
of this are the PIT algorithms for the class C of diagonal depth-3

40 Bisht & Saxena

circuits, even though for this class it is unknown whether C is same
as C.

Lemma 5.1 (Border ∑∧∑; Forbes 2016). The blackbox PIT al-
gorithms in Forbes & Shpilka (2013a), Forbes et al. (2014) and
Forbes et al. (2018) for the class of diagonal depth-3 circuits also
solve blackbox PIT for its border class in their same respective
times.

Proof Sketch. We discussed in the first part of the proof of
Lemma 2.12 that for a polynomial f computed by size-s

∑∧∑
circuit, dim{∂<∞(f)} = poly(s) which helps in proving that f has
a non-zero monomial of O(log s) support. All of the works - Forbes
& Shpilka (2013a), Forbes et al. (2014) and Forbes et al. (2018)
build on this property to give efficient PIT algorithms for f .

Actually, one can also show that a polynomial g computed
in the border of size-s

∑∧∑
circuit also has dim{∂<∞(g)} =

poly(s) as discussed in Forbes (2016). Its proof is very similar to
the proof of Lemma 5.2 below. This then proves that g also has
a non-zero monomial of O(log s) support. Thus, the above men-
tioned PIT algorithms also work for g. �

5.1. Border of ROABP. It turns out that for a single ROABP,
border does not add any power, i.e. ROABP = ROABP.

Lemma 5.2 (Forbes 2016). A polynomial f ∈ F[x] in the border
class of width w ROABPs can also be computed by an ROABP of
width at most w.

Proof. Let g = f + εh, where g has an ROABP of width w
over F(ε). We need to show that the limit polynomial f also has
ROABP-width ≤ w over F. Let the unknown variable order of g
be (y1, . . . , yn). By applying Nisan’s characterization (Nisan 1991)
on g, we know that for all k ∈ [n], the matrix defined in Nisan
(1991) for each layer, Mk has rank at most w over F(ε). This means
determinant of any (w+1)×(w+1) minor of Mk is identically zero.
Observe that entries of Mk are coefficients of monomials of g which
are in F[ε][x]. Thus, determinant polynomial will remain zero even
under the limit, ε → 0. Hence, for f = limε→0 g, each matrix Mk

PIT for sum of ROABPs 41

also has rank at most w over F. Thus by Nisan’s characterization,
f also has an ROABP of width at most w. This matrix is now
commonly called as partial derivative matrix. The notion of rank
of partial derivative matrix is equivalent to the notion of dimension
of the space spanned by the coefficient polynomials as defined in
Lemma 2.2 and used in this work. We refer the reader to chapter
on The Partial Derivative Matrix in Saptharishi (2016) for details
on this matrix and its connection with coefficient polynomials. �

Let f be a degree d polynomial computed by an ROABP of
width w and let f [d] be its leading homogeneous degree-d part.
Lemma 3.6 states that f [d] can also be computed an ROABP of
width w. This fact also has a nice alternate proof via border com-
plexity as follows. It is not difficult to show that for a polynomial
f of degree-d in class C, f [d] can be computed in the border class
C. Since for ROABPs the border is the same, f [d] can also be
computed by an ROABP of width ≤ w.

5.2. Border of Sum of ROABPs. Although a single ROABP
is closed under border, it is not clear if sum of constantly many
ROABPs is equal to its border class. Let A and B be two ROABPs
of width w in different variable orders. Let f be a polynomial
computed in the border class of sum of two ROABPs. Then we
can write g = f + εh, where g is computed by A+B over F(ε).

One might question whether f can be expressed as f1+f2, where
f1 is computed in the border of A and f2 in the border of B. If this
were true, then f could also be computed by sum of two ROABPs
since both f1 and f2 individually would be computable by ROABPs
of width w as stated in Lemma 5.2. But this line of thought is
false for the following reason. Note that the polynomial g which
approximates f is computed by sum of two ROABPs A + B over
F(ε). In the edge weights of A, there maybe coefficients involving
ε in denominator which get canceled only in the sum but stay
individually, and therefore f is not directly expressible as f1 + f2,
where both f1and f2 are individually computable in the border
class of single ROABP.

Moreover, g = A+B over F(ε) may not have a single ROABP
of same width over F(ε), since width can blow up exponentially,

42 Bisht & Saxena

as stated in Fact 1.6. Thus, border of sum of ROABPs cannot be
directly expressed as border of a single ROABP of similar width.
Hence, in all likelihood, the border class of sum of c ROABPs is
more powerful than the class of sum of c ROABPs. This makes
it an interesting candidate for the PIT question. In Theorem 1.5,
we solve it along the same lines as Theorem 1.1 by showing an
efficient reduction from PIT of border of sum to PIT of border of a
single ROABP (in log-variate regime). We are able to achieve this
because the proof technique of Theorem 1.1 is compatible with
border, essentially because at the core they rely on rank based
measure of Nisan’s width characterization.

Proof (Theorem 1.5). Let f(x) be a polynomial in the border of
A1 +A2 + . . .+Ac. That is, g(x, ε) = f(x)+ε ·h(x, ε), where g(x, ε)
is computed by A1 + . . .+Ac over F(ε) and limε→0 g = f . Our aim
is to design an HSG Ψ for f(x) such that f 6= 0⇒ Ψ(f) 6= 0.

Let us first work over the function field F(ε). We follow a
similar inductive strategy as Lemma 4.15 for g. Let A = A1 and
B := A2 + . . . + Ac. Assume A has width r ROABP while f may
not. Write f in the variable order of A. If f has an ROABP of
width r in the variable order of A, then the HSG from Lemma 3.8
will work in the promised time, since border is closed for a single
ROABP.

By Lemma 2.2, if f cannot be written as ROABP of width r
in variable order of A, then there is a layer k, where f has width
greater than r and hence f does not follow the dependency equa-
tions of A in that layer1. Thus, there exists k ∈ [n], prefix u;
S ⊂ {0, 1, . . . , d}k; and constants {αa ∈ F[ε] | a ∈ S} such that

0 =
∑
a∈S

αa · A(u,a)(5.3)

0 6=
∑
a∈S

αa · f(u,a) .(5.4)

The equality (5.3) above is derived from (4.3) by collecting all the
terms on one side and considering size of S to be at most r + 1.

1If no such layer exists, then f is in the border of a single ROABP of width
r and we are done by Lemma 5.2

PIT for sum of ROABPs 43

Similarly, (5.4) is derived by considering dependency equations for
f at layer k. Observe that here, unlike Lemma 4.15, we are not
working with B directly as in (4.4). This is because the inequal-
ity for B in (4.4) may become an equality in the limit ε → 0.
Therefore, we work indirectly via f in (5.4) because we are assum-
ing input polynomial f = limε→0 g to be non-zero and use that to
derive a nontrivial relationship as shown below.

Recalling A+B = g = f + ε · h, we use (5.3) to deduce:∑
a∈S

αa ·B(u,a) =
∑
a∈S

αa · f(u,a) + ε · h′

for the h′ ∈ F[ε,x] that depends on h. Without loss of generality,
we can assume that ε does not divide αa for some a ∈ S, because
if it does divide all αa, then we can divide the above equation by
ε to get a new equation of the same form. Moreover, {f(u,a) | a ∈
S} are linearly independent polynomials over F (equivalently over
F(ε)) and |S| ≤ r + 1 in the above equation.

Using α ≡ α(0) mod ε, we write down a nontrivial relationship

(5.5)
∑
a∈S

αa ·B(u,a) =
∑
a∈S

αa(0) · f(u,a) + ε · h′′ .

It is nontrivial because its RHS does not vanish on setting ε = 0
and it remains well-defined, while LHS is a sum of (c−1) ROABPs
over F(ε), each of width r(r+ 1). If our input f = limε→0 g is non-
zero, then LHS above must also be non-zero in the limit ε→ 0, by
considering (5.5) in conjunction with (5.4). Thus, we reduce to the
problem of designing HSG for border of sum of c− 1 ROABPs.

Following the proof in Section 4, this reduces PIT of f to PIT
of border of sum of c − 1 ROABPs each of width O(r3) (via the
prefix and suffix maps). This can be solved recursively, till we reach
border of a single ROABP of appropriate width. Since border of
single ROABP is same as ROABP by Lemma 5.2, we can call HSG
of Lemma 3.8 with appropriate parameters. The exact and formal
details of unfolding the recursion are same as that in the proof of
Lemma 4.15. �

44 Bisht & Saxena

6. Future Directions

In the context of this work and previous related works, a variety
of open problems arise:

◦ Design a poly(s)-time blackbox PIT algorithm for (log s)-
variate, size-s ROABP. This will also solve standard multi-
variate diagonal depth-3 model (Forbes et al. 2014). Without
loss of generality, ROABP can also be assumed to be syntac-
tically homogeneous (Theorem 3.3 and Lemma 3.6).

◦ In Theorem 1.4, can we remove the restriction of degree-
preserving sum? If so, then that would solve diagonal depth-3
model (Lemma 2.12). Design a poly(rn, c, d)-time blackbox
PIT for sum of c ROABPs, each of width r computing an
n-variate polynomial of degree d.

◦ Design a poly(n, d)-time blackbox PIT algorithm for an n-
variate, d-degree polynomial computed by ROABP of con-
stant width in unknown variable order, which works for all
fields. This problem is open, since Gurjar et al. (2017a) al-
gorithm only works for known variable order and for fields
with zero or large characteristic.

◦ Bring down 2n dependence in Theorem 1.1 to poly(n). Cur-
rently, the dependence on c is doubly exponential, both in
this reduction and also in Gurjar et al. (2017b). One would
also like to bring it down to poly(c) or even just to single
exponential like (ndr)O(c).

Acknowledgements

We thank Subhayan Saha, Sumanta Ghosh and Zeyu Guo for var-
ious discussions related to the algebraic models studied here. We
thank the anonymous reviewers for the suggestions to improve the
writing. We especially thank the anonymous reviewer who gave an
alternate proof of one of the lemmas here using border complex-
ity, which inspired us to think about the border PIT algorithms.
N.S. thanks the funding support from DST (DST/SJF/MSA-01/2013-
14) and N. Rama Rao Chair.

PIT for sum of ROABPs 45

References

Manindra Agrawal (2005). Proving Lower Bounds Via Pseudo-
random Generators. In FSTTCS, volume 3821 of Lecture Notes in
Computer Science, 92–105.

Manindra Agrawal, Sumanta Ghosh & Nitin Saxena (2019).
Bootstrapping variables in algebraic circuits. Proceedings of the Na-
tional Academy of Sciences 116(17), 8107–8118. (A preliminary version
appeared in STOC, 2018).

Manindra Agrawal, Rohit Gurjar, Arpita Korwar & Nitin
Saxena (2015). Hitting-Sets for ROABP and Sum of Set-Multilinear
Circuits. SIAM Journal on Computing 44(3), 669–697.

Manindra Agrawal, Neeraj Kayal & Nitin Saxena (2004).
PRIMES is in P. Annals of mathematics 781–793.

Manindra Agrawal, Chandan Saha & Nitin Saxena (2013).
Quasi-polynomial hitting-set for set-depth-∆ formulas. In Symposium
on Theory of Computing Conference, STOC, Palo Alto, CA, USA, June
1-4, 321–330.

Michael Ben-Or & Richard Cleve (1992). Computing Algebraic
Formulas Using a Constant Number of Registers. SIAM Journal on
Computing 21(1), 54–58. (Preliminary version in STOC’88).

Karl Bringmann, Christian Ikenmeyer & Jeroen Zuiddam
(2018). On algebraic branching programs of small width. Journal of
the ACM (JACM) 65(5), 1–29.

Richard A. Demillo & Richard J. Lipton (1978). A probabilistic
remark on algebraic program testing. Information Processing Letters
7(4), 193 – 195.

Stephen A. Fenner, Rohit Gurjar & Thomas Thierauf (2017).
Guest Column: Parallel Algorithms for Perfect Matching. SIGACT
News 48(1), 102–109.

Michael Forbes (2016). Some concrete questions on the border com-
plexity of polynomials. Presentation given at the Workshop on Algebraic
Complexity Theory WACT 2016 in Tel Aviv.

46 Bisht & Saxena

Michael A. Forbes (2015). Deterministic Divisibility Testing via
Shifted Partial Derivatives. In Proceedings of the 56th IEEE Symposium
on Foundations of Computer Science (FOCS), 451–465.

Michael A Forbes, Sumanta Ghosh & Nitin Saxena (2018). To-
wards blackbox identity testing of log-variate circuits. In 45th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Michael A. Forbes, Ramprasad Saptharishi & Amir Shpilka
(2014). Hitting sets for multilinear read-once algebraic branching pro-
grams, in any order. In Symposium on Theory of Computing (STOC),
New York, NY, USA, May 31 - June 03, 2014, 867–875.

Michael A Forbes & Amir Shpilka (2013a). Explicit Noether nor-
malization for simultaneous conjugation via polynomial identity testing.
In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 527–542. Springer.

Michael A. Forbes & Amir Shpilka (2013b). Quasipolynomial-
Time Identity Testing of Non-commutative and Read-Once Oblivious
Algebraic Branching Programs. In FOCS, 243–252.

Michael A Forbes & Amir Shpilka (2018). A PSPACE construction
of a hitting set for the closure of small algebraic circuits. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
1180–1192.

Zeyu Guo & Rohit Gurjar (2020). Improved Explicit Hitting-Sets
for ROABPs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi & Noam
Solomon (2019a). Derandomization from Algebraic Hardness: Tread-
ing the Borders. In 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), 147–157. IEEE.

Zeyu Guo, Nitin Saxena & Amit Sinhababu (2019b). Algebraic
Dependencies and PSPACE Algorithms in Approximative Complexity
over Any Field. Theory of Computing 15(1), 1–30.

PIT for sum of ROABPs 47

Rohit Gurjar, Arpita Korwar & Nitin Saxena (2017a). Iden-
tity Testing for Constant-Width, and Any-Order, Read-Once Oblivious
Arithmetic Branching Programs. Theory of Computing 13(2), 1–21.
(Preliminary version in CCC’16).

Rohit Gurjar, Arpita Korwar, Nitin Saxena & Thomas Thier-
auf (2017b). Deterministic Identity Testing for Sum of Read-Once
Oblivious Arithmetic Branching Programs. Computational Complexity
1–46. (Conference version in CCC 2015).

Joos Heintz & Claus P. Schnorr (1980). Testing Polynomials
Which Are Easy to Compute (Extended Abstract). In Proceedings of
the Twelfth Annual ACM Symposium on Theory of Computing, STOC
’80, 262–272. ACM, New York, NY, USA.

Valentine Kabanets & Russell Impagliazzo (2004). Derandom-
izing Polynomial Identity Tests Means Proving Circuit Lower Bounds.
Computational Complexity 13(1-2), 1–46. (Preliminary version in
STOC’ 03).

Neeraj Kayal, Vineet Nair & Chandan Saha (2016). Sepa-
ration Between Read-once Oblivious Algebraic Branching Programs
(ROABPs) and Multilinear Depth Three Circuits. In 33rd Symposium
on Theoretical Aspects of Computer Science (STACS), 46:1–46:15.

Adam Klivans & Daniel A. Spielman (2001). Randomness efficient
identity testing of multivariate polynomials. In Proceedings of the 33rd
ACM Symposium on Theory of Computing (STOC), 216–223.

Swastik Kopparty, Shubhangi Saraf & Amir Shpilka (2014).
Equivalence of Polynomial Identity Testing and Deterministic Multi-
variate Polynomial Factorization. In IEEE 29th Conference on Compu-
tational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13,
2014, 169–180.

Leopold Kronecker (1882). Grundzuge einer arithmetischen Theo-
rie der algebraischen Grossen. Berlin, G. Reimer.

Mrinal Kumar, Ramprasad Saptharishi & Anamay Tengse
(2019). Near-optimal bootstrapping of hitting sets for algebraic cir-
cuits. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, 639–646. Society for Industrial and Applied
Mathematics.

48 Bisht & Saxena

Ketan Mulmuley, Umesh V. Vazirani & Vijay V. Vazirani
(1987). Matching is as easy as matrix inversion. Combinatorica 7,
105–113.

Ketan D. Mulmuley (2012a). The GCT Program Toward the P vs.
NP Problem. Commun. ACM 55(6), 98–107.

Ketan D. Mulmuley (2012b). Geometric Complexity Theory V:
Equivalence between Blackbox Derandomization of Polynomial Iden-
tity Testing and Derandomization of Noether’s Normalization Lemma.
In FOCS, 629–638.

Ketan D Mulmuley & Milind Sohoni (2001). Geometric complex-
ity theory I: An approach to the P vs. NP and related problems. SIAM
Journal on Computing 31(2), 496–526.

Ketan D Mulmuley & Milind Sohoni (2008). Geometric complex-
ity theory II: Towards explicit obstructions for embeddings among class
varieties. SIAM Journal on Computing 38(3), 1175–1206.

Noam Nisan (1991). Lower Bounds for Non-Commutative Computa-
tion (Extended Abstract). In Proceedings of the 23rd ACM Symposium
on Theory of Computing, ACM Press, 410–418.

Øystein Ore (1922). Über höhere kongruenzen. Norsk Mat. Forenings
Skrifter 1(7), 15.

Ran Raz & Amir Shpilka (2005). Deterministic polynomial identity
testing in non-commutative models. Computational Complexity 14(1),
1–19.

Ramprasad Saptharishi (2016). A survey of lower
bounds in arithmetic circuit complexity. Technical report,
https://github.com/dasarpmar/lowerbounds-survey/.

Nitin Saxena (2008). Diagonal Circuit Identity Testing and Lower
Bounds. In ICALP, volume 5125 of Lecture Notes in Computer Science,
60–71. Springer.

Nitin Saxena (2009). Progress on Polynomial Identity Testing. Bul-
letin of the EATCS 99, 49–79.

PIT for sum of ROABPs 49

Nitin Saxena (2014). Progress on Polynomial Identity Testing- II.
In Perspectives in Computational Complexity, volume 26 of Progress in
Computer Science and Applied Logic, 131–146. Springer International
Publishing.

Jacob T. Schwartz (1980). Fast Probabilistic Algorithms for Verifi-
cation of Polynomial Identities. Journal of the ACM 27(4), 701–717.

Amir Shpilka & Ilya Volkovich (2009). Improved polynomial iden-
tity testing for read-once formulas. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 700–713.
Springer.

Amir Shpilka & Amir Yehudayoff (2010). Arithmetic Circuits: A
survey of recent results and open questions. Foundations and Trends in
Theoretical Computer Science 5(3-4), 207–388.

Rishabh Vaid (2015). Blackbox Identity Testing for Simple Depth 3
Circuits. Master’s thesis, Indian Institute of Technology Kanpur.

Richard Zippel (1979). Probabilistic Algorithms for Sparse Polyno-
mials. In Proceedings of the International Symposiumon on Symbolic
and Algebraic Computation, EUROSAM ’79, 216–226. Springer-Verlag,
London, UK, UK.

Manuscript received 12 July 2020

Pranav Bisht
Department of Computer Science

& Engineering
IIT Kanpur
India, 208016
pbisht@cse.iitk.ac.in

https://pranavbisht.bitbucket.io/

Nitin Saxena
Department of Computer Science

& Engineering
IIT Kanpur
India, 208016
nitin@cse.iitk.ac.in

https://www.cse.iitk.ac.in/users/

nitin/

	Blackbox identity testing for sum of special ROABPs and its border class
	Introduction
	Our results
	Previous works and motivation
	ABPs
	Log-variate
	Constant width
	PIT for Border

	Proof techniques
	Syntactic homogeneity for ROABP
	Reduction from many to one

	Organization

	Notations and Preliminaries
	Notations
	Algebraic models of computation
	Nisan's characterization
	Hitting set generator (HSG)
	Folklore facts

	PIT for Degree-preserving sum of ROABPs
	Syntactically Homogeneous ROABP
	PIT for single ROABP
	PIT for Degree-Preserving Sum

	PIT for Sum of ROABPs
	Sum of two ROABPs
	Sum of c ROABPs

	PIT for Border
	Border of ROABP
	Border of Sum of ROABPs

	Future Directions
	Acknowledgements

